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LOGARITHMIC ASYMPTOTICS

OF THE NUMBER OF CENTRAL VERTICES

OF ALMOST ALL n-VERTEX GRAPHS OF DIAMETER k

T.I. FEDORYAEVA

Abstract. The asymptotic behavior of the number of central vertices
and F. Buckley's central ratio Rc(G) = |C(G)|/|V (G)| for almost all
n-vertex graphs G of �xed diameter k is investigated.

The logarithmic asymptotics of the number of central vertices for
almost all such n-vertex graphs is established: 0 or log2 n (1 or log2 n),
respectively, for arising here subclasses of graphs of the even (odd)
diameter.

It is proved that for almost all n-vertex graphs of diameter k, Rc(G) =
1 for k = 1, 2, and Rc(G) = 1− 2/n for graphs of diameter k = 3, while
for k ≥ 4 the value of the central ratio Rc(G) is bounded by the interval
( ∆

6
+ r1(n), 1 − ∆

6
− r1(n)) except no more than one value (two values)

outside the interval for even diameter k (for odd diameter k) depending
on k. Here ∆ ∈ (0, 1) is arbitrary predetermined constant and r1(n), r2(n)
are positive in�nitesimal functions.

Keywords: graph, diameter, radius, central vertices, number of central
vertices, central ratio, center, spectrum of center, typical graphs, almost
all graphs.

Introduction

We study �nite labeled ordinary graphs. For a connected graph G, the
distance ρG(u, v) between its vertices u, v ∈ V (G) is de�ned as the length of the
shortest path connecting these vertices. In this case, eG(v) = maxu∈V ρG(v, u) is the
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eccentricity of the vertex v of the graph G, d(G) = maxv∈V eG(v) is the diameter
of the graph G, and r(G) = minv∈V eG(v) is the radius of the graph G. A vertex is
called central if its eccentricity is equal to the radius of the graph. The graph center
C(G) is the set of all central vertices of the graph G.

The concept of the graph center is related to its numerous practical problems
arising in varied �elds and it is stipulated by the measurement of proximity
centrality in the analysis of various kinds of networks and connections. Often in
graphs corresponding to communication networks, the diameter is interpreted as
the time of data transfer or the path length between the most distant nodes, the
radius is as the reachability time from the most distant nodes to the central node,
serving as the main distribution center. In this case, the presence of several such
centers is allowed (see, for example, [17]). Finding of the graph center turns out
to be useful for problems of optimal placement of publicly important institutions
and enterprises (hospitals, �re stations, post o�ces and other emergency points),
when it is required to minimize the farthest distances to these institutions [3]. So,
the location of the hospital at the central vertices of the graph that arises here
reduces the maximum distance that ambulances have to cover. The concept of
centrality is also applied in social sciences and is actively used in the analysis of
social networks [18], for example, when the most in�uential persons of considered
network are identi�ed. In biology, it is relevant when building models of the spread
of diseases, in chemistry when analyzing molecular bonds, etc.

A number of classical results about the graph center are well known [1�4,14,16].
So, the realizability of an arbitrary graph as a subgraph generated by the center
of a suitable graph is established. Namely, it is proved that for any graph H there
exists a connected graph G such that its subgraph generated by the center C(G) is
isomorphic toH. This fact was established by G.N. Kopylov and E.A. Timofeev [16],
its simple justi�cation was also given by S.T. Hedetniemi (see [1]). F. Buckley
investigated the so-called central ratio Rc(G) = |C(G)|/|V (G)| of connected graph
G, for which it is obvious that the inequality 0 < Rc(G) ≤ 1 holds. For any rational
q in the interval (0, 1], he proved the existence of a graph G such that Rc(G) = q [2].

In [9] the center spectrum Spc(K) of an arbitrary class of graphs K is de�ned as
the set of cardinalities of graphs centers from this class K. The center spectrum of
n-vertex graphs of radius r is established by J. Hu and S. Zhan [15]. The center
spectrum of all and almost all n-vertex connected graphs is found in [9]. In this
article [9], the author obtained a number of structural results on the center and
spectrum of its cardinalities for almost all n-vertex graphs of �xed diameter k. For
k = 1, 2 any vertex is central, while for k ≥ 3 two types of central vertices are
identi�ed, which are necessary and su�cient to obtain the centers of almost all
such graphs. While studying the possible center spectrum of almost all n-vertex
graphs of �xed diameter k, an unexpected result was obtained in [9]. It turned out
that the center of almost all such graphs has cardinality n for k = 1, 2, and n − 2
for k = 3, while for k ≥ 4 in the distribution of values of center cardinality for the
probability space of n-vertex graphs of diameter k (for almost all graphs) there is no
unique value of the center cardinality (although the radius is uniquely de�ned [8]).
Moreover, there are jumps of such cardinality values depending on the diameter
value. Namely, the center spectrum is bounded by an interval of consecutive integers
and additionally contains at most one value (two values) outside this interval for
an even diameter k (for an odd diameter k) depending on the value of k (for more
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details see Theorem 2 in preliminary information). Note that the boundaries of the
interval depend on a predetermined arbitrary integer p and shrink when choosing
a greater value p. This leads to the need to consider the case when the parameter
p depends on n.

Using this approach, in this paper we asymptotically study the behavior of the
number of central vertices and the central ratio for almost all n-vertex graphs of
�xed diameter k.

The necessary preliminary information is contained in Section 1. There general
properties of classes of typical graphs are also given (Proposition 1). In this section
it also de�ned a family of embedded classes Fn,k,p, p ≥ 1 (p is an integer constant
independent of n) of typical n-vertex graphs of �xed diameter k ≥ 3, which have a
number of metric properties and were constructed by the author in [8].

Section 2 is of a technical nature, the purpose of which is to obtain estimates
for some expressions with classical binomial coe�cients (Lemma 3 and Corollary
2). Wherein properties of binomial coe�cients

(
r
α

)
of real arguments r, α ∈ R,

previously proved by the author in [10], are used. Namely, the analogue of
the unimodality property for classical binomial coe�cients (Theorem 3) and
the asymptotics of such generalized binomial coe�cients of a special form
(Proposition 2).

In Section 3 we consider a more general case of the class of n-vertex graphs Fn,k,p
of diameter k ≥ 3, when p = p(n) is a function depending on n and taking positive
integer values. For selected class of functions p(n) it is established asymptotically
exact value of the number |Fn,k,p(n)| (Theorem 4) and it is proved that Fn,k,p(n)

is the class of typical n-vertex graphs of diameter k (Corollary 3). In particular,
this implies that for almost all n-vertex graphs of diameter k, neighbourhoods of
any two vertices that do not belong to a �xed diametral path contain at least p(n)
common vertices (Corollary 4).

In Section 4, for almost all n-vertex graphs of diameter k, we �nd lower and
upper estimates for the number of central vertices, which depend on n and re�ne
the previously obtained interval boundaries from the center spectrum of such graphs
(Theorem 6).

As a corollary, the asymptotics of the number log2 |C(G)| is established for
almost all n-vertex graphs G of a �xed diameter. It is proved that the logarithmic
asymptotics of the number of central vertices is 0 or log2 n (1 or log2 n) for the
corresponding subclasses of graphs of the even (odd) diameter (see Corollary 5).

Also, as a corollary, estimates of the central ratio Rc(G) are found for almost
all n-vertex graphs G of diameter k. It is proved that for almost all such graphs,
Rc(G) = 1 for k = 1, 2, and Rc(G) = 1 − 2/n for graphs of diameter k = 3,
while for k ≥ 4 the value of the central ratio Rc(G) is bounded by the interval
(∆

6 + r1(n), 1− ∆
6 − r1(n)) except no more than one value (two values) outside the

interval for even diameter k (for odd diameter k) depending on k. Here ∆ ∈ (0, 1)
is arbitrary predetermined constant and ri(n) = o(1) are positive functions, i = 1, 2
(see Corollary 6 for more details).

All obtained typical properties of the center of n-vertex graphs of �xed diameter
k ≥ 2 remain typical for connected graphs of diameter at least k, as well as for
graphs (not necessarily connected) containing a shortest path of length at least k
(see, in particular, Corollary 7).
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1. Preliminary information

The article uses the generally accepted concepts and notations of graph theory
[4,14], as well as the standard concepts of combinatorial analysis [13] and the theory
of functions of real variable [11]. We consider only �nite ordinary (i.e., without loops
and multiple edges) graphs G = (V,E) with set of vertices V = {1, 2, . . . , n}, n ∈ N.
Denote by BGi (v) = {u ∈ V | ρG(v, u) ≤ i} a ball of radius i centered at a vertex
v ∈ V in the metric space of the graph G with the metric ρG, S

G
i (v) = {u ∈

V | ρG(v, u) = i} is a sphere of radius i centered at a vertex v ∈ V , bxc is the largest
integer less or equal to real nonnegative number x,

[[
x, y

]]
is the integer interval

[x, y] ∩ Z between the real numbers x, y ∈ R, (n)k = n(n − 1) · · · (n − k + 1), and
wherein we de�ne (n)k = 0 for n < k and (n)0 = (0)0 = 1. A vertex of degree 1 is
called pendant, sphere SG1 (v) of radius 1 centered at v is called the neighbourhood
of the vertex v, a shortest path of length d(G) is the diametral path of the graph
G, and under by a pair of diametral vertices we mean an unordered sample of two
vertices from the set V , the distance between which is equal to the diameter.

To estimate the measure of the number of graphs with a certain property,
the concept of almost all is often used; in this approach, the studied property
is considered for graphs with a large number of vertices. Let Jn be the class of
labeled n-vertex graphs with the �xed set of vertices V = {1, 2, . . . , n}, n ∈ N.
Consider some property P, by which each graph may or may not possess. Through
J Pn denote the set of all graphs from Jn that possess the property P. Almost all

graphs possess the property P if limn→∞
|JPn |
|Jn| = 1, i.e. |J Pn | ∼ |Jn|, and there are

almost no graphs with the property P, if limn→∞
|JPn |
|Jn| = 0. In a similar way, we can

talk about the property P, which is possessed by almost all n-vertex graphs of the
class K under study, or when there are almost no graphs in the class K that have
property P.

In the study and selection of almost all graphs in the class of graphs under
consideration it is often useful to de�ne not characteristic properties themselves for
the notion of almost all, but directly select a subclass of typical graphs itself (in [5,6]
a more general concept of a class of typical combinatorial objects and an abstract
typical combinatorial object for a given class of objects admitting the concept of
dimension is formulated). Further we will also use this formal concept for graphs
(when the dimension of a graph is understood as the number of its vertices). Let
Ω be an arbitrary class of graphs such that Ωn 6= ∅ for all large enough n, where
Ωn = Ω ∩ Jn. A subclass Ω∗ ⊆ Ω is the class of typical graphs of the class Ω if

limn→∞
|Ω∗n|
|Ωn| = 1. A property of graphs of the class under consideration is typical if

almost all graphs of this class have this property. Let us formulate simple properties
of classes of typical graphs related to set-theoretic operations.

Proposition 1 (properties of typical graphs). Let X , Y be subclasses of a graph
class K. Then

(i) if X is the class of typical graphs of class K and X ⊆ Y, then Y is also the
class of typical graphs of class K;

(ii) if X is the class of typical graphs of class K and Y ⊆ X , in addition, |Yn| =
o(|Kn|) as n→∞, then X \ Y is also the class of typical graphs of class K;

(iii) if X is the class of typical graphs of class K and X ⊆ Y, then X is the class
of typical graphs of class Y;
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(iv) if X , Y are the classes of typical graphs of class K, then X ∩ Y is also
the class of typical graphs of class K, moreover, subclasses X \ Y and Y \ X have
asymptotically zero fraction in K, i.e. |Xn \ Yn| = o(|Kn|) and |Yn \ Xn| = o(|Kn|)
as n→∞ ;

(v) if X , X ′ are disjoint classes of typical graphs of classes K and K′ respectively,
then X ∪ X ′ is the class of typical graphs of class K ∪ K′;

(vi) if X ∪Y is the class of typical graphs of class K and X ∩Y = ∅, in addition,
subclass X has an asymptotic fraction in K not equal to 1, then Y is the class of
typical graphs of class K \ X .

Proof. Statements (i)-(iii) follow directly from the de�nitions, statement (iv) is
obtained from property (ii) and equality X ∩ Y = X \ (X \ Y).

Prove assertion (v). Since |Kn|
|Kn|+|K′n|

is a bounded sequence, as n→∞ we obtain

|Kn|
|Kn|+ |K′n|

( |Xn|
|Kn|

− |X
′
n|

|K′n|

)
= o(1).

It remains to note that |Xn ∪ X ′n| = |Xn|+ |X ′n| and as n→∞
|Xn ∪ X ′n|
|Kn ∪ K′n|

≥ |Xn|+ |X
′
n|

|Kn|+ |K′n|
=

|Kn|
|Kn|+ |K′n|

( |Xn|
|Kn|

− |X
′
n|

|K′n|

)
+
|X ′n|
|K′n|

−→ 1.

Prove statement (vi). Since X ∪ Y is the class of typical graphs of class K, we
have |Kn \ (Xn ∪ Yn)| = o(|Kn|). By virtue of the condition on the fraction of the
subclass X , there is the following limit

lim
n→∞

(1− |Xn|
|Kn|

) 6= 0.

Besides, Yn = Kn \ (Xn ∪ Kn \ (Xn ∪ Yn)) and |Kn \ Xn| = |Kn| − |Xn|. Thus, as
n→∞ we conclude

|Yn|
|Kn \ Xn|

=
(

1− |Xn|
|Kn|

− |Kn \ (Xn ∪ Yn)|
|Kn|

)(
1− |Xn|
|Kn|

)−1

−→ 1.

�

Note that the condition on the fraction of the subclass X in assertion (vi) of
Proposition 1 is essential. For example, let Kn = Xn∪{Hn, Gn}, limn→∞ |Xn| =∞
and Yn = {Gn}, where Hn, Gn ∈ Jn \ Xn are di�erent graphs. Then |Kn| ∼
|Xn ∪ Yn|, i.e. X ∪ Y is the class of typical graphs of class K. Meanwhile, it is
obvious that

lim
n→∞

|Yn|
|Kn \ Xn|

=
1

2
.

Therefore Y is not the class of typical graphs of class K \ X .
Let Jn, d=k, Jn, d≥k, J ∗n, d≥k be the following classes of labeled n-vertex graphs:

graphs of diameter k; connected graphs of diameter at least k and graphs (not
necessarily connected) having a shortest path of length at least k, respectively.
Obviously, the following inclusions hold Jn, d=k ⊆ Jn, d≥k ⊆ J ∗n, d≥k. In [8] for
every k ≥ 3 a family of nested classes Fn,k,p, p ≥ 1 of typical n-vertex graphs of
�xed diameter k is constructed, which are also typical for classes Jn, d≥k, J ∗n, d≥k.
Give the de�nition of the class of graphs Fn,k,p. To do this, we �rst consider special
graphs of diameter 3 and their properties. Let x, y ∈ V and Fn,3,p(x, y) be the class
of all graphs F ∈ Jn, having the following properties:

a) vertices x, y are not pendant in F ;
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b) ρF (z, x) = ρF (z, y) = 2 for some vertex z ∈ V ;
c) d(F ) = 3, the graph F has the unique pair of diametral vertices x, y and does

not contain coinciding balls of radius 1 with centers in di�erent vertices;
d) the following properties of spheres hold:

|SF1 (u) ∩ SF1 (v)| ≥ p ∀u, v ∈ V \ {x, y} and u 6= v,

|SF1 (u) ∩ SF1 (v)| ≥ p ∀v ∈ V \ {x, y} ∀u ∈ {x, y}.
Now, we de�ne graphs of the class Fn,k,p as follows. Let u = (u0, u1, . . . , uk−2)

be an arbitrary ordered sequence of di�erent vertices from the set V . Fix a
pair of neighboring elements us and us+1, 0 ≤ s ≤ k − 3. On the set V \
{u0, . . . , us−1, us+2, . . . , uk−2} of n − k + 3 vertices, de�ne an arbitrary graph F
from the class Fn−k+3,3,p(us, us+1). Finally, join by edges the vertices ui, ui+1 for
i 6= s and 0 ≤ i < k − 2. Denote the resulting graph by G(u, s, F ). Let Fn,k,p be

the class of all constructed graphs G(u, s, F ) under the condition 0 ≤ s ≤ bk−3
2 c.

Further, we need the following estimates of the number of graphs in this class.

Lemma 1 [8]. Let k ≥ 3, p ≥ 1 and x, y ∈ V be di�erent vertices. Then

|Fn,k,p| =
1

2
(k − 2)(n)k−1 |Fn−k+3,3,p(x, y)|.

The following theorem contains estimates that give the asymptotically exact value

2(n
2) ξn,k of the number of graphs in each of classes Fn,k,p, Jn, d=k, Jn, d≥k and
J ∗n, d≥k for any �xed k ≥ 3 and p ≥ 1 [8].

Theorem 1 [8]. Let k ≥ 3, 0 < ε < 1 and p ≥ 1 be independent of n. Then there
exists a constant c > 0 independent of n such that for every n ∈ N the following
inequalities hold

2(n
2)ξn,k

(
1− c

(
5+ε

6

)n−k+1)
≤ |Fn,k,p| ≤ |Jn, d=k|

≤ |Jn, d≥k| ≤ |J ∗n, d≥k| ≤ 2(n
2)ξn,k

(
1 + c

(
5+ε

6

)n−k+1)
,

where ξn,k = qk (n)k−1

( 3

2k−1

)n−k+1

, qk =
1

2
(k − 2) 2−(k−1

2 ).

In [9] the center spectrum Spc(Jn, d=k) is investigated asymptotically, the
following statement is proved.

Theorem 2 [9]. Let k ≥ 1 and p ≥ 1 be �xed integer constants. Then

(i) |C(G)| = n for almost all n-vertex graphs G of diameter k = 1, 2;

(ii) |C(G)| = n− 2 for almost all n-vertex graphs G of diameter 3;

(iii) |C(G)| ∈
[[

1+p, n−5−p
]]

for almost all n-vertex graphs G of diameter 4;

(iv) |C(G)| ∈
[[

2 + p, n − 5 − p
]]
∪ {n − 4} for almost all n-vertex graphs G

of diameter 5; moreover, the fraction of such graphs with (n − 4)-vertex center is
asymptotically equal to 1

3 ;

(v) |C(G)| ∈ {1} ∪
[[

1 + p, n− k − 1− p
]]

for almost all n-vertex graphs G of
even �xed diameter k ≥ 6; moreover, the fraction of such graphs with trivial center
is asymptotically equal to k−4

k−2 ;

(vi) |C(G)| ∈ {2}∪
[[

2+p, n−k−p
]]
∪{n−k+1} for almost all n-vertex graphs

G of odd �xed diameter k ≥ 7; moreover, the fraction of such graphs with 2-vertex
and (n− k + 1)-vertex center is asymptotically equal to k−5

k−2 and 1
k−2 respectively.
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Introduce some asymptotic notations. For numerical functions f(n), g(n) : N→
R we write f(n) . g(n) (respectively f(n) & g(n)) if there exists N ∈ N such that
for every n ≥ N the inequality f(n) ≤ g(n) (f(n) ≥ g(n)) holds. To denote the
asymptotic equality of the numerical functions f(n) and g(n) as n → ∞, we use
the notation f(n) ∼ g(n), which by de�nition means that f(n) = g(n)(1 + r(n))

for all large enough n, where r(n) = o(1), or, equivalently, limn→∞
f(n)
g(n) = 1 (for

functions positive in some neighborhood of ∞). Let Ω be the class of graphs under
consideration and an numerical characteristic X : Ω → R assigns to each graph
G ∈ Ω some real number X (G) ∈ R. For almost all n-vertex graphs G of class Ω,
the numerical characteristic X (G) is asymptotically equal to the numerical function
f(n) (symbolically X (G) ∼ f(n)), if for some functions f1, f2 : N → R almost all
n-vertex graphs G of class Ω satisfy the relation f1(n) ≤ X (G) ≤ f2(n), wherein
the numerical functions f1(n), f2(n), f(n) asymptotically coincide as n→∞.

2. Estimates of some expressions

with binomial coefficients

In this section, we obtain estimates for some expressions with usual binomial
coe�cients. Wherein, we need the properties of binomial coe�cients

(
r
α

)
of real

arguments r, α ∈ R, proved by the author in [10]. Recall that the binomial
coe�cient of real arguments (as a generalization of the classical binomial coe�cient(
n
m

)
for non-negative integers n and m) is de�ned as follows (see, for example, [12]):(

r

α

)
=

Γ(1 + r)

Γ(1 + α)Γ(1 + r − α)
, (1)

here Γ(α) is the Euler gamma function, which can be de�ned in the Euler-Gauss
form (see, for example, [11]) as

Γ(α) = lim
n→∞

(n− 1)!nα

α(α+ 1)(α+ 2) · · · (α+ n− 1)
, α ∈ R \ {0,−1,−2, . . .}.

Note that if r ∈ (−1,+∞) and α ∈ (−1, r + 1), the binomial coe�cient
(
r
α

)
is

de�ned by (1) correctly.
In [10] a number of properties of real binomial coe�cients is established, in

particular, the following statements are proved.

Theorem 3 [10]. Let r ∈ (−1,+∞) and α ∈ (−1, r + 1). Then
(
r
α

)
> 0 and

binomial coe�cient φ(α) =
(
r
α

)
is strictly increasing on the interval (−1, r2 ] and

strictly decreasing on the interval [ r2 , r + 1).

Proposition 2 [10]. Let r takes real values, α ∈ R does not depend on r and
0 < α < 1. Then the following asymptotic equality is valid as r tends to in�nity(

r

rα

)
∼

√
1

2πα(1− α)r

( 1

α

)αr ( 1

1− α

)(1−α)r

. (2)

Ñorollary 1 [10]. Let r takes non-negative integer values, α ∈ R does not depend
on r and 0 < α < 1. Then the asymptotic equality (2) is valid as r tends to in�nity.

Recall that the sequence of numbers a1, a2, . . . , an is called unimodal if there
exists s such that a1 < a2 < . . . < as ≥ as+1 > as+2 > . . . > an (see, for
example, [19]).
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Lemma 2. Let n ≥ q ≥ 1. Then the sequence
(
n
s

)
q−s, s = 0, 1, . . . , n is unimodal,

moreover, for s = bn+1
q+1 c its largest value is reached and such s is the largest.

Proof. Introduce sequences αs =
(
n
s

)
q−s, 0 ≤ s ≤ n, and βs = αs+1

αs
if 0 ≤ s ≤ n−1.

It is directly established that

βs =
n− s

(s+ 1)q
,

βs+1

βs
=
n− (s+ 1)

n− s
· s+ 1

s+ 2
< 1 if 0 ≤ s ≤ n− 2,

i.e. βs is a strictly decreasing sequence. Moreover, β0 ≥ 1 due to the condition
n ≥ q. Therefore, for some s∗ the sequence αs strictly increases for 0 ≤ s ≤ s∗,
αs∗ ≤ αs∗+1 and then strictly decreases for s∗ + 1 ≤ s ≤ n. Note that s∗ is the
largest s satisfying the inequality βs ≥ 1. Hence s∗ = bn−qq+1 c and s

∗+1 = bn+1
q+1 c. �

Lemma 3. Let p(n) = b n
q+1∆c + 1, where q ≥ 1 and 0 < ∆ < 1 do not depend

on n. Then there is ε∆ such that ε∆ does not depend on n, 0 < ε∆ < 1 and the
following relation is ful�lled as n→∞( q

q + 1

)n p(n)−1∑
s=0

(
n

s

)
q−s = εn∆O(

√
n).

Proof. By Proposition 2 we obtain(
n
n
q+1∆

)
∼

√
(q + 1)2

2π∆(q + 1−∆)n
(q + 1)n∆−

∆
q+1n (q + 1−∆)−

q+1−∆
q+1 n. (3)

Therefore (
n
n
q+1∆

)
= (q + 1)n∆−

∆
q+1n (q + 1−∆)−

q+1−∆
q+1 nO

( 1√
n

)
.

Hence,

n
( q

q + 1

)n( n
n
q+1∆

)
q−

n
q+1 ∆ = εn∆O(

√
n), where (4)

ε∆ = q∆−
∆

q+1 (q + 1−∆)−
q+1−∆

q+1 q−
∆

q+1 . (5)

Since 0 < ∆ < 1 and q ≥ 1, we have ε∆ > 0. Consider the functions

f(x) = x
x

q+1 (q + 1− x)
q+1−x
q+1 q

x
q+1 and g(x) = ln f(x)

on the interval (0, q + 1). Let us study intervals of monotonicity of the function
f(x). It is directly calculated

g′(x) =
1

q + 1
ln

qx

q + 1− x
.

Note that g′(x) < 0 on (0, 1) and g′(1) = 0. Therefore, the function g(x) strictly
decreases on (0, 1]. The function f(x) behaves similarly on the interval (0, 1].
Therefore, the relation f(∆) > f(1) = q is valid. Now, using (5), we obtain
ε∆ = q

f(∆) < 1.

Further, due to the inequality p(n)− 1 ≤ n
q+1∆ ≤ n

2 by Theorem 3 we have(
n

p(n)− 1

)
≤
(

n
n
q+1∆

)
. (6)
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Now, using the relations p(n)− 1 ≤ bn+1
q+1 c, bxc ≥ x− 1, (4), (6) and Lemma 2,

as n→∞ we conclude( q

q + 1

)n p(n)−1∑
s=0

(
n

s

)
q−s ≤ p(n)

( q

q + 1

)n( n

p(n)− 1

)
q−(p(n)−1)

=
( q

q + 1

)n( n
n
q+1∆

)
q−

n
q+1 ∆O(n)

= εn∆O(
√
n).

�

Remark 1. The statement of Lemma 3 is not valid for ∆ = 1.

Indeed, let ∆ = 1. First consider the case q > 1. Using Theorem 3 and the
inequality n

q+1 ≤ p(n) . n
2 , we obtain(
n

p(n)− 1

)
=

(
n

p(n)

)
p(n)

n− p(n) + 1

=

(
n
n
q+1

) b n
q+1c+ 1

n− b n
q+1c

Ω(1) (7)

=

(
n
n
q+1

)
Ω(n)

nq + q + 1
.

From the asymptotic equality (3) (which is also valid for ∆ = 1) we have(
n
n
q+1

)
=

(q + 1)n√
n

q−
q

q+1n Ω(1). (8)

Now, from (7),(8) it is easy to see that( q

q + 1

)n p(n)−1∑
s=0

(
n

s

)
q−s =

( q

q + 1

)n( n

p(n)− 1

)
q−(p(n)−1) Ω(1)

=
( q

q + 1

)n (q + 1)n√
n

q−
q

q+1n q−
n

q+1
Ω(n)

nq + q + 1

=
Ω(
√
n)

nq + q + 1
.

Therefore, if the assertion of Lemma 3 holds, then (nq + q + 1) εn∆ = Ω(1) and we
get a contradiction.

Now consider the case q = 1. It is known that as n→∞(
n

bn2 c

)
∼ 2n√

πn/2

(see, for example, [19]). Therefore

2−n
p(n)−1∑
s=0

(
n

s

)
= 2−n

(
n

bn2 c

)
Ω(1) =

Ω(1)√
n

and similarly, as in the case of q > 1, we obtain a contradiction.
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Ñorollary 2. Let p(n) = b n
q+1∆c+ 1, where is an integer q ≥ 1 and 0 < ∆ < 1 do

not depend on n. Then there is ε∆ such that 0 < ε∆ < 1, ε∆ does not depend on n
and as n→∞

q∑
i=1

( i

i+ 1

)n p(n)−1∑
s=0

(
n

s

)
i−s =

(q + ε∆

q + 1

)n
O(
√
n).

Proof. Since p(n) ≤ b n
i+1∆c + 1 for every i ≤ q, by Lemma 3 there is ε such that

0 < ε < 1, ε does not depend on n and as n→∞
q∑
i=1

( i

i+ 1

)n p(n)−1∑
s=0

(
n

s

)
i−s ≤

q∑
i=1

( i

i+ 1

)n b n
i+1 ∆c∑
s=0

(
n

s

)
i−s = εnO(

√
n).

We can assume that q
q+1 < ε < 1. Remains to note that ε∆ = ε(q + 1)− q will be

required. �

3. Class of graphs Fn,k,p(n)

This section deals with the more general case of the graphs class Fn,k,p
(constructed for every k ≥ 3 and p ≥ 1 in [8]) when p = p(n) is a function depending
on n and taking positive integer values. Let us estimate the number of graphs of the
class Fn,k,p(n) for a class of functions p(n) distinguished in this section. Further, we
will use the estimates obtained in [5, 8] for the number of graphs of the following
subclasses of labeled n-vertex graphs. Let x, y, u, v be di�erent elements of V , p ≥ 1,
0 ≤ s < p and

an = |An(x, y)|, where An(x, y) = {G ∈ Jn |BG1 (x) ∩BG1 (y) = ∅},
Bn(x, y, u, v; s) = {G ∈ Jn |BG1 (x) ∩BG1 (y) = ∅ and |SG1 (u) ∩ SG1 (v)| = s},
Cn(x, y, u; s) = {G ∈ Jn |BG1 (x) ∩BG1 (y) = ∅ and |SG1 (x) ∩ SG1 (u)| = s},
βn,p = |Bn,p(x, y, u, v)|, where Bn,p(x, y, u, v) =

⋃
0≤s<p

Bn(x, y, u, v; s),

γn,p = |Cn,p(x, y, u)|, where Cn,p(x, y, u) =
⋃

0≤s<p

Cn(x, y, u; s).

Lemma 4 [5,8]. Let x, y, u, v be di�erent elements in V and p ≥ 1. Then for every
n ≥ p the following relations hold

(i) an = 2(n
2) 8

9

(
3
4

)n
;

(ii) βn,p ≤ anbp(n)
(

3
4

)n
, where bp(n) = 128

∑p−1
s=0

(
n
s

)
3−(3+s);

(iii) γn,p ≤ ancp(n)
(

5
6

)n
, where cp(n) = 72

∑p−1
s=0

(
n
s

)
5−(1+s).

Lemma 5 [8]. Let x, y be di�erent vertices in V and p ≥ 1, λ > 0, 0 < ε < 1 be
arbitrary constants independent of n. Then

|Fn,3,p(x, y)|& an
(

1− λ
(5 + ε

6

)n−2)
.

The next lemma extends Lemma 5 on a lower estimate of the number of graphs of
class Fn,3,p(x, y), where p is a �xed integer, to the case p = p(n) for the considered
class of functions.
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Lemma 6. Let x, y be di�erent vertices in V , p(n) = bn6 ∆c + 1 and 0 < ∆ < 1,
λ > 0 are arbitrary constants independent of n. Then there exists ε∆ such that
0 < ε∆ < 1, ε∆ does not depend on n, and for every ε satisfying the inequality
ε∆ < ε < 1, the following relation is ful�lled

|Fn,3,p(n)(x, y)|& an
(

1− λ
(5 + ε

6

)n−2)
.

Proof. Using Lemma 4, Corollary 2 and the inequality n& p(n), we obtain the
existence of ε∆ such that 0 < ε∆ < 1, ε∆ does not depend on n, and for every ε
satisfying the inequality ε∆ < ε < 1, as n→∞ we have

n2βn,p(n) + 2nγn,p(n) = anO(n2)
((3

4

)n
bp(n)(n)+

(5

6

)n
cp(n)(n)

)
= anO(n2)

5∑
i=1

( i

i+ 1

)n p(n)−1∑
s=0

(
n

s

)
i−s

= an

(5 + ε∆

6

)n
O(n

5
2 )

. an
λ

2

(5 + ε

6

)n−2

.

It is not di�cult to see that for every n the following inclusion holds (see the proof
of Lemma 4 and relation (2) in [8] similarly):

Fn,3,1(x, y) \ (Bn,p(n)(x, y) ∪ Cn,p(n)(x, y) ∪ Cn,p(n)(y, x)) ⊆ Fn,3,p(n)(x, y), where

Bn,p(n)(x, y) =
⋃

u,v∈V \{x,y}
u 6=v

Bn,p(n)(x, y, u, v),

Cn,p(n)(x, y) =
⋃

u∈V \{x,y}

Cn,p(n)(x, y, u).

Thus, reckoning Lemma 5, conclude

|Fn,3,p(n)| & |Fn,3,1(x, y)| − n2|Bn,p(n)(x, y, u, v)| − 2n|Cn,p(n)(x, y, u)|

& |Fn,3,1(x, y)| − an
λ

2

(5 + ε

6

)n−2

& an

(
1− λ

2

(5 + ε

6

)n−2)
− an

λ

2

(5 + ε

6

)n−2

.

�

Remark 2. In Lemma 6, the value ε∆ depends only on ∆.

Further, for an arbitrary ∆, 0 < ∆ < 1, the notation ε∆ will be used for the
constant found in Lemma 6.

Lemma 7 (lower estimate of |Fn,k,p(n)|). Let k ≥ 3, 0 < ∆ < 1, ε∆ < ε < 1,

p(n) =
⌊
n
6 ∆
⌋

+ 1 and k, ∆, ε do not depend on n. Then there exists a constant

c > 0 independent of n and k such that for every n ∈ N the following inequality
holds

|Fn,k,p(n)| ≥ 2(n
2)ξn,k

(
1− c

(5 + ε

6

)n−k+1)
.

Proof. Similarly, taking into account Lemmas 1, 4(i) and Lemma 6 for λ = 1, to
the proof of the lower estimate |Fn,k,p| for �xed p (see Lemma 8 in [?]). �
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Theorem 4 (asymptotics of |Fn,k,p(n)|). Let k ≥ 3, 0 < ∆ < 1, ε∆ < ε < 1,

p(n) =
⌊
n
6 ∆
⌋

+ 1 and k, ∆, ε do not depend on n. Then there exists a constant

c > 0 independent of n such that for every n ∈ N the following inequalities are valid

2(n
2)ξn,k

(
1− c

(
5+ε

6

)n−k+1)
≤ |Fn,k,p(n)| ≤ |Jn, d=k|

≤ |Jn, d≥k| ≤ |J ∗n, d≥k| ≤ 2(n
2)ξn,k

(
1 + c

(
5+ε

6

)n−k+1)
.

Proof. It follows directly from Lemma 7, Theorem 1 and the inclusion Fn,k,p(n) ⊆
Fn,k,1. �

Ñorollary 3. Let k ≥ 3, 0 < ∆ < 1 do not depend on n and p(n) =
⌊
n
6 ∆
⌋

+ 1.

Then as n→∞
|Fn,k,p(n)| ∼ |Jn, d=k| ∼ |Jn, d≥k| ∼ |J ∗n, d≥k| ∼ 2(n

2)ξn,k.

The following statement follows directly from the de�nition of the class Fn,k,p(n)

and Corollary 3.

Ñorollary 4. Let k ≥ 3, 0 < ∆ < 1 be independent of n. Then almost all n-vertex
graphs of diameter k contain a diametral path such that neighbourhoods of any two

vertices from the set outside this path have at least
⌊
n
6 ∆
⌋

+ 1 common vertices.

4. The spectrum of the center of almost all graphs from Jn, d=k

Let us establish estimates for the number of central vertices of almost all
n-vertex graphs G of �xed diameter k, which depend on n and give the logarithmic
asymptotics of this number |C(G)|. First, turn to the center spectrum of the class
Fn,k,p(n).

Theorem 5 (spectrum Spc(Fn,k,p(n))). Let k ≥ 3 and p = p(n) be a function
depending on n and taking positive integer values. Then for every n ≥ 2p(n)+k+4
the following equalities hold

(i) Spc(Fn,k=3,p(n)) = {n− 2};
(ii) Spc(Fn,k=4,p(n)) =

[[
1 + p(n), n− 5− p(n)

]]
;

(iii) Spc(Fn,k=5,p(n)) =
[[

2 + p(n), n− 5− p(n)
]]
∪ {n− 4};

(iv) Spc(Fn,k,p(n)) = {1} ∪
[[

1 + p(n), n− k − 1− p(n)
]]

for even k ≥ 6;

(v) Spc(Fn,k,p(n)) = {2}∪
[[

2+p(n), n−k−p(n)
]]
∪{n−k+1} for odd k ≥ 7.

Proof. It follows from the description of the center spectrum Spc(Fn,k,p) for �xed
integer values k ≥ 3 and p ≥ 1 (Theorem 5 [9]). �

Theorem 6 (spectrum of the center of almost all graphs from Jn, d=k). Let k ≥ 1
and 0 < ∆ < 1 be independent of n. Then

(i) |C(G)| = n for almost all n-vertex graphs G of diameter k = 1, 2;

(ii) |C(G)| = n− 2 for almost all n-vertex graphs G of diameter 3;

(iii) |C(G)| ∈
[[

2 + bn6 ∆c, n− bn6 ∆c − 6
]]

for almost all n-vertex graphs G of
diameter 4;

(iv) |C(G)| ∈
[[

3 + bn6 ∆c, n − bn6 ∆c − 6
]]
∪ {n − 4} for almost all n-vertex

graphs G of diameter 5; moreover, the fraction of such graphs with (n − 4)-vertex
center asymptotically equals 1

3 ;
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(v) |C(G)| ∈ {1} ∪
[[

2 + bn6 ∆c, n − bn6 ∆c − k − 2
]]

for almost all n-vertex
graphs G of even �xed diameter k ≥ 6; moreover, the fraction of such graphs with
trivial center asymptotically equals k−4

k−2 ;

(vi) |C(G)| ∈ {2} ∪
[[

3 + bn6 ∆c, n − bn6 ∆c − k − 1
]]
∪ {n − k + 1} for almost

all n-vertex graphs G of odd �xed diameter k ≥ 7; moreover, the fraction of such
graphs with 2-vertex and (n − k + 1)-vertex center asymptotically equals k−5

k−2 and
1

k−2 respectively.

Proof. The cases k = 1, 2, 3 are considered in Theorem 2. Let now k ≥ 4 and

p(n) =
⌊
n
6 ∆
⌋

+ 1. Then n& 2p(n) + k + 4.

Consider, for example, the case k = 4. By Theorem 5, for all large enough n we
have Spc(Fn,k=4,p(n)) =

[[
1 + p(n), n− 5− p(n)

]]
. Therefore, taking into account

Corollary 3, as n→∞ we obtain

|{G ∈ Jn, d=4 | |C(G)| ∈
[[

1 + p(n), n− 5− p(n)
]]
}|

|Jn, d=4|
≥
|Fn,k=4,p(n)|
|Jn, d=4|

−→ 1.

Similarly, from Corollary 3 and Theorem 5 we obtain the possible cardinalities
of the center of almost all n-vertex graphs of �xed diameter k ≥ 5 for all other
indicated cases (iv)-(vi). Asymptotic value of the corresponding fractions of the
graphs is established in Theorem 2. �

Theorem 6 implies a number of properties of the centers of almost all graphs
of �xed diameter k. For example, there are almost no graphs of diameter k = 2, 4
and odd diameter k with a trivial center, while for any even k ≥ 6 this is not true.
Similarly, there are almost no graphs with a 2-vertex center of diameter k = 1, 3, 5
and even diameter k, however, for every odd k ≥ 7 this does not hold. Unexpected is
the jump of the center cardinality outside the interval of consecutive integer values
both from above from n−bn6 ∆c− k− 1 to n− k+ 1 for odd k ≥ 5, and from below
from 2 + bn6 ∆c to 1 for even k ≥ 6 and from 3 + bn6 ∆c to 2 for odd k ≥ 7.

Theorem 6 also allows to �nd the logarithmic asymptotics of the number of
central vertices of almost all n-vertex graphs of �xed diameter.

Ñorollary 5 (logarithmic asymptotics). Let k ≥ 1 be an integer. The following
asymptotic equality is valid

log2 |C(G)| ∼ log2(n)

for almost all n-vertex graphs G of each of the following classes : graphs of �xed
diameter k ≤ 5; graphs of even �xed diameter k ≥ 6 with nontrivial center; graphs
of odd �xed diameter k ≥ 7 whose the center cardinality is not equal to 2.

Proof. Let k ≥ 6 and 0 < ∆ < 1 be a �xed constant. By statements (v),(vi) of
Theorem 6 and Proposition 1(v) for almost all n-vertex graphs G of even �xed
diameter k ≥ 6 with a nontrivial center we have |C(G)| ∈

[[
2 + bn6 ∆c, n−bn6 ∆c−

k − 2
]]
, and for almost all n-vertex graphs G of odd �xed diameter k ≥ 7 whose

the center cardinality is not equal to 2, we obtain |C(G)| ∈
[[

3+bn6 ∆c, n−bn6 ∆c−
k − 1

]]
∪ {n − k + 1}. It remains to note that if P (n) is a polynomial over R of

non-zero degree m with positive leading coe�cient, then log2 P (n) ∼ m log2 n as
n→∞.

The case k ≤ 5 is considered similarly using statements (i)-(iv) of Theorem 6. �
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Remark 3. The fraction of n-vertex graphs of �xed even diameter k ≥ 6 with
trivial center (of odd diameter k ≥ 7 with 2-vertex center) is asymptotically equal
to k−4

k−2 (k−5
k−2 ). Moreover, typical graphs of these classes are constructed in [9].

Thus, for almost all n-vertex graphs of a �xed diameter, the logarithmic asymptotics
of the number of central vertices is 0 or log2 n (1 or log2 n) for the corresponding
subclasses of graphs of the even (odd) diameter.

Theorem 6 also implies estimates of the central ratio Rc(G) for almost all n-
vertex graphs G of �xed diameter k.

Ñorollary 6 (estimates of Rc(G)). Let k ≥ 1 and 0 < ∆ < 1 do not depend on n.
Then

(i) Rc(G) = 1 for almost all n-vertex graphs G of diameter k = 1, 2;

(ii) Rc(G) = 1− 2/n for almost all n-vertex graphs G of diameter 3;

(iii) ∆
6 + r1(n) ≤ Rc(G) ≤ 1 − ∆

6 − r2(n) for almost all n-vertex graphs G of
each of the following classes : graphs of diameter 4; graphs of diameter 5 whose
center cardinality is not equal to n − 4; graphs of even �xed diameter k ≥ 6 with
nontrivial center; graphs of odd �xed diameter k ≥ 7 whose center cardinality is not
equal to 2 and n− k+ 1. Here r1(n), r1(n) are positive functions and r1(n) = o(n),
r2(n) = o(n) as n→∞.

Proof. Similar to the proof of Corollary 5 using Theorem 6, Proposition 1 and the
inequality bxc ≥ x− 1. �

Remark 4. The fraction of n-vertex graphs of �xed even diameter k ≥ 6 with
trivial center (of odd diameter k ≥ 5 with 2-vertex and (n − k + 1)-vertex center)
asymptotically equals k−4

k−2 (k−5
k−2 and 1

k−2 respectively). Moreover, typical graphs of

these classes are constructed in [9].

Note that from Corollary 6, by virtue of Proposition 1(v), we also �nd possible
values of the central ratio Rc(G) for almost all graphs G of the whole class Jn, d=k.

The obtained properties of the centers are also valid, by virtue of Corollary 3,
for graphs of classes Jn, d≥k and J ∗n, d≥k.

Ñorollary 7. For every �xed k ≥ 2, almost all n-vertex graphs of each of the
following classes Jn, d≥k, J ∗n, d≥k are connected, have diameter k, and the properties
stated in Theorem 6 and its corollaries hold for the center.

In conclusion, the author thanks the referee for careful reading of the article and
useful suggestions.
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