СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports http://semr.math.nsc.ru

Том 2, стр. 194–195 (2005) Краткие сообщения УДК 515.16 MSC 57M99

THE EXTENDED COMPLEXITY OF THREE-MANIFOLDS

O. SHATNYKH

By the complexity of a 3-manifold M we mean the number of true vertices of a minimal almost simple spine of M. Denote by M_F the 3-manifold obtained by cutting M along a proper surface F. We investigate the relation between the complexity of M and the complexity of M_F . In general, the complexity can become greater. For example, let N be a regular neighborhood of a knot $K \subset S^3$ different from the unknot and the trefoil knot. After cutting S^3 along $F = \partial N$ we get the disjoint union of the complement C(K) of K and the solid torus. The complexity of S^3 is equal to 0, but the complexity of C(k) is greater than 0. Hence, $c(S^3) < c(S_F^3)$. The natural explanation of the growth of the complexity is that F is compressible. If F is incompressible, then $c(M) \leq c(M_F)$, see [1]. Moreover, if $F = D^2, S^2$, or Fis a surface parallel to ∂M , then $c(M) = c(M_F)$.

For the sake of inductive proofs it seems to be desirable to extend the notion of complexity such that the extended complexity would *decrease* under cutting along any essential incompressible surface. One of possible versions of such complexity was introduced in [1]: the extended complexity of a 3-manifold M is the triple $\overline{c}(M) = (c(M), c_1(M), c_2(M))$, where c(M) is the usual complexity of M, $c_1(M)$ is the minimum number of triple circles of almost simple spines of M with c(M) vertices, and $c_2(M)$ is the minimum number of 2-components of almost simple spines of M having c(M) vertices and $c_1(M)$ triple circles.

Theorem 1.[1] Let F be a connected proper incompressible surface in a 3-manifold M such that $\partial F \neq \emptyset$. Then $\overline{c}(M_F) \leq \overline{c}(M)$. If, in addition, F is a boundary incompressible surface not homeomorphic to a dick, then $\overline{c}(M_F) < \overline{c}(M)$.

The following example shows that the condition $\partial F \neq \emptyset$ is essential.

Example. Let G be the boundary of a handlebody of genus two and L be a middle circle of G (Fig.1). Consider the 2-dimensional polyhedron $P = \partial(G \times I) \cup$

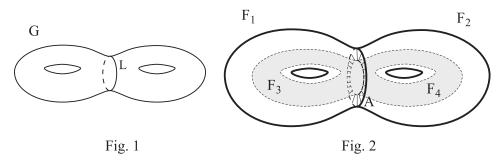
© 2005 Shatnykh O.

Shatnykh, O., Extended complexity of three-manifolds.

The work is supported by Russian Foundation for Basic Research (05-01-00293).

Communicated by S.V. Matveev October 15, 2005, published October 17, 2005.

 $(L \times I)$. Note that P admits a natural embedding into R^3 and can be obtained by attaching four punctured 2-dimensional tori F_i , $1 \le i \le 4$, to an annulus A, see Fig 2. Evidently, P has no true vertices and consists of two triple circles and five two-components.



Consider a regular neighborhood M of P in \mathbb{R}^3 . Then M is a 3-manifold with the spine P and $\overline{c}(M) = \overline{c}(P) = (0, 2, 5)$. Let us cut M along the closed surface $F = F_1 \cup A \cup F_4$. Then M_F consists of two connected components M_1, M_2 , each obtained by identifying the boundary circles of three punctured tori. One can easily show that the extended complexity of each of M_1, M_2 is equal to (0, 1, 3). Therefore, the extended complexity of M_F is (0, 2, 6) and $\overline{c}(M_F) > \overline{c}(M)$.

References

 Matveev, S., Algoritmic Topology and Classification of 3-Manifolds, Springer-Verlag, Berlin, Heidelberg, 2003.

Olesya Shatnykh Chelyabinsk State University, ul. Brat'ev Kashirinykh 129, 454021, Chelyabinsk, Russia *E-mail address*: shon@csu.ru