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DUAL COALGEBRA OF THE DIFFERENTIAL POLYNOMIAL

ALGEBRA IN ONE VARIABLE AND RELATED COALGEBRAS

V. N. ZHELYABIN, P.S. KOLESNIKOV

Abstract. We show that the dual coalgebra of the polynomial algebra
in one variable is the space of linearly recursive sequences over an arbitrary
�eld. Moreover, this coalgebra is a di�erential one relative to the dual
standard derivation and does not contain nonzero �nite-dimensional di�e-
rentially closed subcoalgebras if the characteristic of the ground �eld is
zero. We construct a Novikov coalgebra which is the dual coalgebra of the
left-symmetric Witt algebra of index one. Also, we construct a Jordan
supercoalgebra which is dual to the Jordan superalgebra of vector type
of the polynomial algebra in one variable. All these coalgebras do not
contain non-zero �nite-dimensional subcoalgebras if the characteristic
of ground �eld is zero. It is shown that over a �eld of characteristic
di�erent from 2 the adjoint Lie coalgebra of the dual coalgebra of the left-
symmetric Witt algebra of index one is isomorphic to the dual coalgebra
of the Witt algebra of index one.

Key words: coalgebra, coderivation, associative commutative algebra,
di�erential algebra, Novikov algebra, Lie algebra, Witt algebra, Jordan
superalgebra, locally �nite coalgebra

In general, an algebra is a vector space A over a ground �eld F equipped with
a linear map m : A ⊗ A → A. The dual notion is known as a coalgebra. The
theory of coalgebras has been initially developed within the framework of the
theory of Hopf algebras [1]. The main result of the theory of associative coalgebras
is the Fundamental Theorem on Coalgebras, which asserts that every associative
coalgebra over a �eld is locally �nite. The latter means that every �nitely generated
coalgebra is �nite-dimensional.
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The interest to nonassociative coalgebras is related to the notion of a quantum
group introduced by Drinfeld [2]. Initially, it was associated with the notion of a
Lie bialgebra. The latter was introduced in [3] as one of the most important notions
of quantum group theory. A Lie bialgebra is simultaneously a Lie algebra and a Lie
coalgebra. In contrast to associative coalgebras there exist Lie coalgebras that are
not locally �nite [4].

It is known (see [1, 4]) that the dual algebra of an associative coalgebra or a Lie
coalgebra is associative or Lie, respectively. In [5] (1994), the notion of a coalgebra
related to some variety of algebras was introduced. In particular, alternative and
Jordan coalgebras were de�ned, and their local �niteness was proved. An analogue
of this result is true for structurable coalgebras [6], for Jordan copairs [7], for right
alternative Malcev admissible coalgebras, and for binary (−1, 1)-coalgebras [8]. In
[9] (1995), some necessary and su�cient conditions for a Lie coalgebra to be locally
�nite were found.

In the papers [10, 11] the �rst author found the connection between Jordan and
Lie (super)coalgebras, which is an analogue of the well-known Kantor�Koecher�Tits
construction for usual (super)algebras. In [12, 13], it was shown that every Malcev
coalgebra is embedded into a Lie coalgebra with triality.

As mentioned above, there exist non-locally �nite Lie coalgebras. In [14], an
example of a non-locally �nite right-symmetric coalgebra was constructed. In cont-
rast to Jordan coalgebras, non-locally �nite Jordan supercoalgebras exist [11].

In [15], it was constructed an example of a non-locally �nite di�erential coalgeb-
ra. On this di�erential coalgebra we can de�ne a Lie comultiplication so that the
obtained Lie coalgebra coincides with the example of Michaelis presented in [4]. The
dual analogue of the Gelfand�Dorfman construction was proposed in [15], which
implied the construction of Novikov coalgebras based on di�erential associative
commutative coalgebras. Using this construction, an example of a non-locally �nite
Novikov coalgebra was built. A dual analogue of the Kantor construction for usual
Jordan superalgebra was also presented in [15], as a corollary, a new example of a
non-locally �nite Jordan supercoalgebra was constructed.

In [15] and [16], examples non-locally �nite right alternative coalgebras were
constructed.

In [17], it was shown that the dual coalgebra W ◦1 of the Witt Lie algebra W1

is a non-zero Lie coalgebra which does not contain non-zero �nite-dimensional
subcoalgebras. An analogue of this result for Jordan supercoalgebra was obtained
in [21]. The structure of the dual Lie coalgebra of the Witt algebra over �eld of
characteristic not 2 and zero was also described in [18, 19]. These results were
generalized to the case of several derivations in [20]. Namely in [18] was shown that
W ◦1 is the space of linearly recursive sequences, if charF = 0 or charF = p > 2.

It is known that both the Witt Lie algebraW1 and the left-symmetric algebra L1

can be obtained from the di�erential polynomial algebra in one variable by means of
appropriate constructions. It follows from [19, Theorem 1] that the dual coalgebra
W ◦1 is obtained from P ◦1 by means of the dual construction. The purpose of this
paper is to obtain the dual analogue of these results for the dual coalgebra L◦1.

In particular, we prove that the dual coalgebra P ◦1 of the algebra P1 in one
variable is the space of linearly recursive sequences over an arbitrary �eld, Moreover,
if the characteristic of ground �eld is zero then the coalgebra P ◦1 does not contain
�nite-dimensional di�erentially closed subcoalgebras.
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We also show that over �eld of characteristic di�erent from 2 the dual coalgebra
of the left-symmetric Witt algebra of index one can be obtained from the coalgebra
P ◦1 by means of the dual Gelfand�Dorfman construction.

Finally, we describe the dual supercoalgebra of a Jordan superalgebra obtained
by the Kantor construction from the di�erential polynomial algebra in one variable.

1. Coalgebras and coderivations

Let F be an arbitrary �eld. Denote by V ⊗ . . .⊗ V︸ ︷︷ ︸
n

the nth tensor power of

the vector space V over F . Denote by V ∗ the dual vector space of V , i. e., V ∗ =
HomF (V, F ).

The map

ρ : V ∗ ⊗ . . .⊗ V ∗︸ ︷︷ ︸
n

→ (V ⊗ . . .⊗ V︸ ︷︷ ︸
n

)∗

de�ned by

ρ(f1 ⊗ . . .⊗ fn)

( ∑
i1,...,in

vi1 ⊗ . . .⊗ vin
)

=
∑

i1,...,in

f1(vi1) . . . fn(vin)

is injective. Therefore, we can assume that

V ∗ ⊗ . . .⊗ V ∗︸ ︷︷ ︸
n

⊆ (V ⊗ . . .⊗ V︸ ︷︷ ︸
n

)∗.

If φ : V → U is a linear map of vector spaces then the transpose φ∗ : U∗ → V ∗ of φ
is de�ned by the rule φ∗(u∗)(v) = u∗(φ(v)), where v ∈ V , u∗ ∈ U∗.

De�nition 1. A pair (C,∆), where C is a vector space over F and ∆ : C → C⊗C
is a linear map, is called a coalgebra. The map ∆ is said to be a comultiplication
of C. For an element a ∈ C, we will use the Sweedler's notation (see [1]), namely,
∆(a) =

∑
(a)

a(1) ⊗ a(2).

If (C,∆) is a coalgebra then the rule f ⊗ g 7→ fg, where

(fg)(a) = ρ(f ⊗ g)(∆(a)) =
∑
(a)

f(a(1))g(a(2)), f, g ∈ C∗, a ∈ C,

de�nes a product on C∗, so that C∗ is an algebra. The algebra C∗ is called the dual
algebra of (C,∆).

The dual algebra C∗ has natural left and right actions on the initial coalgebra C.
Namely,

α · a =
∑
(a)

a(1)α(a(2)), a · α =
∑
(a)

α(a(1))a(2),

for α ∈ C∗, a ∈ C. Hence, C is a C∗-bimodule.
A linear map d : C → C is called a coderivation of a coalgebra (C,∆) if

∆d = (d⊗ id+ id⊗ d)∆,

i. e., for every a ∈ C

∆(d(a)) =
∑
(a)

d(a(1))⊗ a(2) + a(1) ⊗ d(a(2)).

The following statement is well-known.
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Lemma 1. Let d be a coderivation of a coalgebra (C,∆). Then its transpose map
d∗ is a derivation of the dual algebra C∗, i. e.,

d∗(fg) = d∗(f)g + fd∗(g)

holds in the algebra C∗ for all f, g ∈ C∗.

A coalgebra equipped with a coderivation is called a di�erential coalgebra.

A coalgebra (C,∆) is said to be associative (coassociative) if

(∆⊗ id− id⊗∆)∆ = 0,

i. e., for every a ∈ C∑
(a)

(∆(a(1))⊗ a(2) − a(1) ⊗∆(a(2))) = 0.

It is known that a coalgebra (C,∆) is associative if and only if its dual algebra C∗

is associative. By this reason, the following de�nition of a coalgebra related to some
variety of algebras was stated in [5].

De�nition 2. LetM be a variety of algebras. Then a coalgebra (C,∆) is called an
M-coalgebra if its dual algebra C∗ is an algebra ofM.

Let V be a vector space, and let the linear map τ : V ⊗ V → V ⊗ V is de�ned
by τ(x⊗ y) = y ⊗ x, x, y ∈ V .

A coalgebra (C,∆) is commutative (cocommutative) if

∆ = τ∆,

i. e., ∑
(a)

a(1) ⊗ a(2) =
∑
(a)

a(2) ⊗ a(1)

for every a ∈ C.
Let (C,∆) be an arbitrary coalgebra. A vector subspace B of C is a subcoalgebra

of (C,∆) if ∆(B) ⊆ B ⊗B.
It is known (see [5]) that a vector space B of C is a subcoalgebra if and only if

B is a submodule of the C∗-bimodule C. Therefore, the intersection of a family of
subcoalgebras of (C,∆) is again a subcoalgebra of C.

Recall that the orthogonal complement

B⊥ = {α ∈ C∗ | B ⊆ ker α}

of a subcoalgebraB of (C,∆) is an ideal of the algebra C∗. Conversely, the orthogonal
complement I⊥ of an ideal I of C∗ is a subcoalgebra of (C,∆) (see [1, Proposition
1.4.9]).

Let S be a subset of C. The smallest subcoalgebra which contains S is called the
subcoalgebra generated by S and denoted by Coalg(S). In other words, Coalg(S)
is the submodule of the C∗-bimodule C, generated by S. If S is a �nite set then
Coalg(S) is called �nitely generated coalgebra.

De�nition 3. A coalgebra (C,∆) is called locally �nite if every �nitely generated
subcoalgebra of C is �nite-dimensional.
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Let (C,∆) be a coalgebra. Denote by Loc(C) the sum of all locally �nite subcoal-
gebras of C. It is clear that Loc(C) is a locally �nite coalgebra.

Let A be an algebra over a �eld F with a multiplication m : A ⊗ A → A,
i. e., m(a ⊗ b) = ab for a, b ∈ A. Then m∗ : A∗ → (A ⊗ A)∗ is the transpose
map of m. A vector subspace V of A∗ is called good if m∗(V ) ⊆ ρ(V ⊗ V ). If V
is a good subspace then we can de�ne the comultiplication ∆V on V by the rule
∆V = ρ−1m∗.

Let A◦ be the sum of all good subspaces of A∗. Then A◦ is the largest good
subspace of A∗, and hence the pair (A◦,∆◦) is a coalgebra with the comultiplication
∆◦ = ∆A◦ [4, 5]. The coalgebra (A◦,∆◦) is called the �nite dual coalgebra (or
simply dual coalgebra) of A. For every a, b ∈ A and for every f ∈ A◦ we have
f(ab) =

∑
f f(1)(a)f(2)(b), where ∆◦(f) =

∑
f f(1) ⊗ f(2).

If A is �nite dimensional then A∗ ⊗ A∗ ≡ ρ(A∗ ⊗ A∗) = (A ⊗ A)∗ and the
dual space A∗ is a coalgebra with the comultiplication ∆ = ρ−1m∗. Therefore,
(A◦,∆◦) = (A∗,∆).

In [5], it was shown that the dual coalgebra A◦ is a M-coalgebra if A is an
algebra of varietyM.

Lemma 2. Let A be an algebra over a �eld F , and let (V,∆) be a coalgebra, where
V ⊆ A∗. If f(ab) = ρ(∆(f))(a ⊗ b) holds for every a, b ∈ A and for every f ∈ V
then V is a good subspace of A∗.

Proof. By the de�nition of m∗, we have m∗(f)(a ⊗ b) = f(ab) for all a, b ∈ A,
f ∈ A∗. If f(ab) = ρ(∆(f))(a⊗ b) holds for f ∈ V then

m∗(f)(a⊗ b) = ρ(∆(f))(a⊗ b).

Consequently, m∗(f) = ρ(∆(f)). Thus m∗(V ) ⊆ ρ(V ⊗ V ). �

Let I be the set of �nite-codimensional ideals of an algebra A. Let us de�ne

A∗I = {α ∈ A∗ | exists I ∈ I such that I ⊆ kerα}.

As it was shown in [5], A∗I = Loc(A◦). It is known that A∗I = Loc(A◦) = A◦ for
every associative algebra A.

2. Dual coalgebra of the differential polynomial algebra F [x]

Let P1 = F [x] be the polynomial algebra in one variable equipped with the
standard derivation d = d

dx . Then

P ◦1 = {α ∈ P ∗1 | exists f(x) ∈ F [x], f(x) 6= 0 such that f(x)F [x] ⊆ kerα}.

Let ∆◦ = ∆P◦
1
. For α ∈ P ∗1 and a ∈ P1 put 〈α, a〉 = α(a). Also, let us denote

d◦ = d∗|P◦
1
, where d∗ is the transpose map of the derivation d. Let (P1, d)◦ be

the sum of all good subspaces of P ∗1 which are di�erential coalgebras with the
coderivation d◦.

Lemma 3. The inclusion d◦(P ◦1 ) ⊆ P ◦1 holds. The triple (P ◦1 ,∆
◦, d◦) is an associ-

ative and commutative di�erential coalgebra with the coderivation d◦. Moreover,
(P ◦1 ,∆

◦, d◦) = (P1, d)◦.

Proof. Let us show that d◦(P ◦1 ) ⊆ P ◦1 . Suppose u ∈ P ◦1 , then there exists I =
f(x)P1, f(x) 6= 0, such that 〈u, I〉 = 0. Consider J = I2: this is an ideal of �nite
codimension in P1, and 〈d∗(u), J〉 = 〈u, d(J)〉 ⊆ 〈u, I〉 = 0 since d(I2) ⊆ Id(I) ⊆ I.
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Obviously, (P ◦1 ,∆
◦, d◦) is a di�erential coalgebra with coderivation d◦. Hence,

(P ◦1 ,∆
◦, d◦) = (P1, d)◦. �

Remark 1. The proof of Lemma 3 remains valid for an arbitrary associative
commutative algebra A equipped with an arbitrary derivation D. Hence, the equality
(A◦,∆◦, D◦) = (A,D)◦ holds in general.

Theorem 1. Let F be a �eld of characteristic zero. Then the coalgebra (P ◦1 ,∆
◦, d◦)

does not contain non-zero �nite-dimensional di�erentially closed subcoalgebras.

Proof. Let B be a �nite-dimensional di�erentially closed subcoalgebra of the di�e-
rential coalgebra (P ◦1 ,∆

◦, d◦). Then the orthogonal complement B⊥ is a di�erential-
ly closed ideal of P1. Moreover, the ideal B⊥ has �nite codimension. Since the
characteristic of F is zero then P1 is a di�erentially simple algebra. Therefore,
either B⊥ = 0 or B⊥ = P1. The �rst option is impossible since P1 is an in�nite-
dimensional algebra. Consenquently, B⊥ = P1 and B = 0. �

Let W1 be the Witt algebra of index one, i. e., W1 = DerF (P1); P ∗1 and W ∗1 are
isomorphic as vector spaces.

Recall that the vector space P1 is a Lie algebra relative to the operation

[f, g]d = fd(g)− d(f)g,

this Lie algebra is isomorphic to the Witt algebra W1 under isomorphism f 7→ fd.
Thus, we can identify (P1, [ , ]d) and W1.

De�ne the new comultiplication ∆
(−)
d◦ on the vector space P ◦1 :

∆
(−)
d◦ (α) = (id⊗ d◦ − d◦ ⊗ id)∆◦(α).

Then
〈α, [f, g]d)〉 = 〈α, fd(g)− d(f)g〉 = ρ(∆

(−)
d◦ (α))(f ⊗ g)

for α ∈ P ◦1 and f, g ∈ P1. Therefore, P
◦
1 is a good subspace of W ∗1 . Consequently,

we can assume that (P ◦1 ,∆
(−)
d◦ ) is a subcoalgebra of (W ◦1 ,∆W◦

1
).

In the algebra P1 we put xi = xi+1, i = −1, 0, 1, . . .. Then we have xi·xj = xi+j+1

in the algebra P1.
We identify elements of P ∗1 with sequences of elements of F . Namely, every

α ∈ P ∗1 corresponds to (α(xn))n≥−1.
Following [18], we say that a sequence (an)n≥−1 of elements of F is (F -)linearly

recursive if there exist β0, β1, . . . , βr ∈ F , not all equal to zero, and a number k
such that

∑r
i=0 βian+i = 0 for all n ≥ k.

In the next statement, the base �eld F is of arbitrary characteristic.

Theorem 2. Let V be the space of linearly recursive sequences. Then P ◦1 = V . In

particular, the space V is the dual coalgebra of P1. Therefore, the coalgebra (V,∆
(−)
d◦ )

is a Lie subcoalgebra of (W1)◦.

Proof. Let α ∈ P ∗1 and an = α(xn), where n ≥ −1.
Assume α ∈ P ◦1 . We show that the sequence (an)n≥−1 is linearly recursive.

There exists f(x) ∈ P1, f(x) 6= 0, such that α(f(x)g(x)) = 0 for all g(x) ∈ P1.
Let f(x) = βrxr−1 + . . .+ β0x−1, where β0, β1, . . . , βr ∈ F . Since f(x) 6= 0, not all
β0, β1, . . . , βr are zero. Then for all n ≥ 0 we have

r∑
i=0

βian+i =

r∑
i=0

βiα(xn+i) =

r∑
i=0

βiα(xn+i+1) = α(f(x)xn+1) = 0.
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Hence, the sequence (an)n≥−1 is linearly recursive.
Let (an)n≥−1 be a linearly recursive sequence. Then there exist β0, β1, ..., βr ∈ F ,

not all zero, and a number k, such that
∑r
i=0 βian+i = 0 for all n ≥ k. Put

f(x) = βrxk+r + . . .+ β0xk. Then for all j ≥ −1 we get

α(f(x)xj) =

r∑
i=0

βiα(xk+i+j+1) =

r∑
i=0

βiak+i+j+1 = 0,

since k + j + 1 ≥ k. Consequently, f(x)P1 ⊆ kerα.

Since (P ◦1 ,∆
(−)
d◦ ) is a subcoalgebra of (W ◦1 ,∆W◦

1
) then the space V is a Lie

subcoalgebra of (W1)◦. �

By [18, Theorem 5] , if F has characteristic 0 or characteristic p 6= 2, then W ◦1
is the space of linearly recursive sequences. Hence, P ◦1 = W ◦1 by Theorem 2.

Therefore, the following statement holds.

Corollary 1 (see also [19]). De�ne the comultiplication

∆
(−)
d◦ (α) = (id⊗ d◦ − d◦ ⊗ id)∆◦(α).

on the vector space P ◦1 . If F is a �eld of characteristic 6= 2 then (P ◦1 ,∆
(−)
d◦ ) =

(W ◦1 ,∆W◦
1

).

Following [17], we de�ne elements yn, of W
∗
1 , n ≥ −1, by yn(xi) = δn,i. De�ne

Y = span(yn | n ≥ −1), and let ∆Y be the restriction of m∗ in P ∗1 on the space Y .
Then

∆Y (yn) =
∑

i+j=n−1
yi ⊗ yj .

By Lemma 2, Y is a good subspace of P ∗1 . Consequently, (Y,∆Y ) is a subcoalgebra
of (P ◦1 ,∆

◦).
Now following [18], de�ne ya,j ∈ P ∗1 , for 0 6= a ∈ F , j ≥ −1, by putting ya,j(xi) =

ai
(
i+ 1
j + 1

)
. De�ne Ya = span(ya,j | j ≥ −1), and let ∆Ya

be the restriction of m∗

in P ∗1 on the space Ya. For the sake of uniformity, we set Y0 = Y . Let us turn Ya
into a di�erential subcoalgebra of P ◦1 .

Lemma 4. The space Ya is a good subspace of P
∗
1 , and (Ya,∆Ya

, d◦) is a di�erential
coalgebra. Consequently, (Ya,∆Ya

, d◦) ⊆ (P1, d)◦. If F is an algebraically closed �eld
of characteristic zero then P ◦1 = ⊕a∈FYa
Proof. First let a = 0. We prove that d◦(yk) = (k + 2)yk+1 for k ≥ −1. Indeed, if
i > −1 then

d◦(yk)(xi) = yk(d((xi)) = (i+ 1)yk(xi−1) = (i+ 1)yk+1(xi) = (k + 2)yk+1(xi).

If i = −1 then d◦(yk)(x−1) = yk(d((1)) = 0. On the other hand yk+1(x−1) =
δk+1,−1 = 0. Hence, d◦(yk)(x−1) = (k + 2)yk+1(x−1).

It is clearly that d◦ is a coderivation of (Y,∆Y ). Therefore, (Y,∆Y , d
◦) is a good

subspace of (P1, d)∗. Consequently, (Y,∆Y , d
◦) ⊆ (P1, d)◦.

Let 0 6= a ∈ F . Recall that for binomial coe�cients we have(
r + s+ 2
k + 1

)
=

∑
i+j=k−1, i,j≥−1

(
r + 1
i+ 1

)(
s+ 1
j + 1

)
,

where r, s, k ≥ −1.
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The comultiplication ∆Ya
on the space Ya is given by

∆Ya
(ya,n) =

∑
i+j=n−1, i,j≥−1

aya,i ⊗ ya,j .

Indeed,

ρ(∆Ya
(ya,k))(xr ⊗ xs) =

∑
i+j=k−1, i,j≥−1

aya,i(xr)ya,j(xs) =

∑
i+j=k−1, i,j≥−1

ar+s+1

(
r + 1
i+ 1

)(
s+ 1
j + 1

)
= ar+s+1

(
r + s+ 2
k + 1

)
=

= ya,k(xr+s+1) = ya,k(xr · xs).

Therefore, Ya is a good subspace of P ∗1 . Consequently, (Ya,∆Ya
) is a subcoalgebra

of (P ◦1 ,∆
◦).

Let us show that for the coderivation d◦ we have d◦(ya,k) = a−1(k + 2)ya,k+1.
Indeed, if i > −1 then

d◦(ya,k)(xi) = ya,k(d(xi)) = (i+ 1)ya,k(xi−1) = ai−1(i+ 1)

(
i

k + 1

)
=

ai−1(i+ 1)
i!

(k + 1)!(i− k − 1)!
= a−1(k + 2)ai

(i+ 1)!

(k + 2)!(i+ 1− k − 2)!
=

= a−1(k + 2)ya,k+1(xi).

If i = −1 then d◦(ya,k)(x−1) = ya,k(d(1)) = 0. On the other hand, ya,k+1(x−1) =

a−1
(

0
k + 2

)
= 0. Therefore, d◦(ya,k)(x−1) = a−1(k + 2)ya,k+1(x−1).

Consequently, (Ya,∆Ya
, d◦) is a good subspace of (P1, d)∗, so (Ya,∆Ya

, d◦) ⊆
(P1, d)◦.

If F is an algebraically closed �eld of characteristic zero then Theorems 4 and 5
from [18] imply W ◦1 = ⊕a∈FYa. Hence, P ◦1 = ⊕a∈FYa. �

An algebra (A, ◦) with a multiplication operation ◦ is called a Novikov algebra
(see [22, 23]) if A satis�es the following identities:

x ◦ (y ◦ z)− (x ◦ y) ◦ z = y ◦ (x ◦ z)− (y ◦ x) ◦ z (left symmetry),

(x ◦ y) ◦ z = (x ◦ z) ◦ y (right commutativity ).

De�ne the operation of multiplication ◦ on P1 by the rule f ◦g = fd(g), f, g ∈ P1.
Then (P1, ◦) is a Novikov algebra (see [22]). Following [24], we will call it left-
symmetric Witt algebra of index 1 and denote by L1. Let xi = xi+1, i = −1, 0, 1, . . ..
Then the equality xi ◦ xj = (j + 1)xi+j holds in the algebra L1. It is known that
the algebra L1 is simple, if F is �eld of characteristic zero.

De�ne the comultiplication ∆N on P ◦1 by the rule

∆N (α) = (id⊗ d◦)∆◦(α).

As it was shown in [15], the coalgebra (P ◦1 ,∆N ) is a Novikov coalgebra. Obviously,
P ◦1 is a good subspace of L∗1. Therefore, (P ◦1 ,∆N ) ⊆ (L◦1,∆L◦

1
).

The following Theorem holds.
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Theorem 3. Let ∆N = (id ⊗ d◦)∆◦. Then (P ◦1 ,∆N ) ⊆ (L◦1,∆L◦
1
). Therefore, the

dual coalgebra (L◦1,∆L◦
1
) of L1 is a non-zero Novikov coalgebra. If F is a �eld of

characteristic zero then the coalgebra (L◦1,∆L◦
1
) does not contain non-zero proper

�nite-dimensional subcoalgebras.

Let f, g ∈ L1. It is easy to see that in the algebra L1 we have

[f, g] = f ◦ g − g ◦ f = fd(g)− d(f)g = [f, g]d.

Consequently, the algebra (L1, [ , ]) is isomorphic to the Witt algebra W1.

De�ne the new comultiplication ∆
(−)
L◦

1
= (1−τ)∆L◦

1
on the vector space L◦1. Then

for every f, g ∈ P1 and α ∈ L◦1 we have

〈α, [f, g]〉 = 〈α, f ◦ g − f ◦ g〉 = ρ(∆
(−)
L◦

1
(α))(f ⊗ g).

Therefore, (L◦1,∆
(−)
L◦

1
) is a good subspace of (L1, [ , ])∗, and we can assume that

(L◦1,∆
(−)
L◦

1
) is a good subspace of W ∗1 . Consequently, (L◦1,∆

(−)
L◦

1
) ⊆ (W ◦1 ,∆W◦

1
).

Theorem 3 implies (P ◦1 ,∆
(−)
d◦ ) ⊆ (L◦1,∆

(−)
L◦

1
).

The following statement holds.

Theorem 4. Let F be a �eld of characteristic 6= 2. Then (P ◦1 ,∆N ) = (L◦1,∆L◦
1
)

and (W ◦1 ,∆W◦
1

) = (L◦1,∆
(−)
L◦

1
), where ∆

(−)
L◦

1
= (1− τ)∆L◦

1
.

Proof. By Theorem 3, we have P ◦1 ⊆ L◦1. It was shown that L◦1 ⊆ W ◦1 . Let F
be a �eld of characteristic 6= 2. Then, by Theorem 2, P ◦1 = W ◦1 . Consequently,

P ◦1 = L◦1 = W ◦1 . Therefore, (W ◦1 ,∆W◦
1

) = (L◦1,∆
(−)
L◦

1
).

Let us prove that ∆L◦
1

= ∆N . Suppose f , g are arbitrary polynomials in P1, and
α ∈ L◦1. Then
〈α, fd(g)〉 = ρ(∆◦(α))(f ⊗ d(g)) = ρ((id⊗ d◦)∆◦(α))(f ⊗ g) = ρ(∆N (α))(f ⊗ g).

On the other hand,

〈α, fd(g)〉 = 〈α, f ◦ g〉 = ρ(∆L◦
1
(α))(f ⊗ g).

Hence, ∆N = ∆L◦
1
, so (L◦1,∆L◦

1
) = (P ◦1 ,∆N ).

�

3. Dual coalgebra of the Kantor construction of polynomial

algebra in one variable

Let G be the Grassmann algebra with identity. The algebra G = G0 + G1 is a
Z2-graded algebra. Let J = J0 + J1 be a Z2-graded algebra. Then G(J) = J0 ⊗
G0 +J1⊗G1 is a subalgebra of J ⊗G and it is called the Grassmann envelope of J .

An algebra J is called a Jordan superalgebra if its Grassmann envelope is a
Jordan algebra, i. e., G(J) satis�es the identities

xy = yx, (x2y)x = x2(xy).

Recall the Kantor constuction [25]. Let A be an associative commutative algebra
over a �eld F with a derivation D. Denote by A an isomorphic copy of the vector
space A with an isomorphism a 7→ a. On the direct sum of the vector spaces
J(A,D) = A+A de�ne a product (·) by

a · b = ab, a · b = ab, a · b = ab, a · b = aD(b)−D(a)b,
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where a, b ∈ A and ab is the product of elemets in A. Then J(A,D) is an Jordan
superalgebra. The superalgebra J(A,D) is said to be a superalgebra of vector type.

Let us give the dual analogue of the Kantor costruction for coalgebras. Suppose
(C,∆, d) is an associative commutative di�erential coalgebra with a coderivation d.
Let C be an isomorphic copy of the vector space C with an isomorphism c 7→ c.
De�ne the comultiplication ∆J on the direct sum of vector spaces Jc(C,∆J , d) =
C + C by

∆J(c) =
∑
(c)

c(1) ⊗ c(2) + c(1) ⊗ d(c(2))− d(c(1))⊗ c(2),

∆J(c) =
∑
(c)

c(1) ⊗ c(2) + c(1) ⊗ c(2),

where c ∈ C and ∆(c) =
∑

(c) c(1) ⊗ c(2). It is shown in [15] that the dual algebra

of the coalgebra Jc(C,∆J , d) is a Jordan superalgebra of vector type J(C∗, d∗),
where d∗ is the transpose map to d. Therefore, Jc(C,∆J , d) is a Jordan supercoal-
gebra.

Lemma 5. Let (P ◦1 ,∆
◦, d◦) be the dual coalgebra of (P1, d). Then Jc(P ◦1 ,∆

◦
J , d
◦) =

J(P1, d)◦.

Proof. Set J = J(P1, d), and let (J◦,∆J◦) be the dual supercoalgebra of J . It was
noted above that Jc = Jc(P ◦1 ,∆

◦
J , d
◦) is a Jordan supercoalgebra. It is clear that

Jc is a good subspace of J∗. Therefore, Jc ⊆ J◦.
Let us put 〈α, a〉 = α(a) for α ∈ J∗, a ∈ J , as above. Since Jc = P ◦1 +P ◦1 , where

P ◦1 is an isomorphic copy of the vector space P ◦1 with the isomorphism a 7→ a, we
can assume 〈α, a〉 = 〈α, a〉 for α ∈ P ◦1 and a ∈ P1.

The algebra J acts on J∗ as on a bimodule by the rule

〈α · a, b〉 = 〈α, ab〉, 〈a · α, b〉 = 〈α, ba〉,

where α ∈ J∗, a, b ∈ J .
Since J = P1⊕P1, then we can assume that J∗ = P ∗1⊕P1

∗
(e.g., P ∗1

∼= P1
⊥ ⊂ J∗).

Moreover, P ∗1 is a P1-subbimodule of J∗. Indeed, let α ∈ P ∗1 and f ∈ P1. Then

〈α · f, P1〉 = 〈α, fP1〉 ⊆ 〈α, P1〉 = 0.

Consequently, α · f ∈ P ∗1 . Similarly, f · α ∈ P ∗1 . Hence, P ∗1 is a P1-subbimodule of

J∗. In the same way, one may show that P1
∗ ∼= P⊥1 ⊂ J∗ is a P1-subbimodule of

J∗.
Denote by V andW the projections of J◦ on the spaces P ∗1 and P1

∗
, respectively.

Since J◦ is a P1-subbimodule of J∗ then V and W are also P1-subbimodules of J∗.
Let us show that V is a good subspace of P ∗1 . For α ∈ V there exist γ ∈ J◦

and β ∈ W such that γ = α + β. Let ∆J◦(γ) =
∑
γ γ(1) ⊗ γ(2). Then γ · P1 ⊆∑

γ〈γ(1), P1〉γ(2). Consequently, the space γ · P1 is �nite-dimensional. The space
α ·P1 is the projection of γ ·P1 to V , therefore, α ·P1 is �nite-dimensional. Similarly
the space P1 · α is �nite-dimensional. By Corollary 2.5 from [5] we get that V a
good subspace of P ∗1 .

Consequently, V ⊆ P ◦1 . Since P
◦
1 ⊆ Jc ⊆ J◦ then P ◦1 ⊆ V . Therefore, P ◦1 = V .

Then V ⊆ J◦ and W ⊆ J◦. Hence, the coalgebra J◦ is a Z2-graded space, where
V = (J◦)0, W = (J◦)1. Moreover, V = P ◦1 ⊆W.
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Assume w ∈ W . Then ∆J◦(w) =
∑
i vi ⊗ wi + wi ⊗ vi, where vi ∈ V , wi ∈ W ,

and for all a ∈ P1 we have

〈w, a〉 = 〈w, 1 · a〉 =

〈∑
i

〈wi, 1〉vi, a
〉

=

〈∑
i

〈wi, 1〉vi, a
〉
.

Since W ⊆ P1
∗
, we have w =

∑
i〈wi, 1〉vi. Consequently, W = V , and thus

Jc(P ◦1 ,∆
◦
J , d
◦) = J◦. �

It is known (see [21]) that a Jordan superalgebra is simple if and only if it is
simple as an algebra. Also, recall that the superalgebra J(A,D) is simple if and
only if the algebra A is a di�erentially simple algebra [26].

Therefore, the following Theorem is true.

Theorem 5. Let P1 = F [x] be the polynomial algebra in the variable x, and d = d
dx

is the derivation with respect to the variable x. Consider the Jordan superalgebra
J(P1, d) of vector type. Then J(P1, d)◦ = Jc(P ◦1 ,∆

◦
J , d
◦). Moreover, if F is a

�eld of characteristic 0 then J(P1, d)◦ does not contain non-zero �nite-dimensional
subcoalgebras.
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