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Abstract. We prove that there are continuum many nonstandard
quasivarieties of di�erential groupoids and unary algebras.
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1. Introduction

A prevarietyK is pro�nite if each Boolean topological structure with its algebraic
reduct belonging toK is pro�nite with respect to K; that is, isomorphic to an inverse
limit of �nite structures (equipped with the discrete topology) belonging to K. A
universal Horn class K is standard if each Boolean topological structure with its
algebraic reduct inK is isomorphic to a closed substructure of the Cartesian product
of a nonempty family of �nite structures from K, where all the �nite structures are
equipped with the discrete topology and the Cartesian product is equipped with
the product topology.

The notion of a standard class is closely related with natural dualities and
pro�nite structures, see [3, 22]. A detailed study of standard and pro�nite classes of
general algebraic structures as well as particular classes of algebraic structures was
carried out in [4, 5, 6, 7]. It was established in [21] that there is no algorithm which
would decide if the variety generated by a given �nite structure is standard. This
result solved in the negative a problem from [4, 6] in the case of varieties. A wide
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spectrum of examples of standard and nonstandard quasivarieties can be found in
[1, 6, 7, 27].

In a recent article of the authors and their co-author, the notion of a B-class was
introduced which allows us to treat certain complexity problems for quasivarieties in
a uniform way [17]. Namely, the existence of such a class with respect to a quasivari-
ety implies extremely high level of complexity from many points of view. In addition
to known properties of Q-universality and the undecidability of certain decision
problems, the existence of a B-class leads to continuum many subquasivarieties
lacking �nitely partitionable quasi-equational bases, continuum many subquasivar-
ieties whose quasi-equational theory is undecidable, and continuum many nonstan-
dard subquasivarieties [18, 20].

Although the variety Dm of di�erential groupoids and a certain quasivariety V
of unary algebras with two unary operations do not admit B-classes, a series of
complexity results holds for them. For example, the representation, undecidability,
and independent axiomatization results can be proven for these two quasivarieties,
see [15, 16]. Notice that the proof of the facts that the quasivarieties Dm and V
are Q-universal in [12] and [11] required an individual approach and adjustment
of known su�cient conditions for Q-universality. In the present article, we prove
that, despite of the lack of B-classes in Dm and V, these quasivarieties also contain
continuum many nonstandard subquasivarieties, see Theorems 10, 12, 13, and 15.

2. Basic definitions and auxiliary results

For all de�nitions and notation concerning (algebraic) structures and their quasi-
varieties, we refer to the monograph [8, Ch. 1] and the articles [15, 16, 17, 18, 19, 20].

2.1. Quasivarieties and class operators. Quasi-identities are universal Horn
sentences of the form

∀x [ϕ1(x) & . . .& ϕk(x) −→ ϕ0(x)],

where ϕi(x) is an atomic formula for each i 6 k. A class K of structures is
a quasivariety if it coincides with the class of all models of some set Φ of quasi-
identities. Then the set Φ is called a quasi-equational basis of K.

We denote structures by calligraphic letters. The universe of a structure is
denoted by the corresponding italic letter. For classes of structures, we use boldface
letters. We assume that all classes are abstract, i.e., closed under isomorphism.

Let K(σ) denote the class of all structures of type σ. For a class K ⊆ K(σ),
let Kfin denote the class of �nite structures from K and let Q(K) denote the least
quasivariety extending K. Let H(K) denote the class of homomorphic images of
structures from K; let P(K) denote the class of structures that are isomorphic to
the Cartesian product of a family of structures from K; let P+(K) denote the class
of structures that are isomorphic to the Cartesian product of a nonempty family
of structures from K; let S(K) denote the class of structures that are embeddable
into structures from K; see, for example, [8, Sec. 1.2.7]. Finally, let T denote the
trivial (quasi)variety.

We recall the notion of the inverse (projective) limit, see, for example, [6, Sec. 1].

De�nition 1. A triple Λ = 〈I,Ai, πij〉 is an inverse spectrum if 〈I;6〉 is an up-
directed partially ordered set, {Ai | i ∈ I} is a set of structures of the same similarity
type σ, the mapping πij : Aj → Ai is a homomorphism for all i, j ∈ I with i 6 j,
and the following holds:
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(i) the mapping πii is the identity automorphism on Ai for each i ∈ I;
(ii) we have πik = πijπjk for all i, j, k ∈ I with i 6 j 6 k.

If each homomorphism πij is onto then the inverse spectrum is said to be surjective.
A structure A ∈ K(σ) is the inverse limit of Λ if its universe

A =
{

(ai | i ∈ I) ∈
∏
i∈I

Ai | πij(aj) = ai for all i 6 j in I
}

is not empty.

We denote the inverse limit of Λ whenever it exists by lim←−Λ. It is clear that

lim←−Λ ∈ SP(Ai | i ∈ I) if Λ is as in De�nition 1. For i ∈ I, we denote by πi the
canonical projection from lim←−Λ to Ai. Notice that πi is surjective if so is Λ.

A subclass K′ of K is a K-quasivariety if K′ is de�ned within K by a set of
quasi-identities or, equivalently, K′ = Q(K′) ∩K.

2.2. Finite B-classes. As usual, we denote the least in�nite cardinal by ω. For
a set X, we denote by Pfin(X) the set of all �nite subsets of X and by Pinf(X)
the set of all in�nite subsets I ⊆ X such that the complement X\I is in�nite too.
Notice that |Pinf(X)| = 2ω for each countable in�nite set X.

The following notion is introduced in [17].

De�nition 2. Let M ⊆ K(σ) be a quasivariety of a �nite type σ. A class A =
{AX | X ∈ Pfin(ω)} ⊆M of �nite structures is a �nite B-class with respect to M
if A satis�es the following conditions:

(B0) A∅ is a trivial structure;
(B1) if X = Y ∪ Z in Pfin(ω) then AX ∈ Q(AY ,AZ);
(B2) if ∅ 6= X ∈ Pfin(ω) and AX ∈ Q(AY ) then X = Y ;
(B3) if F ∈ Pfin(ω), i ∈ ω, and f : AF → A{i} is a homomorphism then either

f(AF ) ∼= A∅ or i ∈ F ;
(B4) if F ∈ Pfin(ω) then H(AF ) ∩M ⊆ A.

As is mentioned in the introduction, the existence of a (�nite) B-class with
respect to a quasivariety K witnesses a very complicated structure of K as well as
of its quasivariety lattice. However, there exists natural classes of structures that do
not admit B-classes by obvious reasons (say, the existence of homomorphic images
in �small� subvarieties, which spoils B3 or B4). In the following two subsections, we
recall necessary information about two such classes.

2.3. Di�erential groupoids. A di�erential groupoid is an algebra endowed with
one binary operation · that satis�es the following identities:

∀x [x · x = x], ∀x∀y [x · (x · y) = x],

∀x∀y ∀z ∀t [(x · y) · (z · t) = (x · z) · (y · t)].

Let Dm denote the variety of all di�erential groupoids.
For brevity, we write x1x2 . . . xn for (. . . (x1 · x2) · . . . ) · xn and xyn for x y . . . y︸ ︷︷ ︸

n

.

We use the following representation of di�erential groupoids from [23]. A groupoid
G is an Lz-Lz-sum (of orbits Gi over a groupoid I) satisfying the left normal law
if there is a partition G =

⋃
i∈I Gi such that, for every pair (i, j) ∈ I2, there is

a mapping hji : Gi → Gi satisfying the following conditions:
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(i) for every i ∈ I, hii is the identity mapping;

(ii) we have hji (h
k
i (x)) = hki (hji (x)) for all i, j, k ∈ I and x ∈ Gi;

(iii) we have ai · aj = hji (ai) for all i, j ∈ I, ai ∈ Gi and aj ∈ Gj .

According to [23, Theorem 2.2], a groupoid is di�erential if and only if it can be
represented as an Lz-Lz-sum satisfying the left normal law. For more detailed
information on di�erential groupoids, we refer to the monograph [24, Secs. 5.6
and 8.4].

Let n > 0. The structure de�ned in Dm by the generators {x, y} and the de-
�ning relations {yx = y, xyn = x} is called the cycle of length n and is denoted
by Dn. It is convenient to regard Dn as G0 ∪ G1, where G1 is the singleton orbit
{b} and G0 = {a, ab, ab2, . . . , abn−1}. We denote the trivial groupoid by D0.

Let P denote the set of all primes; we assume that P = {pi | i < ω}, where
pi 6 pj if and only if i 6 j for all i, j < ω. For an arbitrary set F ∈ Pfin(ω), we put
[F ] =

∏
i∈F pi if F 6= ∅ and [F ] = 1 if F = ∅.

We will need the following basic properties of the cycles, see [12, 15] as well
as [26].

Lemma 3. Let n > 0.

(i) The class {Dm | m divides n} coincides with the class of nontrivial homo-
morphic images of Dn.

(ii) If m ∈ ω and ϕ : Dn → Dm is a homomorphism then either ϕ(Dn) ∼= D0

or m divides n and ϕ is onto.
(iii) If n > 0 and X,X1, . . . , Xn ∈ Pfin(ω) are such that the set {1, . . . , n} is

minimal with respect to the property that D[X] ∈ SP(D[X1], . . . ,D[Xn]),
then X = X1 ∪ . . . ∪Xn.
Conversely, if X = X1 ∪ . . . ∪Xn then D[X] ∈ SP(D[X1], . . . ,D[Xn]).

The structure of the variety lattice of di�erential groupoids is explicitly described
in [23], see also [24, Theorem 8.4.14]. In particular, each proper subvariety of Dm
is de�ned by a single identity within Dm and is locally �nite. In contrast to
that description, the structure of the quasivariety lattice Lq(Dm) is much more
complicated. Namely, the variety Dm is Q-universal [12], there exist 2ω classes K
of di�erential groupoids such that the set of (isomorphism types of) �nite sublattices
of Lq(K) is not computable [25, 26], and there exist continuum many quasivarieties
of di�erential groupoids with no independent quasi-equational basis [2].

The following assertions are proven in [2, 12, 15, 16].

Theorem 4. For each of the following properties, there exists continuum many
quasivarieties of di�erential groupoids possessing this property:

• Q-universality;
• the undecidability of the set of (isomorphism types) of �nite sublattices of
the lattice of K-subquasivarieties for a suitable subclass K;
• the existence of an ω-independent quasi-equational basis and the lack of an
independent quasi-equational basis within Dm;
• the existence of an independent quasi-equational basis;
• the undecidability of the quasi-equational theory;
• the undecidability of the �nite membership problem and the membership
problem for �nitely presented di�erential groupoids.
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2.4. Unary algebras. As is proven in [11], the variety K3 of unary algebras of the
type σ = {f, g} de�ned by the identities

∀x∀y [f(f(x)) = f(f(y)) = f(g(y))],

∀x∀y [g(g(x)) = g(g(y)) = g(f(y))],

∀x [f(f(x)) = g(g(x))]

is a minimal Q-universal variety. It follows from the proof that the proper subquasi-
variety V ⊆ K3 de�ned by the quasi-identities

∀x [f(x) = f(f(x)) −→ f(x) = g(x)],

∀x [g(x) = g(g(x)) −→ f(x) = g(x)],

∀x [f(x) = g(x) −→ f(x) = f(f(x))],

∀x∀y [f(x) = f(y) −→ g(x) = g(y)],

∀x∀y [g(x) = g(y) −→ f(x) = f(y)]

is Q-universal; moreover, so is the lattice of W-quasivarieties, where W denotes
the subclass of V de�ned by the sentences

∀x∀y [g(x) = g(y) &x 6= y −→ g(x) = g(g(x))],(1)

∀x [g(x) = g(g(x))] −→ ∀x∀y [x = y].(2)

We recall the notation for certain unary algebras, see [11, 13].
For n > 1, let Cn denote the algebra whose universe is

Cn = {0} ∪An ∪Bn with An = {an0 , . . . , ann−1}, Bn = {bn0 , . . . , bnn−1}
and the operations are de�ned as follows: f(0) = g(0) = f(ani ) = g(ani ) = 0 and
g(bni ) = ani for 0 6 i 6 n − 1, f(bni ) = ani+1 for 0 6 i 6 n − 2, and f(bnn−1) = an0 .
Let C1 denote the 2-element algebra with the universe {0, a}, where f(0) = g(0) =
f(a) = g(a) = 0. Let C0 denote the trivial algebra.

It is clear that, for n > 0, we have Cn ∈W.
We recall necessary properties of the algebras Cn from [11, 13, 15].

Lemma 5. If n > 1 then the following assertions hold.

(i) If m divides n then there exists a homomorphism ϕ from Cn onto Cm;
moreover, the kernels of all such homomorphisms coincide and we have

kerϕ = {(x, x) : x ∈ Cn} ∪ {(ai, aj), (bi, bj) | i ≡ j (mod m)}.
(ii) If A ∈W is nontrivial and there exists a homomorphism from Cn onto A

then A is isomorphic to Cm for a suitable divisor m of n.
(iii) If A ∈ V is nontrivial and there exists a homomorphism ϕ from Cn onto A

then one of the following conditions holds:
(a) A ∈W and assertion (ii) is valid;
(b) the kernel kerϕ contains a pair of one of the forms (0, ani ), (0, bni ),

(ani , b
n
j ), (ani , a

n
j ), where the di�erence i− j is a multiple of no divisor

of n, and the structure A satis�es the premise of sentence (2);
(c) the kernel kerϕ contains a pair of the form (ani , a

n
i+k) but (bni , b

n
i+k) /∈

kerϕ, where k is the least positive number with this property, we have
k > 1, and k divides n (in this case, the algebra A satis�es the premise
of sentence (1) but violates its conclusion, i.e., Ck is a substructure
of A and |g−1(ϕ(ani ))| > 1).
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If X,Y, Z ∈ Pfin(ω) and n > 1 then the following assertions hold.

(iv) There exists a homomorphism from C[X] onto C[Y ] if and only if Y ⊆ X.
(v) We have C[X] ≤ C[Y ] × C[Z] if and only if X = Y ∪ Z.

If n > 1 and m > 0 then there exists a quasi-identity q(n,m) such that, for every
k > 1, the structure Ck satis�es q(n,m) if and only if either k is not a divisor of mn
or k divides n.

The following assertions are proven in [11, 13, 15, 16].

Theorem 6. For each of the following properties, there exists continuum many
W-subquasivarieties possessing this property:

• Q-universality;
• the undecidability of the set of (isomorphism types) of �nite sublattices of
the lattice of K-subquasivarieties for a suitable subclass K;

• the existence of an ω-independent quasi-equational basis and lack of an
independent quasi-equational basis within V;

• the existence of an independent quasi-equational basis;
• the undecidability of the quasi-equational theory;
• the undecidability of the �nite membership problem and the membership
problem for �nitely presented unary algebras of the type {f, g}.

2.5. Standard and nonstandard quasivarieties. For a structure A ∈ K(σ), we
say that A = 〈A, τ〉 is a topological structure if τ is a topology on A and all the
basic operations of A are continuous and all the basic relations on A are closed with
respect to τ . For a topological structure A, we denote its algebraic reduct by A and
its topology by τA. A topology τ on a set A is Boolean if the topological space 〈A, τ〉
is compact Hausdor� and has a base of clopen sets. A topological structure A is
Boolean if τA is Boolean. For a class K of topological structures of a �xed type, let
Sc(K) denote the class of structures that are isomorphic to closed substructures of
structures from K.

A structure is pro�nite (with respect to K) if it is isomorphic to the inverse
limit of a family of �nite structures (from K). Each pro�nite structure is naturally
equipped with a Boolean topology (in this case, this is the product topology). A
prevariety K is pro�nite if each Boolean topological structure with its algebraic
reduct belonging to K is pro�nite with respect to K. A universal Horn class K
is standard if each Boolean topological structure with its algebraic reduct in K
belongs to ScP

+(Kfin), where all the �nite structures are equipped with the discrete
topology and the Cartesian product is equipped with the product topology.

It is immediate from [6, Theorem 2.6 and Lemma 1.4(ii)] that a universal Horn
class K is standard if and only if it is pro�nite.

For more information and results on natural dualities, topological quasivarieties,
Boolean topological structures, and topology, the reader is referred to [3, 6, 10].

We will need the following property of the inverse limit, see [6, Lemma 3.2].

Lemma 7. Let σ contain no relation symbols, let A = lim←−i∈I Ai, where Λ is a

surjective inverse spectrum and Ai is a �nite structure for every i ∈ I, let B be a
�nite structure, and let ϕ : A → B be a (continuous) homomorphism. Then there
exist i ∈ I and a (continuous) homomorphism ψ : Ai → B such that ϕ = ψπi.

The following notion from [6] and its connection with standard quasivarieties is
an essential tool in the proof of our main results.
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De�nition 8. Let M ⊆ K(σ), where σ contains no relation symbols. A structure
A is pointwise non-separable with respect to M if there exist a1, a2 ∈ A such
that a1 6= a2 and ϕ(a1) = ϕ(a2) for every �nite structure B ∈ M and every
homomorphism ϕ : A→ B.

The following assertion is immediate from [6, Lemmas 3.3 and 3.4].

Lemma 9. Let A = lim←−i∈I Ai, where Λ is a surjective inverse spectrum and Ai

is a �nite structure for every i ∈ I, and let K be a quasivariety. If A is pointwise
non-separable with respect to K then A is not pro�nite with respect to K.

In particular, if A ∈ K then K is not standard.

3. Main results

We formulate and prove similar results for Dm and V. Namely, we �nd
(a) continuum many nonstandard subquasivarieties with no independent quasi-

equational bases;
(b) and continuum many nonstandard subquasivarieties having an independent

quasi-equational basis.

3.1. Di�erential groupoids.

Theorem 10. There exist continuum many subquasivarieties of Dm that are not
standard and have no independent quasi-equational basis.

Proof. Let I ⊆ ω and let F ∈ Pfin(ω). We denote by ϕI
F the quasi-identity

∀x ∀y xy[F ] = x & yx = y → xy[F∩I] = x.

Let ΦI = {ϕI
F | F ∈ Pfin(ω)} and let KI be the subquasivariety of Dm de�ned by

the set of quasi-identities ΦI .
Let I ∈ Pinf(ω), F ∈ Pfin(ω), and p ∈ ω\F . We denote by ψp

F the quasi-identity

∀x ∀y xy[F∪{p}] = x & yx = y → xy[F ] = x.

We put Ψp = {ψp
F | F ∈ Pfin(ω), p ∈ ω\F} and ΨI =

⋃
p∈ω\I Ψp. We denote by

K′I the subquasivariety of Dm de�ned by the set of quasi-identities ΨI .
The following assertion is proven in [16, Theorem 4].

Proposition 11. We have KI = K′I for every I ∈ Pinf(ω). The set ΨI is an ω-
independent quasi-equational basis of K. There is no independent quasi-equational
basis of K.

We �x I ∈ Pinf(ω) and k ∈ ω\I. Assume that the numbers in I are ordered in
the natural way, i.e., we have I = {in | n < ω}, where in 6 im if and only if n 6 m
for all m,n < ω. For every n < ω, we put

Fn = {i0, . . . , in}, A = Dpk
, An = D[Fn], Bn = D[{k}∪Fn].

By the de�nition of KI , we immediately obtain the following assertion.

Claim 1. For every F ∈ Pfin(ω), we have D[F ] ∈ KI if and only if F ⊆ I.

In particular, we have A /∈ KI and An ∈ KI but Bn /∈ KI for every n < ω.
We construct an inverse spectrum Λ. By Lemma 3, if i < j < ω then there is a

surjective homomorphism πij : Bj → Bi; moreover, we may assume that πij(b) = b
and πij(a) = a, where {b} is the singleton orbit and a is the second generator of Dn
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for every n < ω. According to the de�nition of the inverse limit, we denote by πii
the identity automorphism on Bi for every i < ω.

We immediately obtain the following assertion.

Claim 2. The triple Λ = 〈ω,Bj , πij〉 is a surjective inverse spectrum.

We put B = lim←−Λ. Since each πij �xes a and b, we conclude that B 6= ∅.

Moreover, we have B ∈ SP(Dm) ⊆ Dm. For every n < ω, we denote by πn the
restriction of the nth projection

∏
n<ω Bn → Bn to B.

Claim 3. The di�erential groupoid B is in�nite and belongs to KI .

Proof of Claim. We show �rst that B |= ΦI . Indeed, consider an arbitrary quasi-
identity ϕI

F ∈ ΦI . Suppose that the premise of ϕI
F holds inB under an interpretation

γ : {x, y} → B. Then there exists a homomorphism f : D[F ] → B such that f(a) =
γ(x) and f(b) = γ(y). For all n < ω and u ∈ D[F ], we put fn(u) = πn(f(u)).
We �nd that fn is a homomorphism from D[F ] to Bn. By Lemma 3, we have
either fn(D[F ]) ∼= D[G] ≤ Bn for some nonempty G ⊆ F or fn(D[F ]) ≤ D1.
Since all proper subgroupoids of Bn are left-zero modes, we conclude that either
fn(D[F ]) ∼= Bn, or fn(D[F ]) ∼= D1, or fn(D[F ]) ∼= D0. In the �rst case, we have
|Bn| 6 [F ] + 1. Since D[F ] is a �nite groupoid and |Bn| < |Bn+1| for each n < ω,
there is s < ω such that [F ] + 1 < |Bn| for all n > s. This implies that fn(D[F ]) is
isomorphic to a subgroupoid of D1 if n > s. We denote Js = {n < ω | n > s}.

We summarize the above conclusions as follows. The di�erential groupoid B

is isomorphic to the inverse limit lim←−〈Js,Bj , πij〉 and is a subdirect product of

the family of di�erential groupoids {Bn | n ∈ Js}. The di�erential groupoid f(D[F ])
is a subdirect product of the family {fn(D[F ]) | n ∈ Js} of subgroupoids of D1;
hence, it is a left-zero mode.

We conclude that the subgroupoid f(D[F ]) of B generated by the set {a, b} is a
left-zero mode. But then the conclusion of ϕI

F holds in B.
Finally, if the universe B were �nite then, by Lemma 7, we would obtain |Bn+1| 6

|B| 6 |Bn| for some n < ω. Since |Bn+1| > |Bn|, we arrive at a contradiction. �

We remind that A /∈ KI , An ∈ KI , and Bn /∈ KI for every n < ω. By Lemma 3,
the di�erential groupoid Bn is a subdirect product of the di�erential groupoids A
and An. We denote the corresponding projections (which are onto homomorphisms)
by αn : Bn → A and βn : Bn → An. As Bn /∈ KI and An ∈ KI , the kernel
kerβn is the least congruence on Bn for no n < ω. For each n < ω, we can
�nd distinct elements bn1 , b

n
2 ∈ Bn such that βn(bn1 ) = βn(bn2 ). We conclude that

αn(bn1 ) 6= αn(bn2 ).
By Lemma 3, if i < j < ω then there is a surjective homomorphism ϕij : Aj →

Ai; moreover, we may assume that ϕij(b) = b and ϕij(a) = a, where {b} is the
singleton orbit and a is the second generator of Dn for every n < ω. It is easy to
see that, for all i, j < ω with i < j and all u ∈ Bj , we have βi(πij(u)) = ϕij(βj(u)).

The proof of the following assertion repeats the proof of Claim 4 from the proof
of [20, Theorem 4].

Claim 4. If (b1, b2) ∈ kerβj \ kerαj for some j < ω then, for i 6 j, we have(
πij(b1), πij(b2)

)
∈ kerβi \ kerαi.

Claim 5. The di�erential groupoid B is pointwise non-separable with respect to KI .
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Proof of Claim. We consider the set

H−1 =
⋃
n<ω

{
(hn1 , h

n
2 ) ∈ B2

n | (hn1 , hn2 ) ∈ kerβn \ kerαn

}
.

Since (bn1 , b
n
2 ) ∈ H−1 ∩ B2

n 6= ∅ for every n < ω, the set H−1 is in�nite. Since the
set B0 is �nite, there is a pair c0 of elements of B0 such that the set

H0 =
⋃
n<ω

{
(hn1 , h

n
2 ) ∈ H−1 |

(
π0n(hn1 ), π0n(hn2 )

)
= c0

}
is in�nite. By Claim 4, we have c0 ∈ kerβ0 \ kerα0.

We use induction on i and construct a chain of in�nite sets Hi, i < ω. Assume
that, for some i < ω, we have already found pairs cj ∈ kerβj\ kerαj for 0 6 j 6 i
such that the set

Hj =
⋃
n>j

{
(hn1 , h

n
2 ) ∈ Hj−1 |

(
πjn(hn1 ), πjn(hn2 )

)
= cj

}
is in�nite and πjj′ takes the pair cj′ into the pair cj whenever 0 6 j 6 j′ 6 i. Since
Hi is an in�nite set and Bi and Bi+1 are �nite sets, there is a pair ci+1 of elements
of Bm

i+1 such that the set

Hi+1 =
⋃

n>i+1

{
(hn1 , h

n
2 ) ∈ Hi |

(
πi+1,n(hn1 ), πi+1,n(hn2 )

)
= ci+1

}
is in�nite. By Claim 4, we have ci+1 ∈ kerβi+1 \kerαi+1. Moreover, ci+1 ∈ Hi+1 ⊆
Hi. We conclude therefore that πi,i+1 takes the pair ci+1 into the pair ci. By the
de�nition of an inverse spectrum and the induction hypothesis, we deduce that
πj,i+1(ci+1) = πji

(
πi,i+1(ci+1)

)
= πji(ci) = cj whenever j < i+ 1.

We introduce a pair c = (c1, c2) of elements of B such that for all n < ω and
i ∈ {1, 2}, πi(ci) is the ith component of cn.

We consider a homomorphism f : B → D, where D ∈ KI and D is a �nite
di�erential groupoid. By Lemma 7, there exist n < ω and a homomorphism g : Bn →
D such that f = gπn. By Lemma 3 and Claim 1, we obtain g(Bn) ∼= D[G] ∈ KI

for some G ⊆ ({k} ∪ Fn) ∩ I = Fn or g(Bn) ∼= D0. We can �nd therefore
a homomorphism h : An → D with g = hβn. We conclude that f = gπn = hβnπn
whence kerβnπn ⊆ ker f . As cn ∈ kerβn, we obtain (c1, c2) ∈ kerβnπn ⊆ ker f . �

By Claims 3 and 5 and Lemma 9, the quasivariety KI is not standard.
It remains to notice that, in view of Claim 1, the quasivarieties of the form KI

are pairwise distinct. �

Following [9], a set Φ of �rst-order sentences is said to be directed if, for arbitrary
ϕ0, ϕ1 ∈ Φ, there is ϕ ∈ Φ such that both ϕ0 and ϕ1 are consequences of ϕ.
Directed sets of �rst-order sentences are, in a sense, antagonists of independent sets
of sentences.

Theorem 12. There exist continuum many subquasivarieties in Dm that are not
standard and have an independent quasi-equational basis [a directed quasi-equational
basis, respectively].

Proof. This proof is similar to the one of Theorem 10 but less complicated.
We consider an in�nite set I = {in | n < ω} and assume that its members are

ordered in the natural way. That is, we have in 6 im if and only if n 6 m for all
m,n < ω. We put F−1 = ∅, Fn = {i0, . . . , in}, and Bn = D[Fn] for every n < ω.
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For each m < ω, let ξm denote the quasi-identity

∀x∀y xy[Fm] = x & yx = y → xy[Fm−1] = x.

We denote
ΞI = {ξm | m < ω} and MI = Mod ΞI ∩Dm.

Claim 1. The set ΞI is an independent quasi-equational basis of MI within Dm.
The quasivariety MI consists of all structures A ∈ Dm with the following property:

if F ∈ Pfin(ω) is nonempty and D[F ] ∈ S(A) then F * I.

Proof of Claim. It is not di�cult to see that Bn satis�es ξm if m 6= n and violates
ξn. Hence, ΞI is an independent set of quasi-identities.

If D[F ] is embeddable into A for no F ∈ Pfin(ω) with ∅ 6= F ⊆ I then, for
every m < ω, the premise of the quasi-identity ξm can hold under no interpretation
γ : {x, y} → A in view of Lemma 3. Therefore, A |= ξm for all m < ω and A ∈MI .
Conversely, let A ∈ MI and let D[F ] embed into A for some nonempty set F ∈
Pfin(ω) with F ⊆ I. Let in be the greatest element of F ; then F ⊆ Fn. Therefore, the
di�erential groupoid D[F ] satis�es the premise of ξn under the interpretation γ with
γ(x) = a, γ(y) = b but violates the conclusion of ξn under the same interpretation γ
in view of Lemma 3. Hence, A 6|= ξn which contradicts our assumption A ∈MI . �

Notice that Claim 1 also provides us with a directed quasi-equational basis ofMI

within Dm. Namely, for each nonempty set F ∈ Pfin(ω) with F ⊆ I, we introduce
the following quasi-identity χF :

∀x∀y xy[F ] = x & yx = y → xy = x.

We consider the set X = {χF | F ∈ Pfin(ω) and ∅ 6= F ⊆ I}.

Claim 2. The set X forms a directed quasi-equational basis of MI within Dm.

Proof of Claim. It is clear that X is a quasi-equational basis of MI within Dm.
Moreover, the quasi-identities χF , χG ∈ X are consequences of the quasi-identity
χF∪G for all nonempty sets F,G ∈ Pfin(ω). �

We construct an inverse spectrum Λ = 〈ω,Bj , πij〉 as follows. According to
Lemma 3, for all i, j < ω with i < j, there is a surjective homomorphism πij : Bj →
Bi; moreover, we may assume that πij(b) = b and πij(a) = a, where {b} is the
singleton orbit and a is the second generator of Dn for each n < ω. According to
the de�nition of an inverse spectrum, let πii be the identity automorphism of Bi

for each i < ω.
We immediately obtain the following assertion.

Claim 3. The triple Λ = 〈ω,Bj , πij〉 is a surjective inverse spectrum.

We put B = lim←−Λ. Since each πij �xes a and b, we conclude that B 6= ∅.

Moreover, we have B ∈ SP(Dm) ⊆ Dm. For every n < ω, we denote by πn the
restriction of the nth projection

∏
n<ω Bn → Bn to B.

Claim 4. The di�erential groupoid B is in�nite and belongs to MI .

Proof of Claim. The same arguments as in the proof of Theorem 10 (see Claim 3
there) show that B is in�nite.

We prove that B ∈ MI . In view of Claim 2, it su�ces to prove that B |= X.
Assume that F ∈ Pfin(ω) and ∅ 6= F ⊆ I. If the premise of χF holds in B under
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an interpretation γ : {x, y} → B then there exists a homomorphism f : D[F ] → B

such that f(a) = γ(x) and f(b) = γ(y).
For all n < ω and u ∈ D[F ], we put fn(u) = πnf(u). We �nd that fn is a

homomorphism from D[F ] to Bn. By Lemma 3, we have either fn(D[F ]) ∼= D[G] ≤
Bn for some G ⊆ F or fn(D[F ]) ∼= D0. This means that fn(D[F ]) is either a
subgroupoid of D1 or isomorphic to Bn. In the second case, we have |Bn| 6 [F ]+1.
Since D[F ] is a �nite structure and |Bn| < |Bn+1| for each n < ω, there is s < ω such
that [F ] + 1 < |Bn| whenever n > s. Therefore, the di�erential groupoid fn(D[F ])
with n > s is a subgroupoid of D1.

The same arguments as in the proof of Theorem 10 (see Claim 3 there) show
that the subgroupoid f(D[F ]) of B generated by the set {a, b} is a left-zero mode,
i.e., the conclusion of χF holds in B. �

Claim 5. The di�erential groupoid B is pointwise non-separable with respect to MI .

Proof of Claim. As πn maps B onto Bn for all n < ω, we have B /∈ Q(D1).
Consider an arbitrary homomorphism f : B → D, where D ∈ MI is a �nite

di�erential groupoid. By Lemma 7, there are n < ω and g : Bn → D such that
f = gπn and g is a homomorphism. By Lemma 3, we have either g(Bn) ∼= D[G] ∈
MI for some G ⊆ Fn ⊆ I or g(Bn) ∼= D0. Since D[G] ∈ MI , we have G = ∅ by
Claim 2 in the �rst case. This means that f(B) ∼= g(Bn) ≤ D1 in any case, which
contradicts the fact that B /∈ Q(D1). �

By Claims 4 and 5 and Lemma 9, the quasivariety MI is not standard.
It remains to notice that, in view of Claim 1, the quasivarieties of the form MI

are pairwise distinct. �

3.2. Unary algebras.

Theorem 13. There exist continuum many subquasivarieties of V that are not
standard and have no independent quasi-equational basis.

Proof. Let I ⊆ ω and let F ∈ Pfin(ω). We denote by ϕI
F the quasi-identity

∀x∀y0 . . . ∀y[F ]−1 ∀z0 . . . ∀z[F ]−1

[
f(x) = x ∧ g(x) = x∧

∧
∧

06i<[F ]

f(yi) = x ∧
∧

06i<[F ]

g(yi) = x ∧
∧

06i<[F ]

g(zi) = yi ∧

∧
∧

06i<[F ]−1

f(zi) = yi+1 ∧ f(z[F ]−1) = y0

]
−→ g(z0) = y[F∩I].

This is the quasi-identity q(n,m) from Lemma 5 with n = [F ∩ I], m = [F \ I].
Let ΦI = {ϕI

F | ∅ 6= F ∈ Pfin(ω)} and let KI be the subquasivariety of V
de�ned by the set of quasi-identities ΦI .

The following assertion is proven in [16, Theorem 8].

Proposition 14. Each of the quasivarieties KI admits an ω-independent quasi-
equational basis but lacks an independent quasi-equational basis.

We �x I ∈ Pinf(ω) and k ∈ ω\I. Assume again that I = {in | n < ω} and
in 6 im if and only if n 6 m for all m,n < ω. For every n < ω, we put

Fn = {i0, . . . , in}, A = Cpk
, An = C[Fn], Bn = C[{k}∪Fn] = Cpk·[Fn].

By the de�nition ofKI and Lemma 5, we immediately obtain the following assertion.
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Claim 1. For every F ∈ Pfin(ω), we have C[F ] ∈ KI if and only if F ⊆ I.

In particular, we have A /∈ KI and An ∈ KI but Bn /∈ KI for every n < ω.
We construct an inverse spectrum Λ. By Lemma 5, if i < j < ω then there is a

surjective homomorphism πij : Bj → Bi; moreover, we may assume that πij(0) = 0,
πij(a

p
u) = aqv, and πij(b

p
u) = bqv, where p = pk · [Fj ], q = pk · [Fi], and u ≡ v

(mod q). According to the de�nition of an inverse spectrum, let πii be the identity
automorphism on Bi for every i < ω.

The following assertion holds.

Claim 2. The triple Λ = 〈ω,Bj , πij〉 is a surjective inverse spectrum.

We put B = lim←−Λ. Since each homomorphism ϕij �xes the element 0, we

conclude that B 6= ∅. Moreover, we have B ∈ SP(V) ⊆ V. For each n < ω,
we denote by πn the restriction of the nth projection

∏
n<ω Bn → Bn to B. As

there πn is onto for all n < ω, the following statement is true.

Claim 3. We have B 6|= ∀x g(g(x)) = g(x).

Claim 4. The algebra B is in�nite and belongs to KI .

Proof of Claim. The same arguments as in the proof of Theorem 10 (see the proof
of Claim 3 there) show that B is in�nite. We prove that B |= ΦI .

We consider a quasi-identity ϕI
F ∈ ΦI with F 6= ∅ and assume that the premise

of ϕI
F holds in B under an interpretation γ : {x, y0, . . . , y[F ]−1, z0, . . . , z[F ]−1} → B.

Then there exists a homomorphism ϕ : C[F ] → B such that ϕ(0) = γ(x), ϕ(a
[F ]
i ) =

γ(yi), and ϕ(b
[F ]
i ) = γ(zi) for i < [F ]. For all n < ω and u ∈ C[F ], we put

fn(u) = πnϕ(u), i.e., we again consider the composition of the projection πn and
the homomorphism ϕ. Then fn is a homomorphism from C[F ] to Bn. By Lemma 5,
one of the following cases is possible:

(a) we have C[G] ≤ fn(C[F ]) ≤ Bn for some nonempty set G ⊆ Fn ∪ {k},
(b) we have fn(C[F ]) |= ∀x g(g(x)) = g(x).

In case (a), we have G = Fn ∪ {k} whence |Bn| = 2[G] + 1 6 2[F ] + 1. Since C[F ]

is a �nite algebra and |Bn| < |Bn+1| for each n < ω, there is s < ω such that
2[F ] + 1 < |Bn| for all n > s. Therefore, fn(C[F ]) |= ∀x g(g(x)) = g(x) for each
n > s. As B ∼= lim←− j>s Bj , we conclude that ϕ(CF ) |= ∀x g(g(x)) = g(x). Therefore,

the conclusion of ϕI
F also holds in B under γ and B |= ϕI

F . �

Claim 5. There are elements c1, c2 ∈ B such that
(
πn(c1), πn(c2)

)
∈ kerβn\ kerαn

and πn(c1), πn(c2) ∈ An for all n < ω.

Proof of Claim. As in the proof of Claim 5 (see the proof of Theorem 10), one
can establish the existence of elements c1, c2 ∈ B such that

(
πn(c1), πn(c2)

)
∈

kerβn\ kerαn for all n < ω. It follows from Lemma 5(i) that one can choose c1, c2 ∈
B so that πn(c1), πn(c2) ∈ An for all n < ω. �

Claim 6. The algebra B is not pro�nite with respect to KI .

Proof of Claim. By Lemma 5, the algebra Bn is a subdirect product of the algebras
A and An. As above, we denote the corresponding projections (which are onto
homomorphisms) by αn : Bn → A and βn : Bn → An. According to Claim 5,
there is a pair c = (c1, c2) ∈ B2 such that

(
πn(c1), πn(c2)

)
∈ kerβn\ kerαn and

πn(c1), πn(c2) ∈ An for all n < ω.
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Suppose that B ∼= lim←− t∈T Ut and Ut ∈ KI is a �nite unary algebra for every

t ∈ T . Then B ≤s

∏
t∈T Ut. Let π

′
t : B → Ut denote the canonical projection for

every t ∈ T . It follows from Lemma 7 that, for each t ∈ T , there exist n(t) < ω
and a homomorphism ψt : Bn(t) → Ut such that π′t = ψtπn(t). Since π

′
t is an onto

homomorphism, we conclude that ψt is also onto. It follows from Lemma 5 that the
following two cases are possible:

(a) there is a nonempty setGt ⊆ {k}∪Fn(t) such that C[Gt] ≤ ψt(Bn(t)) = Ut ∈
KI and Ut = ψt(Bn(t)) = {0}∪A[Gt]∪ψt(Bn(t)), where A[Gt] = ψt(An(t));

(b) we have ψt(Bn(t)) |= ∀x g(g(x)) = g(x).

Since C[Gt] ∈ KI in case (a), we conclude that Gt ⊆ ({k} ∪ Fn(t)) ∩ I = Fn(t) by
Claim 1. Since B 6|= ∀x g(g(x)) = g(x) by Claim 3, the set

T0 =
{
t ∈ T | C[Gt] ≤ ψt(Bn(t)) for some nonempty Gt ⊆ Fn(t)

}
is coinitial in T . This implies that B ∼= lim←− t∈T0

Ut whence B ≤s

∏
t∈T0

Ut.
For each t ∈ T0, we can �nd a homomorphism ϑt : An(t) → C[Gt] ≤ Ut such that

ϑtβn(t)(a) = ψt(a) for every a ∈ An(t). This yields for each i ∈ {1, 2}:

π′t(ci) = ψtπn(t)(ci) = ϑtβn(t)πn(t)(ci).

Inclusion
(
πn(t)(c1), πn(t)(c2)

)
∈ kerβn(t) implies that (c1, c2) ∈ kerπ′t for every

t ∈ T0. As B ≤s

∏
t∈T0

Ut, we have c1 = c2 in B, which contradicts Claim 5. �

By Claims 4 and 6, the quasivariety KI is not standard.
In view of Claim 1, the quasivarieties of the form KI are pairwise distinct. It

remains to refer to Proposition 14. �

Theorem 15. There exist continuum many subquasivarieties of V that are not
standard and have an independent quasi-equational basis [a directed quasi-equational
basis, respectively].

Proof. These arguments are similar to the proofs of Theorems 12 and 13.
We consider an in�nite set I = {in | n < ω} and assume that its members are

ordered in the natural way, i.e., in 6 im if and only if n 6 m for all m,n < ω. We
put F−1 = ∅, Fn = {i0, . . . , in}, and Bn = C[Fn] for every n < ω.

For each m < ω, let ξm denote the quasi-identity q([Fm], [Fm−1]), i.e.,

∀x∀y0 . . . ∀y[Fm]−1 ∀z0 . . . ∀z[Fm]−1

[
f(x) = x ∧ g(x) = x∧

∧
∧

06i<[Fm]

f(yi) = x ∧
∧

06i<[Fm]

g(yi) = x ∧
∧

06i<[Fm]

g(zi) = yi ∧

∧
∧

06i<[Fm]−1

f(zi) = yi+1 ∧ f(z[Fm]−1) = y0

]
−→ g(z0) = y[Fm−1].

We denote

ΞI = {ξm | m < ω} and MI = Mod ΞI ∩V.

Claim 1. The set ΞI forms an independent quasi-equational basis of MI within V.
The quasivariety MI consists of all structures A ∈ V with the following property:

if F ∈ Pfin(ω) is nonempty and C[F ] ∈ S(A) then F * I.
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Proof of Claim. It is not di�cult to see that Bn satis�es ξm if m 6= n and violates
ξn. Hence, ΞI is an independent set of quasi-identities.

If C[F ] is embeddable into A for no F ∈ Pfin(ω) with ∅ 6= F ⊆ I then, for every
m < ω, the premise of the quasi-identity ξm holds in A under no interpretation
γ : {x, y0, . . . , y[F ]−1, z0, . . . , z[F ]−1} → A in view of Lemma 5. Therefore, A |= ξm
for all m < ω and A ∈ MI . Conversely, let A ∈ MI and let C[F ] embed into A

for some nonempty set F ∈ Pfin(ω) with F ⊆ I. Let in be the greatest element of
F ; then F ⊆ Fn. Therefore, the algebra C[F ] satis�es the premise of ξn under the
interpretation γ with

γ(x) = 0, γ(yi) = a
[F ]
i(mod [F ]), γ(zi) = b

[F ]
i(mod [F ]), 0 6 i < [Fn],

but violates the conclusion of ξn under the same interpretation γ, see Lemma 5.
Hence, A 6|= ξn which contradicts our assumption A ∈MI . �

As above, Claim 1 also provides us with a directed quasi-equational basis of MI

within V. Namely, for each nonempty set F ∈ Pfin(ω) with F ⊆ I, we introduce
the following quasi-identity χF :

∀x∀y0 . . . ∀y[F ]−1 ∀z0 . . . ∀z[F ]−1 ∀y
[
f(x) = x ∧ g(x) = x∧

∧
∧

06i<[F ]

f(yi) = x ∧
∧

06i<[F ]

g(yi) = x ∧
∧

06i<[F ]

g(zi) = yi ∧

∧
∧

06i<[F ]−1

f(zi) = yi+1 ∧ f(z[F ]−1) = y0

]
−→ x = y.

We consider the set X = {χF | F ∈ Pfin(ω) and ∅ 6= F ⊆ I}.

Claim 2. The set X forms a directed quasi-equational basis of MI within V.

We construct an inverse spectrum Λ = 〈ω,Bj , πij〉 as follows. According to
Lemma 5, for all i, j < ω with i < j, there is a surjective homomorphism πij : Bj →
Bi; moreover, we may assume that πij(0) = 0, πij(a

[Fj ]
k ) = a

[Fi]
l , and πij(b

[Fj ]
k ) =

b
[Fi]
l , where k ≡ l (mod [Fi]). According to the de�nition of an inverse spectrum,
let πii be the identity automorphism of Bi for each i < ω.

We immediately obtain the following assertion.

Claim 3. The triple Λ = 〈ω,Bj , πij〉 is a surjective inverse spectrum.

We put B = lim←−Λ. Since each πij �xes 0, we conclude that B 6= ∅. Moreover,

we have B ∈ SP(V) ⊆ V. For every n < ω, we denote by πn the restriction of the
nth projection

∏
n<ω Bn → Bn to B. As πn is onto for every n < ω, the following

statement is true.

Claim 4. B 6|= ∀x g(g(x)) = g(x).

Claim 5. The algebra B is in�nite and belongs to MI .

Proof of Claim. The same arguments as in the proof of Theorem 12 (see Claim 4
there) show that B is in�nite.

We prove that B ∈ MI . In view of Claim 2, it su�ces to prove that B |=
X. Assume that F ∈ Pfin(ω) and ∅ 6= F ⊆ I. If the premise of χF holds in B

under an interpretation γ : {x, y0, . . . , y[F ]−1, z0, . . . , z[F ]−1} → B then there exists
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a homomorphism ϕ : C[F ] → B such that ϕ(0) = 0, ϕ(a
[F ]−1
k ) = γ(y

[F ]−1
k ), and

ϕ(b
[F ]−1
k ) = γ(z

[F ]−1
k ) for 0 6 k < [F ].

For all n < ω and u ∈ C[F ], we put fn(u) = πnϕ(u). We �nd that fn is a
homomorphism from C[F ] to Bn. By Lemma 5, one of the following cases occurs:

(a) we have C[G] ≤ fn(C[F ]) ≤ Bn for some nonempty set G ⊆ F ,
(b) we have fn(C[F ]) |= ∀x g(g(x)) = g(x).

In case (a), we have Fn = G ⊆ F whence |Bn| = 2[G] + 1 6 2[F ] + 1. Since C[F ]

is a �nite algebra and |Bn| < |Bn+1| for each n < ω, there is s < ω such that
2[F ] + 1 < |Bn| for all n > s. Therefore, fn(C[F ]) |= ∀x g(g(x)) = g(x) for all n > s.
As B ∼= lim←− j>s Bj , we conclude that B |= ∀x g(g(x)) = g(x), which contradicts
Claim 4. Therefore, the premise of χF holds in B under no interpretation γ and
B |= χF . �

Claim 6. The algebra B is not pro�nite with respect to MI .

Proof of Claim. Consider an arbitrary homomorphism ϕ : B → D, where D ∈MI

is a �nite structure. By Lemma 7, there is n < ω and a homomorphism ψ : Bn → D

such that ϕ = ψπn. By Lemma 5, one of the following cases occurs:

(a) we have C[G] ≤ ψ(Bn) ∈MI for some nonempty set G ⊆ Fn;
(b) we have ψ(Bn) |= ∀x g(g(x)) = g(x).

Since C[G] ∈MI in case (a) and ∅ 6= G ⊆ Fn ⊆ I, we arrive at a contradiction with
Claim 2. Therefore, case (a) is impossible. Thus, we conclude that case (b) takes
place and ϕ(B) = ψ(Bn) |= ∀x g(g(x)) = g(x). Hence if the unary algebra B were
pro�nite with respect to MI , it would satisfy the identity ∀x g(g(x)) = g(x) which
contradicts Claim 4. �

By Claims 5 and 6, the quasivariety MI is not standard.
It remains to notice that, in view of Claim 1, the quasivarieties of the form MI

are pairwise distinct. �

For quasivarieties possessing �nite B-classes, similar results on the existence of
directed quasi-equational bases (cf. Claims 2 in the proofs of Theorems 12 and 15)
were established in [14].
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