СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports

http://semr.math.nsc.ru

ON RECOGNITION OF $A_{6} \times A_{6}$ BY THE SET OF CONJUGACY CLASS SIZES

V. PANSHIN

Abstract

For a finite group G denote by $N(G)$ the set of conjugacy class sizes of G. Recently the following question has been asked: Is it true that for each nonabelian finite simple group S and each $n \in \mathbb{N}$, if the set of class sizes of a finite group G with trivial center is the same as the set of class sizes of the direct power S^{n}, then $G \simeq S^{n}$? In this paper we approach an answer to this question by proving that $A_{6} \times A_{6}$ is uniquely determined by $N\left(A_{6} \times A_{6}\right)$ among finite groups with trivial center.

Keywords: finite groups, conjugacy classes, class sizes.

1. Introduction

For a finite group G denote by $N(G)$ the set of conjugacy class sizes of G. In 1980s J.G. Thompson posed the following conjecture: if L is a nonabelian finite simple group, G is a finite group with $Z(G)=1$ and $N(G)=N(L)$, then $G \simeq$ L. Later A.S. Kondrat'ev added this conjecture to the Kourovka Notebook [6, Question 12.38]. In a series of papers of different authors, it took more than twenty years to confirm the conjecture. The final step was done in [4], where a full historical overview of the proof can be found.

There are many ways to generalize Thompson's conjecture, in this paper we consider one of them.
Question. [6, Question 20.29] Let S be a nonabelian finite simple group. Is it true that for any $n \in \mathbb{N}$, if the set of class sizes of a finite group G with $Z(G)=1$ is the same as the set of class sizes of the direct power S^{n}, then $G \simeq S^{n}$?

[^0]There are no examples when the answer to this question is negative and the only studied case with $n>1$ is when $S=A_{5}$ and $n=2[5]$. We continue studying this question by proving the following theorem.

Theorem. If G is a group with $Z(G)=1$ and $N(G)=N\left(A_{6} \times A_{6}\right)$, then $G \simeq$ $A_{6} \times A_{6}$.

2. Preliminaries

Let n, m be integers and p a prime. By n_{p} we denote the maximal power of p dividing n. The least common multiple and the greatest common divisor of n and m are denoted by $\operatorname{lcm}(n, m)$ and $\operatorname{gcd}(n, m)$ respectively.

By $\pi(G)$ we denote the set of all prime divisors of the order of G. Given an element x of a group G, denote by x^{G} the set $\left\{x^{g} \mid g \in G\right\}$, that is, the conjugacy class contaning x, and by $\left|x^{G}\right|$ its size.

Lemma 2.1. $N\left(A_{6}\right)=\{1,40,45,72,90\}$, and $n \in N\left(A_{6} \times A_{6}\right)$ if and only if $n=$ $a \cdot b$, where $a, b \in N\left(A_{6}\right)$.

Proof. The first statement can be easily verified. The second statement follows from the well-known fact that $N(G \times H)=N(G) \cdot N(H)=\{n \mid n=a \cdot b, a \in N(G), b \in$ $N(H)\}$.

Lemma 2.2. [3, Theorem 5.2.3] Let A be a p^{\prime}-group of automorphisms of an abelian p-group P. Then $P=C_{P}(A) \times[P, A]$.

In the following two lemmas we list well-known facts on sizes of conjugacy classes in finite groups (see, e.g. [5, Lemma 1]).

Lemma 2.3. Suppose that G is a finite group, $K \unlhd G, x \in G$, and $\bar{x} \in \bar{G}=G / K$ is an image of x in G / K. Then $\left|x^{K}\right|$ and $\left|\bar{x}^{\bar{G}}\right|$ divide $\left|x^{G}\right|$.

Lemma 2.4. Let G be a finite group and $x, y \in G, x y=y x$, and $\operatorname{gcd}(|x|,|y|)=1$. Then $C_{G}(x y)=C_{G}(x) \cap C_{G}(y),\left|x^{G}\right| \cdot\left|y^{G}\right| \geq\left|(x y)^{G}\right|$ and $\operatorname{lcm}\left(\left|x^{G}\right|,\left|y^{G}\right|\right)$ divides $\left|(x y)^{G}\right|$.

Lemma 2.5. If $G=H \imath\langle g\rangle$ is the wreath product of a group H and involution g, then $\left|g^{G}\right|=|H|$.

Proof. If $B=H \times H$ is the base of the wreath product, then $C_{B}(g)=\{(h, h) \mid h \in$ $H\}$, so the statement follows.

Lemma 2.6. Let $x \in G$ with $p^{n}=\left|x^{G}\right|_{p}<|G|_{p}$, where $n \geq 1$. Then there is a p-element $y \in C_{G}(x)$ with $\left|y^{G}\right|_{p} \leq p^{n-1}$. If, in addition, x is a p^{\prime}-element, then $\left|(x y)^{G}\right|_{p}=\left|x^{G}\right|_{p}$.

Proof. Take $P \in \operatorname{Syl}_{p}(G)$ such that $C_{G}(x) \cap P=\tilde{P} \in \operatorname{Syl}_{p}\left(C_{G}(x)\right)$, so $|P: \tilde{P}|=p^{n}$. Put $N=N_{P}(\tilde{P})$. There is a nontrivial element $y \in Z(N) \cap \tilde{P}$. Since $|P: N| \leq p^{n-1}$, it follows that $\left|y^{G}\right|_{p} \leq p^{n-1}$.

By the above paragraph, $\tilde{P} \leq C_{G}(x) \cap C_{G}(y) \leq C_{G}(x y)$. If x is a p^{\prime}-element, then Lemma 2.4 implies that $\left|x^{G}\right|$ divides $\left|(x y)^{G}\right|$, so the second statement of the lemma follows.

3. Proof of the theorem

Let G be a finite group with $Z(G)=1$ such that $N(G)=N\left(A_{6} \times A_{6}\right)$. It follows from [1, Corollary 1] that $\pi(G)=\pi\left(A_{6} \times A_{6}\right)=\{2,3,5\}$.
Lemma 3.1. There are a 5-element $x \in G$ with $\left|x^{G}\right|=72$ and a 3-element $u \in G$ with $\left|u^{G}\right|=40$.

Proof. Lemma 2.1 yields that there is an element x of prime order with $\left|x^{G}\right|=72$. If $|x|=5$, then we are done, so we can assume that $|x| \in\{2,3\}$.

Suppose that $|x|=2$. Lemma 2.6 implies that there is a 3-element $y \in C_{G}(x)$ with $\left|y^{G}\right|_{3} \leq 3$, so $\left|y^{G}\right| \in\left\{40,40^{2}\right\}$ due to Lemma 2.1. If $\left|y^{G}\right|=40^{2}$, then $\operatorname{lcm}\left(\left|x^{G}\right|,\left|y^{\bar{G} \mid}\right|\right)=\operatorname{lcm}\left(40^{2}, 72\right)=120^{2}$. By Lemma 2.4 , there must be a multiple of 120^{2} in $N(G)$; a contradiction. Hence $\left|y^{G}\right|=40$.

Applying Lemma 2.6 once more, we obtain a 5-element $z \in C_{G}(y)$ with $\left|z^{G}\right|_{5} \leq 1$, so $\left|z^{G}\right| \in\left\{72,72^{2}\right\}$. If $\left|z^{G}\right|=72^{2}$, then $N(G)$ must contain a multiple of $72^{2} \cdot 5$; a contradiction. Thus, z is the desired 5-element with $\left|z^{G}\right|=72$.

The case $|x|=3$ can be treated similarly: for a suitable 2-element $y \in C_{G}(x)$, there is a 5-element $z \in C_{G}(y)$ with $\left|z^{G}\right|=72$.

Again, Lemma 2.1 yields that there is an element u of prime order with $\left|u^{G}\right|=$ 40. Applying the same arguments as above we obtain a 3-element satisfying this property.

In the next three lemmas we show that $O_{p}(G)=1$ for every $p \in \pi(G)$; so the socle of G must be the direct product of nonabelian simple groups.

Lemma 3.2. $O_{5}(G)=1$.
Proof. Suppose the contrary. Let V be a nontrivial normal abelian 5-subgroup of G.

Let w be a 3-element with $\left|w^{G}\right|=40$. Lemma 2.2 yields $V=C_{V}(w) \times[V, w]$. Since w acts freely on $[V, w]$, we have that $|[V, w]|-1$ is a multiple of 3 , so $|[V, w]|=5^{2 k}$ for $k \geq 0$. In view of Lemma 2.3,

$$
\left|w^{V}\right|=\left|V: C_{V}(w)\right|=|[V, w]|=5^{2 k} \text { divides }\left|w^{G}\right|_{5}=5
$$

Thus, $|[V, w]|=1$ and $V=C_{V}(w)$.
If $P \in \operatorname{Syl}_{5}(G)$ and $y \in V \cap Z(P) \backslash\{1\}$, then $\left|y^{G}\right|_{5}=1$. It follows from Lemma 2.1 that $\left|y^{G}\right| \in\left\{72,72^{2}\right\}$. Suppose that $\left|y^{G}\right|=72^{2}$. Since $\operatorname{gcd}(|w|,|y|)=1$, Lemma 2.4 implies that $\operatorname{lcm}\left(\left|w^{G}\right|,\left|y^{G}\right|\right)=72^{2} .5$ divides $\left|(w y)^{G}\right|$, which contradicts Lemma 2.1. Hence $\left|y^{G}\right|=72$.

By Lemma 2.6, there is a 2-element $z \in C_{G}(y)$ with $\left|z^{G}\right|_{2} \leq 2^{2}$, so $\left|z^{G}\right| \in$ $\left\{45,90,45^{2}, 45 \cdot 90,90^{2}\right\}$. If $\left|z^{G}\right| \in\left\{45^{2}, 45 \cdot 90,90^{2}\right\}$, then Lemma 2.4 implies that $45^{2} \cdot 2^{3}$ divides $\left|(y z)^{G}\right|$, a contradiction. Therefore, $\left|z^{G}\right| \in\{45,90\}$. Since y is a $2^{\prime}-$ element, $\left|(y z)^{G}\right|_{2}=\left|y^{G}\right|_{2}=2^{3}$ due to Lemma 2.6. It follows from Lemma 2.4 that $\operatorname{lcm}\left(\left|y^{G}\right|,\left|z^{G}\right|\right)=2^{3} \cdot 3^{2} \cdot 5=360$ divides $\left|(y z)^{G}\right|$. Thus, $\left|(y z)^{G}\right| \in\{40 \cdot 45,45 \cdot 72\}$.

Applying Lemma 2.6 once more, we obtain a 3-element $x \in C_{G}(z)$ such that $\left|x^{G}\right|_{3} \leq 3$, whence $\left|x^{G}\right| \in\left\{40,40^{2}\right\}$. In fact $\left|x^{G}\right|=40$, otherwise Lemma 2.4 implies that $40^{2} \cdot 3^{2}$ divides $\left|(x z)^{G}\right|$, which is impossible. We have $\left|(x z)^{G}\right|_{3}=\left|z^{G}\right|_{3}=3^{2}$ by Lemma 2.6 and $\left|(x z)^{G}\right|$ is a multiple of $\operatorname{lcm}\left(\left|x^{G}\right|,\left|z^{G}\right|\right)=360$. Therefore, $\left|(x z)^{G}\right| \in$ $\{40 \cdot 45,40 \cdot 72,40 \cdot 90\}$.

By the second paragraph of the proof, x centralizes V, in particular, $x \in C_{G}(y)$. Lemma 2.4 implies that $\left|(x y)^{G}\right| \leq\left|x^{G}\right| \cdot\left|y^{G}\right|=40 \cdot 72$ and $\left|(x y)^{G}\right|$ is a multiple of $\operatorname{lcm}\left(\left|x^{G}\right|,\left|y^{G}\right|\right)=360$. Therefore, $\left|(x y)^{G}\right| \in\{40 \cdot 45,40 \cdot 72\}$.

Since x, y, z are of coprime orders and centralize each other, $\left|(x y z)^{G}\right|$ is a multiple of $\operatorname{lcm}\left(\left|(x y)^{G}\right|,\left|(x z)^{G}\right|,\left|(y z)^{G}\right|\right)$. Therefore, we can assume that $\left|(x y)^{G}\right|=\left|(y z)^{G}\right|=$ $40 \cdot 45$ and $\left|(x z)^{G}\right| \in\{40 \cdot 45,40 \cdot 90\}$, because otherwise $\left|(x y z)^{G}\right| \notin N(G)$.

It is clear that $\left|(x y z)^{G}\right|_{5}=\left|(x y)^{G}\right|_{5}$ or, equivalently, $\left|C_{G}(x y) \cap C_{G}(z)\right|_{5}=$ $\left|C_{G}(x y)\right|_{5}$. The latter implies that a Sylow 5-subgroup Q of $C_{G}(x y) \cap C_{G}(z)$ is a Sylow 5-subgroup of $C_{G}(x y)$. Since V is a normal 5 -subgroup of $C_{G}(x y)=$ $C_{G}(x) \cap C_{G}(y)$, it follows that $V \leq Q \leq C_{G}(z)$.

Suppose that P is a Sylow 5 -subgroup of G containing a Sylow 5 -subgroup \tilde{P} of $C_{G}(x)$ and $u \in V \cap Z(P) \backslash\{1\}$. Then $\left|u^{G}\right|=72$ by the arguments from the third paragraph of the proof. Since u centralizes \tilde{P}, it follows that $\left|(x u)^{G}\right|_{5}=\left|x^{G}\right|_{5}=5$. Lemma 2.4 and Lemma 2.6 yield $\left|(x u)^{G}\right|=40 \cdot 72$. Note that $u \in V \leq C_{G}(z)$, so $\left|(x u z)^{G}\right|$ is a multiple of $\operatorname{lcm}\left(\left|(x u)^{G}\right|,\left|(x z)^{G}\right|\right)=2^{6} \cdot 3^{2} \cdot 5^{2}$, a contradiction.

The proofs of the next two lemmas are very similar to that of Lemma 3.2. However, they are different from it, so we provide them.

Lemma 3.3. $O_{3}(G)=1$.
Proof. Suppose, to the contrary, that V is a nontrivial abelian normal 3-subgroup of G.

By the same arguments as in the proof of Lemma 3.2, an arbitrary 5-element $w \in G$ with $\left|w^{G}\right|=72$ centralizes V and there is an element $y \in V$ with $\left|y^{G}\right|=40$.

In view of Lemma 2.6, there is a 2-element $z \in C_{G}(y)$ with $\left|z^{G}\right|_{2} \leq 2^{2}$. Following exactly the proof of the previous lemma, we obtain that $\left|z^{G}\right| \in\{45,90\}$ and $\left|(y z)^{G}\right| \in\{40 \cdot 45,45 \cdot 72\}$.

Applying Lemma 2.6 once more, we obtain a 5 -element $x \in C_{G}(z)$ such that $\left|x^{G}\right|_{5} \leq 1$, whence $\left|x^{G}\right| \in\left\{72,72^{2}\right\}$. In fact $\left|x^{G}\right|=72$, otherwise Lemma 2.4 implies that $72^{2} \cdot 5$ divides $\left|(x z)^{G}\right|$, which is impossible. We have $\left|(x z)^{G}\right|_{5}=\left|z^{G}\right|_{5}=5$ by Lemma 2.6 and $\left|(x z)^{G}\right|$ is a multiple of $\operatorname{lcm}\left(\left|x^{G}\right|,\left|z^{G}\right|\right)=360$. Therefore, $\left|(x z)^{G}\right| \in$ $\{40 \cdot 72,45 \cdot 72,72 \cdot 90\}$.

By the second paragraph of the proof, $x \in C_{G}(y)$. It follows that $\left|(x y)^{G}\right| \leq$ $\left|x^{G}\right| \cdot\left|y^{G}\right|=40 \cdot 72$ and $\left|(x y)^{G}\right|$ is a multiple of $\operatorname{lcm}\left(\left|x^{G}\right|,\left|y^{G}\right|\right)=360$ due to Lemma 2.4. Therefore, $\left|(x y)^{G}\right| \in\{40 \cdot 45,40 \cdot 72\}$.

The elements x, y, z are of coprime orders and centralize each other. Hence, $\left|(x y z)^{G}\right|$ is a multiple of $\operatorname{lcm}\left(\left|(x y)^{G}\right|,\left|(x z)^{G}\right|,\left|(y z)^{G}\right|\right)$, which is impossible due to Lemma 2.1.

Lemma 3.4. $O_{2}(G)=1$.
Proof. Suppose that V is a nontrivial normal abelian 2-subgroup of G.
Applying the same arguments as in the proof of Lemma 3.2, we see that an arbitrary 5-element $w \in G$ with $\left|w^{G}\right|=72$ centralizes V and there is an element $y \in V$ with $\left|y^{G}\right|=45$.

By Lemma 2.6, there is a 3 -element $z \in C_{G}(y)$ with $\left|z^{G}\right|_{3} \leq 3$, so $\left|z^{G}\right| \in\left\{40,40^{2}\right\}$. If $\left|z^{G}\right|=40^{2}$, then Lemma 2.4 implies that $40^{2} \cdot 3^{2}$ divides $\left|(y z)^{G}\right|$, a contradiction. Therefore, $\left|z^{G}\right|=40$. It follows from Lemma 2.4 that $\operatorname{lcm}\left(\left|y^{G}\right|,\left|z^{G}\right|\right)=360$ divides $\left|(y z)^{G}\right|$ and $40 \cdot 45 \geq\left|(y z)^{G}\right|$. Thus, $\left|(y z)^{G}\right|=40 \cdot 45$.

Applying Lemma 2.6 once more, we obtain a 5 -element $x \in C_{G}(z)$ with $\left|x^{G}\right|_{5}=1$, so $\left|x^{G}\right| \in\left\{72,72^{2}\right\}$. If $\left|x^{G}\right|=72^{2}$, then Lemma 2.4 implies that $72^{2} \cdot 5$ divides $\left|(x z)^{G}\right|$, a contradiction. Therefore, $\left|x^{G}\right|=72$. Moreover, Lemma 2.6 yields $\left|(x z)^{G}\right|_{5}=$ $\left|z^{G}\right|_{5}=5$. We have that $\operatorname{lcm}\left(\left|x^{G}\right|,\left|z^{G}\right|\right)$ divides $\left|(x z)^{G}\right|$ and $40 \cdot 72 \geq\left|(x z)^{G}\right|$ due to Lemma 2.4. Therefore, $\left|(x z)^{G}\right|=40 \cdot 72$.

By the second paragraph of the proof, $x \in C_{G}(y)$. It follows that x, y, z are of coprime orders and centralize each other. Hence, $\left|(x y z)^{G}\right|$ is a multiple of the least common multiple of $\left|(x z)^{G}\right|$ and $\left|(y z)^{G}\right|$, that is, $40 \cdot 72 \cdot 5$, a contradiction.

Thus, $M \leq G \leq \operatorname{Aut}(M)$, where $M=S_{1} \times \cdots \times S_{k}$ is a direct product of finite nonabelian simple groups S_{1}, \ldots, S_{k}. Since $\pi\left(S_{i}\right) \subseteq \pi(G)$, it follows that $S_{i} \in\left\{A_{5}, A_{6}, U_{4}(2)\right\}$. We will use information about these groups from [2].

Lemma 3.5. $M \simeq A_{6} \times A_{6}$.
Proof. If $k=1$, then $|G|_{5}>|\operatorname{Aut}(M)|_{5}$, a contradiction. If $k \geq 3$, then there is an element $x \in M$ with $\left|x^{M}\right|_{5}=5^{3}$. Lemma 2.3 implies that $\left|x^{M}\right|$ divides $\left|x^{G}\right|$, a contradiction.

Therefore, $k=2$. If one of the two direct factors is isomorphic to $U_{4}(2)$, then there is an element $x \in M$ with $\left|x^{M}\right|_{2}>2^{6}$, which is impossible.

Thus, we have $M \in\left\{A_{5} \times A_{5}, A_{5} \times A_{6}, A_{6} \times A_{6}\right\}$. If $M \in\left\{A_{5} \times A_{5}, A_{5} \times A_{6}\right\}$, then $|G|_{3}>|\operatorname{Aut}(M)|_{3}$, a contradiction. So $M \simeq A_{6} \times A_{6}$, as claimed.

Lemma 3.6. $G \simeq A_{6} \times A_{6}$.
Proof. By Lemma 3.5, we have $S_{1} \times S_{2} \leq G \leq \operatorname{Aut}\left(S_{1} \times S_{2}\right)=\operatorname{Aut}\left(S_{1}\right)$ 亿 $\langle a\rangle$, where a is an involution and $S_{1} \simeq S_{2} \simeq A_{6}$.

If $a \in G$, then $G \simeq H_{2}\langle a\rangle$, where $A_{6} \leq H \leq \operatorname{Aut}\left(A_{6}\right)$. Lemma 2.5 states that $\left|a^{G}\right|=|H|$. This is a contradiction since $|H| \notin N(G)$.

Suppose that $a \notin G$, so $S_{1} \times S_{2} \leq G \leq \operatorname{Aut}\left(S_{1}\right) \times \operatorname{Aut}\left(S_{2}\right)$. If $S_{1} \times S_{2}<G$, then G includes a subgroup G_{1} of the form $\left(S_{1} \times S_{2}\right) .2=\left\langle S_{1} \times S_{2},\left(\varphi_{1}, \varphi_{2}\right)\right\rangle$, where $\varphi_{i} \in \operatorname{Aut}\left(S_{i}\right)$. We may assume that $\varphi_{1} \notin S_{1}$. Also observe that G_{1} is normal in G.

There are three isomorphism types of $A_{6} .2$. For every possible isomorphism type of $A_{6} .2$ there is an element $x \in A_{6}$ with $\left|x^{A_{6} .2}\right|_{2}>2^{3}$, so $C_{A_{6} .2}(x)=C_{A_{6}}(x)$.

Take an element $x=\left(x_{1}, x_{2}\right) \in G_{1}$ such that $\left|x_{1}\left\langle S_{1}, \varphi_{1}\right\rangle\right|_{2}>2^{3}$ and $\left|x_{2}{ }^{\left\langle S_{2}, \varphi_{2}\right\rangle}\right|_{2} \geq$ 2^{3}. Since $C_{\left\langle S_{i}, \varphi_{i}\right\rangle}\left(x_{i}\right)=C_{S_{i}}\left(x_{i}\right)$ regardless of whether φ_{i} is outer or not, we have $C_{G_{1}}(x)=C_{S_{1}}\left(x_{1}\right) \times C_{S_{2}}\left(x_{2}\right)$. It follows that $\left|x^{G}\right|_{2}>2^{6}$. This contradiction completes the proof of the lemma and the theorem.

The author is grateful to I.B. Gorshkov, M.A. Grechkoseeva and A.V. Vasil'ev for helpful comments and suggestions.

References

[1] A.R. Camina, Arithmetical conditions on the conjugacy class numbers of a finite group, J. Lond. Math. Soc., II. Ser., 5 (1972), 127-132. Zbl 0242.20025
[2] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985. Zbl 0568.20001
[3] D. Gorenstein, Finite groups, Harper \& Row Publishers, New York etc., 1968. Zbl 0185.05701
[4] I.B. Gorshkov, On Thompson's conjecture for finite simple groups, Commun. Algebra, 47:12 (2019), 5192-5206. Zbl 1444.20007
[5] I.B. Gorshkov, On characterization of a finite group by the set of conjugacy class sizes, J. Algebra Appl., 21:11 (2022), Article ID 2250226. Zbl 7596149
[6] E.I. Khukhro, V.D. Mazurov eds., The Kourovka notebook. Unsolved problems in group theory, 2022, arxiv.org/pdf/1401.0300.pdf.

Viktor Panshin
Novosibirsk State University,
Pirogova st., 2,
630090, Novosibirsk, Russia

Sobolev Institute of Mathematics, pr. Koptyuga, 4,
630090, Novosibirsk, Russia
Email address: v.pansh1n@yandex.ru

[^0]: Panshin, V., ON RECOGNITION OF $A_{6} \times A_{6}$ BY THE SET OF CONJUGACY CLASS SIZES.
 (C) 2022 Panshin V

 The work is supported by the Mathematical Center in Akademgorodok under the agreement No. 075-15-2019-1613 with the Ministry of Science and Higher Education of the Russian Federation.

 Received June, 11, 2022, published November, 11, 2022.

