СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports

http://semr.math.nsc.ru
Том 19, №2, cmp. 902-911 (2022)
УДК 515.56
DOI 10.33048/semi.2022.19.076
MSC 06B20, 08B05, 08C15

THE QUASIVARIETY $\operatorname{SP}\left(L_{6}\right)$. I. AN EQUATIONAL BASIS

A. O. BASHEYEVA, M. V. SCHWIDEFSKY, AND K. D. SULTANKULOV

Abstract. We prove that the quasivariety $\mathbf{S P}\left(L_{6}\right)$ is a variety and find an equational basis for this variety.
Keywords: lattice, quasivariety, variety, poset.

1. Introduction

In the present paper, we consider the finite lattice L_{6}, see Figure 1, which is isomorphic to the suborder lattice of a three-element chain. Suborder lattices were in the focus in a number of articles as they provide a convenient tool for proving certain embeddability results.

By a theorem by D. Bredikhin and B. Schein [1], suborder lattices are lattice universal; that is, each lattice is embeddable into a suitable suborder lattice. By a theorem of B. Sivák [15], a lattice L is embeddable into the suborder lattice of a finite partial order if and only if L is finite and lower bounded in the sense of R. McKenzie [8]. Suborder lattices were used for embedding lattices into the subsemigroup lattices in V.B. Repnitskiǐ [10, 11] as well as in [14].

Suborder lattices were also studied in papers [12, 13]. A general construction to embed an arbitrary lattice into a suitable suborder lattice was suggested in [12]. Based on this construction, it was shown in [13] that for arbitrary $n<\omega$, the class SO_{n} of lattices embeddable into suborder lattices of posets of length at most n forms a finitely based variety. An equational basis for this variety was found in [13]. There are still a number of unsolved problems which concern suborder lattices. In

[^0]particular, Question 2 in [13] asks if the quasivariety generated by a finite suborder lattice is a variety.

In this paper, we give a positive answer to this question in a particular case. More specifically, we prove that the quasivariety $\mathbf{Q}\left(L_{6}\right)$ generated by the lattice L_{6} is a finitely based variety and find a finite basis for this variety. The method we use was developed in [2]. In a subsequent article, the main result of this paper, Theorem 12 , will be applied for proving a duality result for the quasivariety $\mathbf{Q}\left(L_{6}\right)$.

2. Definitions and auxiliary results

We assume all classes to be abstract; that is, closed under taking isomorphic copies of structures.
2.1. (Quasi)varieties. A quasi-identity is a universal Horn sentence of the form

$$
\forall \bar{x} A_{0}(\bar{x}) \& \ldots \& A_{n}(\bar{x}) \longrightarrow A(\bar{x}),
$$

where $n<\omega$ and $A_{0}(\bar{x}), \ldots, A_{n}(\bar{x}), A(\bar{x})$ are atomic formulas of a fixed type. An identity is a sentence of the form

$$
\forall \bar{x} A(\bar{x}),
$$

where $A(\bar{x})$ is an atomic formula of a fixed type. A quasivariety is the class $\operatorname{Mod}(\Sigma)$ of models for a set Σ of quasi-identities. A variety is the class $\operatorname{Mod}(\Sigma)$ of models for a set Σ of identities. In this case, Σ is called a quasi-equational basis [an equational basis, respectively] of \mathbf{K}. It is clear that each variety is a quasi-variety.

For a type σ, let $\mathbf{K}(\sigma)$ denote the class of all structures of type σ. For an arbitrary class $\mathbf{K} \subseteq \mathbf{K}(\sigma)$ of structures, let $\mathbf{S}(\mathbf{K})$ denote the class of structures from $\mathbf{K}(\sigma)$ embeddable into structures from the class \mathbf{K}, and let $\mathbf{P}(\mathbf{K})$ denote the class of structures from $\mathbf{K}(\sigma)$ isomorphic to Cartesian products of structures from K. Whenever K contains only one structure \mathcal{A} (up to isomorphism), we write $\mathbf{O}(\mathcal{A})$ instead of $\mathbf{O}(\{\mathcal{A}\})$ for a class operator \mathbf{O}. Let $\mathbf{Q}(\mathbf{K})$ denote the smallest quasivariety containing \mathbf{K}. It is well known [7] that for a finite structure \mathcal{A}, the class $\mathbf{S P}(\mathcal{A})$ is a quasivariety. Thus, $\mathbf{Q}(\mathcal{A})=\mathbf{S P}(\mathcal{A})$ for each finite structure \mathcal{A}.

For all the notions concerning (quasi) varieties of structures which are not defined here, we refer to A. I. Maltsev [7], V. A. Gorbunov [4], and J. Hyndman and J. B. Nation [6].
2.2. General lattices. Most of the following definitions correspond to R. Freese, J. Ježek, and J. B. Nation [3].

Let L be a lattice. For arbitrary two sets $A, B \subseteq L$, we say that A refines B and write $A \ll B$ if for each $a \in A$, there is $b \in B$ such that $a \leq b$. If $x \in L$, then A is a join cover of x if $\bigvee A$ exists and $x \leq \bigvee A$; we also call the inequality $x \leq \bigvee A$ a join cover in this case. A join cover $x \leq \bigvee A$ is nontrivial if $x \not \leq a$ for all $a \in A ; x \leq \bigvee A$ is finite if the set A is finite. A join cover $x \leq \bigvee A$ is irredundant if $x \not \leq \bigvee B$ for all proper subsets $B \subset A$. A join cover $x \leq \bigvee A$ is minimal if $A \subseteq B$ for each join cover $x \leq \bigvee B$ such that $B \ll A$. The lattice L has the complete minimal join cover refinement property $(\mathrm{CR})_{X}$ for a set $X \subseteq L$ if for each nontrivial join cover A of an element $x \in X$, there is a minimal nontrivial join cover B of x such that $B \ll A$.

A non-zero element a of a lattice L is said to be join-irreducible if $a=b \vee c$ implies that $a \in\{b, c\}$ for all $b, c \in L ; a$ is said to be completely join-irreducible if $a=\bigvee B$ implies that $a \in B$ for all nonempty sets $B \subseteq L$. Let $\mathrm{J}(L)$ denote the set
of all join-irreducible elements in L and let $\operatorname{CJ}(L)$ denote the set of all completely join-irreducible elements in L.
Definition 1. [2] For a set $J \subseteq J(L)$, we say that L is a J-lattice if L possesses the following properties:
(1) for each element $a \in L$, there is a subset $J_{a} \subseteq J$ with $a=\bigvee J_{a}$;
(2) for each element $a \in J$ and each nontrivial join cover $a \leq a_{0} \vee \ldots \vee a_{n}$ with $n<\omega$ and $a_{0}, \ldots, a_{n} \in L$, there is a finite set $F \subseteq J$ such that $a \leq \bigvee F$ is a minimal join cover and $F \ll\left\{a_{0}, \ldots, a_{n}\right\}$.
We say that L is a $C J$-lattice if L possesses the following properties:
(1) for each element $a \in L$, there is a subset $J_{a} \subseteq \mathrm{CJ}(L)$ with $a=\bigvee J_{a}$;
(2) L has the property $(\mathrm{CR})_{\mathrm{CJ}(L)}$.

In what follows, we consider the following identity of n-distributivity, where $1<$ $n<\omega$, which we denote by $\left(\mathrm{D}_{n}\right)$:

$$
x \wedge\left(y_{0} \vee y_{1} \vee \ldots \vee y_{n}\right)=\bigvee_{i \leqslant n}\left[x \wedge \bigvee_{j \neq i} y_{j}\right]
$$

This identity was introduced and considered by A.P. Huhn [5]. It is clear that (D_{1}) is just the identity of distributivity.

The following lemma is folklore and straightforward to prove, see for example J. B. Nation [9].

Lemma 1. Let $n>0$, let L be a lattice, let a set $J \subseteq J(L)$ be such that for each element $a \in L$, there is a subset $J_{a} \subseteq J$ with $a=\bigvee J_{a}$. The following conditions are equivalent.
(1) $\left(\mathrm{D}_{n}\right)$ holds in L.
(2) If $a \leq b_{0} \vee b_{1} \vee \ldots \vee b_{n}$ for some $a \in J$ and some $b_{0}, b_{1}, \ldots, b_{n} \in L$, then there is $i \leqslant n$ such that $a \leq \bigvee_{j \neq i} b_{j}$.
Corollary 2. Let $n>1$ and let L be a J-lattice for some set $J \subseteq \mathrm{~J}(L)$. The following conditions are equivalent.
(1) $\left(\mathrm{D}_{n}\right)$ holds in L.
(2) If $a \leq b_{0} \vee \ldots \vee b_{m}$ is a minimal nontrivial join cover for some $a, b_{0}, \ldots, b_{m} \in$ J then $0<m<n$.

Proposition 3. [2] Let L be a complete dually algebraic lattice. Then the following statements hold.
(1) If L is n-distributive then L is a $\mathrm{J}(L)$-lattice.
(2) If L is in addition algebraic then L is a CJ-lattice.

Following [2], we denote the next identity by (C):

$$
\begin{aligned}
x \wedge\left(y_{0} \vee y_{1}\right) \wedge\left(z_{0} \vee z_{1}\right)= & \bigvee_{i<2}\left[x \wedge y_{i} \wedge\left(z_{0} \vee z_{1}\right)\right] \vee \bigvee_{i<2}\left[x \wedge z_{i} \wedge\left(y_{0} \vee y_{1}\right)\right] \vee \\
& \vee \bigvee_{i<2}\left[x \wedge\left(\left(y_{0} \wedge z_{i}\right) \vee\left(y_{1} \wedge z_{1-i}\right)\right)\right]
\end{aligned}
$$

The next four statements were established in [2]. Since [2] does not contain complete proofs, we present here sketches of proofs of Lemma 4 and Lemma 6 for the sake of completeness. We emphasize that these proofs are due to the authors of [2].

Lemma 4. [2] Let L be a lattice, let a set $J \subseteq J(L)$ be such that for each element $a \in L$, there is a subset $J_{a} \subseteq J$ with $a=\bigvee J_{a}$. The following conditions are equivalent.
(1) (C) holds in L.
(2) If $a \leq a_{0} \vee a_{1}$ and $a \leq b_{0} \vee b_{1}$ are nontrivial join covers for some $a \in J$ and some $a_{0}, a_{1}, b_{0}, b_{1} \in L$, then there are $c_{0}, c_{1} \in L$ such that $a \leq c_{0} \vee c_{1}$, $\left\{c_{0}, c_{1}\right\} \ll\left\{a_{0}, a_{1}\right\}$, and $\left\{c_{0}, c_{1}\right\} \ll\left\{b_{0}, b_{1}\right\}$.
Proof. To prove that (1) implies (2), we assume that the assumptions of (2) hold. Since (C) holds in L, we have

$$
\begin{aligned}
a=a \wedge\left(a_{0} \vee a_{1}\right) \wedge\left(b_{0} \vee b_{1}\right)= & \bigvee_{i<2}\left[a \wedge a_{i} \wedge\left(b_{0} \vee b_{1}\right)\right] \vee \bigvee_{i<2}\left[a \wedge b_{i} \wedge\left(a_{0} \vee a_{1}\right)\right] \vee \\
& \vee \bigvee_{i<2}\left[a \wedge\left(\left(a_{0} \wedge b_{i}\right) \vee\left(a_{1} \wedge b_{1-i}\right)\right)\right] .
\end{aligned}
$$

As a is a join-irreducible element, it equals one of the joinands on the right-hand side of the equality above. This implies that the conclusion of (2) also holds.

To prove that (2) implies (1), we note that the inequality

$$
\begin{aligned}
\bigvee_{i<2}\left[x \wedge y_{i} \wedge\left(z_{0} \vee z_{1}\right)\right] & \vee \bigvee_{i<2}\left[x \wedge z_{i} \wedge\left(y_{0} \vee y_{1}\right)\right] \vee \\
& \vee \bigvee_{i<2}\left[x \wedge\left(\left(y_{0} \wedge z_{i}\right) \vee\left(y_{1} \wedge z_{1-i}\right)\right)\right] \leq \\
& \leq x \wedge\left(y_{0} \vee y_{1}\right) \wedge\left(z_{0} \vee z_{1}\right)
\end{aligned}
$$

holds in each lattice. Therefore, in order to prove that (C) holds in L, we have to establish that the reverse inequality holds in L. To this end, choose arbitrary elements $u, a_{0}, a_{1}, b_{0}, b_{1} \in L$. We put
$w=\bigvee_{i<2}\left[u \wedge a_{i} \wedge\left(b_{0} \vee b_{1}\right)\right] \vee \bigvee_{i<2}\left[u \wedge b_{i} \wedge\left(a_{0} \vee a_{1}\right)\right] \vee \bigvee_{i<2}\left[u \wedge\left(\left(a_{0} \wedge b_{i}\right) \vee\left(a_{1} \wedge b_{1-i}\right)\right)\right]$.
We have to show that

$$
u \wedge\left(a_{0} \vee a_{1}\right) \wedge\left(b_{0} \vee b_{1}\right) \leq w
$$

According to our assumption about L, it suffices to show that each element $a \in J$ which is below $u \wedge\left(a_{0} \vee a_{1}\right) \wedge\left(b_{0} \vee b_{1}\right)$ is also below w. But this follows from (2).

Corollary 5. [2] Let L be a 2-distributive J-lattice for some set $J \subseteq J(L)$. The following conditions are equivalent.
(1) (C) holds in L.
(2) If $a \leq a_{0} \vee a_{1}$ and $a \leq b_{0} \vee b_{1}$ are minimal join covers for some elements $a, a_{0}, a_{1}, b_{0}, b_{1} \in J$, then $\left\{a_{0}, a_{1}\right\}=\left\{b_{0}, b_{1}\right\}$.
As in [2], we denote the following identity by $\left(\mathrm{N}_{5}^{1}\right)$:
$x \wedge\left[\left(y_{0} \wedge\left(z_{0} \vee z_{1}\right)\right) \vee y_{1}\right]=\left[x \wedge y_{0} \wedge\left(z_{0} \vee z_{1}\right)\right] \vee\left[x \wedge y_{1}\right] \vee \bigvee_{i<2}\left[x \wedge\left(\left(y_{0} \wedge z_{i}\right) \vee y_{1}\right)\right]$.
Lemma 6. [2] Let L be a lattice, let a set $J \subseteq J(L)$ be such that for each element $a \in L$, there is a subset $J_{a} \subseteq J$ with $a=\bigvee J_{a}$. The following conditions are equivalent.
(1) $\left(\mathrm{N}_{5}^{1}\right)$ holds in L.
(2) If $a \leq a_{0} \vee a_{1}$ is a nontrivial join cover and $a_{0} \leq b_{0} \vee b_{1}$ for some $a \in J$ and some $a_{0}, a_{1}, b_{0}, b_{1} \in L$, then $a \leq\left(a_{0} \wedge b_{i}\right) \vee a_{1}$ for some $i<2$.

Proof. To prove that (1) implies (2), we assume that $a \leq a_{0} \vee a_{1}$ for some $a \in J$ and some $a_{0}, a_{1} \in L$ and that $a_{0} \leq b_{0} \vee b_{1}$ for some $b_{0}, b_{1} \in L$. Since (N_{5}^{1}) holds in L, we have
$a=a \wedge\left[\left(a_{0} \wedge\left(b_{0} \vee b_{1}\right)\right) \vee a_{1}\right]=\left[a \wedge a_{0} \wedge\left(b_{0} \vee b_{1}\right)\right] \vee\left[a \wedge a_{1}\right] \vee \bigvee_{i<2}\left[a \wedge\left(\left(a_{0} \wedge b_{i}\right) \vee a_{1}\right)\right]$.
As a is a join-irreducible element, it equals one of the joinands on the right-hand side of the equality above. This implies that the conclusion of (2) also holds.

To prove that (2) implies (1), we again notice that

$$
\left[x \wedge y_{0} \wedge\left(z_{0} \vee z_{1}\right)\right] \vee\left[x \wedge y_{1}\right] \vee \bigvee_{i<2}\left[x \wedge\left(\left(y_{0} \wedge z_{i}\right) \vee y_{1}\right)\right] \leq x \wedge\left[\left(y_{0} \wedge\left(z_{0} \vee z_{1}\right)\right) \vee y_{1}\right]
$$

holds in each lattice. Therefore, in order to prove that $\left(\mathrm{N}_{5}^{1}\right)$ holds in L, we have to establish that the reverse inequality holds in L. In order to do this, we choose arbitrary elements $u, a_{0}, a_{1}, b_{0}, b_{1} \in L$ and put

$$
w=\left[u \wedge a_{0} \wedge\left(b_{0} \vee b_{1}\right)\right] \vee\left[u \wedge a_{1}\right] \vee \bigvee_{i<2}\left[u \wedge\left(\left(a_{0} \wedge b_{i}\right) \vee a_{1}\right)\right]
$$

We have to show that

$$
u \wedge\left[\left(a_{0} \wedge\left(b_{0} \vee b_{1}\right)\right) \vee a_{1}\right] \leq w
$$

According to our assumption about L, it suffices to show that each element $a \in J$ which is below $u \wedge\left[\left(a_{0} \wedge\left(b_{0} \vee b_{1}\right)\right) \vee a_{1}\right]$ is also below w. But this conclusion follows from (2).

Corollary 7. [2] Let L be a 2-distributive J-lattice for some set $J \subseteq \mathrm{~J}(L)$. The following conditions are equivalent.
(1) $\left(\mathrm{N}_{5}^{1}\right)$ holds in L.
(2) If $a \leq a_{0} \vee a_{1}$ is a minimal join cover for some $a, a_{0}, a_{1} \in J$, then a_{0} and a_{1} are join-prime elements.

We use the following notation, cf. R. Freese, J, Ježek, and J. B. Nation [3, Lemma 2.33].

Definition 2. Consider a J-lattice L, where $J \subseteq \mathrm{~J}(L)$. For an element $x \in J$, we put
$\mathfrak{M}(x)=\{A \subseteq J|1<|A|<\omega, x \leq \bigvee A$ is a minimal nontrivial join cover of $x\}$.
For a set $S \subseteq J$, we put

$$
\begin{aligned}
& S^{[0]}=S \\
& S^{[n+1]}=\bigcup\left\{A \in \mathfrak{M}(x) \mid x \in S^{[n]}\right\}, \quad n<\omega \\
& \langle S\rangle_{\mathfrak{M}}=\bigcup_{i<\omega} S^{[i]}
\end{aligned}
$$

For an element $x \in J$, we write $\langle x\rangle_{\mathfrak{M}}$ instead of $\langle\{x\}\rangle_{\mathfrak{M}}$. It is straightforward that $\langle S\rangle_{\mathfrak{M}}=\bigcup_{x \in S}\langle x\rangle_{\mathfrak{M}} \subseteq J$, whence $\left\rangle_{\mathfrak{M}}\right.$ is an algebraic closure operator on J. A set $S \subseteq J$ is \mathfrak{M}-closed, if $S=\langle S\rangle_{\mathfrak{M}}$.

Figure 1. Partially ordered set M_{1} and lattice $L_{6} \cong \mathrm{O}\left(M_{1}\right)$

It is clear that $\mathfrak{M}(x)=\varnothing$ whence $\langle x\rangle_{\mathfrak{M}}=\{x\}$ for each element $x \in J$ which is join-prime.

For a set $S \subseteq J$, we define a binary relation Γ_{S} on L as follows. If $a, b \in L$ then we put

$$
(a, b) \in \Gamma_{S} \quad \text { if and only if } S \cap \downarrow a=S \cap \downarrow b .
$$

Lemma 8. [2] Let L be a J-lattice and let $A \subseteq J$. The following statements hold.
(1) If $A \subseteq B$ for some $B \subseteq J$ then $\Gamma_{B} \subseteq \Gamma_{A}$.
(2) If $A=\bigcup_{i \in I} A_{i}$ for some $A_{i} \subseteq J, i \in I$, then $\Gamma_{A}=\bigcap_{i \in I} \Gamma_{A_{i}}$.
(3) If A is an \mathfrak{M}-closed set then Γ_{A} is a congruence on L.
2.3. Suborder lattices. Let X be a set and let $R \subseteq X^{2}$ be a partial order on X; that is a reflexive, antisymmetric, and transitive binary relation. In this case, we say that $(X ; R)$ is a partially ordered set or a poset for short. A subset $R^{\prime} \subseteq R$ is a suborder of R if the structure $\left(X ; R^{\prime}\right)$ is also a poset. The set $\mathrm{O}(X, R)$ of all suborders of a partial order R on X is a partially ordered set with respect to the relation \subseteq of set-theoretic inclusion. Obviously, $\Delta=\{(a, a) \mid a \in X\}$ is the least suborder of R. Thus, Δ is the smallest element in $\mathrm{O}(X, R)$. It is also obvious that R is the largest element in $\mathrm{O}(X, R)$. It is straightforward to check that for an arbitrary family $\left\{R_{i} \mid i \in I\right\} \subseteq \mathrm{O}(X, R)$, the relation $\bigcap_{i \in I} R_{i}$ is also a suborder of R; that is,

$$
\bigwedge_{i \in I} R_{i}=\bigcap_{i \in I} R_{i} \in \mathrm{O}(X, R) .
$$

Thus, $\mathrm{O}(X, R)$ is a complete lattice, where

$$
\bigvee_{i \in I} R_{i}=\left(\bigcup_{i \in I} R_{i}\right)^{t}
$$

and Y^{t} denotes the transitive closure of a binary relation $Y \subseteq X^{2}$.
For more information on suborder lattices, we refer to D. Bredikhin and B. Schein [1], B. Sivák [15] as well as to [12, 13].

3. The lattice L_{6}

Lemma 9. The suborder lattice $\mathrm{O}\left(M_{1}\right)$ is isomorphic to L_{6}.

Proof. The order relation on M_{1} is $R=\{(0,0),(0, a),(a, a),(a, 1),(0,1),(1,1)\}$. Then the suborders of R are exactly the sets

$$
\begin{aligned}
& O=\{(0,0),(a, a),(1,1)\} \\
& A=\{(0, a)\} \cup O \\
& B=\{(0,1)\} \cup O \\
& C=\{(a, 1)\} \cup O \\
& X=\{(0, a),(0,1)\} \cup O \\
& Y=\{(a, 1),(0,1)\} \cup O \\
& I=R=\{(0, a),(a, 1),(0,1)\} \cup O
\end{aligned}
$$

Then it follows that $\mathrm{O}\left(M_{1}\right) \cong L_{6}$, cf. Figure 1 .

4. An equational basis for $\mathbf{S P}\left(L_{6}\right)$

We put $\Sigma=\left\{(\mathrm{C}),\left(\mathrm{D}_{2}\right),\left(\mathrm{N}_{5}^{1}\right)\right\}$.
Proposition 10. Let L be a dually algebraic lattice such that $L \models \Sigma$. Then for each element $b \in \mathrm{~J}(L)$ which is not join-prime, we have

$$
\langle b\rangle_{\mathfrak{M}}=\{a, b, c\}, \text { where } b \leq a \vee c \text { is a minimal join cover. }
$$

Moreover, $L \in \mathbf{S P}\left(L_{6}\right)$.
Proof. According to Proposition 3(1), L is a J-lattice, where $J=\mathrm{J}(L)$ is the set of all join-irreducible elements of L. If $b \in J$ is not join-prime, then according to Corollary $5, \mathfrak{M}(b)=\{\{a, c\}\}$ for some $a, c \in J$ such that $b \leq a \vee c$ is a minimal nontrivial join cover. According to Corollary 7, elements a and c are join-prime, whence $\langle b\rangle_{\mathfrak{M}}=\{a, b, c\}$.

According to Lemma $8(3), \Gamma_{\langle b\rangle_{\mathfrak{M}}}$ is a congruence on L for each $b \in J$. Since L is a J-lattice and J is an \mathfrak{M}-closed set, $\Gamma_{J}=\Delta_{L}$ is the least congruence on L, whence $L / \Gamma_{J} \cong L$. As $J=\bigcup_{x \in J}\langle x\rangle_{\mathfrak{M}}$, we conclude by Lemma 8(2) that $L \leq_{s}$ $\prod_{x \in J} L / \Gamma_{\langle x\rangle_{\mathfrak{M}}}$. We fix an element $x \in J$. In what follows, let $[z]$ denote the $\Gamma_{\langle x\rangle_{\mathfrak{M}}}{ }^{-}$ equivalence class of an element $z \in L$.

If $x \in J$ is join-prime, then $\langle x\rangle_{\mathfrak{M}}=\{x\}$. Therefore, there are only two $\Gamma_{\langle x\rangle_{\mathfrak{M}}}$ equivalence classes: $\left[0_{L}\right]$ and $[x]$. Hence $L / \Gamma_{\langle x\rangle_{\mathfrak{M}}} \cong 2$. If $x \in J$ is not join-prime, then $\langle x\rangle_{\mathfrak{M}}=\{x, u, v\}$, where $u, v \in J$ are join-prime and $x \leq u \vee v$ is a minimal nontrivial join cover. This implies in particular that u and v are incomparable and that $x \notin \uparrow u \cap \uparrow v$. The following three cases are therefore possible.

Case 1: $u \not \leq x$ and $v \not \leq x$. In this case, elements x, u, and v are pairwise incomparable. This implies that $x \not \leq u \wedge v, u \not \leq x \wedge v$, and $v \not \leq x \wedge u$. Therefore, $[u \wedge v]=$ $[x \wedge u]=[x \wedge v]=\left[0_{L}\right]$. If $v \leq x \vee u$, then $v \leq x$ or $v \leq u$ as v is join-prime. Both cases are impossible as $\{x, u, v\}$ is an anti-chain. This implies that $[x \vee u]$ and $[x \vee v]$ are incomparable elements in the lattice $L / \Gamma_{\langle x\rangle_{\mathfrak{M}}}$. Moreover, $[u \vee v]=\left[1_{L}\right]$ as $x \leq u \vee v$. Therefore, for an arbitrary element $z \in L$, we have in Case 1 that one of the following cases occurs:

[0]

Figure 2. Lattice $L / \Gamma_{\langle x\rangle} \cong L_{6}$

$$
\begin{aligned}
& \langle x\rangle_{\mathfrak{M}} \cap \downarrow z=\varnothing ; \quad\langle x\rangle_{\mathfrak{M}} \cap \downarrow z=\{x, u, v\} ; \\
& \langle x\rangle_{\mathfrak{M}} \cap \downarrow z=\{x\} ; \quad\langle x\rangle_{\mathfrak{M}} \cap \downarrow z=\{u\} ; \quad\langle x\rangle_{\mathfrak{M}} \cap \downarrow z=\{v\} ; \\
& \langle x\rangle_{\mathfrak{M}} \cap \downarrow z=\{x, u\} ; \quad\langle x\rangle_{\mathfrak{M}} \cap \downarrow z=\{x, v\},
\end{aligned}
$$

see Figure 2. This implies that $L / \Gamma_{\langle x\rangle_{\mathfrak{M}}}$ has the following elements: $\left[0_{L}\right],[x],[u]$, $[v],[x \vee u],[x \vee v],\left[1_{L}\right]$. Hence $L / \Gamma_{\langle x\rangle_{\mathfrak{M}}} \cong L_{6}$.
Case 2: $u<x$. In this case, we have $v \not \leq x$, whence x and v are incomparable. Moreover, $x \not \leq u \wedge v$ and $u \not \leq x \wedge v$, whence $[u \wedge v]=[x \wedge v]=\left[0_{L}\right]$. It is also clear that $[x \vee v]=[u \vee v]=\left[1_{L}\right]$. Therefore, for an arbitrary element $z \in L$, we have in Case 2 that one of the following cases occurs:

$$
\begin{aligned}
&\langle x\rangle_{\mathfrak{M}} \cap \downarrow z=\varnothing ; \quad\langle x\rangle_{\mathfrak{M}} \cap \downarrow z=\{x, u, v\} ; \\
&\langle x\rangle_{\mathfrak{M}} \cap \downarrow z=\{x\} ; \quad\langle x\rangle_{\mathfrak{M}} \cap \downarrow z=\{u\} ; \quad\langle x\rangle_{\mathfrak{M}} \cap \downarrow z=\{v\},
\end{aligned}
$$

see Figure 3. This implies that $L / \Gamma_{\langle x\rangle_{\mathfrak{M}}}$ has the following elements: $\left[0_{L}\right],[x],[u]$, $[v],\left[1_{L}\right]$. Hence $L / \Gamma_{\langle x\rangle_{\mathfrak{M}}} \cong N_{5} \leq L_{6}$.
Case 3: $v<x$. This case is symmetric to Case 2 and therefore, $L / \Gamma_{\langle x\rangle_{\mathfrak{M}}} \cong N_{5} \leq L_{6}$.
The above implies that L is a subdirect product of lattices isomorphic either to 2 or to N_{5}, or to L_{6}. Since both lattices, 2 and N_{5}, embed into L_{6}, we obtain that $L \in \mathbf{S P}\left(L_{6}\right)$.

Corollary 11. Let L be a bi-algebraic lattice such that $L \models \Sigma$. Then for each element $x \in \mathrm{CJ}(L)$ which is not join-prime, we have

$$
[x]_{\mathfrak{M}}=\{x, a, b\}, \text { where } a, b \in \operatorname{CJ}_{P}(L), x \leq a \vee b
$$

In particular, $L \in \mathbf{S P}\left(L_{6}\right)$.
Proof. The argument is similar to the one in the proof of Proposition 10 and uses Proposition 3(2).

Theorem 12. The quasivariety $\mathbf{S P}\left(L_{6}\right)$ is a variety and Σ forms an equational basis for $\mathbf{S P}\left(L_{6}\right)$.

[0]

Figure 3. Lattice $L / \Gamma_{\langle x\rangle_{\mathfrak{M}}} \cong N_{5}$

Proof. Let $L \models \Sigma$ and let F be the dual filter lattice of L. Then F is dually algebraic and $F \models \Sigma$. By Proposition $10, F \in \mathbf{S P}\left(L_{6}\right)$ whence $L \in \mathbf{S P}\left(L_{6}\right)$. This proves that $\operatorname{Mod}(\Sigma) \subseteq \mathbf{S P}\left(L_{6}\right)$. On the other hand, the lattice L_{6} has the only nontrivial join cover $b \leq a \vee c$ of a join-irreducible element. Thus, L_{6} is 2 -distributive by Corollary 2. Moreover, L_{6} satisfies the condition (2) of Corollaries 5 and 7. This implies that $L_{6}=\Sigma$ and that $\mathbf{S P}\left(L_{6}\right) \subseteq \operatorname{Mod}(\Sigma)$ which proves the desired statement.

References

[1] D. Bredikhin, B. Schein, Representation of ordered semigroups and lattices by binary relations, Colloq. Math., 39 (1978), 1-12. Zbl 0389.06013
[2] W. Dziobiak, M.V. Schwidefsky, Categorical dualities for some two categories of lattices: An extended abstract, Bull. Sec. Logic, 51:3 (2022), 329-344.
[3] R. Freese, J. Ježek, J.B. Nation, Free lattices, Mathematical Surveys Monographs, 42, American Mathematical Society, Providence, 1995. Zbl 0839.06005
[4] V.A. Gorbunov, Algebraic theory of quasivarieties, Consultants Bureau, New York, 1998. Zbl 0986.08001
[5] A.P. Huhn, Schwach distributive Verbände. I, Acta Sci. Math., 33 (1972), 297-305. Zbl 0269.06006
[6] J. Hyndman, J.B. Nation, The lattice of subquasivarieties of a locally finite quasivariety, CMS Books in Mathematics, Springer, Cham, 2018. Zbl 1425.08001
[7] A.I. Mal'tsev, Algebraic systems, Springer-Verlag, Berlin etc., 1973. Zbl 0266.08001
[8] R. McKenzie, Equational bases and nonmodular lattice varieties, Trans. Am. Math. Soc., 174:1 (1973), 1-43. Zbl 0265.08006
[9] J.B. Nation, An approach to lattice varieties of finite height, Algebra Univers., 27:4 (1990), 521-543. Zbl 0721.08004
[10] V.B. Repnitskiǐ, On finite lattices embeddable in subsemigroup lattices, Semigroup Forum, 46:3 (1993), 388-397. Zbl 0797.20052
[11] V.B. Repnitskiǐ, On representation of lattices by lattices of subsemigroups, Russi. Math., 40:1 (1996), 55-64. Zbl 0870.06005
[12] M.V. Semenova, Lattices of suborders, Sib. Math. J., 40:3 (1999), 577-584. Zbl 0924.06009
[13] M.V. Semenova, Lattices that are embeddable into suborder lattices, Algebra Logic, 44:4 (2005), 270-285. Zbl 1101.06005
[14] M.V. Semenova, On lattices embeddable into subsemigroup lattices. III: Nilpotent semigroups, Sib. Math. J., 48:1, 156-164. Zbl 1154.20047
[15] B. Sivák, Representation of finite lattices by orders on finite sets, Math. Slovaca, 28:2 (1978), 203-215. Zbl 0395.06002

Aynur Orynbasarovna Basheyeva
L. N. Gumilev Eurasian National University, Kazhymukan str., 13 ,
010008 , Nur-Sultan, Kazakhstan
Email address: basheeva@mail.ru
Marina Vladimirovna Schwidefsky
Sobolev Institute of Mathematics SB RAS,
Acad. Koptyug ave., 4,
630090, Novosibirsk, Russia
Email address: semenova@math.nsc.ru
Kuanysh Dauletbekovich Sultankulov
L. N. Gumilev Eurasian National University, Kazhymukan str., 13,
010008 , Nur-Sultan, Kazakhstan
Email address: kuanysh.sultankulov@edu.kz

[^0]: Basheyeva, A. O., Schwidefsky, M. V., Sultankulov, K. D., The quasivariety $\mathbf{S P}\left(L_{6}\right)$. I. An equational basis.
 (C) 2022 Basheyeva, A. O., Schwidefsky, M. V., Sultankulov, K. D.

 The research was carried out under the support of the Russian Science Foundation, project number 22-21-00104. A. O. Basheyeva was supported by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan (project no. AP13268735).

 Received March, 20, 2022, published December, 10, 2022.

