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ASYMPTOTIC MODELING OF CURVILINEAR NARROW

INCLUSIONS WITH ROUGH BOUNDARIES IN ELASTIC

BODIES: CASE OF A SOFT INCLUSION

I.V. FANKINA, A.I. FURTSEV, E.M. RUDOY, AND S.A. SAZHENKOV

Abstract. Within the framework of two-dimensional elasticity theory,
a heterogeneous body with a narrow inclusion lying strictly inside the
body is considered. It is assumed that the elastic properties of inclusion
and its width depend on the small parameter δ > 0. Moreover, we assume
that the inclusion has a curvilinear rough boundary. We show that there
exist three type of limiting problem as δ → 0: p > 1 � body with crack
without interaction of its faces; p = 1 � body with crack with adhesive
interaction of its faces; p ∈ [0, 1) � homogeneous body (no crack).

Keywords: asymptotic analysis, inhomogeneous elastic body, narrow
inclusion, curvilinear crack, interface conditions.

1. Introduction

Modern aerospace, automobile, and many other engineering structures require
new materials with low weight and high strength. One of the ways to obtain
such materials is construction of composites containing various kinds of thin small
inclusions. The numerical solution of models of the inclusions is fraught with large
computational costs due to small size compared to the structure. To overcome this
di�culty approximation models are derived. In these models inclusions are replaced
by some submanifolds of codimension 1 on which the interface conditions inherited
from the original full model are properly set.
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In the present paper, within the framework of two-dimensional elasticity theory,
a heterogeneous body with a narrow inclusion lying strictly inside the body is
considered. It is assumed that the elastic properties of inclusion and its width
depend on the small parameter δ > 0: width is in direct ratio δ, while Young's
modulus of the inclusion is proportional to δp, where p is a real number. We
investigate the case p ≥ 0. In this case such inclusion is called a soft one (see,
e.g., [4, 9, 29]). The inclusion has a curved rough border. The latter means that
a perturbation of the inclusion boundary depending on the parameter of δ is
introduced. Mixed boundary conditions are prescribed on the external boundary
of the body. The equilibrium problem is formulated as the problem of minimizing
the energy functional in Sobolev's space H1.

We present some methodology to derive models of elastic bodies for the crack
problems. The methodology combines asymptotic analysis with variational pro-
perties of the equilibrium problem. Its major advantage over existing asymptotic
approaches consists of the straightforward derivation of crack models for any non-
negative value of parameter p simultaneously. It is shown that there exist three
type of limiting problem as δ → 0: p > 1 � body with crack without interaction of
its faces; p = 1 � body with crack with adhesive interaction of its faces (so called
spring type condition); p ∈ [0, 1) � homogeneous body (no crack).

Note recent studies [8, 24, 25] where the analogous technics is applied to some
models of elastic bodies and plates. Papers [5, 7, 10, 14, 28] is devoted the inves-
tigation of thin inclusions problems including issues of numerical solutions, shape
optimization, homogenization. Papers [8, 21], where case of hard inclusions (with
p < 0) is studied for some models of Elasticity. At last, we mention several works
on investigations of problems with thin structure (not only inclusions) in elastic
bodies (see [6, 12, 13, 14, 20]).

Summarizing, in our consideration we take into account three key features, which,
in our opinion, were not taken into account earlier simultaneously; namely,

� the inclusion is located strictly inside the body;
� the inclusion has a curvilinear boundary;
� the inclusion boundary is rough.

2. Statement of the problem

Let Ω ⊂ R2 be a convex bounded domain with a Lipschitz boundary ∂Ω; let ΓN
and ΓD be parts of ∂Ω such that ΓN ∪ ΓD = ∂Ω, meas ΓD > 0. Let I1 and I2 be
two intervals lying on the abscissa axis Oy1 such that Ī1 ⊂ I2, Ī2 ⊂ I, where I is
an intersection of the domain Ω with Oy1-axis.

Let us consider the Lipschitz functions ϕ, ψ−, ψ+ de�ned on the interval I such
that:

1. ψ+ − ψ− > 0 on I1;
2. ψ+ − ψ− = 0 on I \ Ī2;
3. ϕ = 0 on I \ Ī2;
4. a graph of the function ϕ is located strictly inside the domain Ω.
Let us �x a small parameter δ > 0 and introduce the notations:

Ω± = {(x1, x2) ∈ Ω | ± x2 > ±ϕ(x1), x1 ∈ I},

Ωδm = {(y1, y2) ∈ Ω | ϕ(y1)− δψ−(y1) < y2 < ϕ(y1) + δψ+(y1), y1 ∈ I1},
Sδ± = {(y1, y2) ∈ Ω | y2 = ϕ(y1)± δψ±(y1), y1 ∈ I1},
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Note that for all small enough δ > 0 the domain Ωδm lies strictly inside Ω.
We assume that the domain Ω is an elastic inhomogeneous body, containing a

narrow inclusion Ωδm with width of order δ and with a rough boundary (roughness is
characterized by functions ψ±). By C

δ, C0 we denote tensors characterizing material

constants of the inclusion Ωδm and an elastic matrix Ω\Ωδm, respectively, with usual
symmetrical and elliptical properties (see, e.g., [15]). We prescribe homogeneous
Dirichlet's conditions on a part ΓD of the external boundary ∂Ω and Neumann's
conditions on the rest part ΓN of ∂Ω. It means that the body Ω is clamped on ΓD,
whereas the forces g ∈ L2(ΓN ) is applied to ΓN .

An equilibrium problem of the body Ω with the inclusion Ωδm is formulated as
a variational one in the framework of two-dimensional Elasticity. Let u = (u1, u2)
be a vector of displacements of the composite body, σ(u) = (σij(u))i,j=1,2 be the
stress tensor, ε(u) = (εij(u))i,j=1,2 be the strain tensor, where

εij(u) =
1

2
(ui,j + uj,i) , i, j = 1, 2,

σ(u) = Cε(u), where C =

{
C0 in Ω \ Ωδm
Cδ in Ωδm.

Lower indices after comma denote the operation of di�erentiation with respect
to corresponding coordinate; the summation over repeated indices is performed.
Additionally, we assume that the inclusion Ωδm is an isotropic and homogeneous
body such that Cδ = δpC1 with p ≥ 0, where

C1ε(u) = λmItr ε(u) + 2µmε(u),

with the associated Lam�e coe�cients given by λm and µm. We assume 3λm+2µm >
0 and µm > 0, in which case the tensor C1 is positive de�nite. In general, the elastic
matrix is anisotropic and homogeneous with elastic coe�cients from L∞loc(R2).

Thus, the equilibrium problem is as follows: for a given g ∈ L2(ΓN ), �nd uδ ∈
H1

ΓD
(Ω) satisfying the following variational equality:

(1)

∫
Ω

σ(uδ) : ε(u) dy =

∫
ΓN

gu ds

for all kinematically admissible displacement functions u ∈ H1
ΓD

(Ω), where

H1
ΓD (Ω) = {u ∈ H1(Ω)2 | u = 0 a.e. on ΓD}.

Let us rewrite problem (1) in equivalent form. First of all, we introduce an
extended inclusion

ΩδM = {(y1, y2) ∈ Ω | ϕ(y1)− δψ(y1) < y2 < ϕ(y1) + δψ+(y1), y1 ∈ I2},
containing the inclusion Ωδm, and put

T δ± = {(y1, y2) ∈ Ω | y2 = ϕ(y1)± δψ±(y1), y1 ∈ I2},

containing curves Sδ±. Moreover, we de�ne domains

ωδm = ΩδM \ Ωδm, Ωδe = Ω \ ΩδM , Ωδ± = Ωδe ∩ Ω±

We introduce a set

Kδ = {(v+, v−, vm) ∈ H1(Ωδ+)×H1(Ωδ−)×H1(ΩδM ) |

v± = 0 a.e. on ΓD ∩ ∂Ωδ±, v± = vm a.e. on T δ±, v
+ = v− a.e. on ∂Ωδ− ∩ ∂Ωδ+}.
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Then problem (1) is rewritten as follows: �nd a triplet (u+
δ , u

−
δ , u

m
δ ) ∈ Kδ, satisfying

a variational equality

(2)

∫
Ωδ+

C0ε(u+
δ ) : ε(u+) dy +

∫
Ωδ−

C0ε(u−δ ) : ε(u−) dy +

∫
ωδm

C0ε(umδ ) : ε(um) dy+

+ δp
∫

ΩδM

C1ε(umδ ) : ε(um) dy =

∫
ΓN∩∂Ωδ+

gu+ ds+

∫
ΓN∩∂Ωδ−

gu− ds

for all (u+, u−, um) ∈ Kδ.
By the Lions-Stampacchia theorem, problem (2) has a unique solution

(u+
δ , u

−
δ , u

m
δ ) for all δ > 0, and the following relations

uδ|Ωδ± = u±δ , uδ|ΩδM = umδ

hold.

3. Coordinate transformations

We put

ΩM = {(z1, z2) ∈ R2 | ψ−(z1) < z2 < ψ+(z1), z1 ∈ I2},

Ωm = {(z1, z2) ∈ R2 | ψ−(z1) < z2 < ψ+(z1), z1 ∈ I1},

T± = {(z1, z2) ∈ R2 | z2 = ψ±(z1), z1 ∈ I2},

S± = {(z1, z2) ∈ R2 | z2 = ψ±(z1), z1 ∈ I1},

T = {(x1, x2) ∈ R2 | x2 = ϕ(x1), x1 ∈ I2},

S = {(x1, x2) ∈ R2 | x2 = ϕ(x1), x1 ∈ I1},
and introduce coordinate transformation mapping domains Ωδ± and ΩδM into domains
Ω± and ΩM , respectively. Let us take two convex open domains D1 and D2 such
that I2 ⊂ D1, D1 ⊂ D2, D2 ⊂ Ω, and consider the following domains:

Dϕ
i = {(z1, z2) | z1 = y1, z2 = ϕ(y1) + y2, (y1, y2) ∈ Di}, i = 1, 2.

As a result, we have the following inclusions: T ⊂ Dϕ
1 , D

ϕ

1 ⊂ D
ϕ
2 . Additionally, we

also suppose that the domain Dϕ
2 lies strictly inside Ω.

Now we consider a cut-o� function θ ∈ C1(Ω) such that

θ = 1 in Dϕ
1 ; 0 < θ < 1 in Dϕ

2 ; θ = 0 in Ω \Dϕ

2 .

In the domain Ω± and ΩM we de�ne coordinate transformations as follows

(3) y1 = x1, y2 = x2 ± δψ±(x1)θ(x1, x2), (x1, x2) ∈ Ω±, (y1, y2) ∈ Ωδ±,

(4) y1 = z1, y2 = δz2 + ϕ(z1), (z1, z2) ∈ ΩM , (y1, y2) ∈ ΩδM .

It is easy to see that transformations (3) and (4) are one-to-one. Note that trans-
formation of the type (3)are widely used in shape optimization and crack theory
(see, e.g., [11, 23, 16, 17, 27]).

Due to smoothness properties of functions ϕ and ψ±, coordinate transformations
(3) and (4) generate one-to-one mappings between spaces H1(Ω±), H1(ΩM ) and
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H1(Ωδ±), H1(ΩδM ), respectively (see [19], Chapter 2, Lemma 3.4). Preimage of Kδ

in H1(Ω−)×H1(Ω+)×H1(ΩM ) is a set

K = {(v+, v−, vm) ∈ H1(Ω+)×H1(Ω−)×H1(ΩM ) |
v±|T = vm|T± , v± = 0 a.e. on ΓD ∩ ∂Ω±,

v+ = v− a.e. on (∂Ω− ∩ ∂Ω+) \ T}.

Hereinafter, v±|T = vm|T± means that

v±(x1, ϕ(x1)) = vm(x1, ψ±(x1)), x1 ∈ I2.

After applying coordinate transformations (3) and (4) to variational equality (2),
we conclude that transformed displacements

(5) ũ±δ (x1, x2) = u±δ (x1, x2 ± δψ±(x1)θ(x1, x2)),

(6) ũmδ (z1, z2) = umδ (z1, δz1 + ϕ(z1))

satisfy the following variational equality:

(7) Aδ+(ũ+
δ , v

+) +Aδ−(ũ−δ , v
−) + δ

∫
ωm

C0eδ(ũmδ ) : eδ(vm) dz+

+ δp+1

∫
Ωm

C1eδ(ũmδ ) : eδ(vm) dz =

∫
∂Ω+∩ΓN

gv+ ds+

∫
∂Ω−∩ΓN

gv− ds

for any triplet (v+, v−, vm) ∈ K, where ωm = ΩM \ Ωm,

Aδ±(u±, v±) =

∫
Ω±

J±δ C
0E(Ψ±δ ;u±) : E(Ψ±δ ; v±) dx,

Eij(Ψ
±
δ ; v) = 1/2

(
vi,k(Ψ±δ )kj + vj,k(Ψ±δ )ki

)
, i, j = 1, 2;

eδ(vm) =

 vm1,1 −
ϕ′

δ v
m
1,2

1
2

(
1
δ v
m
1,2 + vm2,1 −

ϕ′

δ v
m
2,2

)
1
2

(
1
δ v
m
1,2 + vm2,1 −

ϕ′

δ v
m
2,2

)
1
δ v
m
2,2

 ,

matrices Ψ±δ are Jacobi matrices of transformations (3), and J±δ is Jacobian of
transformations (3).

Since the main goal of the our investigation is to �nd a limit problem as δ → 0,
in the sequel it is convenient to use the following asymptotic expansion:

(8) Aδ±(u, v) =

∫
Ω±

C0ε(u) : ε(v) dx+ δr±(δ, u, v),

where

(9) |r±(δ, u, v)| ≤ c(‖u‖2H1(Ω±) + ‖v‖2H1(Ω±))

with a constant c independent of δ, u, and v.
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4. Asymptotic analysis

We need to recall auxiliary lemmas from [24, 8].

Lemma 1. For any function ṽ ∈ H1(ΩM ) the following holds:

‖ṽ‖2L2(ΩM ) ≤ c
(
‖ṽ,2‖2L2(ΩM ) + ‖ṽ‖2L2(Ts)

)
, s ∈ {−,+},

with a constant c independent of ṽ.

Lemma 2. For any small enough δ > 0 and any triplet (ṽ+, ṽ−, ṽm) ∈ K the
following inequality holds:

(10) c

(
‖ṽ+‖2H1(Ω+) + ‖ṽ−‖2H1(Ω−) + δ‖ṽm1,1 −

ϕ′

δ
ṽm1,2‖2L2(ΩM )+

+
1

δ
‖ṽm1,2‖2L2(ΩM ) + δ‖ṽm2,1 −

ϕ′

δ
ṽm2,2‖2L2(ΩM ) +

1

δ
‖ṽm2,2‖2L2(ΩM )

)
≤

≤
∫

Ω+

C0ε(ṽ+) : ε(ṽ+) dx+

∫
Ω−

C0ε(ṽ−) : ε(ṽ−) dx+

+ δ

∫
ωm

C0eδ(ṽm) : eδ(ṽm) dz + δ

∫
Ωm

C1eδ(ṽm) : eδ(ṽm) dz

with a constant c independent of δ and (ṽ+, ṽ−, ṽm).

Proof. Due to the fact that the domain Ω and the set K do not depend on δ, from
the Korn inequality it follows existence a constant c independent of v ∈ H1

ΓD
(Ω)

and δ > 0 such that

(11) c(‖v+‖2H1(Ωδ+) + ‖v−‖2H1(Ωδ−) + ‖vm‖2H1(Ωδm) ≤
∫
Ω

Cε(v) : ε(v) dy =

=

∫
Ωδ+

C0ε(v+) : ε(v+) dy +

∫
Ωδ−

C0ε(v−) : ε(v−) dy+

+

∫
ωδm

C0ε(vm) : ε(vm) dy +

∫
Ωδm

C1ε(vm) : ε(vm) dy.

Here v+, v−, and vm are the restrictions of the function v onto domains Ωδ+, Ωδ−,

and ΩδM = Ωδm ∪ ωδm, respectively.
Let us apply coordinate transformations (3) and (4) in integrals in (11). After

that we use expansions (8) and the fact that after coordinate transformation (3)
the following expansion hold:

‖v±‖2H1(Ωδ±) = ‖ṽ±‖2H1(Ω±) + r̃±(δ; ṽ±)

with an estimate

|r̃±(δ; v±)| ≤ cδ‖ṽ±‖2H1(Ω±),

where ṽ+, ṽ−, and ṽm are de�ned akin to (5) and (6). Thus, inequality (10) is valid
for all small enough δ > 0. �
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Theorem 1. The solution (ũ+
δ , ũ

−
δ , ũ

m
δ ) to problem (7) satis�es the uniform estima-

tes:

(12) ‖ũ+
δ ‖H1(Ω+)2 ≤ c, ‖ũ−δ ‖H1(Ω−)2 ≤ c,

(13) δ
p+1
2 ‖ũmδ1,1 −

ϕ′

δ
ũmδ1,2‖L2(Ωm) ≤ c, δ

p−1
2 ‖ũmδ2,2‖L2(Ωm) ≤ c,

(14) δ
p−1
2 ‖ũmδ1,2‖L2(Ωm) ≤ c, δ

p+1
2 ‖ũmδ2,1 −

ϕ′

δ
ũmδ2,2‖L2(Ωm) ≤ c,

(15) δ−
1
2 ‖ũmδ2,2‖L2(ωm) ≤ c,

(16) δ−
1
2 ‖ũmδ1,2‖L2(ωm) ≤ c.

Proof. First of all, let us substitute (ũ+
δ , ũ

−
δ , ũ

m
δ ) in (7). Taking into account (8)

and (9) and the Korn inequality, we easily get estimates (12), (13), and (15).
To prove (14) we substitute (ũ+

δ , ũ
−
δ , ũ

m
δ ) in (10) and multiply the obtained

inequality by δp. Due to estimates (12) and since p ≥ 0, we have the following
chain of inequalities:

c

(
δp−1‖ũmδ1,2‖2L2(Ωm) + δp+1‖ũmδ2,1 −

ϕ′

δ
ũmδ2,2‖2L2(Ωm)

)
≤

≤ δp
∫

Ω+

C0ε(ũ+
δ ) : ε(ũ+

δ ) dx+ δp
∫

Ω−

C0ε(ũ−δ ) : ε(ũ−δ ) dx+

+ δp+1

∫
ωm

C0eδ(ũmδ ) : eδ(ũmδ ) dz + δp+1

∫
Ωm

C1eδ(ũmδ ) : eδ(ũmδ ) dz ≤

≤
∫

Ω+

C0ε(ũ+
δ ) : ε(ũ+

δ ) dx+

∫
Ω−

C0ε(ũ−δ ) : ε(ũ−δ ) dx+

+ δ

∫
ωm

C0eδ(ũmδ ) : eδ(ũmδ ) dz + δp+1

∫
Ωm

C1eδ(ũmδ ) : eδ(ũmδ ) dz =

=

∫
∂Ω+∩ΓN

gũ+
δ ds+

∫
∂Ω−∩ΓN

gũ−δ ds− δr±(δ, ũ±δ , ũ
±
δ ) ≤ c.

Estimate (16) is followed from (10) and (12)-(14). �

Below we consider the limiting cases separately depending on the positive parame-
ter p.

4.1. Case 0 < p < 1 (homogeneous body). From (12), (15), and (16), we
conclude that there exists sequence still denoting by δ, functions u± ∈ H1(Ω±),
and σ1 ∈ L2(ΩM )4, such that the following convergences

ũ±δ → u± weakly in H1(Ω±),

δ
p+1
2 C1eδ(ũmδ )→ σ1 weakly in L2(Ωm)4,

δ
1
2C0eδ(ũmδ )→ σ1 weakly in L2(ωm)4,

(17) ũmδ,2 → um,2 = 0 strongly in L2(ΩM )2
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take place.
From (17) it follows that u is independent of z2. Moreover, the traces of the

functions u+ and u+ on the curve T coincide with each other (see [26]), i.e.,

(18) u−|T = u+|T .

Let us take a smooth function v ∈ C1(Ω) and de�ne functions

v± = v|Ω± , vm(z1, z2) = v(z1, ϕ(z1)).

Since vm does not depend on z2,

δ
p+1
2 eδ(vm)→ 0 strongly in L2(Ωm)4,

δ
1
2 eδ(vm)→ 0 strongly in L2(ωm)4.

After substituting (v−, v+, vm) in (7) and passing to the limit as δ → 0 we have

(19)

∫
Ω+

C0ε(u+) : ε(v+) dx+

∫
Ω−

C0ε(u−) : ε(v−) dx =

=

∫
∂Ω+∪ΓN

gv+ ds+

∫
∂Ω−∪ΓN

gv− ds,

Due to (18), variational equality (19) can be rewritten in an equivalent form

(20)

∫
Ω

C0ε(u) : ε(v) dx =

∫
ΓN

gv ds ∀v ∈ H1
ΓD (Ω),

where u ∈ H1
ΓD

(Ω) is de�ned as follows:

(21) u(x1, x2) =

{
u−(x1, x2), (x1, x2) ∈ Ω−,
u+(x1, x2), (x1, x2) ∈ Ω+

Problem (20) describes equilibria of an homogeneous body without any inclusions.

4.2. Case p = 1 (crack with adhesion of its faces). From Lemma 1 and
estimates (12)-(16) it follows

‖ũmδ ‖L2(ΩM )2 ≤ c,

uniformly with respect to δ.
Theorem 1 allows us to �nd a sequence still denoting by δ and functions u± ∈

H1
ΓD

(Ω±), um ∈ L2(ΩM )2, σ1 ∈ L2(ΩM )4 such that the following convergences

ũ±δ → u± weakly in H1
ΓD (Ω±),

ũmδ → um weakly in L2(Ωm)2,

ũmδ,2 → um,2 weakly in L2(Ωm)2,

δũmδ,1 → 0 weakly in L2(Ωm)2,

δũmδ,1 − ϕ′ũmδ,2 → −ϕ′um,2 weakly in L2(Ωm)2,

δ
1
2C1eδ(ũmδ )→ σ1 weakly in L2(ωm)4

hold as δ → 0. Then we have

(22) δC1eδ(ũmδ )→ σ0(um) weakly in L2(Ωm)4,
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where

σ0(um) =

(
−(λm + 2µm)ϕ′um1,2 + λmu

m
2,2 µm(um1,2 − ϕ′um2,2)

µm(um1,2 − ϕ′um2,2) (λm + 2µm)ũm2,2 − λmϕ′um1,2

)
.

Moreover, for any vm ∈ H1(Ωm)2 we have

(23) δeδ(vm)→ e0(v) strongly in L2(Ωm)4,

where

e0(vm) =

(
−ϕ′vm1,2 1

2 (vm1,2 − ϕ′vm2,2)
1
2 (vm1,2 − ϕ′vm2,2) vm2,2

)
.

Let us investigate properties limit functions. Firstly, by the same reasons as the
previous case, we have equality (18) on part T \ S of the curve T .

Then, take a function vm ∈ C∞0 (Ωm)2 and substitute a triplet (0, 0, vm) ∈ K in
variational equality (7) as a test function. After passing to the limit as δ → 0, due
to (22) and (23), we get ∫

Ωm

σ0(um) : e1(vm) dz = 0,

which is valid for all vm ∈ C∞0 (Ωm)2. Then there exist functions α1(z1) and α2(z1)
such that

(24) −ϕ′(z1)(µm+λm)um1,2 +(ϕ′2(z1)µm+(λm+2µm))um2,2 = α1(z1) a.e. in Ωm,

(25) ((λm + 2µm)ϕ′2(z1) + µm)um1,2 − ϕ′(z1)(µm + λm)um2,2 = α2(z1) a.e. in Ωm,

Integrating (24) and (25) with respect to z2 from ψ−(z1) to ψ+(z1), we �nd

α1(z1) =
−ϕ′(z1)(µm + λm)[u1] + (ϕ′2(z1)µm + (λm + 2µm))[u2]

ψ+(z1)− ψ−(z1)
,

α2(z1) =
((λm + 2µm)ϕ′2(z1) + µm)[u1]− ϕ′(z1)(µm + λm)[u2]

ψ+(z1)− ψ−(z1)
,

where [ui] = u+
i (z1, ϕ(z1))− u−i (z1, ϕ(z1)), z1 ∈ I1, i = 1, 2.

Note that system of algebraic equations (24), (25) for um1,2 and um2,2 is nondegene-

rate, because its determinant is equal to −µm(λm+2µm)((ϕ′)2 +1)2 and, therefore,
is non-zero. After obvious calculation, we �nd

umi,2(z1, z2) =
u+
i (z1, ϕ(z1))− u−i (z1, ϕ(z1))

ψ+(z1)− ψ−(z1)
, i = 1, 2.

Integrating this representation with respect to z2 from ψ+(z1) to z2, we get

(26) umi (z1, z2) =
u+
i (z1, ϕ(z1))− u−i (z1, ϕ(z1))

ψ+(z1)− ψ−(z1)
z2+

+
u−i (z1, ϕ(z1))ψ+(z1)− u+

i (z1, ϕ(z1))ψ−(z1)

ψ+(z1)− ψ−(z1)
,

i = 1, 2.
Let us �nd a variational problem for functions u±, um. For this, we take an

arbitrary function v ∈ C1(Ω)2 ∩H1,0(Ω \ S)2, where

H1,0(Ω \ S) = {v ∈ H1(Ω \ S) | v = 0 a.e. on ΓD},
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and de�ne a function vm = (vm1 , v
m
2 ) as follows:

(27) vmi (z1, z2) =
v+
i (z1, ϕ(z1))− v−i (z1, ϕ(z1))

ψ+(z1)− ψ−(z1)
z2+

+
−v+

i (z1, ϕ(z1))ψ−(z1) + v−i (z1, ϕ(z1))ψ+(z1)

ψ+(z1)− ψ−(z1)

in the domain Ωm;

(28) vmi (z1, z2) = v−i (z1, ϕ(z1)),

in the domain ωm, where v
± is a restriction of v onto Ω±, i = 1, 2. Since v ∈

C1(Ω)2 ∩H1,0(Ω \ S)2, we have

v−(z1, ϕ(z1)) = v+(z1, ϕ(z1)), z1 ∈ T \ S

and the function vm is de�ned correctly. Moreover,

δ
1
2 eδ(vm)→ 0 strongly in L2(ωm)4

as δ goes to 0.
Now substitute a triplet (v+, v−, vm) in (7) as a test function. After passing to

the limit as δ → 0, we get

(29)

∫
Ω+

C0ε(u+) : ε(v+) dx+

∫
Ω−

C0ε(u−) : ε(v−) dx+

∫
Ωm

σ0(um) : e1(vm) dz =

=

∫
∂Ω+∪ΓN

gv+ ds+

∫
∂Ω−∪ΓN

gv− ds.

Due to (26), (27), and (28) we can integrate the third term in (29) with respect
to z2. Finally, the function u

+ and u− satisfy the following variational equality:

(30)

∫
Ω+

C0ε(ũ+) : ε(v+) dx+

∫
Ω−

C0ε(ũ−) : ε(v−) dx+

∫
S

Aϕ[u] · [v]

ψ+ − ψ−
ds =

=

∫
∂Ω+∪ΓN

gv+ ds+

∫
∂Ω−∪ΓN

gv− ds ∀v ∈ H1,0(Ω \ S),

where v− and v+ are restrictions of v onto domains Ω− and Ω+, respectively;

Aϕ =
1

(1 + (ϕ′)2)
1
2

(
(λm + 2µm)ϕ′2 + µm −(λm + µm)ϕ′

−(λm + µm)ϕ′ λm + 2µm + µmϕ
′2

)
.

Due to the Korn inequality and the fact that matrix Aϕ is positive de�nite, the
problem (30) has the unique solution u+, u−.

Let us rewrite problem (30) in an equivalent form. Since u+ = u− a.e. on (∂Ω−∩
∂Ω+) \ S, the function u de�ned by (21) belongs to the space H1,0(Ω), and it is a
unique solution of the following variational problem:

(31)

∫
Ω

C0ε(u) : ε(v) dx+

∫
S

Aϕ[u] · [v]

ψ+ − ψ−
ds =

∫
ΓN

gv ds ∀v ∈ H1,0(Ω \ S).
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In the sense of distributions, problem (31) implies a solution of the following
boundary value problem:

−div σ(u) = 0, σ(u) = C0ε(u) in Ω \ S,

[σ(u)ν] = 0 on S,

σ(u)ν =
Aϕ[u]

ψ+ − ψ−
on S,

u = 0 on ΓD, σ(u)ν = g on ΓN .

Note that the interfacial condition on S is generalized known ones because it
takes into account simultaneously both curvature and roughness of the inclusion
(see, e.g., [1, 2, 4, 22, 18]).

Let us analyze the interface condition in the di�erential formulation of the
equilibrium problem. De�ne by uν and uτ normal and tangential components of
the displacement vector on the crack S; and denote by σν and στ the shear and
normal components of the traction σν on S, i.e.,

uν = uν = uiνi, uτ = uτ = uiτi,

σν = (σν)ν = σijνiνj , στ = (σν)τ = σijνiτj ,

where ν and τ are unit normal and tangent vectors to S, respectively,

ν =
(−ϕ′, 1)

(1 + (ϕ′)2)
1
2

, τ =
(1, ϕ′)

(1 + (ϕ′)2)
1
2

.

After simple calculations we get

Aϕ[u] = (λm + 2µm)[uν ]ν + µm[uτ ]τ.

Then the interface condition on the crack S can be rewritten as follows:

σν = (λm + 2µm)
[uν ]

ψ+ − ψ−
, στ = µm

[uτ ]

ψ+ − ψ−
.

It is seen the shear and normal components of the traction are proportional to
the jump of normal and tangential components of the displacements, respectively.
These conditions, known in interface models of Elasticity as spring type conditions,
is derived for crack case.

4.3. Case p > 1 (crack with stress-free faces). Again from Lemma 1, estimates
(13) and (14) we can conclude that there exists sequence still denoting by δ, and
functions u± ∈ H1(Ω±), σ0 ∈ L2(Ωm)4, such that the following convergences

ũ± → u± weakly in H1
ΓD (Ω±),

δ
p+1
2 C1eδ(ũmδ )→ σ0 weakly in L2(Ωm)4

hold. Moreover, for any vm ∈ H1(Ωm) we have

δ
p+1
2 eδ(vm)→ 0 strongly in L2(Ωm)4.

To �nd a problem for u±, take v ∈ C1(Ω)∩H1,0(Ω\S) and de�ne in the domain
ΩM a function vm by (27) and (28). Then we substitute a triplet (v+, v−, vm) in
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(7) as a test function. After passing to the limit as δ → 0, we have the following
variational equality:

(32)

∫
Ω+

C0ε(u+) : ε(v+) dx+

∫
Ω−

C0ε(u−) : ε(v−) dx =

=

∫
∂Ω+∪ΓN

gv+ ds+

∫
∂Ω−∪ΓN

gv− ds.

As before, we de�ne a function u by (21). Then variational equality (32) can be
rewritten in the following for:

(33)

∫
Ω\S

C0ε(u) : ε(v) dx+

∫
ΓN

gv ds ∀v ∈ H1,0(Ω \ S).

It is known that (33) describes equilibria of an elastic body with the crack S.
In the sense of distributions, the function u satis�es the following boundary value
problem:

−div σ(u) = 0, σ(u) = C0ε(u) in Ω \ S,

σ(u)ν = 0 on S.

u = 0 on ΓD, σ(u)ν = g on ΓN .
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