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THE ONE-DIMENSIONAL IMPULSIVE

BARENBLATT�ZHELTOV�KOCHINA EQUATION

WITH A TRANSITION LAYER

IVAN KUZNETSOV AND SERGEY SAZHENKOV

Abstract. The initial-boundary value problem for the one-dimensional
impulsive pseudoparabolic equation is studied. As a coe�cient in the
second-order di�usion term, this equation contains the smoothed Dirac
delta-function concentrated at some time moment. From a physical view-
point, such term allows to describe impulsive pressure drop phenomena in
�ltration problems. Existence and uniqueness of solutions for �xed values
of the small parameter of smoothing is proved. After this, the limiting
passage as the small parameter tends to zero is ful�lled and rigorously
justi�ed. As the result, the limit instantaneous impulsive microscopic-
macroscopic model is established. This model is well-posed and involves
the additional equation on a transition layer posed on a `very fast'
timescale.
Key words: pseudoparabolic equation, impulsive equation, strong solu-
tion, Fourier series, transition layer

1. Introduction

The classical Barenblatt�Zheltov�Kochina equation

(1) ∂tu = χ∂3
xxtu+ ν∂2

xxu+ f (χ, ν > 0)

(here, in one-dimensional case) describes nonstationary �ltration of a viscous �uid
in a cracky-porous ground [8]. In this framework, the sought function u in (1) has a
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physical sense of the distribution of pressure in the gallery of cracks. Equation (1)
also arises in studies of non-equilibrium processes in the heat transfer [11], where
u plays the role of one of the temperatures in a two-temperature continuum. As
well, some dynamical problems regarding non-Newtonian second-order �uid reduce
to boundary value problems for equation (1), and in this context u means some
expression of velocity components [43].

If processes under study are rather regular, we can con�ne ourselves to consider-
ation of rather regular coe�cients χ = χ(x, t) and ν = ν(x, t). The relevant theory
of equation (1) and of its multi-dimensional version is vast and deep; its systematic
exhibition can be found, for example, in [14]. On the other hand, irregular processes,
like very fast pressure drop in the cracky gallery in the problem of �ltration, lead
to the cases when coe�cients become highly non-smooth. More certainly, in this
case coe�cient ν may behave closely to ν0 + αδ(t=τ), where ν0 = const > 0, α =
const 6= 0, and δ(t=τ) is the Dirac delta concentrated at the time moment t = τ
of the (instant) pressure drop. For example, such quick capillary pressure drops
were experimentally observed in [34] in a two-phase �ow. We can also note that
the additional term αδ(t=τ) may correspond to pressure �uctuations linked with
`impulsive' fast di�usion in porous media. In this view, we remark that fast di�usion
can be simulated also with the help of nonstandard gradient growth [10].

In the present paper, we approximate δ(t=τ) on the so-called transition ε-layer. To
this end, instead of δ(t=τ), we put into equation (1) the sequence {Kτ

ε }ε→0+, which
converges weakly? to δ(t=τ). We observe that the similar approach was applied in
[3, 21], where the Dirac delta-function δ(t=τ) was encompassed in the minor (source)
term, not in the term containing a derivative.

Now, in addition to the modi�cation of (1) described above regarding the approx-
imation of the Dirac delta, we also set ν0 = 1, χ = 1 and f = 0 for simplicity and
formulate the following initial-boundary value problem for the Barenblatt�Zheltov�
Kochina equation with the homogeneous boundary conditions, which will be studied
further in the article:

∂tuε = ∂3
xxtuε + (1 + αKτ

ε (t)) ∂2
xxuε, (x, t) ∈ ΠT ,(2a)

uε(0, t) = uε(1, t) = 0, t ∈ (0, T ),(2b)

uε(x, 0) = g(x), x ∈ (0, 1).(2c)

In (2), ΠT = (0, 1)×(0, T ) is a space-time rectangle, T = const > 0 and τ ∈ (0, T )
are given �xed time moments, α ∈ R is a given �xed value, uε = uε(x, t) is the
sought function, g = g(x) is a given function, and Kτ

ε is a given smooth kernel. For

a �xed value τ , kernel Kτ
ε = Kτ

ε (t) is supported on
{
τ − ε

2
6 t 6 τ +

ε

2

}
and is

de�ned by the formula

Kτ
ε (t) =

1

ε
K

(
t− τ
ε

)
, t ∈ [0, T ],

where K = K(ϑ) is a nonnegative smooth even function supported on segment{
−1

2
6 ϑ 6

1

2

}
, with the mean value equal to unity, i.e.,

∫ 1
2

− 1
2

K(ϑ) dϑ = 1, and

ε > 0 is a small parameter. Thus, Kτ
ε approximates the Dirac delta-function δ(t=τ)

in weak? sense as ε → 0+, i.e., the limiting relation lim
ε→0+

∫
R
φ(t)Kτ

ε (t) dt = φ(τ)



726 IVAN KUZNETSOV AND SERGEY SAZHENKOV

holds for any integrable in a neighborhood of {t = τ} ⊂ R function φ having the
trace at the point t = τ . Note that

(3) εKτ
ε (τ + εϑ) = K(ϑ), ∀ϑ ∈

[
−1

2
,

1

2

]
.

By analogy with the theory of generalized ordinary di�erential equations [16, 20,
35], we may call (2a) the generalized Barenblatt�Zheltov�Kochina equation corresp-
onding to the pressure of a liquid in cracks.

Further, in Sec. 2, for any �xed rather small ε (say, ε ∈ (0, ε0], ε0 � 1), we
construct a strong generalized solution to problem (2) in the form of Fourier series
(12) and establish that this solution is unique and satis�es the �rst and the second
energy estimates uniform in ε, see Proposition 1. In Sec. 3, we formulate Theorems
1 and 2, which are the main results of the paper and which relate to the limiting
transition in problem (2), as ε → 0+. Theorem 1 asserts the compactness of the
family {uε}ε∈(0,1] as ε → 0+ and the fact that the limit function u = lim

ε→0+
uε

satis�es the homogeneous Barenblatt�Zheltov�Kochina equation outside the section
{t = τ}. The proof of Theorem 1 is given in Secs. 4 and 6. In order to prove
compactness of {uε}ε∈(0,1], we apply the Aubin�Lions�Simon lemma [38, Theorem
3], see also [4, 12, 24, 25, 32]. Theorem 2 deals with the study of the family
{uε}ε∈(0,1] near the section {t = τ} and is proved in Sec. 5. More certainly, in Sec.
5, in order to link the one-sided traces of the limit solution at t = τ , we rescale uε on(

0, τ − ε

2

)
,
(
τ − ε

2
, τ +

ε

2

)
, and

(
τ +

ε

2
, T
)
and apply the Aubin�Lions lemma [26,

Lemma 2.48, p. 36], [38, Corollary 6] to the rescaled solution. As the result, for the
rescaled solution we derive the so-called equation on the transition layer between
t = τ −0 and t = τ +0, see (17b), which incorporates not the `macroscopic' (`slow')

time variable t, but the `microscopic' (`fast') time variable t̄, so that t̄ ∈
[
−1

2
,

1

2

]
,

t = τ − 0 corresponds to t̄ = −1

2
+ 0, and t = τ + 0 corresponds to t̄ =

1

2
− 0.

In aggregation, the results of Theorems 1 and 2 give us the well-posed limit
two-scale microscopic-macroscopic model (15b)�(15d), (17b)�(17e) describing the
process in which an instantaneous impulsive phenomenon manifests itself.

The main di�erence between the aforementioned results from [3, 21] and the
results from the present paper is that, in the present paper, the dissipative term

persists on a transition layer

{
−1

2
6 t̄ 6

1

2

}
after rescaling, since ε∂2

xxūε does not

vanish, as ε→ 0+ in equation (16). This is one of the novelties in the present paper.
We should emphasize the di�erence between impulsive di�erential equations with

and without a transition layer. We address the reader to the monographs [5, 6,
7, 22, 33, 40] devoted to fairly extensive studies of impulsive di�erential equations
without a transition layer. In turn, impulsive di�erential equations with a transition
layer are studied poorer, although there is a number of notable works as well, see
[13, 15, 16, 17, 18, 20, 27, 29, 35]. Moreover, the scaling on a transition layer is
linked with the theory of boundary transition layer [19, 28, 45]. Also, it is important
to mention a rather new type of equations, namely, non-instantaneous di�erential
equations [1, 46], where a transition layer is given a priori, without a limiting
passage.



THE IMPULSIVE BARENBLATT�ZHELTOV�KOCHINA EQUATION 727

Remark that the straightforward substitution of δ(t=τ+0) = w?- lim
ε→0

Kτ
ε for Kτ

ε

into (2a) yields the instantaneous impulsive pseudoparabolic equation

∂tu = ∂3
xxtu+

(
1 + αδ(t=τ+0)(t)

)
∂2
xxu, (x, t) ∈ ΠT ,

which is equivalent in the sense of distributions to the system consisting of the
homogeneous pseudoparabolic equation

(4) ∂tu = ∂3
xxtu+ ∂2

xxu in ΠT \ {t = τ}
and the impulsive condition on the section {t = τ}:
(5) u(x, τ+0)−(1+α)∂2

xxu(x, τ+0) = u(x, τ−0)−∂2
xxu(x, τ−0) for x ∈ (0, 1).

One can notice that the system (4)�(5) does not coincide with the system (15b),
(17b), (17d), (17e).

Let us now give a simple example [13] demonstrating the same feature, which
manifests the di�erence between impulsive di�erential equations with a transition
layer and instantaneous ones. Consider the �rst-order ordinary di�erential equation

(6)
dfε(x)

dx
= αfε(x)δε(x), x ∈ R,

with

α = const, δε(x) =


1

ε
if x ∈

(
−ε

2
,
ε

2

)
,

0 if |x| > ε

2
,

ε > 0.

It is easy to deduce that the function δε weakly? approximates the Dirac delta
function δ(x=0) concentrated at the origin (x = 0) and to calculate explicitly the
solution of (6) for every �xed ε > 0:

fε(x) = C exp

α x∫
0

δε(y) dy

 =


C exp

(
−α

2

)
if x 6 −ε

2
,

C exp
(αx
ε

)
if −ε

2
< x <

ε

2
,

C exp
(α

2

)
if x >

ε

2
.

If C 6= 0, one establishes that the limit function f = lim
ε→0+

fε meets the jump

condition

(7) f(0+)− f(0−) = tanh
(α

2

) [
f(0+) + f(0−)

]
.

At the same time, the solution of equation
df(x)

dx
= αf(x)δ(x=0) meets the standard

impulsive condition

(8) f(0+)− f(0−) =
α

2

[
f(0+) + f(0−)

]
,

and we immediately notice the discrepancy between (7) and (8), since these two
conditions coincide only for α = 0, i.e., in the trivial case.

Concluding this introduction, let us remark that pseudoparabolic equations are
of Sobolev type [2, 14] and are also applied for regularization of forward-backward
parabolic equations [9, 30, 31, 39]. The presence of ∂3

xxtuε is essential in our study.
The purely parabolic equation of the form (2a), i.e., the equation where the third
order derivative ∂3

xxtuε is discarded, requires an additional research and this question
lays beyond the present article. As well, an interesting direction of further research
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may be devoted to inclusion of a non-local term of the Fredholm type into (2a).
Speci�cally, inserting the term

Kτ
ε (t)

∫ T

0

Kτ
ε (s)∂2

xxuε(x, s) ds

on the place of Kτ
ε (t)∂2

xxuε(x, t), we encounter the generalized Fredholm type
integro-di�erential pseudoparabolic equation, which may have a signi�cant place
in the theory of non-local in time partial di�erential equations [41, 42, 47] and in
the theory of impulsive integro-di�erential equations [23].

2. Well-posedness of problem (2).
The first and the second energy estimates

We start our study of problem (2) by establishing the following:

Proposition 1. Whenever g ∈ W 2,2(0, 1) ∩ W 1,2
0 (0, 1), there is a unique strong

generalized solution uε = uε(x, t) to problem (2). Moreover, the solution satis�es
the uniform in ε �rst and second energy estimates

‖uε‖2L∞(0,T ;L2(0,1)) + ‖∂xuε‖2L∞(0,T ;L2(0,1))(9)

6 C
(
‖g‖2L2(0,1) + ‖∂xg‖2L2(0,1)

) def
= M1, ∀ ε ∈ (0, ε0],

(10) ‖∂xuε‖2L∞(0,T ;L2(0,1)) + ‖∂2
xxuε‖2L∞(0,T ;L2(0,1)) 6M2,

and the bound

(11) ‖∂xuε‖L∞(ΠT ) 6M3,

where C,M1,M2,M3 = const > 0 do not depend on ε.

The notion of strong generalized solution is quite standard:

De�nition 1. A function uε: ΠT 7→ R is called a strong generalized solution

of problem (2) if

(i) uε, ∂tuε ∈ L∞(0, T ;W 2,2(0, 1) ∩W 1,2
0 (0, 1)),

(ii) uε satis�es (2a) a.e. in ΠT and (2c) in the strong sense, namely,

‖uε(·, t)− g(·)‖W 2,2(0,1) −→
t→0+

0.

The proof of Proposition 1 can be divided into four stages and is given in Sections
2.1�2.4 further.

2.1. Existence. Since we deal with the linear case, we apply the Fourier series
method. Taking into account homogeneous conditions, a solution is sought as a
Fourier series:

(12) uε(x, t) =

∞∑
n=1

cε,n(t)ϕn(x),

where ϕn(x) = sin(λnx), λn = nπ. Therefore, the coe�cients satisfy the set of
Cauchy problems (n ∈ N)

c′ε,n(t) =
−λ2

n

1 + λ2
n

(1 + αKτ
ε (t))cε,n(t), t ∈ (0, T ),(13a)

cε,n(0) = gn,(13b)
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where, in turn, gn are the Fourier coe�cients of initial data g ∈ W 2,2(0, 1) ∩
W 1,2

0 (0, 1).
Now, let us apply the results from [36, 37] to (13). Namely, for every t ∈ [0,+∞)

and ε > 0 we introduce the linear operator Eε(t): L
2(0, 1) 7→ L2(0, 1) by the rule:

Eε(t)v =

∞∑
n=1

exp

(
− λ2

n

1 + λ2
n

(
t+ α

∫ t

0

Kτ
ε (s) ds

))
vnϕn(x), t > 0,

for an arbitrary function v with ‖v‖2L2(0,1) =
∞∑
n=1

v2
n <∞.

Operator Eε(t) depends on t as on a parameter and has the following properties.

(i) Eε(0) = I,

(ii) ‖Eε‖ 6 exp(|α|).
Proof of assertion (ii). By Parseval's identity, we have

‖Eε(t)v‖2L2(0,1) =

∞∑
n=1

v2
n exp

(
− 2λ2

n

1 + λ2
n

(
t+ α

∫ t

0

Kτ
ε (s) ds

))

6 exp(2|α|)
∞∑
n=1

v2
n = exp(2|α|)‖v‖2L2(0,1),

and the estimate follows.

(iii) Eε(·)v ∈ C([0,+∞);L2(0, 1)) for any v ∈ L2(0, 1).

Proof of assertion (iii). On the strength of Parseval's identity followed by
simple estimation, we have∫ 1

0

(Eε(t2)v − Eε(t1)v)2 dx

6
1

2

∞∑
n=1

[
exp

(
− λ2

n

1 + λ2
n

(
t2 + α

∫ t2

0

Kτ
ε (s) ds

))

− exp

(
− λ2

n

1 + λ2
n

(
t1 + α

∫ t1

0

Kτ
ε (s) ds

))]2

v2
n → 0, as t2 − t1 → 0,

since the series in the right hand side of the inequality are uniformly
continuous in t := t1, t2 with respect to n (but not with respect to ε,
though).

Thus assertion (iii) follows.

(iv) For any �xed ε > 0, function uε = Eε(·)g is a strong generalized solution
of problem (2) in the sense of De�nition 1.

The proof of assertion (iv) is analogous to the one in [36, Secs. 4, 5], where
a more general linear case is treated.

2.2. The �rst energy estimate uniform in ε. Uniqueness. We multiply (2a)
by the solution uε, integrate over (0, 1)× (0, t), where t ∈ (0, T ), integrate by parts
in x, taking into account (2c), and then use (2b) to get the �rst energy identity

1

2

∫ 1

0

(
|uε(x, t)|2 + |∂xuε(x, t)|2

)
dx− 1

2

∫ 1

0

(
|g(x)|2 + |∂xg(x)|2

)
dx(14)
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= −
∫ t

0

∫ 1

0

(1 + αKτ
ε (t′)) |∂xuε(x, t′)|

2
dxdt′

6 |α|
∫ t

0

∫ 1

0

Kτ
ε (t′) |∂xuε(x, t′)|

2
dxdt′, ∀ t ∈ [0, T ].

Applying the Gr�onwall�Bellman lemma to this inequality, we immediately estab-
lish estimate (9). Uniqueness of solution uε follows immediately from (9) due to
linearity of the problem.

2.3. The second energy estimate uniform in ε. Since uε = Eε(t)g, ∂
2
xxg ∈

L2(0, 1) and ∂2
xxuε(·, t) ∈ L2(0, 1), we are eligible to multiply (2a) by −∂2

xxuε,
integrate over (0, 1)× (0, t), where t ∈ (0, T ), integrate by parts in x in the �rst two
terms, taking into account (2c), and then use (2b) to get the second energy identity

1

2

∫ 1

0

(
|∂xuε(x, t)|2 + |∂2

xxuε(x, t)|2
)
dx− 1

2

∫ 1

0

(
|∂xg(x)|2 + |∂2

xxg(x)|2
)
dx

= −
∫ t

0

∫ 1

0

(1 + αKτ
ε (t′)) |∂2

xxuε(x, t
′)|2 dxdt′

6
∫ t

0

∫ 1

0

|α|Kτ
ε (t′)|∂2

xxuε(x, t
′)|2 dxdt′, ∀ t ∈ [0, T ].

Applying the Gr�onwall�Bellman lemma to this inequality, we arrive at the second
energy estimate (10).

2.4. The bound on ∂xuε uniform in ε. The bound (11) directly follows from
the two energy estimates and the Newton�Leibnitz formula.

Proposition 1 is fully proved.

3. The main results

The main results of the article are the following Theorems 1 and 2. In Theorem 1
we deal with the limit u(x, t) = lim

ε→0+
uε apart from the section {t = τ}. In Theorem

2 we formulate the initial-boundary value problem on the `transition layer' between
t = τ − 0 and t = τ + 0. Solution of this problem links u(x, τ − 0) with u(x, τ + 0).

Theorem 1. The family {uε}ε∈(0,ε0] is relatively compact in L2(0, T ;W 1,2
0 (0, 1))

and relatively weakly? compact in L∞(0, T ;W 2,2(0, 1)), as ε→ 0+. In other terms,
there exist a subsequence from {uε}ε∈(0,ε0], still labeled by ε, and a limit function

u ∈ L∞(0, T ;W 2,2(0, 1) ∩W 1,2
0 (0, 1)) such that

uε −→
ε→0+

u strongly in L2(0, T ;W 1,2
0 (0, 1))(15a)

and weakly? in L∞(0, T ;W 2,2(0, 1)),

∂tu = ∂3
xxtu+ ∂2

xxu for (x, t) ∈ ΠT \ {t = τ},(15b)

u(0, t) = u(1, t) = 0 for x ∈ (0, 1), t ∈ (0, τ) ∪ (τ, T ),(15c)

u(x, 0) = g(x) for x ∈ (0, 1).(15d)

Equation (15b) is understood a.e. on (0, 1) × (0, τ) and a.e. on (0, 1) × (τ, T ).
Initial condition (15d) is understood in the sense of the strong trace, namely,

‖u(·, t)− g(·)‖W 2,2(0,1) −→
t→0+

0.
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In Sections 4 and 5, the identities for the one-sided limits are proved:

u(x, τ − 0) = lim
ε→0+

uε(x, τ − 0) = lim
ε→0+

uε

(
x, τ − ε

2

)
,

u(x, τ + 0) = lim
ε→0+

uε(x, τ + 0) = lim
ε→0+

uε

(
x, τ +

ε

2

)
.

Therefore, following the idea presented in [20, 21, 44], along with the family
{uε}ε∈(0,ε0], in order to link u(x, τ − 0) and u(x, τ + 0), we use rescaling on the

transition layer
[
τ − ε

2
, τ +

ε

2

]
and deal with the rescaled solutions

ūε(x, t̄) = uε(x, τ + εt̄),

where ūε: Π 7→ R and we denote Π := (0, 1)×
(
−1

2
,

1

2

)
.

For every �xed ε > 0, with the help of a new variable t̄ =
t− τ
ε
∈
[
−1

2
,

1

2

]
and

multiplication by ε, from (2a) we deduce the rescaled equation

∂t̄ūε = ∂3
xxt̄ūε + (ε+ αK(t̄)) ∂2

xxūε, (x, t̄) ∈ Π.(16)

Theorem 2. The family of rescaled solutions {ūε}ε∈(0,ε0] is relatively compact in

L2(Π) and relatively weakly? compact in L∞
(
−1

2
,

1

2
;W 2,2(0, 1)

)
. In other terms,

there exist a subsequence from {ūε}ε∈(0,ε0], still labeled by ε, and a limit function

ū ∈ L∞
(
−1

2
,

1

2
;W 2,2(0, 1) ∩W 1,2

0 (0, 1)
)
such that

ūε −→
ε→0+

ū strongly in L2(Π)(17a)

and weakly? in L∞
(
−1

2
,

1

2
;W 2,2(0, 1)

)
.

Moreover, on the transition layer we write out the pseudo-parabolic equation supple-
mented with the homogeneous boundary conditions and the initial condition:

∂t̄ū = ∂3
xxt̄ū+ αK(t̄)∂2

xxū for (x, t̄) ∈ Π,(17b)

ū(0, t̄) = ū(1, t̄) = 0 for t̄ ∈
(
−1

2
,

1

2

)
,(17c)

ū

(
x,−1

2
+ 0

)
= u(x, τ − 0) for x ∈ (0, 1).(17d)

Finally, the matching condition for the transition layer solution ū on the section{
t̄ =

1

2
− 0
}

and the outer solution u on the section {t = τ + 0} holds true as

follows:

(17e) u(x, τ + 0) = ū

(
x,

1

2
− 0

)
for x ∈ (0, 1).

Equation (17b) is understood a.e. in Π. Initial condition (17d) and matching
condition (17e) are understood in the sense of the strong traces, namely,∥∥ū(·, t̄)− u(·, τ − 0)

∥∥
W 2,2(0,1)

−→
t̄→− 1

2 +0
0,(18)

∥∥u(·, t)− ū
(
·, 1

2
− 0
)∥∥

W 2,2(0,1)
−→
t→τ+0

0.(19)
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Remark 1. As it has already been mentioned in Sec. 1, the system (15b)�(15d),
(17b)�(17e) is a closed limit two-scale model describing the process in which an
instantaneous impulsive phenomenon manifests itself. Existence of a strong general-
ized solution (u, ū) to this model follows directly from Theorems 1 and 2 on the
strength of the limiting passages, as ε→ 0+.

Moreover, the solution (u, ū) is unique. Indeed, in fact, the system (15b)�(15d),
(17b)�(17e) is a set of the three initial-boundary value problems that should be
solved successively. In the �rst step, we solve problem (15b)�(15d) on the slow time
interval {0 < t < τ}. In the second step, we solve problem (17b)�(17d) on the fast

time interval
{
−1

2
< t̄ <

1

2

}
, where the initial data is taken from the �rst step:

ū
(
x,−1

2

)
= u(x, τ − 0). Finally, we solve problem (15b), (15c), (17e) on the slow

time interval {τ < t < T}, where the initial data is taken from the second step:

u(x, τ + 0) = ū
(
x,

1

2
− 0
)
. Each of these three problems is linear and admits the

�rst energy estimate, analogous to estimate (14). Therefore the solution of each of
the problems is unique.

4. Proof of Theorem 1 (beginning)

4.1. Uniform boundedness and equi-continuity of {uε}ε∈(0,ε0].

Lemma 1. For all ε ∈ (0, ε0], the family of strong solutions of problem (2) satis�es
the following demands:

• uniform boundedness in L2(0, T ;W 2,2(0, 1));
• integral equi-continuity

‖τhuε − uε‖L2(0,T−h;W 1,2
0 (0,1)) 6 Ch, ∀h > 0 (h� 1),

where τhuε(x, t) := uε(x, t + h) and constant C > 0 does not depend on ε
and h.

Proof. The uniform boundedness follows from (10). In order to prove the integral
equi-continuity, we rewrite

‖τhuε − uε‖2L2(0,T−h;W 1,2
0 (0,1))

=

∫ T−h

0

(
‖uε(·, t+ h)− uε(·, t)‖2L2(0,1) + ‖∂xuε(·, t+ h)− ∂xuε(·, t)‖2L2(0,1)

)
dt.

Therefore,

‖uε(·, t+ h)− uε(·, t)‖2L2(0,1) + ‖∂xuε(·, t+ h)− ∂xuε(·, t)‖2L2(0,1)

=

∞∑
n=1

(1 + λ2
n) (cε,n(t+ h)− cε,n(t))

2

=

∞∑
n=1

(1 + λ2
n)

∫ t+h

t

c′ε,n(s) ds (cε,n(t+ h)− cε,n(t))

=

∞∑
n=1

λ2
n

∫ t+h

t

cε,n(s)(1 + αKτ
ε (s)) ds (cε,n(t+ h)− cε,n(t))

6 2

∫ t+h

t

(1 + |α|Kτ
ε (s)) ds

∞∑
n=1

λ2
n max
t∈[0,T ]

|cε,n(t)|2



THE IMPULSIVE BARENBLATT�ZHELTOV�KOCHINA EQUATION 733

6 2C

∫ t+h

t

(1 + |α|Kτ
ε (s)) ds

∞∑
n=1

λ2
ng

2
n.

This provides

‖τhuε − uε‖2L2(0,T−h;W 1,2
0 (0,1))

6 2C

∫ T−h

0

(∫ t+h

t

(1 + |α|Kτ
ε (s)) ds

)
dt

∞∑
n=1

λ2
ng

2
n 6 Ch,

since ∫ T−h

0

(∫ t+h

t

Kτ
ε (s) ds

)
dt =

∫ h

0

Kτ
ε (s)s ds+

∫ T−h

h

Kτ
ε (s)h ds

+

∫ T

T−h
Kτ
ε (s)(T − s) ds 6 h

∫ T

0

Kτ
ε (s) ds = h,

for 0 < τ < T and h, ε� 1.
Lemma 1 is proved. �

4.2. Relative compactness of {uε}ε∈(0,ε0] in L2(0, T ;W 1,2
0 (0, 1)). Lemma

1 enables to apply the Aubin�Lions�Simon lemma, see [38, Theorem 3], where

X = W 2,2(0, 1)∩W 1,2
0 (0, 1) and B = W 1,2

0 (0, 1), so that X is compactly embedded
in B. Due to this and Lemma 1, sequence {uε}ε→0+ is relatively compact in

L2(0, T ;W 1,2
0 (0, 1)). Bound (10) implies that {uε}ε→0+ is relatively weakly? compact

in L∞(0, T ;W 2,2(0, 1)). Due to these properties, there exist a subsequence from

{uε}ε→0+ and a limit function u ∈ L∞(0, T ;W 2,2(0, 1) ∩ W 1,2
0 (0, 1)) satisfying

the limiting relation (15a) and equation (15b) in the sense of distributions in
(0, 1)× (0, τ) and in (0, 1)× (τ, T ).

4.3. Equation (15b) on (0, 1)× (0, τ ). Initial condition (15d). Note that

equation (15b) coincides with equation (2a) for t ∈
(

0, τ− ε
2

)
, sinceKτ

ε is supported

on the segment
{
τ − ε

2
6 t 6 τ +

ε

2

}
. Therefore u coincides with uε for t ∈

(
0, τ −

ε

2

)
. Hence the initial value g is attained by u in the strong trace sense, as in

De�nition 1 and, on (0, 1) × (0, τ), the limit function u has the same regularity
properties as the solution uε in De�nition 1. This implies that equation (15b) holds
a.e. on (0, 1)× (0, τ).

In order to complete the proof of Theorem 1, it remains to show that equation
(15b) holds a.e. on (0, 1)× (τ, T ), as well. This is done further in Sec. 6.

5. Proof of Theorem 2

In the present section, we rescale the solution uε in the time variable, correspond-
ingly, in the three domains:

• (0, 1) ×
(

0, τ − ε

2

)
is mapped into (0, 1) × (0, τ) and a rescaled solution

ûε, de�ned by Fourier coe�cients (20), satis�es the problem (21), stated
further;
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• (0, 1) ×
(
τ − ε

2
, τ +

ε

2

)
is mapped into (0, 1) ×

(
−1

2
,

1

2

)
and a rescaled

solution ūε, de�ned by the Fourier coe�cients (22), satis�es problem (16),
(23a), (23b);

• (0, 1)×
(
τ +

ε

2
, T
)
is mapped into (0, 1)× (τ, T ) and a rescaled solution ũε,

de�ned by the Fourier coe�cients (24), satis�es problem (25).

With the help of this rescaling, we can link lim
ε→0+

uε(x, τ − 0) with

lim
ε→0+

uε(x, τ+0) and, correspondingly, lim
ε→0+

∂xuε(x, τ−0) with lim
ε→0+

∂xuε(x, τ+0).

In each of the three domains, we apply the original version of the Aubin�Lions
lemma.

5.1. Rescaling on t ∈
[
0, τ −

ε

2

]
. Here we are going to rescale system (13). On{

0 6 t 6 τ − ε

2

}
we take t̂ :=

tτ(
τ − ε

2

) ∈ [0, τ ] and

ĉε,n(t̂) := cε,n


(
τ − ε

2

)
τ

t̂

 .

With dt =

(
τ − ε

2

)
τ

dt̂, system (13) is rewritten in the form:

ĉ ′ε,n(t̂) = −

(
τ − ε

2

)
τ

λ2
n

1 + λ2
n

ĉε,n(t̂), t̂ ∈ (0, τ), n ∈ N,(20a)

ĉε,n(0) = gn.(20b)

We introduce a function

ûε(x, t̂) =

∞∑
n=1

ĉε,n(t̂)ϕn(x)

as a solution of the rescaled equation

∂t̂ ûε =

(
τ − ε

2

)
τ

∂2
xxûε + ∂3

xxt̂
ûε(21a)

satisfying the respective initial and homogeneous boundary conditions

ûε(x, 0) = g(x),(21b)

ûε(0, t̂ ) = ûε(1, t̂ ) = 0.(21c)

Lemma 2. The following estimate holds true:

sup
t̂∈(0,τ)

‖ûε(·, t̂)‖2W 2,2(0,1) + sup
t̂∈(0,τ)

‖∂t̂ ûε(·, t̂)‖
2
W 1,2

0 (0,1)
6 C‖g‖2W 2,2(0,1).

Proof. The proof of this lemma is similar to the deduction of the �rst and the
second energy estimates, see Sections 2.2 and 2.3. After rescaling, it is feasible to
estimate ∂2

xt̂
ûε and ∂

3
xxt̂

ûε in L
∞(0, τ ;L2(0, 1)). But in the present paper, there is

no need in the latter estimate. �
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The family of the functions ûε is compact in C([0, τ ];W 1,2
0 (0, 1)). This is guaranteed

by Proposition 1, Lemma 2 and the original version of the Aubin�Lions lemma, since
the space{

v ∈ L∞(0, τ ;W 2,2(0, 1) ∩W 1,2
0 (0, 1)) : ∂tv ∈ L∞(0, τ ;W 1,2

0 (0, 1))
}

is compactly embedded in C([0, τ ];W 1,2
0 (0, 1)).

5.2. Rescaling on t ∈
[
τ −

ε

2
, τ +

ε

2

]
. Let t̄ :=

t− τ
ε

for t ∈
[
τ − ε

2
, τ +

ε

2

]
.

Note that t̄ ∈
[
−1

2
,

1

2

]
, dt = εdt̄, and t = τ + εt̄. Taking into account (3), for

cε,n(t̄) := cε,n(τ + εt̄)

system (13) transforms into

c ′ε,n(t̄) = − λ2
n

1 + λ2
n

(
ε+ αK(t̄)

)
cε,n(t̄), t̄ ∈

(
−1

2
,

1

2

)
, n ∈ N,(22a)

cε,n

(
−1

2

)
= ĉε,n(τ).(22b)

As in Sec. 5.1, from (22) it follows that

ūε(x, t̄) =

∞∑
n=1

cε,n(t̄)ϕn(x)

satis�es equation (16) with initial and boundary conditions

ūε

(
x,−1

2

)
= ûε(x, τ),(23a)

ūε(0, t̄) = ūε(1, t̄) = 0.(23b)

Lemma 3. The following estimate holds true:

sup
t̄∈(− 1

2 ,
1
2 )

‖ūε(·, t̄)‖2W 2,2(0,1) + sup
t̄∈(− 1

2 ,
1
2 )

‖∂t̄ūε(·, t̄)‖2W 1,2
0 (0,1)

6 Cα‖g‖2W 2,2(0,1).

Proof. Justi�cation of the lemma is based on Lemma 2 and is similar to the proof
of the �rst and the second energy inequalities, see Secs. 2.2 and 2.3. �

The family of functions ūε is compact in C
([
−1

2
,

1

2

]
;W 1,2

0 (0, 1)
)
. This is guaranteed

by Lemma 3 and the original version of the Aubin�Lions lemma, since the space{
v ∈ L∞

(
−1

2
,

1

2
;W 2,2(0, 1) ∩W 1,2

0 (0, 1)
)

: ∂tv ∈ L∞
(
−1

2
,

1

2
;W 1,2

0 (0, 1)
)}

is compactly embedded in C
([
−1

2
,

1

2

]
;W 1,2

0 (0, 1)
)
.

5.3. Rescaling on t ∈
[
τ +

ε

2
, T
)
. For t ∈

[
τ +

ε

2
, T
)
we set

t̃ :=
−εT

2
(
T − τ − ε

2

) +
(T − τ) t(
T − τ − ε

2

) ∈ [τ, T ),
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and, correspondingly,

c̃ε,n(t̃) = cε,n


(
T − τ − ε

2

)
(T − τ)

t̃+
−εT

2(T − τ)

 , dt =
(T − τ − ε

2 )

(T − τ)
dt̃.

Finally, we rewrite (13) as

c̃ ′ε,n(t̃) = −

(
T − τ − ε

2

)
(T − τ)

λ2
n

1 + λ2
n

c̃ε,n(t̃), t̃ ∈ (τ, T ), n ∈ N,(24a)

c̃ε,n(τ) = cε,n

(1

2
+ 0
)
.(24b)

We introduce a solution

ũε(x, t̃) =

∞∑
n=1

c̃ε,n(t̃)ϕn(x)

of the rescaled problem

∂t̃ ũε =

(
T − τ − ε

2

)
(T − τ)

∂2
xxũε + ∂3

xxt̃
ũε,(25a)

ũε(x, τ) = ūε

(
x,

1

2
+ 0
)
,(25b)

ũε(0, t̃ ) = ũε(1, t̃ ) = 0.(25c)

Lemma 4. The following estimate holds true:

sup
t̃∈(τ,T )

‖ũε(·, t̃)‖2W 2,2(0,1) + sup
t̃∈(τ,T )

‖∂t̃ ũε(·, t̃)‖
2
W 1,2

0 (0,1)
6 C̃α‖g‖2W 2,2

0 (0,1)
.

Proof. Justi�cation of the lemma is based on Lemma 2 and is similar to the proof
of the �rst and the second energy inequalities, see Secs. 2.2 and 2.3. �

The family of the functions ũε is compact in C([τ, T ];W 1,2
0 (0, 1)). This is guaran-

teed by Lemma 4 and the original version of the Aubin�Lions lemma, since the
space {

v ∈ L∞(τ, T ;W 2,2
0 (0, 1)) : ∂tv ∈ L∞(τ, T ;W 1,2

0 (0, 1))
}

is compactly embedded in C([τ, T ];W 1,2
0 (0, 1)).

5.4. Matching conditions. Summarizing Secs. 5.1�5.3, we state that the sequen-
ces {ûε}ε→0+, {ūε}ε→0+, and {ũε}ε→0+ are compact in the following spaces, respec-
tively:

C([0, τ ];W 1,2
0 (0, 1)), C

([
−1

2
,

1

2

]
;W 1,2

0 (0, 1)
)
, and C([τ, T ];W 1,2

0 (0, 1)).

Moreover, we conclude that the limit of the sequence {ûε}ε→0+ satis�es the system
(15b)�(15d) on (0, 1) × (0, τ) in the strong sense (see Remark 1 and Sec. 4.3) and
the limit of the sequence {ũε}ε→0+ satis�es the system (15b)�(15c) on (0, 1)×(τ, T )
and the limit of the sequence {ūε}ε→0+ satis�es the system (17b)�(17c) on Π, at
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least, in the weak sense (in the sense of distributions) so far. From initial conditions
(23a) and (25b), the matching conditions

lim
ε→0+

uε(x, τ − 0) = lim
ε→0+

ûε(x, τ − 0) = lim
ε→0+

ūε

(
x,−1

2
+ 0
)

and

lim
ε→0+

ūε

(
x,

1

2
− 0
)

= lim
ε→0+

ũε(x, τ + 0) = lim
ε→0+

uε(x, τ + 0)

follow, i.e., equalities (17d) and (17e) hold true.

5.5. Equation (17b) on Π. Problem (17b)�(17d) (for ū) has the form similar to
the formulation of problem (2) and

ū
(
·,−1

2
+ 0
)

= u(·, τ − 0) ∈W 2,2(0, 1) ∩W 1,2
0 (0, 1).

Therefore ū is unique and meets the same regularity requirements, as the solution
uε of (2) in De�nition 1. In particular, equation (17b) holds a.e. on Π and initial
condition (17d) holds in the sense of the limiting relation (18). Theorem 2 is fully
proved.

6. Proof of Theorem 1 (completion)

The initial-boundary value problem for equation (15b) on (0, 1)× (τ, T ) supple-
mented with the boundary conditions (15c) and the initial conditions (17e) has the
form similar to the formulation of problem (2) and

u(·, τ + 0) = ū
(
·, 1

2
− 0
)
∈W 2,2(0, 1) ∩W 1,2

0 (0, 1),

due to the arguments in Sec. 5.5. Therefore u is unique and meets the same
regularity requirements, as the solution uε of (2) in De�nition 1. In particular,
equation (15b) holds a.e. on (0, 1) × (0, τ) and initial condition (17e) holds in the
sense of the limiting relation (19).

Proof of Theorem 1 is complete.

7. Remark on the strong convergence

In the end of the article, let us make an additional remark on strong convergence
leading to some generalization of the established results.

Remark 2. Note that the strong convergence properties for {uε}ε→0+ and {ūε}ε→0+

(see the limiting relations (15a) and (17a)) are redundant for the derivation of the
limit model (15b)�(15d), (17b)�(17e), since the original model (2) is linear and
therefore the mere properties of weak convergence would have been su�cient for the
limiting transitions in (2), in fact.

On the other hand, presence of strong convergence manifests that problem (2) can
be regarded to as a `good' approximation of the limit problem (15b)�(15d), (17b)�
(17e), in a sense. Besides, as an example, precisely following the arguments in the
article, we can naturally generalize the research onto the case of the semilinear
equation

∂tuε = ∂3
xxtuε + (1 + αKτ

ε (t)) ∂2
xxuε − f(uε),

where f is a smooth given sublinear function.
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