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COMPLETELY REGULAR CODES

IN THE n-DIMENSIONAL RECTANGULAR GRID

S.V. AVGUSTINOVICH AND A.YU. VASIL'EVA

Abstract. It is proved that two sequences of the intersection array of an
arbitrary completely regular code in the n-dimensional rectangular grid
are monotonic. It is shown that the minimal distance of an arbitrary
completely regular code is at most 4 and the covering radius of an
irreducible completely regular code in the grid is at most 2n.
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1. Introduction

A vertex coloring of a graph is perfect if any two vertices of the same color �see�
the same number of vertices of any �xed color. If in addition the vertices are colored
by distance from some initial set of vertices then the coloring is distance regular
and this set is a completely regular code. These notions are closely related with
distance regular graphs. In fact, in a distance regular graph a distance coloring
with respect to an arbitrary vertex is perfect and parameters of the correspon-
ding distance regular coloring do not depend on the choice of the vertex. But
this property does not hold for the graph of the n-dimensional rectangular grid
in case n > 1. Completely regular codes in distance regular graphs are extensively
investigated.

In [9], it was conjectured that two sequences of the intersection array of a
completely regular code in a distance regular graph are monotonic. In [7], it was
shown that this conjecture is not true in general, but is true for most of the classical
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graphs. First, we prove (Theorem 1) that the conjecture is true for the n-dimensional
rectangular grid. Second, we obtain an upper bound 2n for the covering radius of an
arbitrary completely regular code in the n-dimensional rectangular grid and show
that this bound is attainable (Theorem 3). Third, we prove that the upper bound
for the minimal code distance of such a code is equal to 4 (Theorem 4). Earlier the
results of this paper were presented in part in [3].

The complete classi�cation of perfect colorings of the 2-dimensional rectangular
grid into 2, 3 and up to 9 colors can be found in [4], [11] and [8] respectively. All
feasible parameters of distance regular colorings of the 2-dimensional rectangular
grid were described in [2]. Completely regular codes of in�nite hexagonal and
triangular grids were investigated in [1] and [12] respectively. Parameters of perfect
colorings with two colors of in�nite circulant graphs were studied in [5, 6, 10].

Let us pass to precise de�nitions. An r-coloring of the vertices of a graph is a
function ϕ over the graph vertices with values in the set {0, 1, . . . , r− 1} and it can
be presented as a partition Φ = {Φ0,Φ1, . . . ,Φr−1} of the graph vertices, where

Φi = {x : ϕ(x) = i}, i = 0, 1, . . . , r − 1.

An r-coloring is perfect (in other terms, the corresponding partition is equitable)
with the parameter matrix P = (pij)r×r if any vertex of the color i has exactly pij
adjacent vertices of color j for all i, j ∈ {0, 1, ..., r − 1}.

A vertex set D is the completely regular code if the distance coloring

Φ = (Φ0 = D,Φ1, . . . ,Φr−1), Φi = {x : ρ(D,x) = i}, i = 0, . . . , r − 1,

with respect to D is perfect (here ρ( , ) denotes the graph distance), then r − 1 is
the covering radius of D and min{ρ(x,y) : x,y ∈ D} is the code distance of D.
The code Φr−1 is also completely regular. A vertex of the color i, 0 ≤ i ≤ r − 1,
�sees� vertices of colors i− 1, i and i+ 1 only and then the parameter matrix P of
the partition Φ is three-diagonal. We denote its nonzero elements as follows:

a0 b0
c1 a1 b1

c2 a2 b2
. . .

. . .
. . .

cr−2 ar−2 br−2
cr−1 ar−1


,

ai = pi,i (i = 0, 1, . . . , r − 1) � the inner degree of the i-th color;
bi = pi,i+1 (i = 0, 1, . . . , r − 2) � the upper degree of the i-th color;
ci = pi,i−1 (i = 1, 2, . . . , r − 1) � the lower degree of the i-th color.
In these terms, any vertex of color i �sees� ci vertices of color i− 1, ai vertices of
color i and bi vertices of color i + 1. We will say that the color i has the degree
triple (ci, ai, bi) and will write the parameter matrix as follows:

[a0, b0|c1, a1, b1| . . . |ci, ai, bi| . . . |cr−1, ar−1].

Only distance colorings with respect to a completely regular code will be studied
further, so the parameter matrices will be three-diagonal and all their nonzero
elements are contained in degree triples.

The ordered pair (b0, . . . , br−2; c1, . . . , cr−1) of sequences of upper and lower
degrees is called as the intersection array of the completely regular code D.
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The n-dimensional rectangular grid is the graph Gn with the vertex set

Zn = {x = (x1, . . . , xn) : xi ∈ Z, i = 1, . . . , n}
and with the edge set

{(x,y) :

n∑
i=1

|xi − yi| = 1}.

Then the graph distance between vertices x and y can be written as ρ(x,y) =∑n
i=1 |xi − yi|. Let ei ∈ Zn, i = 1, . . . , n, be the (0, 1)-vector with the unique one

at the i-th position.
Further in the paper D denotes a completely regular code in the n-dimensional

rectangular grid, ϕ = ϕD denotes the distance coloring

ϕ(x) = ρ(D,x), x ∈ Zn,
with respect to D and

Φ = (Φ0 = D,Φ1, . . . ,Φr−1), Φi = {x ∈ Zn : ϕ(x) = i}, i = 0, . . . , r − 1,

denotes the corresponding partition of Zn by colors. For an arbitrary vertex x ∈ Zn
let us introduce the following sets of unit vectors:

Aϕ(x) = {y − x : ϕ(y) = ϕ(x), ρ(x,y) = 1} ,
Bϕ(x) = {y − x : ϕ(y) = ϕ(x) + 1, ρ(x,y) = 1} ,
Cϕ(x) = {y − x : ϕ(y) = ϕ(x)− 1, ρ(x,y) = 1} .

We will omit the subscript ϕ if the coloring ϕ is clear from the context. We will call
vectors from the sets Aϕ(x), Bϕ(x), Cϕ(x) as inner, upper and lower directions of
the vertex x with respect to ϕ. Obviously,

|Aϕ(x)| = ai, |Bϕ(x)| = bi, |Cϕ(x)| = ci,

Aϕ(x) ∪Bϕ(x) ∪ Cϕ(x) = {±ei : i = 1, . . . , n}.
For any set L of directions, we denote −L = {−l : l ∈ L}.

We say that two colorings ϕ and ψ are equivalent if ψ can be obtained from
ϕ by some graph automorphism and some color renumbering. In particular, for
a distance regular coloring ϕ, the coloring ψ with the inverse order of colors is
equivalent and

(1) Bϕ(x) = Cψ(x), Cϕ(x) = Bψ(x), Aϕ(x) = Aψ(x), x ∈ Zn.
We say that two codes D1 and D2 are equivalent if D2 can be obtained from D1

by some graph automorphism.

2. Reducible colorings

For an arbitrary r, there exist only three nonequivalent completely regular codes
in the 1-dimensional grid G1 with the covering radius r − 1:

{2(r − 1)t : t ∈ Z},
{(2r − 1)t : t ∈ Z},
{2rt, 2rt− 1 : t ∈ Z}.

The corresponding distance colorings are periodical, here theirs periods are presen-
ted as sequences of colors together with the parameter matrices:

0, 1, 2, . . . , r − 2, r − 1, r − 2, . . . , 1; [02|101|101| . . . |101|20],
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0, 0, 1, 2, . . . , r − 2, r − 1, r − 2, . . . , 1; [11|101|101| . . . |101|20],

0, 0, 1, 2, . . . , r − 2, r − 1, r − 1, r − 2, . . . , 1; [11|101|101| . . . |101|11].

A code D in the n-dimensional rectangular grid Gn is called reducible if there
exists a completely regular code D′ of G1 and δ1, . . . , δn ∈ {0, 1,−1} such that

(2) D = {x = (x1, x2, . . . , xn) : (δ1x1 + δ2x2 + . . .+ δnxn) ∈ D′} .

The parameter matrix is referred to as reducible if it admits a reducible coloring ϕD.
Obviously, each color of the distance regular coloring with respect to the reducible
completely regular code D is an union of sets

{x = (x1, x2, . . . , xn) : (δ1x1 + δ2x2 + . . .+ δnxn) = const} .

So, the corresponding coloring ϕD of the n-dimensional grid is also called reducible
and it means there exists an r-coloring ϕ′ of G1 and δ1, . . . , δn ∈ {0, 1,−1} such
that for any (x1, x2, . . . , xn) ∈ Zn,

(3) ϕ(x1, x2, . . . , xn) = ϕ1 (δ1x1 + δ2x2 + . . .+ δnxn) .

If t denotes the number of nonzero coe�cients δk, 1 ≤ k ≤ n, then an arbitrary
vertex of the color i, 1 ≤ i ≤ r− 2, �sees� precisely t vertices of the color i− 1 and
precisely t vertices of the color i+ 1. As a result, we obtain

Lemma 1. Let P be an arbitrary reducible matrix of a distance regular coloring of
Gn. Then there exists t ∈ {0, 1, . . . , n} such that

P = [2n− ε1q, ε1q | q, 2n− 2q, q | . . . |q, n− 2q, q | ε2q, 2n− ε2q] ,

where ε1, ε2 ∈ {1, 2} (the colorings with (ε1, ε2) = (1, 2) and (2, 1) are equivalent).

3. Upper and lower degrees

Throughout this section r ≥ 3 and a �xed distance regular r-coloring of Gn is
denoted by ϕ . We are going to prove the monotonicity of the upper degrees (and
the lower degrees) of the coloring ϕ.

Lemma 2. Let x and y be two adjacent vertices and ϕ(y) = ϕ(x) + 1. Then

C(x) ⊆ C(y), B(x) ⊇ B(y).

Proof. If ϕ(x) = 0 then ∅ = C(x) ⊆ C(y).
Now i = ϕ(x) ≥ 1 and then C(x) 6= ∅. Let us take d ∈ C(x). If d = x− y then

obviously d ∈ C(y). Then consider the case d 6= x−y. The color of the vertex x+d
equals i− 1. The color of the vertex y + d is equal to i, because ϕ(y) = i+ 1 and
the vertex x + d = (y + d) + (x− y) has the color i− 1. Then d ∈ C(y).

Finally, C(x) ⊆ C(y). Further, (1) gives B(x) ⊇ B(y). �

Lemma 2 immediately gives us the monotonicity of the lower degrees and the
upper degrees of an arbitrary distance regular r-coloring of Gn:

Theorem 1. Let D be an arbitrary completely regular code in the n-dimensional
rectangular grid with the intersection array (b0, . . . , br−2; c1, . . . , cr−1). Then

c1 ≤ . . . ≤ cr−2 ≤ cr−1,

b0 ≥ b1 ≥ . . . ≥ br−2.
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It follows from Theorem 1 that there exist two colors I = I(ϕ) and J = J(ϕ)
such that

I(ϕ) = max{i : ci+1 ≥ bi+1},(4)

J(ϕ) = min{i : ci−1 ≤ bi−1}.(5)

Thus, all colors of a distance regular coloring ϕ are partitioned into three segments:
{0, . . . , I(ϕ)} 6= ∅, here ci < bi for any i, 0 < i ≤ I(ϕ);
{I(ϕ) + 1, . . . , J(ϕ)− 1}, here ci = bi for any i, I(ϕ) ≤ i ≤ J(ϕ);
{J(ϕ), . . . , r − 1} 6= ∅, here ci > bi for any i, J(ϕ) ≤ i < r − 1.

Lower degrees in the �rst segment and upper degrees in the last segment are
considered in the following

Lemma 3. a) If i ≤ I(ϕ) then ci 6= ci+1. b) If i ≥ J(ϕ) then bi 6= bi−1.

Proof. a) Let us suppose i ≤ I(ϕ) and ci = ci+1. We take an arbitrary vertex x
of the color i and an arbitrary direction d ∈ B(x). It means that −d ∈ C(x + d).
By assumption, ci = ci+1, then it follows from Lemma 2 that −d ∈ C(x). Hence,
−B(x) ⊆ C(x) and bi ≤ ci in contrary to the choice of i. Therefore a) is true. Now
(1) gives b). �

4. Colors with the same degree triple

Lemma 3 establishes that only the degree triple of form (t, 2n − 2t, t) can be
repeated in the intersection matrix of a completely regular code. Everywhere in
this section ϕ denotes an arbitrary distance regular coloring, moreover, we suppose
r ≥ 4 and J(ϕ) > I(ϕ) + 2; i.e., the di�erent colors I(ϕ) + 1 and J(ϕ)− 1 have the
same degree triple.

Lemma 4. Let the colors i and i + 1 have the same degree triple. Then for any
two adjacent vertices x and y of colors i and i+ 1, respectively, we have

(6) C(x) = C(y) = −B(x) = −B(y),

(7) A(x) = A(y) = −A(x) = −A(y).

Proof. Equalities C(x) = C(y) and B(x) = B(y) follow from Lemma 2. Further,
we put the direction d ∈ B(x). It means that −d ∈ C(x + d). Then −d ∈ C(x)
by Lemma 2 provided ci = ci+1. Hence −B(x) ⊆ C(x). But we have bi = ci, so
−B(x) = C(x). Finally, (7) follows from (6). �

We emphasize that according to Lemma 4, two opposite directions, d and −d,
belong or do not belong to the set A(x) of inner directions of a vertex x of a color
i, i = I(ϕ) + 1, . . . J(ϕ)− 1, simultaneously.

For any set V ⊆ Zn of vertices G(V ) denotes the subgraph of the n-dimensional
rectangular grid generated by V . Let V i+1

i be the vertex set of an arbitrary connected
component of the graph G(Φi ∪ Φi+1).

Lemma 5. Let the colors i and i + 1 have the same degree triples. Then for any
two vertices x,y ∈ V i+1

i the equalities (6) and (7) hold.

Proof. It is su�cient to prove (6) and (7) for two adjacent vertices of the same color
i or i + 1, without loss of generality of the color i. Let x,y ∈ Φi be two adjacent
vertices. Then x− y ∈ A(y) and by Lemma 4 also y − x ∈ A(y), whence we have

(8) 2y − x = y + (y − x) ∈ Φi.
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Suppose (7) is not true for the vertices x and y. Then there exists d ∈ A(x)\A(y).
In this case d ∈ B(y) ∪ C(y). First let d ∈ B(y). Then y + d ∈ Φi+1 and x− y =
(x + d)− (y + d) ∈ C(y + d). By Lemma 4, y− x ∈ B(y + d) from which we have

2y − x + d = (y + d) + (y − x) ∈ Φi+2

that contradicts (8). It remains to consider the case d ∈ C(y). Here −d ∈ B(y) and
analogously we obtain the contradiction. Thus, (7) holds for the vertices x and y.

The equation (6) follows from (7) and Lemma 4. �

Now we will recognize that an arbitrary connected component V i+1
i of the graph

G(Φi ∪ Φi+1), I(ϕ) < i < J(ϕ), consists of two hyperplanes. Let γ ∈ Z and
δ = (δ1, δ2, . . . , δn) ∈ {0, 1,−1}n. Let us denote

(9) M(δ, γ) = {x = (x1, x2, . . . , xn) ∈ Zn : δ1x1 + δ2x2 + . . .+ δnxn = γ} .

Lemma 6. Let the colors i and i+ 1 have the same degree triple. Then there exist
integer γ and (0, 1,−1)-valued vector δ = (δ1, . . . , δn) such that

Φi+ε ∩ V i+1
i = M(δ, γ + ε), ε ∈ {0, 1}.

Proof. Let 0 ≤ t ≤ n, the repeated degree triple be (t, 2n − 2t, t) and v =
(v1, v2, . . . , vn) ∈ V i+1

i be the vertex of color i. Lemma 5 follows that

B(v) = {e1, . . . , es,−es+1, . . . ,−et},

C(v) = {−e1, . . . ,−es, es+1, . . . , et},

A(v) = {±et+1, . . . ,±en},
up to the numbering of unit vectors. Then let us put:

δ1 = . . . = δs = 1,

δs+1 = . . . = δt = −1,

δt+1 = . . . = δn = 0,

γ = v1 + . . .+ vs − vs+1 − . . .− vt.
Under this choice of constants, v ∈ M(δ, γ) obviously. For an arbitrary vertex
x ∈ V i+1

i , one can easily check by induction on distance between x and v that
x ∈M(δ, γ) in case x ∈ Φi and x ∈M(δ, γ + 1) in case x ∈ Φi+1. �

Theorem 2. Let ϕ : Zn −→ {0, 1, . . . , r − 1} be an arbitrary distance regular
coloring, 2 ≤ i < j ≤ r−2, the colors i and j have the same degree triple. Then the
degree triples coincide for all colors from 1 to r − 2 and the coloring is reducible.

Proof. We will show that any color consists of hyperplanes of form (9). All colors
from i to j, in particular, the colors i and i + 1 have the same degree triple. By
Lemma 6, there exists γ ∈ Z and δ ∈ {0, 1,−1}n such that M(δ, γ+ ε) ⊆ Φi+ε, ε ∈
{0, 1}. Then for any k ∈ {0, . . . , r − 1} by induction on |k − i| one can easily check
thatM(δ, γ+k− i) ⊆ Φk because the coloring is distance regular. In particular, for
the initial and the last colors it holdsM(δ, γ−i) ⊆ Φ0 andM(δ, γ+r−i−1) ⊆ Φr−1.
By distance regularity of the coloring, M(δ, γ− i− 1) ⊆ Φ1 or M(δ, γ− i− 1) ⊆ Φ0

and M(δ, γ + r − i) ⊆ Φr−2 or M(δ, γ + r − i) ⊆ Φr−1.
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Hence, by distance regularity of the coloring, for each γ′ ∈ Z all vertices of
M(δ, γ′) have the same color which depends on γ′ = δ1x1 + δ2x2 + . . .+ δnxn only.
It means that there exists a distance regular coloring ϕ′ of the graph G1 such that

ϕ(x1, x2, . . . , xn) = ϕ′ (δ1x1 + δ2x2 + . . .+ δnxn) ,

i.e., the coloring ϕ of Gn is distance regular. �

5. Minimal distance and covering radius

The Hamming graph HN consists of the following vertex set and edge set:

FN = {α = (α1, . . . , αN ) : αk ∈ {0, 1}, k = 1, . . . , N},

{(α, β) : α, β ∈ FN ,

N∑
k=1

|αk − βk| = 1}.

The Hamming graph H2n is covered by the graph Gn of n-dimensional rectangular
grid and the covering mapping is g : Zn → F2n, such that for every
x = (x1, . . . , xn) ∈ Zn

g(x1, . . . , xn) = (g0(x1 mod 4), . . . , g0(xn mod 4)),

g0(0) = 00, g0(1) = 01, g0(2) = 11, g0(3) = 10.

Actually, this mapping preserves the adjacency: if two vertices x,y of the n-dimen-
sional rectangular grid di�er in exactly one position, then clearly the vertices
g(x), g(y) of the 2n-dimensional Hamming graph H2n also di�er in exactly one
position.

Let ψ be a coloring of the Hamming graph H2n. De�ne the coloring ϕψ of the
n-dimensional rectangular grid Gn as follows:

(10) ϕψ(x1, . . . , xn) = ψ (g(x1, . . . , xn)) , (x1, . . . xn) ∈ Zn.
Therefore the colorings ψ and ϕψ are perfect (respectively, distance regular) simul-
taneously and have the same parameter matrix. We take as ψ the distance coloring
of H2n with respect to the all-zero vertex:

(11) ψ(α) = wt(α), α ∈ F2n,

where wt(α) =
∑2n
i=1 αi is the Hamming weight of the vertex α. In this case ψ

distance regular (2n+ 1)-coloring with the parameter matrix

[0, 2n|1, 0, 2n− 1| . . . |i, 0, 2n− i| . . . |2n− 1, 0, 1|2n, 0].

Then ϕψ is also the distance regular (2n + 1)-coloring with the same parameter
matrix, moreover, it is not reducible because its parameter matrix is not reducible.

Finally, we can state the main theorem.

Theorem 3. For an arbitrary irreducible distance regular r-coloring of n-dimen-
sional rectangular grid, it holds r ≤ 2n+1. An irreducible distance regular (2n+1)-
coloring exists.

Proof. Let ϕ be an irreducible distance regular coloring of the n-dimensional rectan-
gular grid. By Theorem 2, every two colors have di�erent degree triples. This means
that J(ϕ) − I(ϕ) ≤ 2. By de�nition (4) of I(ϕ), we have cI(ϕ) < bI(ϕ), and also
we know that cI(ϕ) + bI(ϕ) ≤ 2n. It follows from Lemma 3 that {c1, . . . , cI(ϕ)} are
pairwise di�erent. Then I(ϕ) + 1 ≤ n. Analogously, we obtain that J(ϕ) ≥ r − n.
Finally, r = (I(ϕ) + 1) + (J(ϕ)− I(ϕ)− 1) + (r − J(ϕ)) ≤ n+ 1 + n = 2n+ 1.
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The coloring ϕφ de�ned by (10), (11) gives us the example of the irreducible
(2n+ 1)-coloring. �

Let us rewrite Theorem 3 in terms of completely regular codes:

Corollary 1. The covering radius of an arbitrary completely regular code in the
n-dimensional rectangular grid is at most 2n.

We also can obtain the upper bound for the minimal distance of the completely
regular code in n-dimensional rectangular grid.

Theorem 4. The minimal distance of an arbitrary completely regular code in n-
dimensional rectangular grid is at most 4.

Proof. Let D be an arbitrary completely regular code with minimal distance d =
d(D) ≥ 5 in the graph Gn, and x ∈ D. Let us consider the corresponding distance
regular r-coloring Φ = (Φ0 = D, . . . ,Φr−1). Here r − 1 is equal to the covering
radius of the code D, and r − 1 ≥ 2 as far as d ≥ 5. Then any vertex of the sphere
S2(x) (of radius 2 centered in the vertex x) is of the color 2 and has ajacent vertices
of color 1 only in the sphere S1(x) (of radius 1 centered in the vertex x).

We consider the vertices x+ 2e1 and x+e1 +e2 in the sphere S2(x). Theirs sets
of lower directions are C(x + 2e1) = {e1} and C(x + e1 + e2) = {e1, e2} and have
di�erent cardinalities. This lead us to the contradiction. �
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