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THE QUASIVARIETY SP(L6). I. AN EQUATIONAL BASIS

A. O. BASHEYEVA, M. V. SCHWIDEFSKY, AND K. D. SULTANKULOV

Abstract. We prove that the quasivariety SP(L6) is a variety and �nd
an equational basis for this variety.
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1. Introduction

In the present paper, we consider the �nite lattice L6, see Figure 1, which is
isomorphic to the suborder lattice of a three-element chain. Suborder lattices were
in the focus in a number of articles as they provide a convenient tool for proving
certain embeddability results.

By a theorem by D. Bredikhin and B. Schein [1], suborder lattices are lattice
universal ; that is, each lattice is embeddable into a suitable suborder lattice. By
a theorem of B. Siv�ak [15], a lattice L is embeddable into the suborder lattice
of a �nite partial order if and only if L is �nite and lower bounded in the sense
of R. McKenzie [8]. Suborder lattices were used for embedding lattices into the
subsemigroup lattices in V.B. Repnitski�� [10, 11] as well as in [14].

Suborder lattices were also studied in papers [12, 13]. A general construction to
embed an arbitrary lattice into a suitable suborder lattice was suggested in [12].
Based on this construction, it was shown in [13] that for arbitrary n < ω, the class
SOn of lattices embeddable into suborder lattices of posets of length at most n
forms a �nitely based variety. An equational basis for this variety was found in [13].
There are still a number of unsolved problems which concern suborder lattices. In
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particular, Question 2 in [13] asks if the quasivariety generated by a �nite suborder
lattice is a variety.

In this paper, we give a positive answer to this question in a particular case.
More speci�cally, we prove that the quasivariety Q(L6) generated by the lattice
L6 is a �nitely based variety and �nd a �nite basis for this variety. The method
we use was developed in [2]. In a subsequent article, the main result of this paper,
Theorem 12, will be applied for proving a duality result for the quasivariety Q(L6).

2. Definitions and auxiliary results

We assume all classes to be abstract ; that is, closed under taking isomorphic copies
of structures.

2.1. (Quasi)varieties. A quasi-identity is a universal Horn sentence of the form

∀x̄ A0(x) & . . . & An(x) −→ A(x),

where n < ω and A0(x), . . . , An(x), A(x) are atomic formulas of a �xed type. An
identity is a sentence of the form

∀x̄ A(x),

where A(x) is an atomic formula of a �xed type. A quasivariety is the class Mod(Σ)
of models for a set Σ of quasi-identities. A variety is the class Mod(Σ) of models for
a set Σ of identities. In this case, Σ is called a quasi-equational basis [an equational
basis, respectively] of K. It is clear that each variety is a quasi-variety.

For a type σ, let K(σ) denote the class of all structures of type σ. For an
arbitrary class K ⊆ K(σ) of structures, let S(K) denote the class of structures
from K(σ) embeddable into structures from the class K, and let P(K) denote the
class of structures from K(σ) isomorphic to Cartesian products of structures from
K. Whenever K contains only one structure A (up to isomorphism), we write O(A)
instead ofO({A}) for a class operatorO. LetQ(K) denote the smallest quasivariety
containing K. It is well known [7] that for a �nite structure A, the class SP(A) is
a quasivariety. Thus, Q(A) = SP(A) for each �nite structure A.

For all the notions concerning (quasi)varieties of structures which are not de�ned
here, we refer to A. I. Maltsev [7], V.A. Gorbunov [4], and J. Hyndman and J.B.
Nation [6].

2.2. General lattices. Most of the following de�nitions correspond to R. Freese,
J. Je�zek, and J.B. Nation [3].

Let L be a lattice. For arbitrary two sets A,B ⊆ L, we say that A re�nes B and
write A� B if for each a ∈ A, there is b ∈ B such that a ≤ b. If x ∈ L, then A is a
join cover of x if

∨
A exists and x ≤

∨
A; we also call the inequality x ≤

∨
A a join

cover in this case. A join cover x ≤
∨
A is nontrivial if x � a for all a ∈ A; x ≤

∨
A

is �nite if the set A is �nite. A join cover x ≤
∨
A is irredundant if x �

∨
B for

all proper subsets B ⊂ A. A join cover x ≤
∨
A is minimal if A ⊆ B for each join

cover x ≤
∨
B such that B � A. The lattice L has the complete minimal join cover

re�nement property (CR)X for a set X ⊆ L if for each nontrivial join cover A of an
element x ∈ X, there is a minimal nontrivial join cover B of x such that B � A.

A non-zero element a of a lattice L is said to be join-irreducible if a = b ∨ c
implies that a ∈ {b, c} for all b, c ∈ L; a is said to be completely join-irreducible if
a =

∨
B implies that a ∈ B for all nonempty sets B ⊆ L. Let J(L) denote the set
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of all join-irreducible elements in L and let CJ(L) denote the set of all completely
join-irreducible elements in L.

De�nition 1. [2] For a set J ⊆ J(L), we say that L is a J-lattice if L possesses
the following properties:

(1) for each element a ∈ L, there is a subset Ja ⊆ J with a =
∨
Ja;

(2) for each element a ∈ J and each nontrivial join cover a ≤ a0 ∨ . . .∨ an with
n < ω and a0, . . . , an ∈ L, there is a �nite set F ⊆ J such that a ≤

∨
F is

a minimal join cover and F � {a0, . . . , an}.
We say that L is a CJ-lattice if L possesses the following properties:

(1) for each element a ∈ L, there is a subset Ja ⊆ CJ(L) with a =
∨
Ja;

(2) L has the property (CR)CJ(L).

In what follows, we consider the following identity of n-distributivity, where 1 <
n < ω, which we denote by (Dn):

x ∧ (y0 ∨ y1 ∨ . . . ∨ yn) =
∨
i6n

[
x ∧

∨
j 6=i

yj
]
.

This identity was introduced and considered by A.P. Huhn [5]. It is clear that (D1)
is just the identity of distributivity.

The following lemma is folklore and straightforward to prove, see for example
J. B. Nation [9].

Lemma 1. Let n > 0, let L be a lattice, let a set J ⊆ J(L) be such that for each
element a ∈ L, there is a subset Ja ⊆ J with a =

∨
Ja. The following conditions

are equivalent.

(1) (Dn) holds in L.
(2) If a ≤ b0 ∨ b1 ∨ . . . ∨ bn for some a ∈ J and some b0, b1, . . . , bn ∈ L, then

there is i 6 n such that a ≤
∨

j 6=i bj.

Corollary 2. Let n > 1 and let L be a J-lattice for some set J ⊆ J(L). The
following conditions are equivalent.

(1) (Dn) holds in L.
(2) If a ≤ b0∨. . .∨bm is a minimal nontrivial join cover for some a, b0, . . . , bm ∈

J then 0 < m < n.

Proposition 3. [2] Let L be a complete dually algebraic lattice. Then the following
statements hold.

(1) If L is n-distributive then L is a J(L)-lattice.
(2) If L is in addition algebraic then L is a CJ-lattice.

Following [2], we denote the next identity by (C):

x ∧ (y0 ∨ y1) ∧ (z0 ∨ z1) =
∨
i<2

[
x ∧ yi ∧ (z0 ∨ z1)

]
∨
∨
i<2

[
x ∧ zi ∧ (y0 ∨ y1)

]
∨

∨
∨
i<2

[
x ∧

(
(y0 ∧ zi) ∨ (y1 ∧ z1−i)

)]
.

The next four statements were established in [2]. Since [2] does not contain complete
proofs, we present here sketches of proofs of Lemma 4 and Lemma 6 for the sake
of completeness. We emphasize that these proofs are due to the authors of [2].
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Lemma 4. [2] Let L be a lattice, let a set J ⊆ J(L) be such that for each element
a ∈ L, there is a subset Ja ⊆ J with a =

∨
Ja. The following conditions are

equivalent.

(1) (C) holds in L.
(2) If a ≤ a0 ∨ a1 and a ≤ b0 ∨ b1 are nontrivial join covers for some a ∈ J

and some a0, a1, b0, b1 ∈ L, then there are c0, c1 ∈ L such that a ≤ c0 ∨ c1,
{c0, c1} � {a0, a1}, and {c0, c1} � {b0, b1}.

Proof. To prove that (1) implies (2), we assume that the assumptions of (2) hold.
Since (C) holds in L, we have

a = a ∧ (a0 ∨ a1) ∧ (b0 ∨ b1) =
∨
i<2

[
a ∧ ai ∧ (b0 ∨ b1)

]
∨
∨
i<2

[
a ∧ bi ∧ (a0 ∨ a1)

]
∨

∨
∨
i<2

[
a ∧

(
(a0 ∧ bi) ∨ (a1 ∧ b1−i)

)]
.

As a is a join-irreducible element, it equals one of the joinands on the right-hand
side of the equality above. This implies that the conclusion of (2) also holds.

To prove that (2) implies (1), we note that the inequality∨
i<2

[
x ∧ yi ∧ (z0 ∨ z1)

]
∨
∨
i<2

[
x ∧ zi ∧ (y0 ∨ y1)

]
∨

∨
∨
i<2

[
x ∧

(
(y0 ∧ zi) ∨ (y1 ∧ z1−i)

)]
≤

≤ x ∧ (y0 ∨ y1) ∧ (z0 ∨ z1)

holds in each lattice. Therefore, in order to prove that (C) holds in L, we have
to establish that the reverse inequality holds in L. To this end, choose arbitrary
elements u, a0, a1, b0, b1 ∈ L. We put

w =
∨
i<2

[
u∧ai∧(b0∨b1)

]
∨
∨
i<2

[
u∧bi∧(a0∨a1)

]
∨
∨
i<2

[
u∧
(
(a0∧bi)∨(a1∧b1−i)

)]
.

We have to show that

u ∧ (a0 ∨ a1) ∧ (b0 ∨ b1) ≤ w.
According to our assumption about L, it su�ces to show that each element a ∈ J
which is below u∧ (a0∨a1)∧ (b0∨b1) is also below w. But this follows from (2). �

Corollary 5. [2] Let L be a 2-distributive J-lattice for some set J ⊆ J(L). The
following conditions are equivalent.

(1) (C) holds in L.
(2) If a ≤ a0 ∨ a1 and a ≤ b0 ∨ b1 are minimal join covers for some elements

a, a0, a1, b0, b1 ∈ J , then {a0, a1} = {b0, b1}.

As in [2], we denote the following identity by (N1
5):

x∧
[(
y0 ∧ (z0 ∨ z1)

)
∨ y1

]
=
[
x∧ y0 ∧ (z0 ∨ z1)

]
∨
[
x∧ y1

]
∨
∨
i<2

[
x∧

(
(y0 ∧ zi)∨ y1

)]
.

Lemma 6. [2] Let L be a lattice, let a set J ⊆ J(L) be such that for each element
a ∈ L, there is a subset Ja ⊆ J with a =

∨
Ja. The following conditions are

equivalent.

(1) (N1
5) holds in L.
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(2) If a ≤ a0 ∨ a1 is a nontrivial join cover and a0 ≤ b0 ∨ b1 for some a ∈ J
and some a0, a1, b0, b1 ∈ L, then a ≤ (a0 ∧ bi) ∨ a1 for some i < 2.

Proof. To prove that (1) implies (2), we assume that a ≤ a0 ∨ a1 for some a ∈ J
and some a0, a1 ∈ L and that a0 ≤ b0 ∨ b1 for some b0, b1 ∈ L. Since (N1

5) holds in
L, we have

a = a∧
[(
a0∧(b0∨b1)

)
∨a1

]
=
[
a∧a0∧(b0∨b1)

]
∨
[
a∧a1

]
∨
∨
i<2

[
a∧
(
(a0∧bi)∨a1

)]
.

As a is a join-irreducible element, it equals one of the joinands on the right-hand
side of the equality above. This implies that the conclusion of (2) also holds.

To prove that (2) implies (1), we again notice that[
x∧ y0 ∧ (z0 ∨ z1)

]
∨
[
x∧ y1

]
∨
∨
i<2

[
x∧

(
(y0 ∧ zi)∨ y1

)]
≤ x∧

[(
y0 ∧ (z0 ∨ z1)

)
∨ y1

]
holds in each lattice. Therefore, in order to prove that (N1

5) holds in L, we have
to establish that the reverse inequality holds in L. In order to do this, we choose
arbitrary elements u, a0, a1, b0, b1 ∈ L and put

w =
[
u ∧ a0 ∧ (b0 ∨ b1)

]
∨
[
u ∧ a1

]
∨
∨
i<2

[
u ∧

(
(a0 ∧ bi) ∨ a1

)]
.

We have to show that

u ∧
[(
a0 ∧ (b0 ∨ b1)

)
∨ a1

]
≤ w.

According to our assumption about L, it su�ces to show that each element a ∈ J
which is below u∧

[(
a0∧ (b0∨ b1)

)
∨a1

]
is also below w. But this conclusion follows

from (2). �

Corollary 7. [2] Let L be a 2-distributive J-lattice for some set J ⊆ J(L). The
following conditions are equivalent.

(1) (N1
5) holds in L.

(2) If a ≤ a0 ∨ a1 is a minimal join cover for some a, a0, a1 ∈ J , then a0 and
a1 are join-prime elements.

We use the following notation, cf. R. Freese, J, Je�zek, and J. B. Nation [3, Lemma
2.33].

De�nition 2. Consider a J-lattice L, where J ⊆ J(L). For an element x ∈ J , we
put

M(x) =
{
A ⊆ J | 1 < |A| < ω, x ≤

∨
A is a minimal nontrivial join cover of x

}
.

For a set S ⊆ J , we put

S[0] = S;

S[n+1] =
⋃{

A ∈M(x) | x ∈ S[n]
}
, n < ω;

〈S〉M =
⋃
i<ω

S[i].

For an element x ∈ J , we write 〈x〉M instead of 〈{x}〉M. It is straightforward that
〈S〉M =

⋃
x∈S〈x〉M ⊆ J , whence 〈 〉M is an algebraic closure operator on J . A set

S ⊆ J is M-closed, if S = 〈S〉M.
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Figure 1. Partially ordered set M1 and lattice L6
∼= O(M1)

It is clear that M(x) = ∅ whence 〈x〉M = {x} for each element x ∈ J which is
join-prime.

For a set S ⊆ J , we de�ne a binary relation ΓS on L as follows. If a, b ∈ L then
we put

(a, b) ∈ ΓS if and only if S ∩ ↓a = S ∩ ↓b.

Lemma 8. [2] Let L be a J-lattice and let A ⊆ J . The following statements hold.

(1) If A ⊆ B for some B ⊆ J then ΓB ⊆ ΓA.
(2) If A =

⋃
i∈I Ai for some Ai ⊆ J , i ∈ I, then ΓA =

⋂
i∈I ΓAi

.
(3) If A is an M-closed set then ΓA is a congruence on L.

2.3. Suborder lattices. Let X be a set and let R ⊆ X2 be a partial order on
X; that is a re�exive, antisymmetric, and transitive binary relation. In this case,
we say that (X;R) is a partially ordered set or a poset for short. A subset R′ ⊆ R
is a suborder of R if the structure (X;R′) is also a poset. The set O(X,R) of all
suborders of a partial order R on X is a partially ordered set with respect to the
relation ⊆ of set-theoretic inclusion. Obviously, ∆ =

{
(a, a) | a ∈ X

}
is the least

suborder of R. Thus, ∆ is the smallest element in O(X,R). It is also obvious that R
is the largest element in O(X,R). It is straightforward to check that for an arbitrary
family {Ri | i ∈ I} ⊆ O(X,R), the relation

⋂
i∈I Ri is also a suborder of R; that is,∧

i∈I
Ri =

⋂
i∈I

Ri ∈ O(X,R).

Thus, O(X,R) is a complete lattice, where∨
i∈I

Ri =
(⋃
i∈I

Ri

)t
and Y t denotes the transitive closure of a binary relation Y ⊆ X2.

For more information on suborder lattices, we refer to D. Bredikhin and B. Schein
[1], B. Siv�ak [15] as well as to [12, 13].

3. The lattice L6

Lemma 9. The suborder lattice O(M1) is isomorphic to L6.



908 A. O. BASHEYEVA, M. V. SCHWIDEFSKY, AND K. D. SULTANKULOV

Proof. The order relation on M1 is R =
{

(0, 0), (0, a), (a, a), (a, 1), (0, 1), (1, 1)
}
.

Then the suborders of R are exactly the sets

O =
{

(0, 0), (a, a), (1, 1)
}

;

A =
{

(0, a)
}
∪O;

B =
{

(0, 1)
}
∪O;

C =
{

(a, 1)
}
∪O;

X =
{

(0, a), (0, 1)
}
∪O;

Y =
{

(a, 1), (0, 1)
}
∪O;

I = R =
{

(0, a), (a, 1), (0, 1)
}
∪O.

Then it follows that O(M1) ∼= L6, cf. Figure 1. �

4. An equational basis for SP(L6)

We put Σ = {(C), (D2), (N1
5)}.

Proposition 10. Let L be a dually algebraic lattice such that L |= Σ. Then for
each element b ∈ J(L) which is not join-prime, we have

〈b〉M = {a, b, c}, where b ≤ a ∨ c is a minimal join cover.

Moreover, L ∈ SP(L6).

Proof. According to Proposition 3(1), L is a J-lattice, where J = J(L) is the set
of all join-irreducible elements of L. If b ∈ J is not join-prime, then according to
Corollary 5, M(b) =

{
{a, c}

}
for some a, c ∈ J such that b ≤ a ∨ c is a minimal

nontrivial join cover. According to Corollary 7, elements a and c are join-prime,
whence 〈b〉M = {a, b, c}.

According to Lemma 8(3), Γ〈b〉M is a congruence on L for each b ∈ J . Since L
is a J-lattice and J is an M-closed set, ΓJ = ∆L is the least congruence on L,
whence L/ΓJ

∼= L. As J =
⋃

x∈J〈x〉M, we conclude by Lemma 8(2) that L ≤s∏
x∈J L/Γ〈x〉M . We �x an element x ∈ J . In what follows, let [z] denote the Γ〈x〉M -

equivalence class of an element z ∈ L.
If x ∈ J is join-prime, then 〈x〉M = {x}. Therefore, there are only two Γ〈x〉M -

equivalence classes: [0L] and [x]. Hence L/Γ〈x〉M
∼= 2. If x ∈ J is not join-prime,

then 〈x〉M = {x, u, v}, where u, v ∈ J are join-prime and x ≤ u ∨ v is a minimal
nontrivial join cover. This implies in particular that u and v are incomparable and
that x /∈ ↑u ∩ ↑v. The following three cases are therefore possible.

Case 1 : u � x and v � x. In this case, elements x, u, and v are pairwise incompa-
rable. This implies that x � u ∧ v, u � x ∧ v, and v � x ∧ u. Therefore, [u ∧ v] =
[x ∧ u] = [x ∧ v] = [0L]. If v ≤ x ∨ u, then v ≤ x or v ≤ u as v is join-prime.
Both cases are impossible as {x, u, v} is an anti-chain. This implies that [x∨u] and
[x ∨ v] are incomparable elements in the lattice L/Γ〈x〉M . Moreover, [u ∨ v] = [1L]
as x ≤ u ∨ v. Therefore, for an arbitrary element z ∈ L, we have in Case 1 that
one of the following cases occurs:
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Figure 2. Lattice L/Γ〈x〉M
∼= L6

〈x〉M ∩ ↓z = ∅; 〈x〉M ∩ ↓z = {x, u, v};
〈x〉M ∩ ↓z = {x}; 〈x〉M ∩ ↓z = {u}; 〈x〉M ∩ ↓z = {v};
〈x〉M ∩ ↓z = {x, u}; 〈x〉M ∩ ↓z = {x, v},

see Figure 2. This implies that L/Γ〈x〉M has the following elements: [0L], [x], [u],
[v], [x ∨ u], [x ∨ v], [1L]. Hence L/Γ〈x〉M

∼= L6.

Case 2 : u < x. In this case, we have v � x, whence x and v are incomparable.
Moreover, x � u ∧ v and u � x ∧ v, whence [u ∧ v] = [x ∧ v] = [0L]. It is also clear
that [x ∨ v] = [u ∨ v] = [1L]. Therefore, for an arbitrary element z ∈ L, we have in
Case 2 that one of the following cases occurs:

〈x〉M ∩ ↓z = ∅; 〈x〉M ∩ ↓z = {x, u, v};
〈x〉M ∩ ↓z = {x}; 〈x〉M ∩ ↓z = {u}; 〈x〉M ∩ ↓z = {v},

see Figure 3. This implies that L/Γ〈x〉M has the following elements: [0L], [x], [u],
[v], [1L]. Hence L/Γ〈x〉M

∼= N5 ≤ L6.

Case 3 : v < x. This case is symmetric to Case 2 and therefore, L/Γ〈x〉M
∼= N5 ≤ L6.

The above implies that L is a subdirect product of lattices isomorphic either to 2
or to N5, or to L6. Since both lattices, 2 and N5, embed into L6, we obtain that
L ∈ SP(L6). �

Corollary 11. Let L be a bi-algebraic lattice such that L |= Σ. Then for each
element x ∈ CJ(L) which is not join-prime, we have

[x]M = {x, a, b}, where a, b ∈ CJP (L), x ≤ a ∨ b.

In particular, L ∈ SP(L6).

Proof. The argument is similar to the one in the proof of Proposition 10 and uses
Proposition 3(2). �

Theorem 12. The quasivariety SP(L6) is a variety and Σ forms an equational
basis for SP(L6).
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Figure 3. Lattice L/Γ〈x〉M
∼= N5

Proof. Let L |= Σ and let F be the dual �lter lattice of L. Then F is dually algebraic
and F |= Σ. By Proposition 10, F ∈ SP(L6) whence L ∈ SP(L6). This proves that
Mod(Σ) ⊆ SP(L6). On the other hand, the lattice L6 has the only nontrivial join
cover b ≤ a∨ c of a join-irreducible element. Thus, L6 is 2-distributive by Corollary
2. Moreover, L6 satis�es the condition (2) of Corollaries 5 and 7. This implies that
L6 |= Σ and that SP(L6) ⊆ Mod(Σ) which proves the desired statement. �
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