S@MR

ISSN 1813-3304

СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports http://semr.math.nsc.ru

Том 2, стр. 291-307 (2005)

УДК 533+517.958 MSC 34A09, 76N15

СИММЕТРИИ И РЕШЕНИЯ УРАВНЕНИЙ ДВУМЕРНЫХ ДВИЖЕНИЙ ПОЛИТРОПНОГО ГАЗА

А.С. Павленко

ABSTRACT. The optimal system of subalgebras for the 9-dimensional Lie algebra was constructed. This system classifies invariant submodels of equation governing the motion of polytropic gas with polytrope-exponent $\gamma = 2$. Invariant submodels of rank equal to 0 were found and their physical properties were described.

1. Введение

В программе ПОДМОДЕЛИ [1] предложена концепция исследования методами симметрийного анализа [2] различных математических моделей, в частности, моделей механики сплошных сред. За счет использования симметрий рассматриваемой модели осуществляется редукция к её подмоделям, в результате понижается размерность уравнений и упрощается их интегрирование. Каждая такая подмодель, в зависимости от заложенных в неё свойств симметрии, описывает инвариантные, частично инвариантные или дифференциально инвариантные решения. Классификация подмоделей с неподобными решениями определяется оптимальной системой подалгебр ΘL алгебры Ли L, допускаемой уравнениями исходной модели.

Рядом авторов построены оптимальные системы подалгебр [2]-[5] для различных моделей газовой динамики и проведено систематическое исследование их подмоделей. В работе [6] построена оптимальная система подалгебр с проективной симметрией для модели неизэнтропических движений политропного

PAVLENKO A.S., SYMMETRIES AND SOLUTIONS TO EQUATIONS OF TWO-DIMENSIONAL MOTIONS OF POLYTROPIC GAS.

^{© 2005} Павленко А.С.

Работа поддержана РФФИ (грант №02-01-00550) и Фондом "Ведущие научные школы"(грант № НШ-440.2003.1).

Поступила 27 сентября 2005 г., опубликована 22 декабря 2005 г.

газа. В данной работе исследуется модель двумерных изэнтропических движений политропного газа с показателем адиабаты $\gamma = 2$, описываемая системой дифференциальных уравнений

(1)
$$D\mathbf{u} + 2c\nabla c = 0, \ 2Dc + c\operatorname{div}\mathbf{u} = 0,$$

где $D = \partial_t + \mathbf{u} \cdot \nabla$, $\nabla = (\partial_x, \partial_y)$, $\mathbf{u} = (u, v)$ – вектор скорости, с – скорость звука. Искомые функции c, u, v зависят от времени t и пространственных координат x, y. Отметим, что уравнения (1) являются уравнениями мелкой воды, в которых глубина жидкости определяется $h = \sqrt{c}$.

Уравнения (1) допускают девятимерную алгебру Ли L_9 , порождаемую операторами [7]

(2)

$$X_{1} = \partial_{x}, X_{2} = \partial_{y}, X_{4} = t\partial_{x} + \partial_{u}, X_{5} = t\partial_{y} + \partial_{v},$$

$$X_{9} = x\partial_{y} - y\partial_{x} + u\partial_{v} - v\partial_{u}, X_{10} = \partial_{t},$$

$$X_{11} = x\partial_{x} + y\partial_{y} + c\partial_{c} + u\partial_{u} + v\partial_{v},$$

$$X_{12} = t^{2}\partial_{t} + tx\partial_{x} + ty\partial_{y} - tc\partial_{c} + (x - tu)\partial_{u} + (y - tv)\partial_{v}$$

$$X_{13} = 2t\partial_{t} + x\partial_{x} + y\partial_{y} - c\partial_{c} - u\partial_{u} - v\partial_{v}.$$

Для единообразия представления результатов, в (2) применяется нумерация операторов X_i , использованная в работах [3, 4]. Операторы растяжения $X_{11}^* = t\partial_t + x\partial_x + y\partial_y$, $X_{13}^* = t\partial_t - c\partial_c - u\partial_u - v\partial_v$, использованные в [3, 4], заменены их комбинациями $X_{11} = (X_{11}^* + X_{13}^*)/2$, $X_{13} = (-X_{11}^* + X_{13}^*)/2$. Это сделано в целях удобства построения оптимальной системы подалгебр ΘL_9 , поскольку операторы X_{10} , X_{12} , X_{13} образуют фактор Леви алгебры L_9 .

2. Оптимальная система подалгебр

Пусть G есть группа Ли, допускаемая уравнениями E рассматриваемой модели, L её алгебра Ли и $H \subset G$ подгруппа G. Подмодель (факторсистема) E/H выделяется из уравнений модели E добавлением дополнительных соотношений на инварианты подгруппы H. Решения подмодели E/H называются H-решениями. Если подгруппы H_1 , H_2 группы G сопряжены внутренним автоморфизмом группы G, то соответствующие H_1 и H_2 решения подобны: одно решение получается из другого заменой переменных. Классификация неподобных решений определяется оптимальной системой подалгебр ΘL алгебры Ли L — полным списком подалгебр, несопряженных внутренними автоморфизмами алгебры L. Построение оптимальной системы подалгебр ΘL_9 алгебры Ли L сводится к разбиению множества $\{K\}$ подалгебр $K \subset L$ на классы эквивалентности относительно действия группы внутренних автоморфизмов G_a алгебры L, и выбору по одному представителю из каждого класса.

Оптимальная система подалгебр называется *нормализованной*, если с каждой подалгеброй $K \in \Theta L$ в оптимальной системе содержится и её нормализатор Nor_L $K \in \Theta L$. Любую оптимальную систему подалгебр можно привести к нормализованному виду. Нормализованная оптимальная система позволяет априори частично указывать симметрии подмоделей в соответствии со следующим свойством: подмодель E/H допускает фактор-группу (Nor_GH)/H. Требование нормализованности оптимальной системы также возникает при построении иерархии подмоделей в связи с применением леммы Ли-Овсянникова-Талышева [8] для редукции двухступенчатых подмоделей к одноступенчатым, что позволяет уменьшить число подлежащих исследованию подмоделей. Для построения оптимальной системы подалгебр ΘL_9 применяется метод, указанный в [9]. В соответствии с ним выбирается композиционный ряд идеалов алгебры L_9

$$0 \subset \{X_1, X_2, X_4, X_5\} \subset J \subset L_9$$

и разложение алгебры Ли $L_9 = J \oplus N$ в полупрямую сумму радикала $J = \{X_1, X_2, X_4, X_5, X_9, X_{11}\}$ и фактора Леви $N = \{X_{10}, X_{12}, X_{13}\}.$

Группа внутренних автоморфизмов G_a алгебры L_9 порождается набором однопараметрических групп внутренних автоморфизмов $l_{a_k} : L_9 \to L_9$ ($k \in \mathcal{J} = \{1, 2, 4, 5, 9, 10, 11, 12, 13\}$), действующих на L_9 как линейные преобразования

(3)
$$l_{a_k}: X_i \to \exp(a_k \operatorname{ad} X_k) X_i, \quad i \in \mathcal{J},$$

где $(adX_k)^m X_i = (adX_k)^{m-1} [X_k, X_i], (adX_k)^0 X_i = X_i.$ Коммутаторы $[X_k, X_i] = X_k X_i - X_i X_k$ операторов X_k и X_i приведены в таблице 1,

	1	2	4	5	9	11	10	12	13
1	0	0	0	0	2	1	0	4	1
2	0	0	0	0	-1	2	0	5	2
4	0	0	0	0	5	4	-1	0	-4
5	0	0	0	0	-4	5	-2	0	-5
9	-2	1	-5	4	0	0	0	0	0
11	-1	-2	-4	-5	0	0	0	0	0
10	0	0	1	2	0	0	0	13	(2)10
12	-4	-5	0	0	0	0	-13	0	-2(12)
13	-1	-2	4	5	0	0	-(2)10	(2)12	0

ТАБЛИЦА 1. Таблица коммутаторов L₉

В таблице 2 приведены матрицы $A_k(a_k)$ линейных преобразований l_{a_k} , действующих на координаты вектора $X = \sum_{i \in \mathcal{J}} x^i X_i \in L^9$ как на вектор-столбец $(x^i)_{i \in \mathcal{J}}$. Для удобства записи введены обозначения

$$p_1 = (x^1, x^2), \ p_2 = (x^4, x^5), \ p_3 = (x^{10}, x^{12}, x^{13}),$$

для проекций вектора X на подпространства $\{X_1, X_2\}, \{X_4, X_5\}, N$. Параметры a_k сгруппированы аналогичным образом

$$e_1 = (a_1, a_2), \ e_2 = (-a_2, a_1), \ e_3 = (a_4, a_5), \ e_4 = (-a_5, a_4).$$

Введем произведения автоморфизмов $= A_1(a_1)A_2(a_2), T = A_4(a_4)A_5(a_5),$ матрицу вращений в двумерном пространстве S и матрицы

$$R_{10} = \begin{pmatrix} 1 & \alpha_{10}^2 & 2\alpha_{10} \\ 0 & 1 & 0 \\ 0 & \alpha_{10} & 1 \end{pmatrix}, R_{12} = \begin{pmatrix} 1 & 0 & 0 \\ \alpha_{12}^2 & 1 & 2\alpha_{12} \\ \alpha_{12} & 0 & 1 \end{pmatrix}, R_{13} = \begin{pmatrix} b^{-2} & 0 & 0 \\ 0 & b^2 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

В таблице 2 приведены также инволюции ε_1 , ε_2 (автоморфизмы L_9 , квадрат которых даёт тождественное преобразование). Они определяются дискретными преобразованиями допускаемыми системой (1)

(4)
$$I^1: (t, \mathbf{x}, c, \mathbf{u}) \to (t^{-1}, t^{-1}\mathbf{x}, tc, \mathbf{x} - t\mathbf{u})$$

(5)
$$I^2: (t, \mathbf{u}) \to -(t, \mathbf{u}).$$

	p'_1	p'_2	p'_3
Т	$p_1 + e_1(x^{11} + x^{13}) + e_2 x^9$	$p_2 + e_1 x^{12}$	p_3
Г	$p_1 - e_3 x^{10}$	$p_2 + e_3(x^{11} - x^{13}) + e_4 x^9$	p_3
S	Sp_1	Sp_2	p_3
A_{11}	$a_{11}p_1$	$a_{11}p_2$	p_3
A_{13}	$a_{13}^{-1}p_1$	$a_{13}p_2$	$R_{13}p_3$
A_{10}	$p_1 + a_{10}(x^4, x^5)$	p_2	$R_{10}p_3$
A_{12}	$p_1 + a_{12}(x^1, x^2)$	p_2	$R_{12}p_3$
ε_1	p_2	p_1	$-(x^{12},x^{10},x^{13})$
ε_2	p_1	$-p_{2}$	$(-x^{10}, -x^{12}, x^{13})$

Таблица 2. Внутренние автоморфизмы алгебр
ы ${\cal L}_9$

Преобразование I_1 и соответствующая ему инволюция ε_1 были указаны в [4]. Отметим следующее свойство

Предложение 1. Инволюция ε_1 содержится в группе внутренних автоморфизмов алгебры Ли L.

Доказательство. Непосредственным вычислением проверяется, что инволюция ε_1 есть композиция однопараметрических групп внутренних автоморфизмов

(6)
$$\varepsilon_1 = A_{10}(1)A_{12}(1)A_{10}(1).$$

Преобразование I_1 получается как композиция однопараметрических групп преобразований, порожденных операторами X_{10} , X_{12} , X_{10} , где, в соответствии с (6), все групповые параметры нужно положить равными единице. Однапараметрические группы преобразований, порождаемые операторами X_{10} и X_{12} , имеют вид

$$t' = t + a, \, x' = x, \, y' = y, \, c' = c, \, u' = u, \, v' = v$$

И

(7)
$$t' = \frac{t}{1-at}, x' = \frac{x}{1-at}, y' = \frac{y}{1-at}, c' = c(1-at), u' = u(1-at) + ax, v' = v(1-at) + ay$$

соответственно. 🗆

На первом этапе реализации двухэтапного алгоритма [9] строится нормализованная оптимальная система подалгебр $\Theta N=\{N_p|p\in P\}$ простой алгебры ЛиN.Она состоит из шести представителей

(8)
$$N_1 = \{0\}, N_2 = \{X_{10}\}, N_3 = \{X_{13}\}, N_4 = \{X_{10} + X_{12}\}, N_5 = \{X_{10}, X_{12}\}, N_6 = N.$$

Операторы X_{10} и X_{12} переводятся друг в друга инволюцией ε_1 . Выбор оператора $\{X_{10}\}$ в качестве представителя ΘN обеспечивает более простой вид факторсистем соответствующих подмоделей. Для каждого представителя N_p находится стабилизатор $S_p \subset A$ подалгебры N_p в L_9 .

На втором этапе строятся оптимальные системы $\Theta_{S_p}(J \oplus N_p), p \in \{1, \ldots, 6\}$, в совокупности дающие оптимальную систему ΘL_9 . Некоторые подалгебры оптимальной системы ΘL_9 объединены в серии подалгебр с параметрами a, b. В приложении приведена нормализованная оптимальная система ΘL_9 , содержащая 179 представителей, каждый из которых является подалгеброй или серией подалгебр.

3. Простые решения

Инвариантные решения ранга нуль называются «простыми» решениями [10]. Для уравнений (1) источником простых решений служат трехмерные подалгебры оптимальной системы ΘL_9 , инварианты I_1, I_2, I_3 которых удовлетворяют условию существования простых решений

(9)
$$\operatorname{rank}\left(\frac{\partial(I_1, I_2, I_3)}{\partial(c, u, v)}\right) = 3.$$

В представлении решения для этих подмоделей искомые функции c, u, v выражаются через инвариантные константы C, U, V, параметры a, b, c серии подалгебр и переменные t, x, y. Подстановка в (1) представления решения подмодели дает факторсистему, которая состоит из алгебраических соотношений на константы C, U, V и параметры a, b.

Из 49 трехмерных представителей оптимальной системы ΘL_9 только 29 удовлетворяют условию существования простых решений (9). Из них всего 11 подмоделей удовлетворяют следующим условиям: их факторсистемы совместны, решения имеют физический смысл ($c \ge 0$) и не сводятся к одномерным движениям газа. В таблице 3 для каждой из этих подмоделей указаны формулы решения c, u, v в декартовых координатах или c, u^c, v^c в цилиндрических.

ПодмоделиРепния $\Pi(3,15)$ c = 1, u = 0, v = x $\Pi(3,22), \Pi(3,48)$ $c = r^{\delta}/\sqrt{2\delta}, u^c = 0, v^c = r^{\delta}, \quad \delta = \text{const}$ $\Pi(3,26)$ $c = 1/\sqrt{t}, u = x/t, v = ax/t$ $\Pi(3,33)$ $c = Cr/t, u^c = r/(2t), v^c = Vr/t, \quad V^2 - 2C^2 = -1/4$ $\Pi(3,34), \Pi(3,35), \Pi(3,36)$ $c = \frac{1}{\sqrt{t^2 + 1}}, u = \frac{tx - ay}{t^2 + 1}, v = \frac{x + aty}{a(1 + t^2)}$ $\Pi(3,38)$ $c = C \frac{-tx + y}{(t^2 + 1)^{3/2}}, u = \frac{tx - y}{t^2 + 1} + C^2 \frac{tx - y}{(t^2 + 1)^2}, v = C^2 \frac{t(tx - y)}{(t^2 + 1)^2} + \frac{ty + x}{t^2 + 1}$ $\Pi(3,39)$ $c = C \frac{r}{t^2 + 1}, u^c = r \frac{t}{t^2 + 1}, v^c = V \frac{r}{t^2 + 1}, \quad V^2 - 2C^2 = 1$ $\Pi(3,44)$ $c = C, u = 0, v = (V + \ln x)/2$

ТАБЛИЦА 3. Инвариантные решения ранга 0

Отметим, что решения для всех подмоделей, кроме (3, 44), имеют линейное поле скоростей. Подмодели П(3,15), П(3,44) описывают стационарное сдвиговое движение газа вдоль оси Оу. Подмодели П(3,22), П(3,48) описывают стационарное вращательное движение частиц газа по окружностям $r = r_0$ с угловой скоростью $\omega = r_0^{\delta-1}$, случай $\delta = 1$ соответствует твердотельному вращению газа. Решения П(3,34), П(3,35), П(3,36), П(3,38), П(3,39) получены в [6] для неизэнтропических движений политропного газа. Подмодели (3, 26), (3, 34), (3, 35), (3, 36), (3, 44) описывают барохронное движение газа [11]. Общее решение уравнений барохронных движений газа, полученное в [11], имеет неявный вид и содержит функциональный произвол. Поэтому исследование барохронных подмоделей важно для описания движения газа в частных случаях.

4. ФИЗИЧЕСКАЯ ТРАКТОВКА НЕСТАЦИОНАРНЫХ ПОДМОДЕЛЕЙ

Простые решения являются обширным и содержательным классом решений системы (1). Аналитическая простота формул представления решений позволяет продвинуться в изучении свойств и физической трактовке движения газа, проинтегрировать уравнения контактных и звуковых характеристик. В задачах газовой динамики важную роль играют постоянные решения, примыкающие к непостоянным через слабый или сильный разрывы. Простые решения в групповом смысле являются аналогами постоянных решений, поскольку инвариантные величины, их определяющие, постоянны. Ввиду этой аналогии можно предположить возможность примыкания простых решений к инвариантным через слабые и сильные разрывы.

В соответствии с общей теорией, характеристики уравнений газовой динамики (УГД) вида h(t, x, y) = 0 являются решением уравнения

$$(10) Dh = 0$$

в случае контактных характеристик C_0 , и уравнения

(11)
$$Dh \pm c|\nabla h| = 0$$

в случае звуковых характеристик C_{\pm} . Решение задачи Коши для уравнений (10), (11) с начальными данными

(12)
$$h(0, x, y) = h_0(x, y).$$

может быть получено путём нахождения характеристик каждого из уравнений (10), (11), называемых *бихарактеристиками* исходных уравнений газовой динамики. Контактные бихарактеристики получаются интегрированием системы

(13)
$$d\mathbf{x}/dt = \mathbf{u}, \quad \mathbf{x}(0) = \mathbf{x}_0$$

и совпадают с траекториями частиц в $\mathbb{R}^3(t, x, y)$. Уравнения звуковых бихарактеристик имеют вид

(14)
$$d\mathbf{x}/t = \mathbf{u} \pm c\nabla h/|\nabla h|,$$
$$dh_j/dt = -u_j \cdot \nabla h \mp c_j |\nabla h|, \quad (j = t, x, y)$$
$$\mathbf{x}(0) = \mathbf{x}_0, \quad h_j(0) = h_{j0}.$$

Параметрическое представление звуковой характеристики C_{\pm} , проходящей при t = 0 через кривую $h_0(x_0, y_0) = \text{const}$ получается, если в решении $\mathbf{x} = \mathbf{x}(t, x_0, y_0, h_{x0}, h_{y0})$ задачи (14) считать, что (x_0, y_0) связаны соотношением

 $h_0(x_0, y_0) = \text{const}$, а h_{j0} выражается через \mathbf{x}_0 в виде $h_{x0} = \partial h_0 / \partial x_0$, $h_{y0} = \partial h_0 / \partial y_0$.

Картина распространения возмущений, локализованных в начальный момент времени t_0 в точке P, определяется характеристическим коноидом с вершиной P, который образован семейством звуковых бихарактеристик, исходящих из точки P в момент времени t_0 . Уравнение характеристического коноида в пространстве $\mathbb{R}^3(t, x, y)$ получается из решения $\mathbf{x} = \mathbf{x}(t, x_0, y_0, h_{x0}, h_{y0})$ исключением параметров h_{x0}, h_{y0} .

Подмодель П(3,26). Подмодель задаёт движение газа, в котором частицы движутся по прямым линиям

$$x = x_0 t, \ y = a x_0 (t - 1) + y_0,$$

с постоянной скоростью.

Интегрирование системы (14) на решении *c*, *u*, *v* подмодели даёт уравнения звуковых бихарактеристик в параметрическом виде

(15)
$$x = tx_0 + tI_1(t), \ y = y_0 + at(x_0 + I_1(t)) + I_2(t),$$

где

(16)
$$I_1(t) = \int_1^t t^{-3/2} \frac{h_x}{|\nabla h|} \, \mathrm{d}t, \ I_2(t) = \int_1^t t^{-1/2} \frac{h_y - ah_x}{|\nabla h|} \, \mathrm{d}t$$

и $h_x = (h_{x0} + ah_{y0})/t - ah_{y0}, \ h_y = h_{y0}.$

Подмодель П(3,33). Траектории частиц в полярных координатах имеет вид

(17)
$$r = r_0 \sqrt{|t|}, \ \varphi = V \ln |t| + \varphi_0, \ (r_0, \varphi_0) = (r, \varphi) \big|_{t=t_0 = 1}$$

В случа
е $V\neq 0$ частицы движутся по логарифмической спирал
и $r=r_0\exp((\varphi-\varphi_0)/(2V)),$ а при V=0-по прямым. При
 t>0газ движется от центра, а при t<0-к центру.

Звуковые бихарактеристики в параметрическом виде задаются уравнениями

(18)
$$r = r_0 |t|^{\alpha + 1/2}, \ \varphi = (V + \beta) \ln |t| + \varphi_0,$$

где $\alpha = \pm Cr_0 h_{r0} / \sqrt{(r_0 h_{r0})^2 + h_{\varphi 0}^2}, \ \beta = \pm C h_{\varphi 0} / \sqrt{(r_0 h_{r0})^2 + h_{\varphi 0}^2}.$ Используя равенство $\alpha^2 + \beta^2 = C^2$ для исключения α, β в (18), получим уравнение характеристического коноида с вершиной в точке $P = (t_0, r_0, \varphi_0).$

(19)
$$\ln^2 \frac{r}{r_0 \sqrt{|t|}} + (\varphi - \varphi_0 - V \ln |t|)^2 = C^2 \ln^2 |t|.$$

Здесь $\varphi \in [\varphi_0 + (-V - C) \ln |t|, \varphi_0 + (-V + C) \ln t]$. С ростом времени от $t_0 = 1$ до $t^* = e^{\pi/C}$ диапазон изменения φ возрастает от 0 до 2π . Поскольку в момент времени t^* теряется однозначность отображения поверхности (18) из полярных координат в декартовы, коноид в пространстве $\mathbb{R}^3(t, x, y)$ имеет самопересечение. На рисунке 1 изображены в декартовых координатах поверхность характеристического коноида (19) с вершиной $P = (t_0, 1, 0)$, а также некоторые его бихарактеристики. Коноид имеет самопересечение при $t^* = 53.2$.

Подмодели П(3,34), **П**(3,35), **П**(3,36). Траектории частиц

(20)
$$x(t) = x_0 - ay_0 t, \ y(t) = y_0 + x_0 t/a$$

описывают движение частиц газа по прямым с постоянной скоростью. При a = 1 движение представляется следующим образом. Частицы, стартующие в начальный момент времени t = 0 с окружности радиуса r двигаются с постоянной скоростью $|\mathbf{u}| = \mathbf{r}$ по касательной (проведенной из точки старта) к этой окружности. Движение направлено по часовой стрелке если a < 0 и против если a > 0.

Уравнения звуковых бихарактеристик приa=1

(21)
$$x(t) = x_0 - ty_0 + (\alpha - t\beta) \operatorname{arctg} t, \ y(t) = y_0 + tx_0 + (t\alpha + \beta) \operatorname{arctg} t,$$

где $\alpha = h_{x0}/\sqrt{h_{x0}^2 + h_{y0}^2}, \ \beta = h_{y0}/\sqrt{h_{x0}^2 + h_{y0}^2}.$ Исключение $\alpha, \ \beta$ из (21) даёт уравнение характеристического коноида (см. рис. 2)

(22)
$$\left(\frac{x+ty}{t^2+1} - x_0\right)^2 + \left(\frac{y-tx}{t^2+1} - y_0\right)^2 = \operatorname{arctg}^2 t$$

298

Подмодель П(3,38). Уравнения движения частиц

(23)
$$x(t) = x_0 - y_0 t - C^2 y_0 \arctan t, \ y(t) = y_0 + x_0 t - tC^2 y_0 \arctan t$$

Частицы, стартующие из точки (x_0, y_0) удаляются от центра, асимптотически приближаясь к прямой с тангенсом угла наклона $-x_0/y_0 + C^2 \pi/2$.

Рассмотрим задачу о движении газового пятна, заключенного в начальный момент времени внутри единичной окружности

(24)
$$x_0^2 + y_0^2 = 1.$$

Кривая, ограничивающая в момент времени t газовое пятно, получается подстановкой в уравнения (24) значений x_0, y_0 , выраженных из (23). Эта кривая есть эллипс, уравнение которого в главных осях имеет вид

(25)
$$(x/\alpha)^2 + (y/\beta)^2 = 1,$$

где

$$\alpha = \sqrt{\frac{2+2t^2}{2+s^2-s\sqrt{4+s^2}}}, \ \beta = \sqrt{\frac{2+2t}{2+s^2+s\sqrt{4+s^2}}}$$

есть большая и малая полуось эллипса, $s = C^2 \operatorname{arctg} t$. Справедливо $s \to \pi C^2/2$ и $\alpha, \beta \to +\infty$ при $t \to \infty$, значит газовое пятно (24) со временем разлетится по всей плоскости $\mathbb{R}^2(x, y)$. На рисунке 3 изображены траектории частиц, стартующих с окружности (24).

Подмодель П(3,39). Частицы движутся по траекториям

(26)
$$r(t) = r_0 \sqrt{t^2 + 1}, \ \varphi(t) = V \arctan t + \varphi_0$$

Траектория частицы занимающей в начальный момент положение (r_0, φ_0) получается из стандартной траектории $r_0 = 1$, $\varphi_0 = 0$ растяжением с коэффициентом r_0 и поворотом на угол φ_0 против часовой стрелки. Движущаяся по такой траектории частица бесконечно удаляется от центра, поворачиваясь против часовой стрелки на угол $V\pi/2$. В случае V = 1 траектории частиц являются прямыми и совпадают с траекториями (20) при a = 1 подмодели P(3, 36).

Автор выражает благодарность А.П. Чупахину за внимание, проявленное к работе и ценные замечания.

5. Приложение

В таблице 4 приведена оптимальная система подалгебр ΘL_9 девятимерной алгебры Ли L_9 с базисом (2), содержащая 179 представителей, каждый из которых является подалгеброй или серией подалгебр с параметрами a, b. Каждый представитель ΘL_9 однозначно определяется своей размерностью r и номером i среди представителей размерности r. В таблице 4 представители указаны в порядке убывания размерности $r = 9, 8, \ldots, 1$.

Во второй колонке указан базис представителя и ограничения на параметры, если они имеются. Для краткости указываются только номера базисных операторов; запись 2 - a4 обозначает оператор $X_2 - aX_4$.

Оптимальная система подалгебр ΘL_9 приведена к нормализованному виду. Поэтому нормализатор представителя также является представителем оптимальной системы и характеризуется своими размерностью и номером. Знак "=" в третьей колонке означает, что представитель самонормализован.

300

В четвёртой колонке указаны точечные инварианты подалгебры, используемые для получения факторсистемы подмодели. Если инварианты имеют общий множитель, то, для краткости записи, он вынесен за фигурные скобки. Инварианты могут зависеть от параметров a, b серии подалгебр. Если точечные инварианты при различных значениях a, b имеют разную форму записи, то каждая из этих форм выписывается отдельно с указанием ограничений на параметры a, b. Прочерк означает, что подалгебра не имеет инвариантов. Для записи инвариантов используются декартовы координатах x, y, u, v или в цилиндрических r, φ, u_c, v_c .

В таблице 4 используются следующие обозначения:

$$\begin{aligned} r &= \sqrt{x^2 + y^2}, \ \varphi = \operatorname{arctg} y/x, u_c = u \cos \varphi + v \sin \varphi, \ v_c = -u \sin \varphi + v \cos \varphi; \\ s &= \sqrt{u^2 + v^2}, \theta = \operatorname{arctg}(v/u); \end{aligned}$$

$$\begin{aligned} \text{(27)} \quad x_1 &= \frac{x}{t^2 + 1}, \ y_1 &= \frac{y}{t^2 + 1}, \ u_1 = u - x \frac{t}{t^2 + 1}, \ v_1 = v - y \frac{t}{t^2 + 1}; \\ s_1 &= \sqrt{(u_1 + y_1)^2 + (v_1 - x_1)^2}, \ \theta_1 = \operatorname{arctg} \frac{v_1 - x_1}{u_1 + y_1}. \end{aligned}$$

i	Базис	Нормализатор	Инварианты
	r=9		
1	1, 2, 4, 5, 9, 10, 11, 12, 13	= 9, 1	—
	r=8		
1	1, 2, 4, 5, 9, 10, 11, 13	= 8, 1	—
2	1, 2, 4, 5, 10, 11, 12, 13	9,1	—
3	1, 2, 4, 5, 9 +	9,1	—
	a11, 10, 12, 13		
	r=7		
1	1, 2, 4, 5, 9, 10, 11	=7,1	—
2	1, 2, 4, 5, 9, 11, 13	=7,2	-
3	1, 2, 4, 5, 9, 11, 10 + 12	=7,3	_
4	1, 2, 4, 5, 11, 10, a9 + 13	8,1	_
5	1, 2, 4, 5, 9 +	8,1	$a^{2} + (b-1)^{2} \neq 0: -$
	a11, 10, b11 + 13		$a^2 + (b-1)^2 = 0:c$
6	1, 2, 4, 5, 10, 12, 13	9,1	—
	r=6	-	
1	1, 2, 4, 5, 9, 11	9,1	t
2	1, 2, 4, 5, 9 + 10, 11	7, 1	-
3	1, 2, 4, 5, 10, 11	8,1	—
4	1, 2, 4, 5, 9 + a11, 10 + 11	7, 1	$a \neq 0:-$
			$a = 0 : ce^{-t}$
5	1, 2, 4, 5, 9 + a11, 10	7,1	$a \neq 0$: –
			a = 0 : c
6	$1, 2, 4, 5, 11, a9 + 13; a \ge$	7, 2	—
	0		
$\overline{7}$	1, 2, 4, 5, 9 + a11, b11 +	7, 2	$a \neq 0:-$
	$13; b \ge 0$		$a = 0 : c/t^{(b-1)/2}$

Таблица 4. Оптимальная система подалгебр ΘL_9

А.С. Павленко

i	Базис	Нормализатор	Инварианты
8	1, 2, 4, 5, 11, a9 + 10 +	7, 3	—
	$12; a \leq 0$		
9	1, 2, 4, 5, 9 + a11, b11 +	7,3	$a \neq 0:-$
	$10 + 12; b \ge 0$		$a = 0 : ce^{-b \arctan t} \sqrt{t^2 + 1}$
10	1, 2, 4, 5, 10, a9 + b11 + 13	8, 1	$b \neq 1:-$
		,	b = 1 : c
11	1, 2, 5, 10, 11, 13	= 6,11	u/c
12	1, 2, 9, 10, 11, 13	= 6.12	s'/c
13	2, 5, 10, 11, 12, 13	= 6.13	
	r=5	- , -	
1	1, 2, 4, 5, 11	9.1	t
2	1, 2, 4, 5, 9 + a11	9.1	$a \neq 0: t$
_	-, -, -, 0, 0 + 0.11	0,1	a = 0 : t c
3	$1 \ 2 \ 4 \ 5 \ 9 + a 11 + 10$	7 1	Ce^{-at}
4	1, 2, 4, 5, 0 + 011 + 10	7 1	ce^{-t}
5	1, 2, 1, 5, 10 + 11	8 1	c.
6	1, 2, 4, 0, 10 1 2 5 10 11	6 11	
7	1, 2, 3, 10, 11 1 2 0 10 11	6 12	
0	1, 2, 3, 10, 11 1 2 4 5 c0 + b11 +	0, 12	$\frac{s}{c}$
0	1, 2, 4, 5, a9 + b11 +	1,2	
	$13; (a > 0) \lor (a = 0 \And$		
0	$b \geq 0$	50	
9	2, 4, 5, 11, 13	=5,9	(ut-x)/(ct)
10	1, 2, 9, 11, 13	= 5, 10	s/c
11	1, 2, 4, 5, a9 + b11 + 10 +	7, 3	$ce^{-b \operatorname{arctg} t} \sqrt{t^2 + 1}$
	$12; (a < 0) \lor (a = 0 \&$		
	$b \ge 0)$		
12	1+5, 2-4, 9, 11, 10+12	=5,12	s_1/c
13	$2, 4, 1\!+\!5, 11, -9\!+\!10\!+\!12$	= 5, 13	$\left((v+tu-x)/(c\sqrt{t^2}+1) \right)$
14	$1, 2, 5, 10, a11 + 13; a \neq 1$	6, 11	u/c
15	1, 2, 5, 10, 11 + 13	7, 4; a = 0	c, u
16	1, 2, 5, 10, 4 + 11 + 13	6, 10; a = 0, b = 1	c
17	1, 2, 5, 4 + 10, (3)11 + 13	= 5,17	(u-t)/c
18	2, 5, 11, 10, 13	= 5,18	u/c
19	1, 2, 9 + a11, 10, b11 + 13	6, 12	$b \neq 1: s/c$
			$b = 1 : \{c, s\}e^{-a\theta}$
20	1, 2, 10, 11, a9 + 13	6, 12	s/c
21	2, 5, 10, 12, 13	6,13	
22	9, 10, 11, 12, 13	= 5,22	v_c/c
	r=4	7	01
1	1.2.4.5	9.1	t,c
2	1 + 5, 2, 4, 11	5.13	t.(tu+v-x)/c
3	1.2.5.11	6.11	t, u/c
4	1, 2, 9, 11	6.12	$t \cdot s/c$
5	1+5, 2-4, 9, 11	5.12	$t_1 s_1/c$
6	1, 2, 5, 10 + 11	5.6	$\begin{cases} c, u \} e^{-t} \end{cases}$
7	1, 2, 5, 4 + 10	6, 10: a = 0, b = 3	c u - t
8	1 2 5 10	$7 4 \cdot a = 0$	
\sim	-, -, -, -,	•, •, •• •	

302

i	Базис	Нормализатор	Инварианты
9	2, 1+5, 10, 11	=4,9	$\{u, v - x\}/c$
10	2, 5, 10, 11	5,18	c/x, u/x
11	1, 2, 9 + 10, 11	5,7	$\theta - t, s/c$
12	1, 2, 10, 11	6,12	u/c, v/c
13	1, 2, 9 + a11, 10 + 11	5.7	$s/c, ce^{-a\theta-t}$
14	1.2.9 + a11.10	6.12	$s/c, ce^{-a\theta}$
15	1, 2, 5, 4 + 11 + 13	5, 8; a = 0, b = 1	$c, 2u - \ln t$
16	$2, 4, 5, a11 + 13; a \neq -1$	5.9	$(ut-x)t^{(-a-1)/2}$
10	-, 1, 0, 011 + 10, 0 / 1	0,0	$ct^{(-a+1)/2}$,
17	1, 2, 5, 11 + 13	6, 6; a = 0	c, u
18	1, 2, 11, a9 + 13	5.10	$s/c, t^a e^{-2\theta}$
19	2, 4 + a5, 11, 13	= 4.19	$\{u - x/t, v - ax/t\}/c$
20	2.5.11.13	=4.20	ct/x, ut/x
21	1 2 9 + a11 b11 + 13	5 10	$s/c t^{(b-1)/2}e^{a\theta}/c$
21	$a_1 + 5 2 - a_4 11 10 +$	-4.22	$\{y_1 + ay_1, ay_1 + r_1\}/c$
22	$12 \cdot a > 0 \& a \neq 1$	- 1,22	$\begin{bmatrix} u_1 + uy_1, uv_1 + u_1 \end{bmatrix} / c$
23	$12, u \ge 0 \& u \ne 1$ $1\pm 5 \ 2-4 \ 11 \ a9\pm 10\pm 12$	5 19	$\int e_{t} \theta_{t} = a \arctan t \frac{1}{c}$
20	1+5,2-4,11,45+10+12 1+5,2-4,0+	5,12	$\{a, b\}$
24	1 + 0, 2 - 4, 3 + 0	0, 12	$\begin{bmatrix} 1, 0, 0, 0 \\ 0, -a\theta_1 - b \operatorname{arctg} t \\ 1, 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
25	$a_{11}, b_{11} + 10 + 12$	F 19	e^{-1} $\sqrt{l^2 + 1}$
25	$2, 4, 1 + 5, -9 + a_{11} + 10 + 12; a \neq 0$	9,15	$\begin{cases} C \sqrt{t^2 + 1}, ut + v - \\ x \rceil_o^{-a \operatorname{arctg} t} \end{cases}$
26	$10 \pm 12, a \neq 0$ 2 4 1 + 5 0 + 10 + 12	6.8:a - 1	$\frac{x}{t^2+1}$ at $t = 0$
20	2, 4, 1 + 3, -9 + 10 + 12 2 5 10 a11 + 12 a / 1	0, 0, a = -1	$(c_V t + 1, ut + v - x)$
21	$2, 5, 10, a11 + 15; a \neq -1$	0, 10	
28	2, 5, 10, -11 + 13	0,11	$\begin{bmatrix} x, u/c \\ (z, y) \\ z^{2x} \end{bmatrix}$
29	2, 5, 10, 1 - 11 + 13	5, 14; a = -1	$\{c, u\}e^{-1}$
30	2, 5, 4 + 10, (3)11 + 13	=4,30	$\left\{ \frac{u-t,c}{\sqrt{x-t^{2}/2}} \right\}$
31	1, 2, 10, a9 + b11 +	6,12	$a \neq 0: \{c^a, s^a\}e^{(1-b)b}$
	$13; a^2 + (b-1)^2 \neq 0$		a = 0: u/c, v/c
32	1, 2, 10, 11 + 13	8,1	c, u, v
33	1, 2, 10, 4 + 11 + 13	6, 10; a = 0, b = 1	c, v
34	1, 2, 5 + 10, (3)11 + 13	=4,34	(v-t)/c, u/c
35	2, 10, 11, 13	=4,35	u/c, v/c
36	9, 11, 10, 13	=4,36	$u_c/c, v_c/c$
37	10, 11, 12, 13	5,22	$\left\{x,y\right\}c/(uy-vx)$
38	9 + a11, 10, 12, 13	5,22	$\{c, v_c\}re^{-2a\varphi}$
	r=3		
1	1+5, 2, 4	6, 8; a = -1	t, c, tu + v - x
2	1, 2, 4	7, 4; a = 0	t, c, v
3	1, 2, 11	6, 12	t, u/c, v/c
4	2, 4 + a5, 11	4, 19	$ t, \{tu - x, tv - ac\}/c$
5	2, 5, 11	6, 13	$\mid t, c/x, u/x$
6	2, 1+5, 11	6,3	t, u/c, (v-x)/c
7	a1+5, 2-a4, 11; a >	4,22	$t, \{u_1 + ay_1, av_1 - x_1\}/c$
	$0 \& a \neq 1$		
8	1+5, 2-4, 11	5,12	$t, \{u_1 + y_1, v_1 - x_1\}/c$
9	1, 2, 9 + a11	6, 12	$ t,s/c,ce^{-a\theta}$
10	1+5, 2-4, 9+a11	5,12	$t, s_1/c, ce^{-a\theta_1}$

А.С. Павленко

i	Базис	Нормализатор	Инварианты
11	$2, 1+5, a11+10; a \neq 0$	4,9	$\{v-x,c,u\}e^{-at}$
12	2, 5, 10 + 11	4,10	$\{x, c, u\}e^{-t}$
13	2, 1+5, 4+10	4,7	$c, u-t, v-x+t^2/2$
14	2, 5, 4 + 10	5,17	$c, u - t, x - t^2/2$
15	2, 1+5, 10	5, 6	c, u, v - x
16	2, 5, 10	6,11	x, c, u
17	1, 2, 9 + a11 + 10	5,7	$\theta - t, \{c, s\}e^{-at}$
18	1, 2, 10 + 11	5,7	$\{c, u, v\}e^t$
19	1, 2, 4 + 10	6, 10; a = 0, b = 3	c, u-t, v
20	1, 2, 10	8,1	c, u, v
21	2, 10, 11	4,35	$\{c, u, v\}/x$
22	9, 10, 11	4,36	$\{c, u_c, v_c\}/r$
23	$1, 2, a9 + b11 + 13; a^2 +$	5,10	$t^a e^{-2 heta}, \{c, s\} t^{(1-b)/2}$
	$(b-1)^2 \neq 0$		
24	1, 2, 11 + 13	7, 2	c, u, v
25	1, 2, 5 + 11 + 13	5, 8; a = 0, b = 1	$c, u, v - (\ln t)/2$
26	$2, 4 + a5, b11 + 13; b \le$	4, 19	$\begin{cases} ct, ut & - \\ & x, vt & - \\ & & \end{cases}$
	$0 \& b \neq -1$		$ax \} t^{(-b-1)/2}$
27	2, 4 + a5, 11 + 13	5,9	c, u - x/t, v - ax/t
28	$2, 5, a11 + 13; a \le 0 \&$	4,20	${x/t, c, u}t^{(-a+1)/2}$
	$a \neq -1$		
29	2, 5, 11 + 13	5,9	c, u, x/t
30	2, 4 + a5, 5 + 11 + 13	4, 16; a = 1	$c, u - x/t, v - ax/t - (\ln t)/2$
31	2, 5, 4 + 11 + 13	4, 16; a = 1	$c, 2u - \ln t, te^{-2x/t}$
32	2, 11, 13	= 3,32	$\{c, u, v\}t/x$
33	9, 11, 13	=3,33	$\{c, u_c, v_c\}t/r$
34	a1 + 5, 2 - a4, b11 + 10 +	4,22	$\{u_1 + ay_1, x_1 - av_1, u_1, u_2, u_3, u_4, u_{11}, u_{12}, u_{13}, u_{13},$
	12; $(a > 0 \& a \neq$		$c\}e^{-b \operatorname{arctg} t}\sqrt{t^2+1}$
	1) \lor $(a = 0 \& b \ge 0)$,
35	1+5, 2-4, a9+b11+	5, 12	$\theta_1 - a \operatorname{arctg} t,$
	$10+12; (a+1)^2+b^2 \neq 0$		$\{s_1, c\}e^{-b \operatorname{arctg} t}\sqrt{t^2 + 1}$
36	1+5, 2-4, -9+10+12	7, 3	u - tv + y, v + tu -
			$x, c\sqrt{t^2+1}$
37	1+5, 2-4, 2-9+10+12	5, 11; a = -1, b = 0	v + tu - x, u - tv + y -
			$\operatorname{arctg} t, c\sqrt{t^2+1}$
38	1+5, 11, 9+10+12	= 3,38	$\{u_1+tv_1, tu_1-v_1+x_1+ty_1, u_1-v_1+x_1+ty_1, u_2-v_1+ty_2\}$
			$c\sqrt{t^2+1}$ $(t^2+1)/(y-tx)$
39	9, 11, 10 + 12	= 3,39	$u_c(t^2+1)/r-t, \{c, v_c\}(t^2+1)/r-t, \{c, v_c\}(t^2$
			1)/r
40	$2, 10, a11 + 13; a^2 \neq 1$	4,35	$\{c, u, v\} x^{(-a+1)/(a+1)}$
41	2, 10, -11 + 13	5, 20; a = 0	x, u/c, v/c
42	2, 10, 11 + 13	5,18	c, u, v
43	2, 10, 1 - 11 + 13	4, 31; a = 0, b = -1	$\{c, u, v\}e^{2x}$
44	2, 10, 5 + 11 + 13	4, 27; a = 1	$c, u, 2v - \ln x$
45	2, 4 + a5 + 10, (3)11 + 13	= 3,45	$\{u-t, v-at, c\}/\sqrt{x-t^2/2}$
46	2, 5 + 10, (3)11 + 13	= 3,46	$\left \{c, u, v-t\} / \sqrt{x} \right\rangle$

i	Базис	Нормализатор	Инварианты
47	10, 11, a9 + 13	4,36	$a \neq 0: \{c, u_c, v_c\} e^{2\varphi/a}/r$
			a = 0: y/x, u/c, v/c
48	9 + a11, 10, b11 + 13	4,36	$b^2 - 1 \neq 0$:
			$\begin{cases} \{c, u_c, v_c\} e^{-2a\varphi/(b+1)} \\ r^{(b+1)/(b-1)} \end{cases}$
			$b = 1 : \{c, u_c, v_c\} e^{-a\varphi}$
			$b = -1: re^{-a\varphi}, u_c/c, v_c/c$
49	10, 12, 13	5,22	uy - vx, y/x, cx
	r=2		
1	1,2	8,1	t, c, u, v
2	2, 4 + a5	6, 6; a = 0	c, x - tu, ax - tv, t
3	2, 5	8, 2	t, x, c, u
4	2, 1+5	6,3	t, c, u, v - x
5	a1 + 5,	6, 8; a = 0	$t, c, u_1 + ay_1, av_1 - x_1$
	$2-a4; a > 0 \& a \neq 1$		
6	1+5, 2-4	7, 3	$t, c, u_1 + y_1, v_1 - x_1$
$\overline{7}$	1 + 5, 11	3,38	$t, \{v-x, c, u\}/(tx-y)$
8	2,11	4,35	$t, \{c, u, v\}/x$
9	9,11	5,22	$t, \{c, u_c, v_c\}/r$
10	2,10+11	3,21	$\{y, c, u, v\}e^{-t}$
11	2,10	6, 11	x, c, u, v
12	2, 4 + a5 + 10	5,17	$x - t^2/2, c, u - t, v - at$
13	2,5+10	5, 14; a = 3	x, c, u, v - t
14	9 + 10, 11	3,22	$\varphi - t, \{c, u_c, v_c\}/r$
15	10, 11	4,36	$\varphi, \{c, u_c, v_c\}/r$
16	9 + a11, 10 + 11	3,22	$\left\{e^{a\varphi+t}, c, u_c, v_c\right\}/r$
17	9 + a11, 10	4,36	$\{e^{a\varphi}, c, u_c, v_c\}/r$
18	2, 1 - 11 + 13	3, 23; a = 0, b = -1	$\left\{e^{-2x}, c, u, v\right\}t$
19	2,5+11+13	4, 16; a = 1	$c, u, te^{-2v}, x/t$
20	2, 4 + a5 + 11 + 13	4, 16; a = 1	$te^{-2u}, t^a e^{-2v}, te^{-2x/t}, c$
21	$2, a11 + 13; a^2 \neq 1$	3, 32	$\{x/t, c, u, v\}t^{(-a+1)/2}$
22	2,11+13	5,9	x/t, c, u, v
23	2, -11 + 13	4, 18; a = 0	$x, \{c, u, v\}t$
24	$11, a9 + 13; a \ge 0$	3, 33	$t^a e^{-2\varphi}, \{c, u_c, v_c\}t/r$
25	$9 + a11, b11 + 13; b \ge 0$	3,33	$\left \left\{ r/t, c, u_c, \right\} \right $
			$v_c\}e^{-a\varphi}t^{(-b+1)/2}$
26	1+5,9+a11+10+	3,38	$\{tx_1 - y_1, u_1 + tv_1, tu_1 - u_1 + tv_1, tu_1 + $
	$12; a \neq 0$		$v_1 + ty_1 + x_1 \} e^{-a \operatorname{arctg} t}$
27	1+5,9+10+12	4, 23; a = 1	$\begin{vmatrix} tx_1 - y_1, u_1 + tv_1, tu_1 - v_1 + \\ tu_1 + x_1, c\sqrt{t^2 + 1} \end{vmatrix}$
28	1+5, 2-4+9+10+12	3, 35; a = 1, b = 0	$x_1 + ty_1 - \operatorname{arctg} t, u_1 + ty_1 - arct$
			$ tv_1 + y_1 - tx_1, tu_1 - v_1 + $
29	$11 \ a9 + 10 + 19 \ a > 0$	3 39	$(a - a \arctan u (t^2 + 1)/r - 1)$
29	$11, u_0 + 10 + 12, u \ge 0$	0,00	ψ u alog $t, u_c(t + 1)/t = t \{c, y, \}(t^2 + 1)/r$

СИММЕТРИИ И РЕШЕНИЯ УРАВНЕНИЙ ПОЛИТРОПНОГО ГАЗА 305

А.С. Павленко

i	Базис	Нормализатор	Инварианты
30	9 + a11, b11 + 10 +	3, 39	$\{r/(t^2 + 1), c, u_c -$
	$12; b \ge 0$		$rt/(t^2 + 1),$
			$v_c \} e^{-a\varphi - b \operatorname{arctg} t} \sqrt{t^2 + 1}$
31	10, a9 + b11 + 13;	4,36	$r^a e^{-b-1}$,
	$a^2 + (b+1)^2 \neq 0$		$\{c, u_c, v_c\}r^{(-b+1)/(b+1)}$
32	10, -11 + 13	6, 12	x, y, u/c, v/c,
33	10, 2 - 11 + 13	4,31	$x, \{c, u, v\}e^{2y}$
34	4 + 10, (3)11 + 13	= 34	$(x - t^2/2)/y, \{c, u - t,$
			$v\}/\sqrt{y}$
	r=1		
1	2	7, 4; a = 0	t, x, c, u, v
2	2 + 4	6, 8; a = -1	t, c, v, u - y, x - ty
3	11	5,22	$t, \varphi, \{c, u_c, v_c\}/r$
4	9 + a11	5,22	$t, \{e^{a\varphi}, c, u_c, v_c\}/r$
5	9 + a11 + 10	3,22	$\varphi - t, \{r, c, u_c, v_c\}e^{-at}$
6	10 + 11	3,22	$ \{x, y, c, u, v\} e^{-t}$
7	5 + 10	4,34	$x, c, u, v - t, y - t^2/2$
8	10	6, 12	x, y, c, u, v
9	2 - 11 + 13	3, 23; a = 0, b = -1	$x, te^{-2y}, \{c, u, v\}t$
10	$a9 + b11 + 13; (a > 0) \lor$	3, 33	$ t^a e^{-2\varphi},$
	$(a = 0 \& b \ge 0 \& b \ne$		$\{r/t, c, u_c, v_c\}t^{(-b+1)/2}$
	1)		
11	-11 + 13	5,10	$x, y, \{c, u, v\}t$
12	a9 + b11 + 10 + 12;	3, 39	$\varphi - a \operatorname{arctg} t, \{c, r, u_c -$
	$(a > 0) \lor (a = 0 \&$		$tr/(t^2 + tr)$
	$b \ge 0$)		$(1), v_c \} e^{-b \arctan t} \sqrt{t^2 + 1}$
13	-2+4+9+10+12	3, 35; a = 1, b = 0	$ x_1 + ty_1, y_1 - tx_1 +$
			$ \operatorname{arctg} t, v_1 - tu_1, u_1 + tv_1 -$
			$ \operatorname{arctg} t, c\sqrt{t^2 + 1}$

Список литературы

- Овсямников Л.В. Программа ПОДМОДЕЛИ. Газовая динамика, ПММ, 1994, Т. 58, №4, С. 30–55.
- [2] Овсянников Л.В. Групповой анализ дифференциальных уравнений. М.: Наука, 1978.
- [3] Головин С.В. Оптимальная система подалгебр для алгебры Ли операторов, допускаемых уравнениями газовой динамики в случае политропного газа, Новосибирск, 1996, Препринт, Ин-т гидродинамики СО РАН, № 5–96.
- [4] Черевко А.А. Оптимальная система подалгебр для алгебры Ли операторов, допускаемых системой уравнений газовой динамики с уравнением состояния p = f(S)ρ^{5/3}, Новосибирск, 1996, Препринт, Ин-т гидродинамики СО РАН, № 4–96.
- [5] Овсянников Л. В. Лекции по основам газовой динамики. М., Ижевск: Ин-т компьютерных исследований, 2003.
- [6] Golovin S.V. Two-dimensional gas motion with special symmetry properties, Proceeding of the International Conference MGA 2000, Ufa 27.09-03.10 2000, P. 71-76
- [7] Ibragimov N.H. CRC Handbook of Lie Group Analysis of Differential Equations, Vol. 1, Symmetries, Exact Solutions and Conservation Laws, CRC Press, Boca Raton, 1994.
- [8] Овсянников Л.В. Об иерархии инвариантных подмоделей дифференциальных уравнений, Докл. РАН, 1998, Т.8, №6. С.740–742

306

- [9] Овсянников Л.В. Об оптимальных системах подалгебр, Докл. РАН, 1993, Т.333, №6, С. 702-704.
- [10] Овсялников Л.В. О «простых» решениях уравнений динамики политропного газа, ПМТФ, 1999, Т.40, №2.
- [11] *Чупахин А.П.* Барохронные движения газа: общие свойства и подмодели типов (1,2) и (1,1), Новосибирск, 1998, Препринт, Ин-т гидродинамики СО РАН, № 4–98.

Андрей Сергеевич Павленко

Институт гидродинамики им. М. А. Лаврентьева СО РАН,

пр. академика Коптюга 15,

630090, Новосибирск, Россия

E-mail address: andrey@hydro.nsc.ru