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SOME RESULTS AND CONJECTURES ON FINITE GROUPS

ACTING ON HOMOLOGY SPHERES

B.P. ZIMMERMANN

Abstract. This is a note based on a talk given in the Workshop on

geometry and topology of 3-manifolds, Novosibirsk, 22-26 August 2005.

We consider the class of finite groups, which admit arbitrary, i.e. not

necessarily free actions on integer and mod 2 homology spheres, with an

emphasis on the 3- and 4-dimensional cases. We recall some classical

results and present some recent progress as well as new results, open

problems and the emerging conjectural picture of the situation.

We are interested in the class of finite groups, and in particular in finite non-
solvable and simple groups, which admit actions on integer and mod 2 homology
spheres (arbitrary, i.e. not necessarily free actions), with an emphasis on the 3- and
4-dimensional case. We present some classical results, some recent progress as well
as new results, open problems and the emerging conjectural picture of the situation.

1. Basic problem. Which finite groups G admit orientation-preserving smooth
actions on certain classes of manifolds: spheres Sn, integer homology spheres, mod
2 homology spheres (i.e., homology with coefficients in the integers Z2 mod 2).

We consider only orientation-preserving, faithful, but not necessarily free actions
(in general, the free case is classical, the main new results presented concern nonfree
actions). Particular emphasis will be on dimension three. We note that every finite
group admits a free action on a rational homology 3-sphere [4]. Also, any finite
group admits a faithful orthogonal action on a sphere (by choosing a linear faithful
representation); on the other hand, the classes of groups admitting free actions on
integer or mod 2 homology spheres are very restricted.

The most important single case is that of the 3-sphere. If an action of a finite
group G on S3 is nonfree then, by Thurston’s orbifold geometrization theorem, it is
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conjugate to a finite subgroup of the orthogonal group SO(4). If the action of G is
free then, as part of the spherical case of the 3-manifold geometrization conjecture,
G is again conjugate to a subgroup of SO(4); an approach to a proof of this has
recently been given by Perelman.

2. Finite subgroups of SO(4). There is an isomorphism SO(4) ∼= S3×Z2
S3 of

SO(4) with the central product of two copies of the unit quaternions S3 (the direct
product with identified centers Z2 = ±1). Given an element (q1, q2) in S3 ×Z2

S3,
it acts on S3 by the orthogonal map x → q1xq−1

2
. Also, there is a 2-fold covering of

Lie groups S3 → SO(3), with kernel Z2 = ±1; an element q ∈ S3 acts orthogonally
on S3 by x → qxq−1, fixing ±1 ∈ S3 and hence mapping S2 ⊂ S3 to itself.

The finite subgroups of SO(3) are the polyhedral groups which are cyclic Zn, di-
hedral D2n, tetrahedral A4, octahedral S4 or dodecahedral A5. The finite subgroups
of S3 are their preimages is S3 which are the binary polyhedral groups: these are
cyclic, binary dihedral (or generalized quaternion) D

∗

2n
, binary tetrahedral A

∗

4
, bi-

nary octahedral S
∗

4 or binary dodecahedral A
∗

5. Hence, the finite subgroups of SO(4)
∼= S3 ×Z2

S3 are exactly the subgroups of the central products A1 ×Z2
A2 where A1

and A2 are binary polyhedral groups.
The most interesting example of a finite subgroup of SO(4) is the central product

A∗

5
×Z2

A∗

5
of two binary dodecahedral groups. This is the orientation-preserving

symmetry group of the 4-dimensional regular 120-cell, or the lift of an isometry
group A5 of the Poincaré sphere S3/A

∗

5 to its universal covering S3 (tesselated
by 120 spherical dodecahedral with dihedral angles 2π/3). Note that A∗

5
×Z2

A∗

5

contains A5 as diagonal subgroup, and also a subgroup A5 × Z2.

3. Results. It is a general principle in finite transformation groups to com-
pare general actions on spheres and homology spheres with orthogonal actions on
spheres. The results depend strongly on the type of finite groups considered:

- cyclic groups of prime power order: among the first important results there is
the fixed point theory of Smith which implies that the fixed point set of an action
of a cyclic group of prime power order on a homology sphere is again a homology
sphere (see e.g. [2]);

- finite p-group and abelian groups: by [6] and [5], any finite p-group and any
finite abelian group which acts on a homology sphere admits also an orthogonal
action on a sphere of the same dimension (and with the same dimension function
for the fixed point sets of subgroups); this remains no longer true for more general
classes of groups:

- solvable groups: by [11], some of the Milnor groups Q(8a, b, c) ([12]) admit a free
action on a homology 3-sphere but no orthogonal action on S3; the recent results
of Perelman imply that they do not act freely on S3;

- nonsolvable groups: the linear groups SL(2, p) admit free actions on spheres
([8]) but no orthogonal free actions, for primes p > 5.

In the 3-dimensional case, the class of finite nonsolvable groups acting on homol-
ogy 3-spheres is close to the class of finite nonsolvable subgroups of SO(4):

Theorem 1 ([9]). A finite nonsolvable group of orientation-preserving diffeomor-
phisms of an integer homology 3-sphere is isomorphic to one of the following groups:

A5, A5 × Z2, A
∗

5 ×Z2
C, A

∗

5 ×Z2
A

∗

5
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where C is solvable with a unique involution. Each involution of A5 has nonempty
fixed point set, and each of the groups A

∗

5 and C acts freely.

Hence, for a complete classification, it would remain to show that C is one of
the polyhedral groups: then the class of nonsolvable groups acting on a homology
3-sphere would coincide with the class of finite nonsolvable subgroups of SO(4);
however, at present we cannot exclude the Milnor groups Q(8a, b, c) (see [16]).

In the following, we restrict further to the case of finite simple and quasisimple
groups. We note that a finite (nonabelian) simple group does not act freely on a
mod 2 homology sphere (each such group has a subgroup Z2×Z2 which does not act
freely); the corresponding candidates for free actions are the quasisimple groups;
by definition, these are the perfect central extensions of simple groups (see [14]).
Examples are the special linear groups SL(2, q), with center ±I of order two and
central quotient SL(2, q)/±I isomorphic to the projective linear or linear fractional
group PSL(2, q) which is simple (q = pn denotes an odd prime power greater than
three).

Corollary 1. a) The only finite simple group acting on a homology 3-sphere is the
dodecahedral group A5

∼= PSL(2, 5).
b) The only finite perfect or quasisimple group acting freely on a homology 3-

sphere is the binary dodecahedral group A
∗

5
∼= SL(2, 5).

The second result on free actions is classical. If a finite group acts freely on
a homology sphere then it has periodic cohomology (and at most one involution
by [12]), and these groups have been classified by Zassenhaus in the solvable and
Suzuki in the nonsolvable case (see e.g. [1]). Passing to dimension four, the following
holds.

Theorem 2 ([10]). A finite simple group acting on a homology 4-sphere is isomor-
phic to A5

∼= PSL(2, 5) or A6
∼= PSL(2, 9).

In dimension 5, there occur the simple groups A5, A6, A7 and its subgroup
PSL(2, 7), and the unitary group U4(2) (a subgroup of index two in the Weyl group
of type E6 which has a 6-dimensional integer linear presentation); we suppose that
these are all but do not have a proof at present.

The situation for mod 2 homology spheres is quite different.

Theorem 3 ([9]). A finite simple group acting on a Z2-homology 3-sphere is iso-
morphic to PSL(2, q), for an odd prime power q > 3.

We do not have a classification but examples for many small values of q (see
[17]); it seems likely that all groups PSL(2, q) occur. For free actions, the following
holds (see [8, 13]).

Theorem 4. a) A quasisimple group acts freely on a Z2-homology sphere if and
only if it is isomorphic to SL(2, q), for an odd prime power q > 3, or to the unique

perfect central extension Â7 of A7, with center of order two.
b) A perfect or quasisimple group acts freely on a homology sphere if and only if

it is isomorphic to SL(2, p), for a prime p > 3.

The existence of free actions in a) follows from [13]; it is likely that all groups
SL(2, q) in a) occur already in dimension three (and this might follow from the
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high-dimensional surgery methods applied in [13], dropping the condition of simply-
connectivity of the resulting manifolds). In order to state a generalization of a) for
arbitrary nonsolvable groups, we introduce some notation.

For a generator ω of the multiplicative group of the finite field with q = pn

elements, consider the matrix

y =

(

0 −1
ω 0

)

in GL(2, q); note that y induces, by conjugation, an automorphism of order two of
SL(2, q). Let

TL(2, q) = < SL(2, q), Y | Y 2 = −I, Y −1gY = y−1gy for g ∈ SL(2, q) >

which is a 2-fold extension of SL(2, q) with a unique involution −I; this involution
generates the center of TL(2, q), with factor group isomorphic to PGL(2, q) (see
also [1, chapter IV.6],[8]).

For a finite group G, we denote by O(G) the maximal normal subgroup of odd
order of G [13, p.392]. As a consequence of some deep results from finite group
theory and finite transformation groups, the finite nonsolvable groups admitting
free actions on Z2-homology spheres can be characterized as follows.

Theorem 5. A finite nonsolvable group G admits a free action on a Z2-homology
sphere if and only if G/O(G) contains a normal subgroup G0, of odd index with
cyclic factor group, isomorphic to

SL(2, q), TL(2, q) or Â7,

for an odd prime power q > 3; also, the unique involution of G0 induces the trivial
outer automorphism of O(G).

These groups are exactly the nonsolvable groups which have generalized quater-
nion Sylow 2-subgroups (or equivalently, 2-period four), and a unique involution.
Which of these groups admit actions already in dimension three, i.e. on a Z2-
homology 3-sphere? We note that the Milnor groups Q(8a, b, c), of period four,
admit free orthogonal actions on S7 but that, by [7], various of these groups do not
admit an action on a Z2-homology 3-sphere.

Proof of Theorem 5. Let G be a finite group acting freely on a Z2-homology
sphere. We can assume that a Sylow 2-subgroup S of G is nontrivial (otherwise, by
the Feit-Thompson theorem, G is solvable). By [2, p.148,Theorem 8.1], the group
Z2×Z2 does not act freely on a Z2-homology sphere, so G and S have no subgroups
Z2 × Z2. Since the center of the finite 2-group S is nontrivial and contains an
involution, it follows that S has a unique involution. By a theorem of Burnside
[3, p.99, Theorem 4.3], S is either cyclic or a generalized quaternion group. If S is
cyclic, by [14, chapter 5.2, Corollary 2] the group G is solvable. So we can assume
that S is a generalized quaternion group. Now by Theorem 8.7 and its proof in [14,
chapter 6], the group G is either solvable, or G/O(G) has a normal subgroup G0

isomorphic to SL(2, q), TL(2, q) or Â7, of odd index and with cyclic factor group
(the only central extension of PSL(2, q), with center of order two and no subgroups
Z2 ×Z2 (or equivalently, with quaternion Sylow 2-subgroups), is SL(2, q); also, the
only 2-fold extension of SL(2, q), with central quotient PGL(2, q) and without
subgroups Z2 × Z2, is TL(2, q)). By [12], G has a unique involution (representing
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the unique involution of G0); this involution is central in G and hence acts trivially
on O(G).

Conversely, suppose that G is of the form described in Theorem 1. Then the
Sylow 2-subgroups of G are generalized quaternion groups (in particular, G is "2-
periodic"). Since the unique involution of G0 induces the trivial outer automorphism
of O(G), G has a unique involution. Now by [13, Theorem A], G acts freely on a
simply connected Z2-homology sphere (of a dimension determined by the 2-period
of G: this is a mod 2 version of the solution of the spherical space from problem
solved in [8] where the existence of free actions on spheres of periodic groups with
a unique involution is established). This finishes the proof of Theorem 5.

4. Conjectural picture of the situation.

Integer homology spheres. In each dimension, there are only finitely many
groups PSL(2, q) (and, more generally, only finitely many finite nonabelian simple
groups) acting on an integer homology sphere. What is the minimal dimension such
that PSL(2, q) acts?

Remark. The minimal dimension of an orthogonal action of PSL(2, q) on a
sphere is (q− 1)/2 if q ≡ 1 mod 4, and q− 2 if q ≡ 3 mod 4, and it is likely that the
minimal dimensions for arbitrary and for orthogonal actions coincide. The minimal
possible dimension for a free action of SL(2, p) is lcm(4, p− 1)− 1 where the least
common multiple lcm(4, p − 1) is the cohomological period of SL(2, p), and the
existence of free actions on spheres is proved in [8]. For p > 5, these actions are
necessarily non-orthogonal: by a result of Zassenhaus, the only finite perfect group
acting orthogonally and freely on a homology sphere is the binary dodecahedral
group A

∗

5
∼= SL(2, 5) (see e.g. [15]).

Mod 2 homology spheres. Let q denote an odd prime power.
a) All groups PSL(2, q) admit an action on a Z2-homology 3-sphere.
b) All groups SL(2, q) admit a free action on a Z2-homology 3-sphere.

As noted above, b) might follow from the high-dimensional surgery methods
employed in [13]. We have explicit examples of actions of groups PSL(2, q) on Z2-
homology 3-spheres for many small values of q [17]. We found it more difficult to
construct such examples for free actions of the groups SL(2, q), in fact except for
the ubiquitous A

∗

5
∼= SL(2, 5) we found such examples so far only for the groups

SL(2, 7) and SL(2, 9):

Theorem 6. The groups SL(2, 7) and SL(2, 9) admit free actions on hyperbolic
Z2-homology 3-spheres. In particular, the 4-fold cyclic branched covering of the
figure-8 knot admits a regular SL(2, 7)-covering which is a hyperbolic Z2-homology
3-sphere. Similarly, the 4-fold cyclic branched covering of the knot 52 admits a
regular SL(2, 9)-covering which is a hyperbolic Z2-homology 3-sphere.

The examples, and in particular the homology of the manifolds, were obtained
with the support of the group theory package GAP.
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