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A NOTE ON JOINS AND MEETS FOR POSITIVE LINEAR

PREORDERS

N. BAZHENOV, B. KALMURZAYEV, AND M. ZUBKOV

Abstract. A positive preorder R is linear if the corresponding quotient
poset is linearly ordered. Following the recent advances in the studies of
positive preorders, the paper investigates the degree structure Celps of
positive linear preorders under computable reducibility. We prove that
if a positive linear preorder L is non-universal and the quotient poset of
L is infinite, then L is a part of an infinite antichain inside Celps.

For a pair L,R from Celps, we obtain sufficient conditions for when
the pair has neither join, nor meet (with respect to computable reducibil-
ity). We give an example of a pair from Celps that has a meet. Inside
the substructure Ω of Celps containing only computable linear orders
of order-type ω, we build a pair that has a join inside Ω.

Keywords: computable reducibility, computably enumerable preorder,
positive linear preorder.

1. Introduction

The paper studies computable reducibility for positive (computably enumerable)
preorders. Let R and S be binary relations on the set of natural numbers ω. The
relation R is computably reducible to S (denoted by R ≤c S) if there is a total
computable function f(x) such that

∀x∀y[(xR y) ⇔ (f(x)S f(y))].
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The systematic studies of computable reducibility for positive equivalence re-
lations were initiated by Ershov [1, 2]: in particular, he constructed one of the
earliest examples of a universal positive equivalence, i.e., a positive equivalence E
such that every positive equivalence F is computably reducible to E (Proposition 8
in [1]). In 1980s, the research in this area was mainly focused on natural sub-
classes of universal positive equivalences — see, e.g., papers [3, 4, 5] and the recent
survey [6].

The 21st century witnessed a renewed interest in positive equivalences. One
of the pioneering works in this regard is the paper [7], where the acronym ceer
(which stands for ‘computably enumerable equivalence relation’) was introduced:
nowadays, this is a standard acronym for the term ‘positive equivalence’.

Andrews and Sorbi [8] developed intricate methods for working with the c-degrees
(i.e., degrees with respect to computable reducibility) for positive equivalences. One
of the key technical notions in these developments is the notion of darkness.

Definition 1 (Definition 3.1 of [8]). Let E be a positive equivalence on ω with
infinitely many classes. The equivalence E is light if the identity relation Id is
computably reducible to E. Otherwise, E is called dark.

Let Ceers denote the poset of the c-degrees of positive equivalences. It is known
that the interval [01;0

′
1] of 1-degrees is isomorphically embeddable into the poset

Ceers (Theorem 2.4 in [9]). This fact implies that Ceers is neither an upper
semilattice, nor a lower semilattice. Therefore, in general, ≤c-incomparable positive
equivalences E and F do not necessarily have an infimum (meet) or a supremum
(join) w.r.t. computable reducibility.

On the other hand, the notion of darkness provides a deeper insight into the
structural properties of Ceers: for example,

(a) if E and F are incomparable dark positive equivalences, then E and F have
neither supremum, nor infimum (Theorems 5.8 and 7.18 in [8]);

(b) if E and F are incomparable light positive equivalences, then sometimes
they have supremum (Corollary 6.15 in [8]), and sometimes they don’t
(Corollary 5.6 in [8]).

One of the recent major advancements in the studies of Ceers was obtained
by Andrews, Schweber, and Sorbi [10]: they proved that the theory Th(Ceers) is
recursively isomorphic to the first-order arithmetic.

In recent years, the works [11, 12, 13, 14, 15] studied the c-degrees of positive
preorders. Following [13], by Ceprs we denote the poset of the c-degrees of positive
preorders. The paper [13] proved that the structure Ceers is first-order definable
inside the poset Ceprs (Theorem 2.1 in [13]). This fact and the result of [10]
(discussed above) together imply that similarly to the case of Ceers, the theory
Th(Ceprs) is recursively isomorphic to the first-order arithmetic.

The paper [13] isolated an important substructure of Ceprs which is of interest
on its own: this substructure Celps is induced by positive linear preorders.

Let R be a preorder on ω (i.e., R is a reflexive and transitive relation). By
supp(R) we denote the following equivalence relation:

supp(R) = {(x, y) : (x, y) ∈ R and (y, x) ∈ R}.
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The quotient relation R/supp(R) is defined in a natural way: its domain is equal
to ω/supp(R), and

([a]supp(R), [b]supp(R)) ∈ R/supp(R) ⇔ (a, b) ∈ R.

Definition 2. We say that a positive preorder R is linear if the corresponding
quotient relation R/supp(R) is a linear order. Following [13], by Celps we denote
the poset of the c-degrees of positive linear preorders.

Note that we treat computable linear orders via the standard approach of com-
putable structure theory (see, e.g., [16]): a computable linear order L is given by a
computable binary relation which is reflexive, transitive, linear, and antisymmetric.
Notice that every computable linear order L (with domain ω) is a positive linear
preorder. We emphasize that in this case, supp(L) is equal to the identity relation
Id.

In this paper, we investigate the structural properties of the poset Celps. The
paper is arranged as follows. Section 2 gives the necessary preliminaries. In addi-
tion, Section 2 also provides a brief survey of the known results on the structure
Celps. In Section 3, we prove that the c-degree of a non-universal positive lin-
ear preorder L (s.t. L has infinitely many supp(L)-classes) is a part of an infinite
antichain inside Celps (Theorem 3.1).

The rest of the paper is focused on joins (suprema) and meets (infima) in the
structureCelps. In Section 4, we obtain examples of positive linear preorders L and
R such that L,R have neither join, nor meet (Proposition 4.1 and Theorem 4.1).
In Section 5, we give a simple example of incomparable L,R such that they have
an infimum (Proposition 5.1).

Our paper leaves the following question open:

Problem 1. Do there exist incomparable positive linear preorders L and R such
that they have a supremum w.r.t. computable reducibility?

It seems that in order to answer this question, one needs to isolate further com-
binatorial properties (similar to the notion of darkness for equivalence relations)
which could shed more light on the structural features of the poset Celps.

In Section 6, we prove a partial result related to Problem 1. If we restrict
our attention only to computable linear orders of order-type ω, then inside this
substructure of Celps, one can find incomparable pairs which have a supremum
(Theorem 6.1).

2. Preliminaries and known results

If not specified otherwise, we assume that every considered binary relation has
domain ω. For an element a ∈ ω and an equivalence relation E, by [a]E we denote
the E-equivalence class of a. By ≤N we denote the standard ordering of natural
numbers. For the background on countable linear orders, we refer to the mono-
graph [17].

Let R be a preorder on ω. As usual, by R∗ we denote the following preorder:

(x, y) ∈ R∗ ⇔ (y, x) ∈ R.

Observation 1. The map Ψ: R 7→ R∗ induces an automorphism of the poset
Celps.
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We often use the following notations: for elements x, y ∈ ω,

• x ≤R y means that (x, y) ∈ R;
• x ∼R y means that (x, y) ∈ supp(R), i.e., (x, y) ∈ R and (y, x) ∈ R;
• x <R y means that (x, y) ∈ R and (y, x) ̸∈ R.

Sometimes we abuse notations and identify a preorder R with degc(R), i.e., the
degree of R w.r.t. computable reducibility. As usual, we write R ≡c S if R ≤c S
and S ≤c R. For convenience, sometimes we use ωst to denote the ordering ≤N.

Definition 3. Let R be a positive preorder, and let W be a c.e. set such that
W intersects with infinitely many supp(R)-classes. Then we define a new positive
preorder R ↾W as follows. We choose a computable bijection g acting from ω onto
W , and we set:

(x, y) ∈ R ↾W ⇔ g(x) ≤R g(y).

Notice that the function g provides a computable reduction (R ↾W ) ≤c R.

2.1. Universal and minimal positive linear preorders. We say that a positive
linear preorder L is universal if every positive linear preorder R is computably
reducible to L.

Theorem 2.1 (Theorem 3.1 of [18]). There exists a universal positive linear pre-
order. Consequently, the poset Celps has a greatest degree.

For a natural number n ≥ 1, by Linn we denote the following positive linear
preorder:

(x, y) ∈ Linn ⇔ rest(x, n) ≤N rest(y, n),

where rest(x, n) is the remainder of x divided by n. By lin we denote the c-degree
degc(Linn).

Notice the following: if R is a positive linear preorder and supp(R) has precisely
n classes, then R ≡c Linn.

Observation 2. If L is a positive linear preorder such that supp(L) has infinitely
many classes, then Linn ≤c L for all n ≥ 1. Consequently, the poset Celps has an
initial segment of order type ω:

li1 <c li2 <c li3 <c . . . .

Observation 2 gives rise to the following natural notion (which is similar to the
notion of a minimal ceer, see [8]):

Definition 4. We say that a positive linear preorder L is minimal if it satisfies
the following:

• supp(L) has infinitely many classes, and
• if R ≤c L, then either R ≡c L, or R ≡c Linn for some n ≥ 1.

If L is minimal, then we also say that its degree degc(L) is minimal inside Celps.

The paper [13] obtained a complete characterization of minimal degrees inCelps:

Theorem 2.2 (Theorem 5.1 of [13]). The poset Celps has precisely two minimal
degrees: degc(ωst) and degc(ω

∗
st).
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2.2. Known results about antichains. The following results can be found in
the literature:

Proposition 2.1 (Lemma 2.1 of [13]). Let R be a positive linear preorder such
that supp(R) has infinitely many classes. If R is not universal, then there exists
a positive linear preorder S such that R and S are incomparable w.r.t. computable
reducibility.

Proposition 2.2 (Proposition 3.2 of [18], essentially follows from [19]). There
exists an infinite antichain of degrees inside Celps.

2.3. Connections to computable linear orders. In this subsection, we assume
that all considered computable linear orders have domain ω. Recall that in this
paper, computable linear orders are always assumed to be antisymmetric.

For every computable linear order L, its degree degc(L) belongs to Celps. In
addition, one can prove the following:

Lemma 2.1. Let L be a computable linear order. If R ≤c L and supp(R) has
infinitely many classes, then there is a computable linear order Q such that Q ≡c R.

Proof Sketch. Suppose that R ≤c L via a computable function f(x). Since supp(R)
has infinitely many classes, the set

X = {i : (∀j < i)(f(j) ̸= f(i))} ⊆ dom(R)

is computable and infinite. We fix a computable bijection g acting from ω onto X,
and we define

(x, y) ∈ Q ⇔ f(g(x)) ≤L f(g(y)).

Since L is a computable linear order, the relation Q is a positive linear preorder.
In addition, the choice of the set X implies that Q is an antisymmetric relation.
Now it is straightforward to show that Q is the desired linear order that is ≡c-equ-
ivalent to R. □

Lemma 2.1 shows that computable linear orders (with domain ω) form a down-
set in the poset Celps \ {lin : n ≥ 1}. In addition, we have the following:

Observation 3. Let L0 and L1 be computable linear orders. Then L0 ≤c L1 if
and only if there is a computable isomorphic embedding from L0 into L1.

3. Infinite antichains

In this section, we prove the following generalization of Proposition 2.1.

Theorem 3.1. Let R be a positive linear preorder such that supp(R) has infinitely
many classes. If R is not universal, then there exists a uniform sequence of positive
linear preorders (Si)i∈ω such that:

(1) each Si is ≤c-incomparable with R, and
(2) the preorders Si, i ∈ ω, are pairwise ≤c-incomparable.

In other words, R is a part of an infinite antichain inside Celps.

Proof. The proof is split into two parts. First, we give a detailed proof for the case
when the quotient linear order R/supp(R) is not isomorphically embeddable into
the ordinal ω · 2. After that, we briefly explain the proof for the remaining case.

Case I. Here we assume that the quotient order R/supp(R) is not embeddable
into the well-order ω · 2.
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We will show only how to build two positive linear preorders S0 and S1. The
described construction can be straightforwardly extended to building an infinite
uniform sequence (Si)i∈ω.

We satisfy the following requirements:

Si: The quotient order Si/supp(Si) is isomorphic to ω · 2.
Ri

e: The function φe does not provide a computable reduction Si ≤c R.

Pi,1−i
j : The function φj does not provide a computable reduction Si ≤c S1−i.

Since R/supp(R) is not isomorphically embeddable into ω ·2, it is clear that the Si-
requirement guarantees that R ≰c Si. Hence, if all the requirements are satisfied,
then the preorders R, S0, and S1 will be pairwise ≤c-incomparable.

We fix a universal positive linear preorder U , and we fix its approximation
(U [s])s∈ω. We also choose an approximation (R[s])s∈ω of our positive linear pre-
order R.

As usual, we say that at a stage t+1, we Si-collapse two numbers a and b if we
declare that

c ∼Si,t+1
d

for all c and d such that

[(a ≤Si,t c ≤Si,t b)& (a ≤Si,t d ≤Si,t b)] or [(b ≤Si,t c ≤Si,t a)& (b ≤Si,t d ≤Si,t a)].

The Si-strategy is a global one. We describe its arrangements for i = 0. Before-
hand, we set:

2 <S0 6 <S0 10 <S0 · · · <S0 4k + 2 <S0 4k + 6 <S0 . . . ,

3 <S0
7 <S0

11 <S0
· · · <S0

4k + 3 <S0
4k + 7 <S0

. . . .

We also assume that 2k <S0
2l + 1 for all k, l ∈ ω. We will never S0-collapse pairs

of the form (4k + 2, 4k + 6). In addition, for each l ∈ ω, the class [2l + 1]supp(S0)

will contain only one element.
At each stage s, our construction will take one of the following actions:

• either add finitely many numbers of the form 4m inside one of the intervals
(4k + 2; 4k + 6)S0

(if it is required by some other strategy, some of these
new numbers could be S0-collapsed);

• or add finitely many numbers of the form 4m+1 inside one of the intervals
(4k + 3; 4k + 7)S0

.

If each of these intervals gets only finitely many numbers during the construction,
then it is clear that the resulting quotient order S0/supp(S0) will be isomorphic to
ω · 2.

We say that the interval (4k+2; 4k+6)S0 is the k-th (S0, R)-box : these intervals
will be used for satisfying R0

e-requirements.
We also say that the interval (4k + 3; 4k + 7)S0

is the k-th (S0, S1)-box : these

intervals will be used for satisfying P0,1
j -requirements.

Strategy for R0
e. The strategy builds its own partial computable function

ψ(n) := xn.

(1) Choose a fresh k-th (S0, R)-box. Let u := 4k + 2 and v := 4k + 6.
(2) We set n := 0.
(3) Choose the least unused (in the construction) number xn of the form 4m.

We put u <S0
xn <S0

v.
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• At each further stage s of the construction, we proceed with the fol-
lowing background action: for all i, j ≤ n we set

(1) (xi, xj) ∈ S0,s ⇔ (i, j) ∈ U [s].

This can be achieved by S0-collapsing appropriate elements xi.
(4) Wait until the value φe(xn) is defined. After φe(xn) is computed, wait for

a stage s such that for all i, j ≤ n, we have

(2) (xi, xj) ∈ S0,s ⇔ (φe(xi), φe(xj)) ∈ R[s].

(5) When such a stage s is reached, go to Step (3) with the parameter n + 1
(in place of n).

Possible outcomes.
wn: Forever waiting at Step (4) for the number n. Then either φe is not total,

or we never see Eq. (2) satisfied. In the second case, even if φe is total, it does not
provide a reduction S0 ≤c R.

∞: For each n ∈ ω, the strategy eventually chooses the corresponding number
xn. But then Eq. (1) guarantees that the total function ψ : n 7→ xn provides a
computable reduction U ≤c S0. In addition, since we infinitely often see Eq. (2)
satisfied, we deduce that the function φe ◦ ψ gives computable reduction U ≤c R.

On the other hand, recall that U is a universal positive linear preorder, and R
is not universal. Therefore, we obtain a contradiction, and the ∞-outcome cannot
be realized.

The current outcome of our strategy is equal to wn, where n is the largest number
such that xn is already defined.

Strategy for P0,1
j .

(1) Choose a fresh k-th (S0, S1)-box. Let u := 4k + 3 and v := 4k + 7.
(2) Wait until the values φj(u) and φj(v) are both defined.
(3) Suppose that we have computed φj(u) and φj(v) by the stage s. If one of

the following holds:
• one of the values φj(u) or φj(v) is even (informally speaking, this

means that φj “wants” to embed an ordinal α > ω into the well-
order ω);

• right now, we have φj(u) >S1,s
φj(v);

then proceed to Step (4).
Otherwise, we have φj(u) ≤S1,s

φj(v), and the value

N = card([φj(u);φj(v)]S1,s
)

is finite. Add N + 1 (least unused) numbers of the form 4l + 1 inside the
interval [u; v]S0

. These newly added numbers will never be S0-collapsed.
Proceed to Step (4).

(4) Forbid the lower priority strategies to add fresh numbers inside the set
[φj(u);φj(v)]S1

∩ {2k + 1 : k ∈ ω}.

The strategy has two outcomes:

w: Waiting forever at Step (2). Then the function φj is not total.

s: Eventually stopping at Step (4). Then it is clear that P0,1
j is satisfied: the

interval [u; v]S0
has more elements (or more formally, one-element classes of

the form [2l + 1]supp(S0)) than the corresponding interval [φj(u);φj(v)]S1
.
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Construction. As usual, we fix some effective ω-ordering of our requirements:

R0 < R1 < R2 < . . . .

For m ∈ ω, the m-th level of the tree of strategies T is devoted to the require-
ment Rm. If α is a strategy at the m-th level, then its children are nodes of the
form α̂ o, where o is one of the possible outcomes of α (i.e., wn, n ∈ ω, for an

Ri
e-strategy, and w or s for a Pi,1−i

j -strategy).
The outcomes are ordered as follows: s < w, and · · · < w2 < w1 < w0.
At a stage s of the construction, one visits strategies α0, α1, . . . , αs. Here α0 = ∅,

and αi+1 = αî o, where o is the current outcome of αi.

Verification. Let P be the true path through the tree of strategies T : a strategy
α belongs to P iff α is visited infinitely often along the construction.

Lemma 3.1. Every requirement (among Ri
e and Pi,1−i

j ) is eventually satisfied, and
the true path P is infinite.

Proof. Let α be a strategy along the true path. If α is a Pi,1−i
j -strategy, then the

standard argument for finite injury constructions shows that Pi,1−i
j is eventually

satisfied. In addition, it is clear that either α̂ w or α̂ s lies on the true path.
Suppose that α is an Ri

e-strategy. Then the argument in the strategy description
shows that our construction will be eventually stuck at some outcome wn. Hence,
Ri

e is satisfied, and α̂ wn belongs to the true path. □

In order to finish the proof, it is sufficient to show that the quotient order
Si/supp(Si) is isomorphic to the ordinal ω · 2. This is a consequence of the fol-
lowing observation: each strategy α chooses its own box B, and α could add only
finitely many elements into this box. Since a strategy β ̸= α cannot add numbers to
the box B, we deduce that each box contains only finitely many numbers. There-
fore, it is not hard to deduce that Si/supp(Si) is an isomorphic copy of ω · 2. This
concludes the proof of the first case of our theorem.

Case II. Now assume that the quotient order R/supp(R) is isomorphically em-
beddable into the ordinal ω ·2. Then the reverse order R∗/supp(R∗) is embeddable
into ω∗ · 2, and hence, R∗/supp(R∗) is not embeddable into ω · 2.

By applying Case I of the theorem, we build an antichain (Li)i∈ω such that R∗

is incomparable with each Li. By Observation 1, we deduce that R = (R∗)∗ is
incomparable with each of the members of the antichain (L∗

i )i∈ω. Theorem 3.1 is
proved. □

4. Pairs with no joins and no meets

Here we give examples of ≤c-incomparable positive linear preorders L and R
such that they have neither join, nor meet.

Before introducing these examples, we define the following notion:

Definition 5 ([13]). Let L and R be positive linear preorders. Then the positive
linear preorder L ⊻R is defined as follows: (x, y) ∈ (L ⊻R) if and only if for some
k, l ∈ ω, one of the following holds:

• x = 2k, y = 2l, and k ≤L l;
• x = 2k + 1, y = 2l + 1, and k ≤R l; or
• x = 2k and y = 2l + 1.
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Observation 4. Both linear preorders L ⊻ R and R ⊻ L are upper bounds (w.r.t.
computable reducibility) for L and R.

Our first example uses simple algebraic properties of linear orderings:

Proposition 4.1. Let L and R be positive linear preorders such that:

• both supp(L) and supp(R) have infinitely many equivalence classes;
• the quotient order L/supp(L) is isomorphic to an ordinal α, and
• the quotient order R/supp(R) is isomorphic to β∗, where β is an ordinal.

Then degc(L) and degc(R) have neither infimum, nor supremum.

Proof. First, we prove that L and R have no infimum. Recall (see Observation 2)
that for every n ≥ 1, the order Linn is a lower bound for both L and R. Therefore,
if some Q is a meet for L and R, then supp(Q) has infinitely many classes. But then
the quotient order Q/supp(Q) has either an infinite ascending chain, or an infinite
descending chain. If there is an infinite descending chain, then this contradicts the
fact that Q/supp(Q) is isomorphically embeddable into L/supp(L) ∼= α. If there
is an infinite ascending chain, than this contradicts that Q/supp(Q) is embeddable
into R/supp(R) ∼= β∗. We conclude that no preorder Q can be an infimum for L
and R.

Now, towards a contradiction, assume that Q is a join for L and R. Since L ⊻R
is an upper bound for {L,R}, there is an isomorphic embedding from Q/supp(Q)
into (L ⊻R)/supp(L ⊻R) ∼= α+ β∗. Therefore,

Q/supp(Q) ∼= γ + δ∗ for some ordinals γ ≤ α and δ ≤ β.

On the other hand, Q/supp(Q) is also embeddable into (R⊻L)/supp(R⊻L) ∼= β∗+α.
Hence,

Q/supp(Q) ∼= ρ∗ + ξ for some ordinals ξ ≤ α and ρ ≤ β.

We deduce that

(3) γ + δ∗ ∼= ρ∗ + ξ.

A straightforward analysis of Eq. (3) shows the following:

• either γ and ξ are both finite,
• or δ and ρ are both finite.

On the other hand, since L ≤c Q and R ≤c Q, we deduce that all four ordinals
γ, δ, ξ, ρ should be infinite. We obtained a contradiction, hence, L and R do not
have a supremum. Proposition 4.1 is proved. □

Our second example shows the following: if R is incomparable with a minimal
linear preorder L, then R and L have neither join, nor meet (recall Theorem 2.2
and Observation 1).

Theorem 4.1. Let R be a positive linear preorder such that R is ≤c-incomparable
with ωst. Then R and ωst have neither infimum, nor supremum.

Proof. It is easy to see that R and ωst do not have an infimum. Indeed, for any
positive linear preorder S, we have the following: S is a lower bound for {R,ωst}
if and only if S ≡c Linn for some n ≥ 1.

Towards a contradiction, assume that Q is a supremum for R and ωst. Fix a
computable reduction f : Q ≤c (ωst⊻R). Then one of the following two cases holds.
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Case I. Suppose that there are only finitely many even numbers belonging to
range(f).

Fix a computable reduction g : ωst ≤c Q. We can choose a natural number N
such that

(∀x ≥ N)(f(g(x)) is odd).

But then a computable function

h(y) =

⌊
f(g(y +N))

2

⌋
provides a reduction ωst ≤c R, which gives a contradiction.

Case II. Otherwise, there are infinitely many even numbers belonging to the set
range(f). Consider an infinite c.e. set W = {2k : 2k ∈ range(f)}. Without loss of
generality, one may assume that W ̸= range(f). Then one can show the following:

• the preorder (ωst ⊻R) ↾W (recall Definition 3) is equivalent to ωst, and
• Q ≡c ωst ⊻R1, where R1 ≤c R.

Consider a reduction g : (ωst ⊻R1) ≤c (R ⊻ ωst).

Subcase II.(a). Suppose that there is an odd number y such that g(y) is even.
This implies that for every even number z, the value g(z) is also even. Hence, the
function

g1(x) =

⌊
g(2x)

2

⌋
gives a reduction ωst ≤c R — contradiction.

Subcase II.(b). For every odd y, the value g(y) is odd. This implies that
R1 ≤c ωst, and R1 is a lower bound for {R,ωst}. Therefore, R1 ≡c Linn for some
n ≥ 1.

Now we have Q ≡c ωst ⊻ Linn. Consider a reduction h : R ≤c (ωst ⊻ Linn). The
set V = {2k : 2k ∈ range(h)} is infinite, and one can prove the following:

• the preorder (ωst ⊻ Linn) ↾ V is computably reducible to R, and
• (ωst ⊻ Linn) ↾ V is equivalent to ωst.

Thus, ωst ≤c R — contradiction.

Each of the cases above gives a contradiction, therefore, Q cannot be a supremum
for R and ωst. Theorem 4.1 is proved. □

5. Example of a pair with a meet

Here we show that in general, ≤c-incomparable positive linear preorders L and
R can have an infimum.

By ζst we denote the computable linear order ω∗
st ⊻ ωst. Notice that this linear

order is isomorphic to the standard ordering of integers ζ.

Proposition 5.1. The linear preorders ζst ⊻Lin1 and Lin1 ⊻ ζst have infimum ζst.
In addition, these preorders do not have a supremum.

Proof Sketch. It is clear that ζst is a lower bound for {ζst⊻Lin1,Lin1⊻ζst}. Suppose
that R is an arbitrary lower bound for {ζst ⊻ Lin1,Lin1 ⊻ ζst}. By Lemma 2.1, we
may assume that R is a computable linear order (with domain ω). Fix a computable
reduction f : R ≤c (ζst ⊻ Lin1). Then one can prove that one of the following cases
holds:
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• If the set range(f) does not contain odd numbers, then we have:

(R ≡c ζst) or (R ≡c ωst) or (R ≡c ω
∗
st).

• If range(f) contains an odd number, then since R ≤c (Lin1⊻ζst), a straight-
forward order-theoretic analysis shows that R ≡c ω

∗
st.

In each of the cases, we have R ≤c ζst. Hence, ζst is an infimum for {ζst⊻Lin1,Lin1⊻
ζst}.

Towards a contradiction, assume that Q is a supremum for {ζst⊻Lin1,Lin1⊻ζst}.
Since (ζst ⊻ Lin1 ⊻ ζst) is an upper bound, we deduce that Q can be treated as a
computable linear order such that:

(a) both order types ζ + 1 and 1 + ζ are isomorphically embeddable into Q,
and

(b) Q is embeddable into ζ + 1 + ζ.

On the other hand, (Lin1 ⊻ ζst ⊻Lin1) is another upper bound for {ζst ⊻Lin1,Lin1 ⊻
ζst}. This implies that Q is also isomorphically embeddable into 1 + ζ + 1. One
can show that this fact together with Conditions (a) and (b) gives a contradiction.
Therefore, Q cannot be a supremum for our pair of orders. □

6. Computable linear orders of order type ω

In this section, we give a partial result on suprema. We restrict our attention to
the following substructure in the poset Celps.

Definition 6. By Ω we denote the following poset:

Ω = ({degc(L) : L is a computable linear order isomorphic to ωst};≤c).

Observation 5. The set Ω ∪ {lin : n ≥ 1} is a down-set in the poset Celps.

We prove the following theorem.

Theorem 6.1. There exist ≤c-incomparable orders L and M in Ω such that L,M
have a supremum S inside Ω.

Proof. We build computable linear orders L, M , and S (all isomorphic to ωst), and
satisfy the following requirements:

NRL→M
e : The function φe does not provide a computable reduction L ≤c M .

NRM→L
e : The function φe does not provide a computable reduction M ≤c L.
SUP: L ≤c S and M ≤c S.

In the verification, we will prove that in addition to these requirements, the con-
structed order S will be a supremum for L,M .

As it is custom in computable structure theory, the order L is built as an in-
creasing sequence of uniformly recursive linear orders:

L0 ⊆ L1 ⊆ L2 ⊆ . . . ; L =
⋃

s∈ω Ls.

The orders M and S are constructed in a similar way.

At the stage 0, we put

L0 =M0 = S0 = {0 < 2 < 4 < · · · < 2k < 2k + 2 < . . . }.
We build each of the orders L and M implementing the following guidelines.

The order L consists of the intervals ILk = [2k; 2k + 2]L, for k ∈ ω. Whenever we
want to add a fresh odd number z inside an interval ILk , we proceed as follows:
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• Find the element y ∈ ILk such that y <L 2k + 2, and right now, we have

¬∃x[y <Ls
x <Ls

2k + 2].

• Add the element z, and declare

y <L z <L 2k + 2.

Notice that this procedure guarantees that the elements y and z will be forever
adjacent — i.e., the resulting order L =

⋃
s∈ω Ls satisfies

¬∃v[y <L v <L z].

Therefore, we may assume the following: our construction ‘automatically’ builds
a partial computable function ψL

adj(k,m) satisfying the following:

• for each k ∈ ω, the domain of ψL
adj(k, ·) is a finite initial segment of ω;

• the range of ψL
adj is a subset of odd numbers;

• if the value vk,0 = ψL
adj(k, 0) is defined, then vk,0 >L 2k is the element that

is <L-adjacent to 2k;
• if vk,m+1 = ψL

adj(k,m + 1) is defined, then vk,m+1 >L vk,m is the element
that is <L-adjacent to vk,m.

The construction of the order M also follows similar guidelines: in particular, M
has its own partial function ψM

adj .

Strategy for SUP. This strategy is a global one. The order S consists of the
following intervals:

JL
k = [4k; 4k + 2]S , JM

k = [4k + 2; 4k + 4]S , k ∈ ω.

For each k ∈ ω, the interval JL
k “copies” the corresponding interval ILk from L,

and the interval JM
k “copies” the interval IMk from M . More formally, this can

be arranged as follows: whenever we define a new value ψL
adj(k,m), we make the

following actions:

• Find the element y ∈ JL
k such that y <S 4k+2, and (at the current stage t)

we have

¬∃x[y <St x <St 4k + 2].

• Choose a fresh odd number w, and declare y <S w <S 4k + 2.

Then one can define:

• hL(ψ
L
adj(k,m)) := this w;

• hL(2k) := 4k.

Clearly, the resulting total function hL gives a computable reduction L ≤c S.
Similarly, one arranges a computable reduction hM : M ≤c S.

Strategy for NRL→M
e .

(1) Choose a fresh interval ILk inside L.
(2) Wait until the values φe(2k) and φe(2k + 2) are defined.
(3) Initialize all lower priority strategies. If φe(2k) <M φe(2k+2), then proceed

as follows:
(a) Forbid to enumerate new elements into all intervals IMl such that IMl

intersects with [φe(2k);φe(2k + 2)]M .
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(b) For each r ≥ k, add into the interval ILr precisely

N = card([φe(2k);φe(2k + 2)]M )

fresh odd numbers.

The strategy for NRM→L
e is defined in a similar way.

Notice that Step (3.b) of the strategy ensures the following property:

(4) If ψL
adj(k,m)↓, then (∀r ≥ k)[ψL

adj(r,m)↓].
This property will be crucial in our verification (to be elaborated).

The strategy has two outcomes:

w: Waiting forever at Step (2). Then the function φe is not total.

s: Eventually stopping at Step (3). Then it is clear that NRL→M
e is satisfied:

indeed, the interval ILk has more elements than the corresponding interval
[φe(2k);φe(2k + 2)]M .

Construction. We fix some effective ω-ordering of our requirements:

R0 < R1 < R2 < . . . .

The tree of strategies T is arranged similarly to the construction of Theorem 3.1.
At a stage s of the construction, one visits strategies α0, α1, . . . , αs. As usual, here
α0 = ∅, and αi+1 = αî o, where o is the current outcome of αi.

Verification. A standard argument for finite injury constructions shows that
all requirements NRL→M

e and NRM→L
e are eventually satisfied. Hence, L and M

are ≤c-incomparable.
It is clear that for each k ∈ ω, only Re-strategies satisfying e ≤ k could add

new odd numbers into the intervals ILk and IMk . Hence, since all requirements are
satisfied, the intervals ILk and IMk are finite. This implies that the computable
orders L, M , and S are isomorphic to ωst. In addition, the actions of the global
strategy ensure that S is an upper bound for both L and M .

In order to finish the proof, it is sufficient to establish the following:

Lemma 6.1. If degc(T ) ∈ Ω and T is an upper bound for L and M , then S ≤c T .

Proof. Fix two computable reductions f : L ≤c T and g : M ≤c T . Also, let
hL : L ≤c S and hM : M ≤c S be computable reductions constructed by the actions
of our global SUP-strategy.

We build the desired computable reduction ξ : S ≤c T . Roughly speaking, the
basic idea behind the reduction ξ is as follows. In order to reduce S to T , we just
use the given reductions f and g. This is achievable, since S was constructed as a
kind of special ‘disjoint sum’ of L and M . The only (combinatorial) problem is the
following. It could be the case that, say, for a given k, the images f(ILk ) and g(I

M
k )

intersect, and thus, in order to map the interval [4k; 4k+4]S into T , we cannot use
the numbers from f(ILk ) ∪ g(IMk ) in a naive straightforward manner. In order to
avoid this problem, we employ the property given by Eq. (4).

We give a formal definition of the reduction ξ. First, we computably recover a
sequence of even numbers (mi)i∈ω as follows:

• m0 := 0.
• If i is even, then find some even number 2k > mi + 2 such that g(2k) >T

f(mi+2). This is always possible, since T ∼= ωst and hence, the set range(g)
is cofinal in T . Put mi+1 := 2k.
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• If i is odd, then find an even number 2r > mi + 2 such that f(2r) >T

g(mi + 2). Set mi+1 := 2r.

Notice the following: for all i, j ∈ ω, we have

f([m2i;m2i + 2]L) ∩ g([m2j+1;m2j+1 + 2]M ) = ∅.
Now we are ready to compute the values ξ(x), x ∈ ω.

(1) Put ξ(4k) = f(m2k) and ξ(4k + 2) = g(m2k+1).
(2) If v is an odd number, then one of the following two cases holds:

• Suppose that v = hL(ψ
L
adj(k, t)) for some k and t. Then we put ξ(v) :=

f(ψL
adj(m2k/2, t)). Note that here the value ψL

adj(m2k/2, t) is defined:
indeed, we have

m2k

2
≥ 4 · 2k

2
= 4k ≥ k,

and hence, we can apply Eq. (4).
• Otherwise, v = hM (ψM

adj(r, t)) for some r and t. Then set ξ(v) :=

g(ψM
adj(m2r+1/2, t)). A similar argument shows that here the value

ψM
adj(m2r+1/2, t) is defined.

We have defined a total computable function ξ(x). Using a not difficult argu-
ment, now one can show that ξ : S ≤c T . □

Theorem 6.1 is proved. □

In conclusion of this section, we observe the following:

Lemma 6.2. The pair L,M built in Theorem 6.1 does not have a supremum inside
the structure Celps.

Proof Sketch. Towards a contradiction, assume that Q is a supremum for L,M
inside Celps. Since the order S (constructed in Theorem 6.1) is an upper bound
for {L,M} inside Celps, we deduce that Q ≤c S, and degc(Q) belongs to Ω (by
Observation 5). Since inside Ω, S is a supremum for {L,M}, this implies that
Q ≡c S. Therefore, there exists a computable reduction f : S ≤c (L ⊻M).

Since both L and M are computable linear orders isomorphic to ωst, one of the
following two cases holds.

Case 1. The set range(f) contains an odd number. Then for almost all numbers x
from S, the value f(x) is odd. Using this fact (and the properties of the construction
from Theorem 6.1), one can built a reduction g : S ≤c M . Since L ≤c S, we obtain
that L ≤c M , which contradicts the fact that L and M are ≤c-incomparable.

Case 2. The set range(f) contains only even numbers. Then one can build a
reduction h : S ≤c L. Therefore, M ≤c S ≤c L, which provides a contradiction
again.

We conclude that insideCelps, our orders L andM do not have a supremum. □
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