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Abstract. In this work, we study the blow-up analysis for a class of
plate viscoelastic p(x)-Kirchho� type inverse source problem of the form:

utt + ∆2u−
(
a+ b

∫
Ω

1

p(x)
|∇u|p(x)dx

)
∆p(x)u−

∫ t

0

g(t− τ)∆2u(τ)dτ

+ β|ut|m(x)−2ut = α|u|q(x)−2u+ f(t)ω(x).

Under suitable conditions on kernel of the memory, initial data and
variable exponents, we prove the blow up of solutions in two cases: linear
damping term (m(x) ≡ 2) and nonlinear damping term (m(x) > 2).
Precisely, we show that the solutions with positive initial energy blow up
in a �nite time when m(x) ≡ 2 and blow up at in�nity if m(x) > 2.
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1. Introduction

In this paper, we consider the following plate viscoelastic p(x)−Kirchho� type
inverse source problem:

utt + ∆2u−
(
a+ b

∫
Ω

1

p(x)
|∇u|p(x)dx

)
∆p(x)u−

∫ t

0

g(t− τ)∆2u(τ)dτ

+β|ut|m(x)−2ut = α|u|q(x)−2u+ f(t)ω(x), (x, t) ∈ Ω× (0,+∞)(1)

u(x, t) =
∂u

∂ν
(x, t) = 0, (x, t) ∈ ∂Ω× (0,+∞)(2)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω(3) ∫
Ω

u(x, t)ω(x)dx = φ(t), t > 0(4)

while the pair of functions {u(x, t), f(t)} are unknown. In this problem, Ω ⊂
Rn (n ≥ 1) is a bounded domain with smooth boundary ∂Ω and a unit outer
normal ν. Here, ∆p(x) is called p(x)−Laplace operator de�ned as

∆p(x)u = div(|∇u|p(x)−2∇u),

and a, b > 0. Also, α and β are positive constants and g(t), ω(x) and φ(t) are real
valued functions with speci�c conditions that will be enunciated later.
In addition, p(x), m(x) and q(x) are given continuous and measurable functions on
Ω such that

2 < p− ≤ p(x) ≤ p+ <∞
2 ≤ m− ≤ m(x) ≤ m+ <∞(5)

2 < q− ≤ q(x) ≤ q+ <∞,

with

p− := essinfx∈Ωp(x), p+ := esssupx∈Ωp(x)

m− := essinfx∈Ωm(x), m+ := esssupx∈Ωm(x)

q− := essinfx∈Ωq(x), q+ := esssupx∈Ωq(x).

The inverse source problems in waves arise in many scienti�c and industrial areas
such as antenna design and synthesis, biomedical imaging and photo-acoustic tomo-
graphy [5]. Solving the inverse problems are rather di�cult, because they are
nonlinear and improperly posed. It is known that there is no uniqueness for the
inverse source problem at a �xed frequency due to the existence of non-radiating
sources [6]. Therefore, additional information is required for the source in order to
obtain a unique solution such as (4) and

(6) ω ∈ H2
0 (Ω) ∩ Lp(.)(Ω) ∩ Lm(.)(Ω) ∩ Lq(.)(Ω),

∫
Ω

ω2(x)dx = 1.

To the best of our knowledge, the stability and blow up of solutions of inverse
source problems with variable-exponent nonlinearities are less investigated area.
In this paper, we are going to extend previous results in the inverse problems
with constant-exponent nonlinearities to our inverse source problem (1)-(4) with
variable-exponent nonlinearities. Thus, �rstly we point out some previous results
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in the inverse problems with constant-exponent nonlinearities. For example, Eden
and Kalantarov [9] studied the following inverse problem

ut −∆u+ b(x, t, u,∇u)− |u|pu = F (t)ω(x), x ∈ Ω, t > 0

u(x, t) = 0, x ∈ ∂Ω, t > 0

u(x, 0) = u0(x), x ∈ Ω∫
Ω

u(x, t)ω(x)dx = φ(t), t > 0.

They found conditions on data which guaranteed the global nonexistence of solutions
when φ(t) ≡ 1. Also, authors established a stability result with the opposite sign on
the power type nonlinearity and b(x, t, u,∇u) ≡ 0. Next, Tahamtani and Shahrouzi
[31] extended previous results to a Petrovsky inverse source problem (see also [32]).
Shahrouzi in [23] studied the following damped viscoelastic inverse problem

utt −∇[(a0 + a|∇u|m)∇u] +

∫ t

0

eλ(t−τ)g(t− τ)∆u(τ)dτ + but = h(x, t, u,∇u)

+ |u|pu+ f(t)ω(x), x ∈ Ω, t > 0

u(x, t) = 0, x ∈ Γ, t > 0

u(x, 0) = u0(x), x ∈ Ω∫
Ω

u(x, t)ω(x)dx = 1, t > 0,

and proved the blow up of solutions under su�cient conditions on initial functions
by using the modi�ed concavity argument. See [24, 25, 26].

On the other hand, it is known that modeling of some physical phenomena such as
�ows of electro-rheological �uids, nonlinear viscoelasticity and image processing give
rise to equations with nonstandard growth conditions, i.e, equations with variable
exponents of nonlinearities. In direct problems, equations with nonlinearities of
variable-exponent type have largely been discussed by several authors. For instance,
Antontsev [1] considered the equation:

utt = div
(
a(x, t)|∇u|p(x,t)−2∇u

)
+ α∆ut + b(x, t)u|u|σ(x,t)−2 + f(x, t)

in Ω ⊆ Rn, where α > 0 is a constant and a, b, p, σ are given functions. For speci�c
conditions on a, b, p, σ, the existence theorems for small and any �nite time have
been proved and blow up of solutions under some suitable conditions on data has
been established. Messaoudi and Talahmeh [17], considered the following nonlinear
equation with variable exponents:

(7) utt − div
(
|∇u|r(.)−2∇u

)
+ a|ut|m(.)−2ut = b|u|p(.)−2u.

They proved a �nite-time blow-up result for the solutions with negative initial
energy and also certain solutions with positive energy in appropriate range of
m(.), r(.) and p(.). In another study, Messaoudi [18] studied equation (7) with
a = 1, b = 0 in the presence of damping term −∆ut. He proved several decay results
depending on the range of variable exponents m and r. Shahrouzi [27] studied the
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behavior of solutions to the following initial-boundary value problem with variable-
exponent nonlinearities

utt −∆u− div(|∇u|m(x)∇u) +

∫ t

0

g(t− τ)∆u(τ)dτ + h(x, t, u,∇u) + βut

= |u|p(x)u, in Ω× (0,+∞){
u(x, t) = 0, x ∈ Γ0, t > 0

∂u
∂n (x, t) =

∫ t
0
g(t− τ) ∂u∂n (τ)dτ − |∇u|m(x) ∂u

∂n + αu, x ∈ Γ1, t > 0

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω.

Under appropriate conditions, he proved a general decay result associated to solution
energy. Moreover, regarding arbitrary positive initial energy, blow up of solutions
has been proved. Antontsev and Ferreira [2], studied a nonlinear class viscoelastic
plate equation with a lower order by perturbation of ~p(x, t)-Laplace operator of the
form

utt + ∆2u−∆~p(x,t)u+

∫ t

0

g(t− s)∆u(s)ds− ε∆ut + f(u) = 0,

associated with initial and Dirichlet-Neumann boundary conditions. Here, ∆~p(x,t)

is the ~p(x, t)-Laplace operator which is de�ned as

∆~p(x,t)u =

n∑
i=1

∂

∂xi

(
| ∂u
∂xi
|pi(x,t)−2 ∂u

∂xi

)
, ~p(x, t) = (p1, p2, · · · , pn).

They proved a blow up in �nite time with negative initial energy under suitable
conditions on g, f and the variable exponent of the ~p(x, t)-Laplace operator. Recen-
tly, Antontsev et al. [3] looked into the following nonlinear Timoshenko equation
with variable exponents:

utt + ∆2u−M(‖∇u‖2L2(Ω))∆u+ |ut|p(x)−2ut = |u|q(x)−2u,

and demonstrated the local existence of the solution under suitable conditions.
Moreover, nonexistence of solutions was proved with negative initial energy (see
also [4]).
Dai and Hao [7] studied the following equation

−M
( ∫

Ω

1

p(x)
|∇u|p(x)dx

)
div(|∇u|p(x)−2∇u) = f(x, u),

and by means of a direct variational approach and the theory of the variable-
exponent Sobolev spaces, they established conditions through which the existence
and multiplicity of solutions for the problem were veri�ed. In another study, Hamda-
ni et al. [15] investigated the following nonlocal p(x)−Kirchho� type equation

−(a− b
∫

Ω

1

p(x)
|∇u|p(x)dx)div(|∇u|p(x)−2∇u) = λ|u|p(x)−2u+ g(x, u),

and obtained a nontrivial weak solution by using the Mountain Pass theorem.
Related to the inverse problems with variable exponent nonlinearities, Shahrouzi
in [28] studied the general decay and blow up of solutions for the following Lam�e
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system of inverse problem

utt −∆eu− div
(
|∇u|r(x)−2∇u

)
+ βut + h(x, t, u,∇u) + a|ut|m(x)−2ut

= b|u|p(x)−2u+ f(t)ω(x), (x, t) ∈ Ω× (0,∞)

u(x, t) =
∂u

∂ν
(x, t) = 0, (x, t) ∈ ∂Ω× (0,∞)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω∫
Ω

u(x, t)ω(x)dx = φ(t), t > 0.

The author proved the general decay of solutions when b = 0, h(x, t, u,∇u) ≡ 0 and
the integral overdetermination tends to zero as time goes to in�nity in appropriate
range of variable exponents. Furthermore, in the absence of damping terms (a =
β = 0) and when φ(t) ≡ 1, blow up of solutions in a �nite time has been proved.
The relevant equations with variable-exponent nonlinearities have also been studied
in [20, 22, 29, 30, 16, 14, 21, 19].

Motivated by the aforementioned works, in the present paper, we study the
blow-up analysis for a class of fourth-order viscoelastic p(x)−Kirchho� type inverse
source problem with variable-exponent nonlinearities. We mentioned before, existen-
ce of variable-exponent nonlinearities makes the study of inverse problems di�cult.
However, we try to extend and improve the previous results ([24, 25, 28]) to a class
of plate viscoelastic p(x)−Kirchho� type inverse problems with variable-exponent
nonlinearities. To the best of our knowledge, this is the �rst work dealing with the
blow-up result for a plate viscoelastic p(x)−Kirchho� type inverse source problem
subject to the variable-exponent nonlinearities and various damping terms.
The rest of the paper is organized as follows. In Section 2, we recall some de�nitions
and Lemmas about the variable-exponent Lebesgue space, Lp(.)(Ω), the Sobolev
space, W 1,p(.)(Ω) and additional conditions to be used for the main results. Section
3 includes two parts. First, we prove that the solutions of (1)-(4) blow-up in a �nite
time with suitable conditions on initial data and variable exponents whenm(x) ≡ 2.
Next, in the second part, we show that for m(x) ≥ m− > 2 and under appropriate
conditions on data, the solutions of (1)-(4) blow up at in�nity.

2. Preliminaries

In this section, we recall some notations and functionals. We denote by ‖.‖q the
Lq-norm over Ω and in particular, the L2-norm is denoted ‖.‖ in Ω. We shall assume
that the functions g(t), ω(x) and those appearing in the data satisfy the following
conditions:

(8) g(t) ≥ 0, g′(t) ≤ 0, 1−
∫ ∞

0

g(t)dt = l > 0,

and

u0 ∈ H2
0 (Ω) ∩ Lp(.)(Ω) ∩ Lm(.)(Ω), u1 ∈ L2(Ω) ∩ Lq(.)(Ω),∫

Ω

u0(x)ω(x)dx = φ(0).(9)

In order to study problem (1)-(4), we need some hypotheses and theories about
Lebesgue and Sobolev spaces with variable-exponents (for details, see [8, 10, 11, 12,
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13]). Let p(x) ≥ 1 and measurable, we assume that

C+(Ω) = {h|h ∈ C(Ω), h(x) > 1 for any x ∈ Ω},

h+ = max
Ω

h(x), h− = min
Ω
h(x) for any h ∈ C(Ω),

Lp(x)(Ω) =
{
u| u is a measurable real-valued function,

∫
Ω

|u(x)|p(x)dx <∞
}
.

We equip the Lebesgue space with a variable exponent, Lp(x)(Ω), with the following
Luxembourg-type norm

‖u‖p(x) := inf
{
λ > 0

∣∣∣ ∫
Ω

|u(x)

λ
|p(x)dx ≤ 1

}
Lemma 1. [8, 13] Let Ω be a bounded domain in Rn

(i) the space (Lp(x)(Ω), ‖.‖p(x)) is a Banach space, and its conjugate space is

Lq(x)(Ω), where 1
q(x) + 1

p(x) = 1. For any u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), we have∣∣ ∫
Ω

uvdx
∣∣ ≤ ( 1

p−
+

1

q−
)
‖u‖p(x)‖v‖q(x);

(ii) If p, q ∈ C+(Ω), q(x) ≤ p(x) for any x ∈ Ω, then Lp(x)(Ω) ↪→ Lq(x)(Ω), and the
imbedding is continuous.

The variable-exponent Lebesgue Sobolev space W 1,p(x)(Ω) is de�ned by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω)|∇u exists and |∇u| ∈ Lp(x)(Ω)}.

This space is a Banach space with respect to the norm ‖u‖W 1,p(x)(Ω) = ‖u‖p(x) +

‖∇u‖p(x). Furthermore, let W
1,p(x)
0 (Ω) be the closure of C∞0 (Ω) in W 1,p(x)(Ω). The

dual ofW
1,p(x)
0 (Ω) is de�ned asW−1,p′(x)(Ω), by the same way as the usual Sobolev

spaces, where 1
p(x) + 1

p′(x) = 1.

If we de�ne

p∗(x) =

{
Np(x)
N−p(x) , p+ < N

∞, p+ ≥ N,
then we have

Lemma 2. [8, 13] Let Ω be a bounded domain in Rn. Then for any measurable
bounded exponent p(x) we have

(i) W 1,p(x)(Ω) and W
1,p(x)
0 (Ω) are separable Banach spaces;

(ii) if q ∈ C+(Ω) and q(x) < p∗(x) for any x ∈ Ω, then the imbeddingW 1,p(x)(Ω) ↪→
Lq(x)(Ω) is compact and continuous;
(iii) if p(x) is uniformly continuous in Ω, then there exists a constant C > 0, such
that

‖u‖p(x) ≤ C‖∇u‖p(x) ∀u ∈W 1,p(x)
0 (Ω).

By (iii) of Lemma 2, we know that the space W
1,p(x)
0 (Ω) has an equivalent norm

given by ‖u‖W 1,p(x)(Ω) = ‖∇u‖p(x).
We recall the Young's inequality

(10) ab ≤ θaq(x) + C(θ, q(x))bq
′(x), a, b ≥ 0, β > 0,

1

q(x)
+

1

q′(x)
= 1,
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where C(θ, q(x)) = 1
q′(x) (θq(x))−

q′(x)
q(x) . In special case when θ = 1

q(x) , we have from

(10)

(11) ab ≤ aq(x)

q(x)
+
bq
′(x)

q′(x)
.

Adapting the conditions (6) and integral over-determination (4), by multiplying
equation (1) in ω(x), the key observation is that the problem (1)-(4) is equivalent
to the following direct problem

utt + ∆2u−
(
a+ b

∫
Ω

1

p(x)
|∇u|p(x)dx

)
∆p(x)u−

∫ t

0

g(t− τ)∆2u(τ)dτ

+ β|ut|m(x)−2ut = α|u|q(x)−2u+ f(t)ω(x), (x, t) ∈ Ω× (0,+∞)(12)

u(x, t) =
∂u

∂ν
(x, t) = 0, (x, t) ∈ ∂Ω× (0,+∞)(13)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω(14)

in which the unknown function f(t) is replaced by

f(t) = φ′′(t) +

∫
Ω

∆u∆ω(x)dx+ β

∫
Ω

|ut|m(x)−1ω(x)dx

+(a+ b

∫
Ω

1

p(x)
|∇u|p(x)dx)

∫
Ω

|∇u|p(x)−1∇ω(x)dx

−
∫ t

0

g(t− τ)

∫
Ω

(∆u(τ)−∆u)∆ω(x)dxdτ

−
∫ t

0

g(t− τ)

∫
Ω

∆u∆ω(x)dxdτ − α
∫

Ω

|u|q(x)−1ω(x)dx.(15)

At this point, we state the local existence of solutions for the problem (12)-(14),
that can be established employing the Galerkin method as in [1].

Theorem 1. (Local existence) Let u0 ∈ W 1,p(.)
0 (Ω), u1 ∈ L2(Ω) and assume that

(6), (8) and (9) be satis�ed. Then problem (12)-(14) has a unique weak solution
such that

u ∈ L∞
(

(0, T ),W
1,p(.)
0 (Ω)

)
∩ Lq(.)((0, T ),Ω),

ut ∈ L∞
(

(0, T ), L2(Ω)
)
∩ Lm(.)((0, T ),Ω),

utt ∈ L∞
(

(0, T ),W
−1,p′(.)
0 (Ω)

)
,

for any T > 0 and 1
p(.) + 1

p′(.) = 1.

3. Blow-up

In this section, we are going to prove the blow-up result for certain solutions with
positive initial energy. At �rst, by using concavity method [9, 23, 29], we prove that
the solutions of (1)-(4) blow-up in a �nite time with suitable conditions on initial
data and variable exponents when m(x) ≡ 2. Next, in the second part, by using
modi�ed method inspired by [33], we show that for m(x) ≥ m− > 2 and under
appropriate conditions on data, the solutions of (1)-(4) blow up at in�nity.
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3.1. Blow-up result with m(x) ≡ 2. In order to prove the blow up of solutions
with m(x) ≡ 2, we use the following change variable

(16) v(x, t) = e−λtu(x, t).

A direct computation by substituting (16) into the problem (1)-(4) yields

vtt + (2λ+ β)vt + λ(λ+ β)v + ∆2v −
∫ t

0

g1(t− τ)∆2v(τ)dτ

−(a+ b

∫
Ω

eλp(x)t

p(x)
|∇v|p(x)dx)div

(
eλ(p(x)−2)t|∇v|p(x)−2∇v

)
= αeλ(q(x)−2)t|v|q(x)−2v + e−λtf(t)ω(x), (x, t) ∈ Ω× (0,∞)(17)

(18) v(x, t) =
∂v

∂ν
= 0, (x, t) ∈ ∂Ω× (0,∞)

(19) v(x, 0) = u0(x), vt(x, 0) = u1(x)− λu0(x), x ∈ Ω,

(20)

∫
Ω

v(x, t)ω(x)dx = e−λtφ(t), t > 0,

where g1(s) = e−λsg(s) and the value of the parameter λ will be prescribed later.
Similarly, adapting to the condition (6) and integral overdetermination, the inverse
problem (17)-(20) is equivalent to the direct problem (17)-(19) when the unknown
function f(t) is replaced by

f(t) = φ′′(t) + βφ′(t) + eλt
∫

Ω

∆v∆ω(x)dx

+a

∫
Ω

eλ(p(x)−1)t|∇v|p(x)−1∇ω(x)dx

+b(

∫
Ω

eλp(x)t

p(x)
|∇v|p(x)dx)(

∫
Ω

eλ(p(x)−1)t|∇v|p(x)−1∇ω(x)dx)

−eλt
∫ t

0

g1(t− τ)

∫
Ω

∆v∆ω(x)dxdτ

−eλt
∫ t

0

g1(t− τ)

∫
Ω

(∆v(τ)−∆v)∆ω(x)dxdτ

−α
∫

Ω

eλ(q(x)−1)|v|q(x)−1ω(x)dx.(21)

The energy function related with problem (17)-(19) is given by

(22) Eλ(t) = α

∫
Ω

eλ(q(x)−2)t

q(x)
|v|q(x)dx− a

∫
Ω

eλ(p(x)−2)t

p(x)
|∇v|p(x)dx− 1

2
I(t),

where

I(t) = ‖vt‖2 + λ(λ+ β)‖v‖2 + (1−
∫ t

0

g1(s)ds)‖∆v‖2 + (g1 �∆v)(t)

+b
( ∫

Ω

eλ(p(x)−1)t

p(x)
|∇v|p(x)dx

)2
,

and (g1 �∆v)(t) =
∫ t

0
g1(t− τ)‖∆v(τ)−∆v‖2dτ .

Now we are in a position to state our blow-up result as follows:
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Theorem 2. Let the conditions (5), (6) and (8), (9) be satis�ed and suppose
that the functions φ′′(t), φ′(t) and φ(t) are continuous and bounded such that for
constants M1 and M2(λ):

|φ′′(t) + βφ′(t)| ≤M1 and |φ′(t)− λφ(t)| ≤M2(λ).

Moreover, assume that

q− > max{4p+ − 2, 3 +
2(p+)2(p+ − 1)

(p−)2
,

4p+(p− + 2)

(p−)2
},(23)

l = 1−
∫ ∞

0

g(s)ds ≥ 6

q− + 2
, α ≥ 2(q+ − 1)

q+
(24)

Eλ(0) ≥ D1

λ(q− − 3)
+

2D2

q−
,(25)

where

D1 = M1M2(λ) +M2
2 (λ)

[ 1

2(1− l)
+

1− l
2λ(q− − 3)

+
1− l

2

]
‖∆ω‖2

+a

∫
Ω

M
p(x)
2 (λ)

p(x)λp(x)−1
|∇ω|p(x)dx+ α

∫
Ω

M
q(x)
2 (λ)

q(x)
|ω|q(x)dx

+
b

4

( ∫
Ω

M
p(x)
2 (λ)

p(x)
(p(x)− 1)p(x)−1|∇ω|p(x)dx

)2
,

D2 = M1 + (
l2 − 2l + 3

2(1− l)
)‖∆ω‖2 + a

∫
Ω

|∇ω|p(x)

p(x)
dx+

∫
Ω

(α|ω(x)|)q(x)

q(x)
dx

+
b

4

( ∫
Ω

(p(x)− 1)p(x)−1

p(x)
|∇ω|p(x)dx

)2
.

Then, for su�ciently large λ, there exists a �nite time t∗ such that the solution of
the problem (1)-(4) blows up in a �nite time, that is

(26) ‖u(t)‖ → +∞ as t→ t∗.

To prove the blow-up result in this case, we need the following Lemmas.

Lemma 3. Under the conditions of Theorem 2, the unknown function f(t), de�ned
by (21), satis�es

e−2λt|φ′(t)− λφ(t)|f(t) ≤ aλ(p+ − 1)

p+

∫
Ω

eλ(p(x)−2)t|∇v|p(x)dx

+(1− l)‖∆v‖2 +
λ(q− − 3)

2
(g1 �∆v)(t)

+
2b

(p−)2

( ∫
Ω

eλ(p(x)−1)t|∇v|p(x)dx
)2

+
α(q+ − 1)

q+

∫
Ω

eλ(q(x)−2)t|v|q(x)dx+ e−2λtD1.

(27)
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Proof. By using (21), we have

e−2λt|φ′(t)− λφ(t)|f(t)

= e−2λt(φ′′(t) + βφ′(t))|φ′(t)− λφ(t)|+ e−λt|φ′(t)− λφ(t)|
∫

Ω

∆v∆ω(x)dx

+ae−2λt|φ′(t)− λφ(t)|
∫

Ω

|∇(eλtv)|p(x)−1∇ω(x)dx

+be−2λt|φ′(t)− λφ(t)|(
∫

Ω

|∇(eλtv)|p(x)

p(x)
dx)(

∫
Ω

|∇(eλtv)|p(x)−1∇ω(x)dx)

−e−λt|φ′(t)− λφ(t)|
∫ t

0

g1(t− τ)

∫
Ω

∆v(τ)∆ω(x)dxdτ

−αe−λt|φ′(t)− λφ(t)|
∫

Ω

eλ(q(x)−2)t|v|q(x)−1ω(x)dx.(28)

At this point, by using the Young's inequality (10) and Cauchy-Schwarz inequality
and (5), we estimate the terms on the right-hand side of (28) as follows

(29)

e−λt|φ′(t)− λφ(t)|.|
∫

Ω

∆v∆ωdx| ≤ 1− l
2
‖∆v‖2 +

e−2λt|φ′(t)− λφ(t)|2

2(1− l)
‖∆ω‖2.

e−λt|φ′(t)− λφ(t)|.|
∫

Ω

eλ(p(x)−2)t|∇v|p(x)−1∇ω(x)dx|

≤ e−2λt

∫
Ω

λ(p(x)− 1)

p(x)
eλp(x)t|∇v|p(x)dx

+e−2λt

∫
Ω

|φ′(t)− λφ(t)|p(x)

p(x)λp(x)−1
|∇ω(x)|p(x)dx

≤ λ(p+ − 1)

p+

∫
Ω

eλ(p(x)−2)t|∇v|p(x)dx

+e−2λt

∫
Ω

|φ′(t)− λφ(t)|p(x)

p(x)λp(x)−1
|∇ω(x)|p(x)dx.(30)

e−λt|φ′(t)−λφ(t)|.(
∫

Ω

eλ(p(x)−1)t

p(x)
|∇v|p(x)dx)(

∫
Ω

eλ(p(x)−1)t|∇v|p(x)−1∇ω(x)dx)

≤ e−2λt(

∫
Ω

eλp(x)t

p(x)
|∇v|p(x)dx)(

∫
Ω

1

p(x)
eλp(x)t|∇v|p(x)dx

+

∫
Ω

|φ′(t)− λφ(t)|p(x)

p(x)
(p(x)− 1)p(x)−1|∇ω(x)|p(x)dx)

≤ 2

(p−)2

( ∫
Ω

eλ(p(x)−1)t|∇v|p(x)dx
)2

+
e−2λt

4

( ∫
Ω

|φ′(t)− λφ(t)|p(x)

p(x)
(p(x)− 1)p(x)−1|∇ω(x)|p(x)dx

)2
.(31)
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e−λt|φ′(t)− λφ(t)|
∫ t

0

g1(t− τ)

∫
Ω

∆v(τ)∆ω(x)dxdτ

= e−λt|φ′(t)− λφ(t)|
∫ t

0

g1(t− τ)(

∫
Ω

(∆v(τ)−∆v)∆ω(x)dx

+

∫
Ω

∆v∆ω(x)dx)dτ

≤ λ(q− − 3)

2
(g1 �∆v)(t) +

1− l
2
‖∆v‖2

+e−2λt|φ′(t)− λφ(t)|2(
1− l

2
+

1− l
2λ(q− − 3)

)‖∆ω‖2,(32)

where the fact
∫∞

0
g1(s)ds <

∫∞
0
g(s)ds = 1− l has been used.

e−λt|φ′(t)−λφ(t)|
∫

Ω

eλ(q(x)−2)t|v|q(x)−1ω(x)dx

≤ e−2λt
( ∫

Ω

q(x)− 1

q(x)
eλq(x)t|v|q(x)dx+

∫
Ω

|φ′(t)− λφ(t)|q(x)

q(x)
|ω(x)|q(x)dx

)
≤ q+ − 1

q+

∫
Ω

eλ(q(x)−2)t|v|q(x)dx+ e−2λt

∫
Ω

|φ′(t)− λφ(t)|q(x)

q(x)
|ω(x)|q(x)dx.

(33)

Combining estimations (29)-(33) with (28) and by using hypotheses of Theorem
2 about φ′′(t), φ′(t) and φ(t), we derive inequality (27) and proof of Lemma 3 is
completed. �

Lemma 4. Under the conditions of Theorem 2, the energy functional Eλ(t), de�ned
by (22), satis�es

(34) Eλ(t) ≥ Eλ(0)− D1

λ(q− − 3)
∀t ∈ R+,

Proof. A multiplication of equation (17) by vt and integrating over Ω give

E′λ(t) = (2λ+ β)‖vt‖2 − a
∫

Ω

λ(p(x)− 2)

p(x)
eλ(p(x)−2)t|∇v|p(x)dx

−bλ
( ∫

Ω

eλ(p(x)−1)t

p(x)
|∇v|p(x)dx

)2 − 1

2
(g′1 �∆v)(t) +

1

2
g1(t)‖∆v‖2

−b(
∫

Ω

eλ(p(x)−1)t

p(x)
|∇v|p(x)dx)(

∫
Ω

λ(p(x)− 2)

p(x)
eλ(p(x)−1)t|∇v|p(x)dx)

+α

∫
Ω

λ(q(x)− 2)

q(x)
eλ(q(x)−2)t|v|q(x)dx− e−2λt(φ′(t)− λφ(t))f(t)

≥ (2λ+ β)‖vt‖2 −
aλ(p+ − 2)

p+

∫
Ω

eλ(p(x)−2)t|∇v|p(x)dx

−bλ(p+ − 1)

(p−)2

( ∫
Ω

eλ(p(x)−1)t|∇v|p(x)dx
)2

+
α(q− − 2)

q−

∫
Ω

eλ(q(x)−2)t|v|q(x)dx

−e−2λt|φ′(t)− λφ(t)|f(t),(35)
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where conditions (5) and (8) have been used.
Employing (22), we obtain from (35) the following inequality for some ε > 0

E′λ(t)− εEλ(t) ≥ α[λ(q− − 2)− ε]
q−

∫
Ω

eλ(q(x)−2)t|v|q(x)dx+
ελ(λ+ β)

2
‖v‖2

+(2λ+ β +
ε

2
)‖vt‖2 +

ε

2
(1−

∫ t

0

g1(s)ds)‖∆v‖2 +
ε

2
(g1 �∆v)(t)

+
a[ε− λ(p+ − 2)]

p+

∫
Ω

eλ(p(x)−2)t|∇v|p(x)dx

+b
[ ε

2(p+)2
− λ(p+ − 1)

(p−)2
)
]( ∫

Ω

eλ(p(x)−1)t|∇v|p(x)dx
)2

−e−2λt|φ′(t)− λφ(t)|f(t),(36)

where (5) has been used.
Thanks to the Lemma 3 and taking into account (27) and set ε := λ(q− − 3), then
we get

E′λ(t)− λ(q− − 3)Eλ(t) ≥ α

q−
[λ− q−(q+ − 1)

q+
]

∫
Ω

eλ(q(x)−2)t|v|q(x)dx

+[
λ(q− − 3)

2
(1−

∫ t

0

g1(s)ds) + l − 1]‖∆v‖2

+
λa

p+
(q− − 2p+)

∫
Ω

eλ(p(x)−2)t|∇v|p(x)dx

+b
[λ(q− − 3)

2(p+)2
− λ(p+ − 1)

(p−)2
− 2

(p−)2

]( ∫
Ω

eλ(p(x)−1)t|∇v|p(x)dx
)2

−e−2λtD1,(37)

where D1 is satis�ed in Theorem 2.
By using (23) and for su�ciently large λ, we deduce from (37)

E′λ(t)− λ(q− − 3)Eλ(t) ≥ −e−2λtD1 ≥ −D1.

Integrating over (0, t), we observe that

Eλ(t) ≥ Eλ(0)− D1

λ(q− − 3)
, ∀t ≥ 0,

and proof of Lemma 4 is complete. �

Now, we are in a position to prove the Theorem 2 by using Lemma 3 and Lemma
4.
Proof of Theorem 2. For obtaining the blow-up result, we apply concavity
method by de�ning the following functional

(38) ψ(t) = ‖v(t)‖2,
then

(39) ψ′(t) = 2

∫
Ω

vvtdx,

(40) ψ′′(t) = 2

∫
Ω

vvttdx+ 2‖vt‖2.
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A multiplication of equation (17) by v and integrating over Ω give∫
Ω

vvttdx = −(2λ+ β)

∫
Ω

vvtdx− λ(λ+ β)‖v‖2 − (1−
∫ t

0

g1(s)ds)‖∆v‖2

−a
∫

Ω

eλ(p(x)−2)t|∇v|p(x)dx+ α

∫
Ω

eλ(q(x)−2)t|v|q(x)dx

−b(
∫

Ω

eλp(x)t

p(x)
|∇v|p(x)dx)(

∫
Ω

eλ(p(x)−2)t|∇v|p(x)dx)

+

∫ t

0

g1(t− τ)

∫
Ω

(∆v(τ)−∆v)∆vdxdτ + e−2λtf(t).(41)

By virtue of the Young's inequality (10) with θ = 1−l
2 , q(x) = q′(x) = 2, we obtain

|
∫

Ω

∆v

∫ t

0

g1(t− τ)(∆v(τ)−∆u)dτdx|

≤ 1− l
2
‖∆v‖2 +

1

2(1− l)

∫
Ω

(∫ t

0

g1(t− τ)|∆v(τ)−∆v|dτ
)2

dx

=
1− l

2
‖∆v‖2 +

1

2(1− l)

∫
Ω

(∫ t

0

g1(t− τ)√
g1(t− τ)

√
g1(t− τ)|∆v(τ)−∆v|dτ

)2

dx

≤ 1− l
2
‖∆v‖2 +

1

2(1− l)
( ∫ t

0

g1(s)ds
) ∫

Ω

∫ t

0

g1(t− τ)|∆v(τ)−∆v|2dτdx

≤ 1− l
2
‖∆v‖2 +

1

2
(g1 �∆v)(t),

(42)

where
∫ t

0
g1(s)ds <

∫∞
0
g1(s)ds <

∫∞
0
g(s)ds = 1− l.

Combining (42) with (41) and by using (5), we deduce∫
Ω

vvttdx ≥ −(2λ+ β)

∫
Ω

vvtdx− λ(λ+ β)‖v‖2

−[(1−
∫ t

0

g1(s)ds) +
1− l

2
]‖∆v‖2

−1

2
(g1 �∆v)(t)− a

∫
Ω

eλ(p(x)−2)t|∇v|p(x)dx

− b

p−
(

∫
Ω

eλ(p(x)−1)t|∇v|p(x)dx)2

+α

∫
Ω

eλ(q(x)−2)t|v|q(x)dx+ e−2λtf(t).(43)

At this point, similar to Lemma 3.1 (when |φ′(t) − λφ(t)| := 1), one can observe
the following estimation of the last term on the right-hand side of (43):

e−2λtf(t) ≤ (1− l)‖∆v‖2 +
a(p+ − 1)

p+

∫
Ω

eλ(p(x)−2)t|∇v|p(x)dx

+
1

2
(g1 �∆v)(t) +

2b

(p−)2

( ∫
Ω

eλ(p(x)−1)t|∇v|p(x)dx
)2

+
q+ − 1

q+

∫
Ω

eλ(q(x)−2)t|v|q(x)dx+ e−2λtD2,(44)
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where D2 satis�es Theorem 2.
Therefore by utilizing (44) and (22) into (43), we obtain for δ > 0∫

Ω

vvttdx ≥ δEλ(t)− (2λ+ β)

∫
Ω

vvtdx+ (
δ

2
− 1)λ(λ+ β)‖v‖2

+[(
δ

2
− 1)(1−

∫ t

0

g1(s)ds)− 3(1− l)
2

]‖∆v‖2

+
δ

2
‖vt‖2 + (

δ

2
− 1)(g1 �∆v)(t)

+a(
δ

p+
− p+ − 1

p+
− 1)

∫
Ω

eλ(p(x)−2)t|∇v|p(x)dx

+b(
δ

2(p+)2
− 2

(p−)2
− 1

p−
)(

∫
Ω

eλ(p(x)−1)t|∇v|p(x)dx)2

+[α(1− δ

q−
)− q+ − 1

q+
]

∫
Ω

eλ(q(x)−2)t|v|q(x)dx− e−2λtD2.

(45)

Thus, by using the fact that

1−
∫ t

0

gsds ≥ 1−
∫ ∞

0

g1(s)ds ≥ 1−
∫ ∞

0

g(s)ds = l,

we choose δ := q−

2 and apply the conditions of Theorem 2 to obtain from (45)∫
Ω

vvttdx ≥ q−

2
Eλ(t) +

q−

4
‖vt‖2 +

(q− − 4)

4
λ(λ+ β)‖v‖2

−(2λ+ β)

∫
Ω

vvtdx−D2.(46)

Now, by using Lemma 4 and (25), we get from (46)

(47)

∫
Ω

vvttdx ≥
q−

4
‖vt‖2 − (2λ+ β)

∫
Ω

vvtdx.

By substituting (38)-(40) in (47) we get

ψ′′(t) ≥ (q− + 4)

2
‖vt‖2 − (2λ+ β)ψ′(t),

thus

(48) ψ(t)ψ′′(t) ≥ (q− + 4)

8
(ψ′(t))2 − (2λ+ β)ψ(t)ψ′(t),

where inequality (ψ′(t))2 ≤ 4‖vt‖2‖v‖2 has been used.
Hence, the concavity argument (see [9]) gives us

lim
t→t∗

ψ(t) =∞,

which yields solutions of problem (17)-(19) blow up in a �nite time t∗. Since this
system is equivalent to (1)-(4), the proof of Theorem 2 is complete.
Remark. Under the conditions of Theorem 2, if we choose initial data appropria-

tely such that

ψ′(0)− 8(2λ+ β)

q− − 4
ψ(0) > 0,
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then we obtain an upper bound for the lifetime of the solutions as

t∗ <
1

2λ+ β
ln

(q− − 4)ψ′(0)

(q− − 4)ψ′(0)− 8(2λ+ β)ψ(0)
.

3.2. Blow-up result with m(x) > 2. In this part, we suppose that 2 < m− ≤
m(x) ≤ m+ < +∞ and we shall prove that the solutions of problem (1)-(4) blow
up at in�nity. By constructing a proper auxiliary functional and using modi�ed
method inspired by [33], blow up at in�nity has been proved when the variable
exponents and initial data satisfy appropriate conditions and the initial energy is
positive.
Firstly, we de�ne

E(t) =
1

2
‖ut‖2 +

1

2
(1−

∫ t

0

g(s)ds)‖∆u‖2 + a

∫
Ω

1

p(x)
|∇u|p(x)dx

+
b

2

( ∫
Ω

1

p(x)
|∇u|p(x)dx

)2
+

1

2
(g �∆u)(t)

−α
∫

Ω

1

q(x)
|u|q(x)dx.(49)

By de�nition of E(t) and using (8), we deduce

(50) E′(t) ≤ −β
∫

Ω

|ut|m(x)dx+ f(t)φ′(t).

We are in a position that state blow-up result as follows:

Theorem 3. Let the conditions (5) (with m− > 2), (6) and (8), (9) be satis�ed
and suppose that the functions φ′′(t), φ′(t) and φ(t) are continuous and bounded
such that there exist constants M3 and M4

|φ′′(t)| ≤M3 and |φ′(t)−m+φ(t)| ≤M4.

Moreover, Assume that

(51)

max{2p+ − 1,
3− l
l
,

2(p+)2(p− + 2)

(p−)2
} < m− < q−,

m+ >
m−√

2(m− + 2)
,

and suppose that E(0) > 0 is a given initial energy level. If we choose initial data
u0 and u1 such that satisfying∫

Ω

u0u1dx > m+E(0) +
m+D3

m−
,

where D3 will be enunciate in Lemma 5. Then, for su�ciently large α and su�ciently
small β, the solution of the problem (1)-(4) blows up at in�nity, that is

(52) ‖u(t)‖ → +∞ as t→ +∞.

Before going to prove of Theorem 3, we state and prove the following Lemma
which will be used later:
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Lemma 5. Under the conditions of Theorem 3, for any ε > 0 the unknown function
f(t), de�ned by (21), satis�es

|φ(t)− εφ′(t)|f(t) ≤ l(m− − 2)

6
‖∆u‖2 +

a(p+ − 1)

p+

∫
Ω

|∇u|p(x)dx

+
2b

(p−)2

( ∫
Ω

|∇u|p(x)dx
)2

+
3(1− l)

2l
(g �∆u)(t) +

β(m+ − 1)

m+

∫
Ω

|ut|m(x)dx

+
(q+ − 1)

q+

∫
Ω

|u|q(x)dx+D3,(53)

where

D3 = M3M4 +M2
4

(3(l2 − 2l + 2)

l(m− − 2)
+
l

6

)
‖∆ω‖2

+β

∫
Ω

M
m(x)
4

m(x)
|ω(x)|m(x)dx+

∫
Ω

(αM4)q(x)

q(x)
|ω(x)|q(x)dx

+
b

4

( ∫
Ω

M
p(x)
4

p(x)
(p(x)− 1)p(x)−1|∇ω(x)|p(x)dx

)2
.

Proof. Recalling (15), by virtue of Cauchy and Yang inequalities, we estimate the
terms on the RHS of (15) as follows:

|(φ(t)− εφ′(t))
∫

Ω

∆u∆ωdx| ≤ l(m− − 2)

12
‖∆u‖2 +

3|φ(t)− εφ′(t)|2

l(m− − 2)
‖∆ω‖2.

(54)

|(φ(t)− εφ′(t))(a+ b

∫
Ω

1

p(x)
|∇u|p(x)dx)

∫
Ω

|∇u|p(x)−1∇ω(x)dx|

= |(a+ b

∫
Ω

1

p(x)
|∇u|p(x)dx)

∫
Ω

|∇u|p(x)−1(φ(t)− εφ′(t))∇ω(x)dx|

≤ a |
∫

Ω

|∇u|p(x)−1(φ(t)− εφ′(t))∇ω(x)dx|︸ ︷︷ ︸
I1

+b
( ∫

Ω

1

p(x)
|∇u|p(x)dx

)
|
∫

Ω

|∇u|p(x)−1(φ(t)− εφ′(t))∇ω(x)dx|︸ ︷︷ ︸
I2

.(55)

For I1 and I2 we have

I1 ≤
∫

Ω

p(x)− 1

p(x)
|∇u|p(x)dx+

∫
Ω

|φ(t)− εφ′(t)|p(x)

p(x)
|∇ω(x)|p(x)dx

≤ p+ − 1

p+

∫
Ω

|∇u|p(x)dx+

∫
Ω

|φ(t)− εφ′(t)|p(x)

p(x)
|∇ω(x)|p(x)dx.(56)
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I2 ≤
( ∫

Ω

1

p(x)
|∇u|p(x)dx

)( ∫
Ω

1

p(x)
|∇u|p(x)dx

+

∫
Ω

|φ(t)− εφ′(t)|p(x)

p(x)
(p(x)− 1)p(x)−1|∇ω(x)|p(x)dx

)
≤ 1

(p−)2

( ∫
Ω

|∇u|p(x)dx
)2

+
( ∫

Ω

1

p(x)
|∇u|p(x)dx

)( ∫
Ω

|φ(t)− εφ′(t)|p(x)

p(x)
(p(x)− 1)p(x)−1|∇ω(x)|p(x)dx

)
≤ 2

(p−)2

( ∫
Ω

|∇u|p(x)dx
)2

+
1

4

( ∫
Ω

|φ(t)− εφ′(t)|p(x)

p(x)
(p(x)− 1)p(x)−1|∇ω(x)|p(x)dx

)2
.(57)

By combining (56) and (57), we get

|(φ(t)−εφ′(t))(a+b

∫
Ω

1

p(x)
|∇u|p(x)dx)

∫
Ω

|∇u|p(x)−1∇ω(x)dx|

≤ p+ − 1

p+

∫
Ω

|∇u|p(x)dx+
2

(p−)2

( ∫
Ω

|∇u|p(x)dx
)2

+
1

4

( ∫
Ω

|φ(t)− εφ′(t)|p(x)

p(x)
(p(x)− 1)p(x)−1|∇ω(x)|p(x)dx

)2
.(58)

|
∫

Ω

|ut|m(x)−1|φ(t)− εφ′(t)|ω(x)dx|

≤
∫

Ω

m(x)− 1

m(x)
|ut|m(x)dx+

∫
Ω

|φ(t)− εφ′(t)|m(x)

m(x)
|ω(x)|m(x)dx

≤ m+ − 1

m+

∫
Ω

|ut|m(x)dx+

∫
Ω

|φ(t)− εφ′(t)|m(x)

m(x)
|ω(x)|m(x)dx.(59)

|
∫ t

0

g(t−τ)

∫
Ω

(∆u(τ)−∆u)|φ(t)−εφ′(t)|∆ω(x)dxdτ |

(60) ≤ 3(1− l)
2l

(g �∆u)(t) +
1

6
|φ(t)− εφ′(t)|2‖∆ω‖2.

|
∫ t

0

g(t−τ)

∫
Ω

∆u|φ(t)−εφ′(t)|∆ω(x)dxdτ |

(61) ≤ l(m− − 2)

12
‖∆u‖2 +

3(1− l)2|φ(t)− εφ′(t)|2

l(m− − 2)
‖∆ω‖2.

|α
∫

Ω

|u|q(x)−1|φ(t)−εφ′(t)|ω(x)dx|

≤
∫

Ω

q(x)− 1

q(x)
|u|q(x)dx+

∫
Ω

(α|φ(t)− εφ′(t)|)q(x)

q(x)
|ω(x)|q(x)dx

≤ (q+ − 1)

q+

∫
Ω

|u|q(x)dx+

∫
Ω

(α|φ(t)− εφ′(t)|)q(x)

q(x)
|ω(x)|q(x)dx.(62)
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Finally, utilizing (54) and (58)-(62) into (15) and using conditions of Theorem
3 about φ′′(t), φ′(t) and φ(t), we get inequality (53) and proof of Lemma 5 is
completed. �

Proof of Theorem 3. Multiplying equation (1) by u and integrating over Ω
yield

d

dt

∫
Ω

uutdx = ‖ut‖2 +

∫
Ω

uuttdx

= ‖ut‖2 − (1−
∫ t

0

g(s)ds)‖∆u‖2 − a
∫

Ω

|∇u|p(x)dx

−b(
∫

Ω

1

p(x)
|∇u|p(x)dx)(

∫
Ω

|∇u|p(x)dx)

+

∫ t

0

g(t− τ)

∫
Ω

∆u(∆u(τ)−∆u)dxdτ

−β
∫

Ω

u|ut|m(x)−2utdx+ α

∫
Ω

|u|q(x)dx+ f(t)φ(t).(63)

Similar to (42) and using (8), we have

|
∫ t

0

g(t−τ)

∫
Ω

∆u(∆u(τ)−∆u)dxdτ | ≤ l(m− − 2)

12
‖∆u‖2 +

3(1− l)
l(m− − 2)

(g�∆u)(t).

(64)

Utilizing (64) in (63) and using (5), we obtain

d

dt

∫
Ω

uutdx ≥‖ut‖2 − [(1−
∫ t

0

g(s)ds) +
l(m− − 2)

12
]‖∆u‖2 − a

∫
Ω

|∇u|p(x)dx

− b

p−
(

∫
Ω

|∇u|p(x)dx)2 − 3(1− l)
l(m− − 2)

(g �∆u)(t)

− β
∫

Ω

u|ut|m(x)−2utdx+ α

∫
Ω

|u|q(x)dx+ f(t)φ(t).(65)

For any δ > 0 and using de�nition of E(t), we have

d

dt

∫
Ω

uutdx ≥− δE(t) + (1 +
δ

2
)‖ut‖2 + [(

δ

2
− 1)(1−

∫ t

0

g(s)ds)− l(m− − 2)

12
]‖∆u‖2

+ a(
δ

p+
− 1)

∫
Ω

|∇u|p(x)dx+ b(
δ

2(p+)2
− 1

p−
)(

∫
Ω

|∇u|p(x)dx)2

+ (
δ

2
− 3(1− l)
l(m− − 2)

)(g �∆u)(t) + α(1− δ

q−
)

∫
Ω

|u|q(x)dx

− β
∫

Ω

u|ut|m(x)−2utdx+ f(t)φ(t),(66)
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where condition (5) has been used.
Also, for any ε > 0 and using (50), we have

d

dt

(∫
Ω

uutdx− εE(t)
)
≥ −δE(t) + εβ

∫
Ω

|ut|m(x)dx+ (1 +
δ

2
)‖ut‖2

+[(
δ

2
− 1)(1−

∫ t

0

g(s)ds)− l(m− − 2)

12
]‖∆u‖2

+a(
δ

p+
− 1)

∫
Ω

|∇u|p(x)dx+ b(
δ

2(p+)2
− 1

p−
)(

∫
Ω

|∇u|p(x)dx)2

+(
δ

2
− 3(1− l)
l(m− − 2)

)(g �∆u)(t) + α(1− δ

q−
)

∫
Ω

|u|q(x)dx

−β
∫

Ω

u|ut|m(x)−2utdx+ f(t)|φ(t)− εφ′(t)|.(67)

Thanks to the Lemma 5, we get

d

dt

(∫
Ω

uutdx− εE(t)
)
≥− δE(t) + β(ε− m+ − 1

m+
)

∫
Ω

|ut|m(x)dx+ (1 +
δ

2
)‖ut‖2

+ [(
δ

2
− 1)(1−

∫ t

0

g(s)ds)− l(m− − 2)

4
]‖∆u‖2

+ a(
δ + 1

p+
− 2)

∫
Ω

|∇u|p(x)dx

+ b(
δ

2(p+)2
− 1

p−
− 2

(p−)2
)(

∫
Ω

|∇u|p(x)dx)2

+ (
δ

2
− 3(1− l)
l(m− − 2)

− 3(1− l)
2l

)(g �∆u)(t)

+ [α(1− δ

q−
)− q+ − 1

q+
]

∫
Ω

|u|q(x)dx

− β
∫

Ω

u|ut|m(x)−2utdx−D3.(68)

Again by using Young's inequality (11), we obtain

|
∫

Ω

u|ut|m(x)−1dx| ≤
∫

Ω

1

m(x)
|u|m(x)dx+

∫
Ω

m(x)− 1

m(x)
|ut|m(x)dx

≤ 1

m−

∫
Ω

|u|m(x)dx+
m+ − 1

m+

∫
Ω

|ut|m(x)dx.(69)

On the other hand, let c∗ be the best constant of embedding H2
0 (Ω) ↪→ Lm(.)(Ω).

Then we have∫
Ω

|u|m(x)dx ≤ max{‖u‖m
−

m(x), ‖u‖
m+

m(x)}

≤ max{(c∗)m
−
‖∆u‖m

−
, (c∗)m

+

‖∆u‖m
+

}
≤ max{(c∗)m

−
‖∆u‖m

−−2, (c∗)m
+

‖∆u‖m
+−2}‖∆u‖2

≤ C‖∆u‖2.(70)
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Combining (69) with (70), we get

|
∫

Ω

u|ut|m(x)−1dx| ≤ C

m−
‖∆u‖2 +

m+ − 1

m+

∫
Ω

|ut|m(x)dx.

Substituting last inequality into (68) and set ε := m+, δ := m−, we obtain

d

dt

(∫
Ω

uutdx−m+E(t)
)
≥−m−E(t) + β(m+ − 2(m+ − 1)

m+
)

∫
Ω

|ut|m(x)dx

+ (1 +
m−

2
)‖ut‖2 + [

l(m− − 2)

4
− βC

m−
]‖∆u‖2

+ a(
m− + 1

p+
− 2)

∫
Ω

|∇u|p(x)dx

+ b(
m−

2(p+)2
− 1

p−
− 2

(p−)2
)(

∫
Ω

|∇u|p(x)dx)2

+ (
m−

2
− 3(1− l)
l(m− − 2)

− 3(1− l)
2l

)(g �∆u)(t)

+ [α(1− m−

q−
)− q+ − 1

q+
]

∫
Ω

|u|q(x)dx−D3,(71)

where 1−
∫ t

0
g(s)ds > 1−

∫∞
0
g(s)ds = l has been used.

Using the conditions of Theorem 3, if α is large enough and β su�ciently small and
(51) satis�ed, then we have

d

dt

(∫
Ω

uutdx−m+E(t)
)

≥ −m−E(t) + (1 +
m−

2
)‖ut‖2 + [

l(m− − 2)

4
− βC

m−
]‖∆u‖2 −D3

≥ −m−E(t) + (1 +
m−

2
)‖ut‖2 +

1

B2
[
l(m− − 2)

4
− βC

m−
]‖u‖2 −D3,

(72)

where B is the best constant of embedding H2
0 (Ω) ↪→ L2(Ω).

By virtue of the Young's inequality and condition (51) i.e. m+ > m−√
2(m−+2)

and

for su�ciently small β, it is easy to see that

m−

m+

∫
Ω

uutdx ≤ ‖u‖2 +
( m−

2m+

)2‖ut‖2
≤ 1

B2
[
l(m− − 2)

4
− βC

m−
]‖u‖2 +

(m− + 2)

2
‖ut‖2.(73)

Thus using inequality (73) into (72) yields

(74)
d

dt

(∫
Ω

uutdx−m+E(t)
)
≥ m−

m+

(∫
Ω

uutdx−m+E(t)
)
−D3.

Let de�ne

H(t) =

∫
Ω

uutdx−m+E(t),

and therefore

H ′(t) ≥ m−

m+
H(t)−D3,
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integrating over (0, t) to get

(75) H(t) ≥ e
m−t

m+ (H(0)− m+D3

m−
) +

m+D3

m−
, ∀t > 0

where by the assumption of Theorem 3, H(0) > m+D3

m− .
Finally, inequality (75) shows that H(t) tends to in�nity when time goes to in�nity
and thus the proof of Theorem 3 is completed.

4. Conclusion

In this paper, we studied blow up of solutions for a class of plate viscoelastic
p(x)−Kirchho� type inverse source problem with variable-exponent nonlinearities.
We obtained blow up of solutions for the inverse problem (1)-(4) in a �nite time
when m(x) ≡ 2. Moreover, if 2 < m− ≤ m(x), then we proved blow-up at in�nity of
solutions for the inverse problem (1)-(4). Therefore, in the case of 2 < m− ≤ m(x),
blow-up of solutions in a �nite time is an open problem for the inverse problem
(1)-(4).
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