$\mathbf{S} \stackrel{\bullet}{\mathbf{e}} \mathbf{M} \mathbf{R}$ ISSN 1813-3304

СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports http://semr.math.nsc.ru

Том 20, M1, cmp. 132–139 (2023) DOI 10.33048/semi.2023.20.012

УДК 510.67 MSC 03C07, 03C10, 03C68

ALMOST n-ARY AND ALMOST n-ARITIZABLE THEORIES

S.V. SUDOPLATOV

ABSTRACT. We study possibilities for almost n-ary and n-aritizable theories. Their dynamics both in general case, for ω -categorical theories, and with respect to operations for theories are described.

Keywords: elementary theory, almost n-ary theory, almost n-aritizable theory.

We continue to study arities of theories and of their expansions [1]. In the present paper we introduce natural notions of almost n-ary and almost n-aritizable theories, and describe their dynamics both in general case, for ω -categorical theories, and with respect to operations for theories.

1. Preliminaries

Recall a series of notions related to arities and aritizabilities of theories.

Definition [2]. A theory T is said to be Δ -based, where Δ is some set of formulae without parameters, if any formula of T is equivalent in T to a Boolean combination of formulae in Δ .

For Δ -based theories T, it is also said that T has quantifier elimination or quantifier reduction up to Δ .

Definition [2, 3]. Let Δ be a set of formulae of a theory T, and $p(\bar{x})$ a type of T lying in S(T). The type $p(\bar{x})$ is said to be Δ -based if $p(\bar{x})$ is isolated by a set of formulas $\varphi^{\delta} \in p$, where $\varphi \in \Delta$, $\delta \in \{0, 1\}$.

The following lemma, being a corollary of Compactness Theorem, noticed in [2].

Sudoplatov, S.V., Almost n-ary and almost n-aritizable theories.

^{© 2023} Sudoplatov S.V.

The work of the author was carried out in the framework of the State Contract of the Sobolev Institute of Mathematics, Project No. FWNF-2022-0012 (Sections 1-3), and of Committee of Science in Science and Higher Education Ministry of the Republic of Kazakhstan, Grant No. AP19674850 (Section 4).

Received December, 28, 2021, published February, 19, 2023.

Lemma 1. A theory T is Δ -based if and only if, for any tuple \bar{a} of any (some) weakly saturated model of T, the type $\operatorname{tp}(\bar{a})$ is Δ -based.

Definition [1]. An elementary theory T is called *unary*, or 1-ary, if any T-formula $\varphi(\overline{x})$ is T-equivalent to a Boolean combination of T-formulas, each of which is of one free variable, and of formulas of form $x \approx y$.

For a natural number $n \geq 1$, a formula $\varphi(\overline{x})$ of a theory T is called n-ary, or an n-formula, if $\varphi(\overline{x})$ is T-equivalent to a Boolean combination of T-formulas, each of which is of n free variables.

For a natural number $n \geq 2$, an elementary theory T is called n-ary, or an n-theory, if any T-formula $\varphi(\overline{x})$ is n-ary.

A theory T is called binary if T is 2-ary, it is called ternary if T is 3-ary, etc.

We will admit the case n=0 for n-formulae $\varphi(\overline{x})$. In such a case $\varphi(\overline{x})$ is just T-equivalent to a sentence $\forall \overline{x} \varphi(\overline{x})$.

If T is a theory such that T is n-ary and not (n-1)-ary then the value n is called the arity of T and it is denoted by $\operatorname{ar}(T)$. If T does not have any arity we put $\operatorname{ar}(T) = \infty$.

Similarly, for a formula φ of a theory T we denote by $\operatorname{ar}_T(\varphi)$ the natural value n if φ is n-ary and not (n-1)-ary. If a theory T is fixed we write $\operatorname{ar}(\varphi)$ instead of $\operatorname{ar}_T(\varphi)$.

Clearly, $\operatorname{ar}(\varphi) \leq |\operatorname{FV}(\varphi)|$, where $\operatorname{FV}(\varphi)$ is the set of free variables of formula φ .

The following example illustrates the notions above, and it will be used below.

Example 1. Recall [4, 5, 6] that a *circular*, or *cyclic* order relation is described by a ternary relation K_3 satisfying the following conditions:

- (co1) $\forall x \forall y \forall z (K_3(x, y, z) \rightarrow K_3(y, z, x));$
- (co2) $\forall x \forall y \forall z (K_3(x, y, z) \land K_3(y, x, z) \leftrightarrow x = y \lor y = z \lor z = x);$
- (co3) $\forall x \forall y \forall z (K_3(x, y, z) \rightarrow \forall t [K_3(x, y, t) \lor K_3(t, y, z)]);$
- (co4) $\forall x \forall y \forall z (K_3(x,y,z) \vee K_3(y,x,z)).$

Clearly, $\operatorname{ar}(K_3(x,y,z))=3$ if the relation has at least three element domain. Hence, theories with infinite circular order relations are at least 3-ary.

The following generalization of circular order produces a n-ball, or n-spherical, or n-circular order relation, for $n \geq 4$, which is described by a n-ary relation K_n satisfying the following conditions:

(nbo1)
$$\forall x_1, \dots, x_n(K_n(x_1, x_2, \dots, x_n) \to K_n(x_2, \dots, x_n, x_1));$$

(nbo2) $\forall x_1, \dots, x_n \left(K_n(x_1, \dots, x_i, x_{i+1}, \dots, x_n) \land \right)$

$$\wedge K_n(x_1, \dots, x_{i+1}, x_i, \dots, x_n) \leftrightarrow \bigvee_{i=1}^{n-1} x_i = x_{i+1}$$
);

(nbo3)
$$\forall x_1, \dots, x_n(K_n(x_1, \dots, x_n) \to \forall t[K_n(x_1, \dots, x_{n-1}, t) \lor K_n(t, x_2, \dots, x_n)]);$$

(nbo4) $\forall x_1, \dots, x_n(K_n(x_1, \dots, x_i, x_{i+1}, \dots, x_n) \lor K_n(x_1, \dots, x_{i+1}, x_i, \dots, x_n)), i < n$

Clearly, $\operatorname{ar}(K_n(x_1,\ldots,x_n))=n$ if the relation has at least *n*-element domain. Thus, theories with infinite *n*-ball order relations are at least *n*-ary.

Definition [1]. A T-formula $\varphi(\overline{x})$ is called n-expansible, or n-arizable, or n-arizable, if T has an expansion T' such that $\varphi(\overline{x})$ is T'-equivalent to a Boolean combination of T'-formulas with n free variables.

A theory T is called n-expansible, or n-arizable, or n-aritizable, if there is an n-ary expansion T' of T.

A theory T is called *arizable* or *aritizable*, if T is n-aritizable for some n.

A 1-aritizable theory is called *unary-able*, or *unary-tizable*. A 2-aritizable theory is called *binary-tizable* or *binarizable*, a 3-aritizable theory is called *ternary-tizable* or *ternarizable*, etc.

Definition. [8] The disjoint union $\bigsqcup_{n\in\omega} \mathcal{M}_n$ of pairwise disjoint structures \mathcal{M}_n for pairwise disjoint predicate languages Σ_n , $n\in\omega$, is the structure of language $\bigcup_{n\in\omega} \Sigma_n \cup \{P_n^{(1)} \mid n\in\omega\}$ with the universe $\bigsqcup_{n\in\omega} M_n$, $P_n=M_n$, and interpretations of predicate symbols in Σ_n coinciding with their interpretations in \mathcal{M}_n , $n\in\omega$. The disjoint union of theories T_n for pairwise disjoint languages Σ_n accordingly, $n\in\omega$, is the theory

$$\bigsqcup_{n\in\omega} T_n \rightleftharpoons \operatorname{Th}\left(\bigsqcup_{n\in\omega} \mathcal{M}_n\right),\,$$

where $\mathcal{M}_n \models T_n$, $n \in \omega$. Taking empty sets instead of some structures \mathcal{M}_k we obtain disjoint unions of finitely many structures and theories. In particular, we have the disjoint unions $\mathcal{M}_0 \sqcup \ldots \sqcup \mathcal{M}_n$ and their theories $T_0 \sqcup \ldots \sqcup T_n$.

Theorem 1. [1]. 1. For any theories T_m , $m \in \omega$, and their disjoint union $\bigsqcup_{m \in \omega} T_m$, all T_m are n-theories iff $\bigsqcup_{m \in \omega} T_m$ is an n-theory, moreover,

$$\operatorname{ar}\left(\bigsqcup_{m\in\omega}T_m\right) = \max\{\operatorname{ar}(T_m)\mid m\in\omega\}.$$

2. For any theories T_m , $m \in \omega$, and their disjoint union $\bigsqcup_{m \in \omega} T_m$, all T_m are n-aritizable iff $\bigsqcup_{m \in \omega} T_m$ is n-aritizable.

Definition [7]. Let \mathcal{M} and \mathcal{N} be structures of relational languages $\Sigma_{\mathcal{M}}$ and $\Sigma_{\mathcal{N}}$ respectively. We define the *composition* $\mathcal{M}[\mathcal{N}]$ of \mathcal{M} and \mathcal{N} satisfying the following conditions:

- 1) $\Sigma_{\mathcal{M}[\mathcal{N}]} = \Sigma_{\mathcal{M}} \cup \Sigma_{\mathcal{N}};$
- 2) $M[N] = M \times N$, where M[N], M, N are universes of $\mathcal{M}[\mathcal{N}]$, \mathcal{M} , and \mathcal{N} respectively;
- 3) if $R \in \Sigma_{\mathcal{M}} \setminus \Sigma_{\mathcal{N}}$, $\mu(R) = n$, then $((a_1, b_1), \dots, (a_n, b_n)) \in R_{\mathcal{M}[\mathcal{N}]}$ if and only if $(a_1, \dots, a_n) \in R_{\mathcal{M}}$;
- 4) if $R \in \Sigma_{\mathcal{N}} \setminus \Sigma_{\mathcal{M}}$, $\mu(R) = n$, then $((a_1, b_1), \dots, (a_n, b_n)) \in R_{\mathcal{M}[\mathcal{N}]}$ if and only if $a_1 = \dots = a_n$ and $(b_1, \dots, b_n) \in R_{\mathcal{N}}$;
- 5) if $R \in \Sigma_{\mathcal{M}} \cap \Sigma_{\mathcal{N}}$, $\mu(R) = n$, then $((a_1, b_1), \dots, (a_n, b_n)) \in R_{\mathcal{M}[\mathcal{N}]}$ if and only if $(a_1, \dots, a_n) \in R_{\mathcal{M}}$, or $a_1 = \dots = a_n$ and $(b_1, \dots, b_n) \in R_{\mathcal{N}}$.

The composition $\mathcal{M}[\mathcal{N}]$ is called e-definable, or equ-definable, if $\mathcal{M}[\mathcal{N}]$ has an \emptyset -definable equivalence relation E whose E-classes are universes of the copies of \mathcal{N} forming $\mathcal{M}[\mathcal{N}]$. If the equivalence relation E is fixed, the e-definable composition is called E-definable.

Using a nice basedness of E-definable compositions $T_1[T_2]$ (see [7]) till the formulas of form E(x,y) and generating formulas for T_1 and T_2 we have the following:

Theorem 2. [1]. 1. For any theories T_1 and T_2 and their E-definable composition $T_1[T_2]$, T_1 and T_2 are n-theories, for $n \geq 2$, iff $T_1[T_2]$ is an n-theory, moreover, $\operatorname{ar}(T_1[T_2]) = \max\{\operatorname{ar}(T_1), \operatorname{ar}(T_2)\}$, if models of T_1 and of T_2 have at least two elements, and $\operatorname{ar}(T_1[T_2]) = \max\{\operatorname{ar}(T_1), \operatorname{ar}(T_2), 2\}$, if a model of T_1 or T_2 is a singleton.

2. For any theories T_1 and T_2 and their E-definable composition $T_1[T_2]$, T_1 and T_2 are n-aritizable iff $T_1[T_2]$ is n-aritizable.

2. Almost n-ary and n-aritizable theories, their dynamics

Definition. (Cf. [5, 6]) A theory T is called almost n-ary if there are finitely many formulae $\varphi_1(\overline{x}), \ldots, \varphi_m(\overline{x})$ such that each T-formula is T-equivalent to a Boolean combination of n-formulae and formulae obtained by substitutions of free variables in $\varphi_1(\overline{x}), \ldots, \varphi_m(\overline{x})$.

In such a case we say that the formulae $\varphi_1(\overline{x}), \ldots, \varphi_m(\overline{x})$ witness that T is almost n-ary.

Almost 1-ary theories are called *almost unary*, almost 2-ary theories are called *almost binary*, almost 3-ary theories are called *almost ternary*, etc.

A theory T is called $almost\ n$ -aritizable if some expansion T' of T is almost n-ary. Almost 1-aritizable theories are called $almost\ unary$ -tizable, almost 2-aritizable theories are called $almost\ binarizable$, almost 3-aritizable theories are called $almost\ ternarizable$, etc.

The following properties are obvious.

- 1. Any n-ary (respectively, n-aritizable) theory is almost n-ary (almost n-aritizable).
- 2. Any almost *n*-ary (respectively, *n*-aritizable) theory is almost *k*-ary (almost *k*-aritizable) for any $k \ge n$.
 - 3. Any theory of a finite structure is almost unary.

Families of weakly circularly minimal structures produce examples of almost binary theories which are not binary [5, 6]. Similarly natural generalizations of weakly circularly minimal structures till n-circular orders give examples of almost (n-1)-ary theories T_n with $\operatorname{ar}(T_n) = n$, $n \geq 4$.

Assuming that the witnessing set $\{\varphi_1(\overline{x}), \dots, \varphi_m(\overline{x})\}$ is minimal for the almost n-ary theory T we have either m = 0 of $l(\overline{x}) > n$.

Thus we have two minimal characteristics witnessing the almost n-arity of T: m and $l(\overline{x})$. The pair $(m, l(\overline{x}))$ is called the degree of the almost n-arity of T, or the aar-degree of T, denoted by $\deg_{\mathrm{aar}}(T)$. Here we assume that n is minimal with almost n-arity of T, this n is denoted by $\mathrm{aar}(T)$. Clearly, $\mathrm{aar}(T) \leq \mathrm{ar}(T)$, and if m=0, i.e., $n=\mathrm{ar}(T)=\mathrm{aar}(T)$ then it is supposed that $l(\overline{x})=0$, too.

We have $\operatorname{aar}(T) \in \omega$ if and only if $\operatorname{ar}(T) \in \omega$. So if $\operatorname{ar}(T) = \infty$ then it is natural to put $\operatorname{aar}(T) = \infty$.

Besides, $n = \operatorname{ar}(T) = \operatorname{aar}(T) \in \omega$ means that the set $\Delta_n(T)$ of T-formulae with n free variables allows to express all \emptyset -definable sets for T by Boolean combinations and taking any set $\Delta_k(T)$ of T-formulae with k < n free variables all \emptyset -definable sets for T can be expressed by Boolean combinations of formulae in Δ_k and substitutions of infinitely many formulae $\varphi(\overline{x})$ only, where $l(\overline{x}) = n$.

By the definition if aar(T) = n then

(1)
$$\deg_{\rm ar}(T) \in \{(0,0)\} \cup \{(m,r) \mid m \in \omega \setminus \{0\}, r \in \omega, r > n\}.$$

The described pairs in the relation (1) are called admissible.

Theorem 3. For any $m, n \in \omega \setminus \{0\}$ with $m \leq n$ there is a theory T_{mn} with aar(Tmn) = m and $ar(T_{mn}) = n$.

Proof. We use disjoint unions of *dense* n-spherically ordered theories T_n with infinite orders, i.e., theories, generated by n-spherical orders $K_n(x_1, x_2, x_3, \ldots, x_n)$ satisfying the axioms

$$\forall x_1, x_2, \dots x_n \left(K_n(x_1, x_2, x_3, \dots, x_n) \land \bigwedge_{i \neq j} \neg x_i \approx x_j \rightarrow \exists y \left(\bigwedge_{i \leq n} \neg x_i \approx y \land K_n(x_1, y, x_3, \dots, x_n) \right) \right).$$

For n = 2 we take the theory T_2 of dense linear order $K_2(x_1, x_2)$ without endpoints, having $\operatorname{ar}(T_2) = 2$, and for n = 1 — the theory T_1 of the empty languages, having $\operatorname{ar}(T_1) = 1$.

Similarly to dense linear orders and dense circular orders, dense *n*-spherical orders produce quantifier eliminations with $\operatorname{ar}(T_n) = n, \ n \in \omega \setminus \{0\}$.

Using Theorem 1 we obtain $m = \operatorname{ar}(T) = \operatorname{aar}(T)$ taking $T_{mm} = \bigsqcup_{r \in \omega} T_m^r$,

where T_m^r are copies of T_m in disjoint languages $\{K_m^r\}$, $r \in \omega$. Indeed, disjoint predicates K_m^r producing $\operatorname{ar}(T_m) = m$ witness that $\operatorname{ar}(T_{mm}) = m$. Finitely many these predicates can not define all definable sets for T_{mm} since there are infinitely many of them. Thus, $\operatorname{aar}(T_{mm}) = m$, too.

Now for any m < n we form $T_{mn} = T_n \sqcup \coprod_{r \in \omega} T_m^r$. By T_n in T_{mn} and m < n we have $\operatorname{ar}(T_{mn}) = n$. And $\operatorname{aar}(T_{mn}) = m$ since there are infinitely many disjoint predicates of arity m.

The following theorem shows that all admissible pairs are realized.

Theorem 4. For any admissible pair (m,r) and $n \in \omega \setminus \{0,1\}$ there is a theory T with aar(T) = n and $deg_{ar}(T) = (m,r)$.

Proof. The admissible pair (0,0) with $\operatorname{ar}(T)=n$ is realized by Theorem 3. Now for an admissible pair $(m,r)\neq (0,0)$ we can take a disjoint union T of countably many dense n-spherically ordered theories and of m dense r-spherically ordered theories. Using arguments for Theorem 3 we obtain $\operatorname{aar}(T)=n$ and $\operatorname{deg}_{\operatorname{ar}}(T)=(m,r)$. \square

Proposition 1. Any almost n-ary theory T is k-ary for some $k \geq n$.

Proof. Let T be an almost n-ary theory witnessed by the formulae $\varphi_1(\overline{x}), \ldots, \varphi_m(\overline{x})$. Then taking the set Δ_k of all formulae with $k = \max\{n, l(\overline{x})\}$ we observe, using $\varphi_1(\overline{x}), \ldots, \varphi_m(\overline{x})$, that T is Δ_k -based, i.e., T is k-ary.

Corollary 1. Any theory T is n-ary for some n iff T is almost m-ary for some m.

Corollary 2. Any theory T is n-aritizable for some n iff T is almost m-aritizable for some m.

3. ω -categorical almost n-ary and n-aritizable theories

Proposition 2. If T is an almost n-ary ω -categorical theory, for some n, then T is almost k-ary for any $k \in \omega \setminus \{0\}$, i.e., $\operatorname{aar}(T) = 1$.

Proof. If $k \geq n$ then T is almost m-ary, as noticed above. If k < n then we collect in a set Z all formulae $\varphi_1(\overline{x}), \ldots, \varphi_m(\overline{x})$ witnessing the almost n-arity of T and, by Ryll-Nardzewski Theorem, all non-equivalent formulae $\psi_1(\overline{y}), \ldots, \psi_r(\overline{y})$ with $l(\overline{y}) = n$. Clearly, the set Z witnesses that T is almost k-ary. Taking k = 1 we obtain $\operatorname{aar}(T) = 1$.

Corollary 3. For any ω -categorical theory T either $\operatorname{aar}(T) = 1$ with $\operatorname{ar}(T) \in \omega$, or $\operatorname{aar}(T) = \infty$ with $\operatorname{ar}(T) = \infty$.

The following example illustrates Corollary 3.

Example 2. Taking a dense linear order K_2 without endpoint we can step-by-step extend it to a chain of dense *n*-spherical orders K_n , $n \ge 2$, in the following way.

We put $(a,b,c) \in K_3$ if $(a,b) \in K_2$ and $(b,c) \in K_2$, or $(b,c) \in K_2$ and $(c,a) \in K_2$, or $(c,a) \in K_2$ and $(a,b) \in K_2$. If $K_n, n \geq 3$, is defined then we put $(a_1,\ldots,a_{n+1}) \in K_{n+1}$ if $(a_1,\ldots,a_n) \in K_n$ and $(a_2,\ldots,a_{n+1}) \in K_n$, or $a_2,\ldots,a_{n+1} \in K_n$ and $(a_3,\ldots,a_{n+1},a_1) \in K_n$, or $(a_3,\ldots,a_{n+1},a_1) \in K_n$ and $(a_4,\ldots,a_{n+1},a_1,a_2) \in K_n$. The obtained structure \mathcal{M}_∞ in the language $\Sigma_\infty = \{K_n \mid n \in \omega \setminus \{0,1\}\}$ has an ω -categorical theory T_∞ with $\operatorname{aar}(T_\infty) = \operatorname{ar}(T_\infty) = \infty$, since each new K_n increases the arity. The same characteristics have restrictions of T_∞ to any infinite sublanguages.

At the same time each restriction \mathcal{M} of \mathcal{M}_{∞} to a finite nonempty sublanguage $\{K_{n_1}, \ldots, K_{n_m}\}$ produces a theory T with $\operatorname{aar}(T) = 1$ with

$$ar(T) = \max\{n_1, \dots, n_m\}.$$

By Corollary 3 and the definition of almost aritizability we immediately have:

Corollary 4. Any restriction T of n-ary ω -categorical theory T' is almost unarytizable.

4. Operations for almost n-ary and n-aritizable theories

In this section we consider links for arities of theories with respect to disjoint unions of theories and E-definable compositions of theories.

Theorem 5. 1. For any theories T_1 , T_2 and their disjoint union $T_1 \sqcup T_2$, both T_1 and T_2 are almost n-ary iff $T_1 \sqcup T_2$ is almost n-ary, moreover, $\operatorname{aar}(T_1 \sqcup T_2) = \max\{\operatorname{aar}(T_1), \operatorname{aar}(T_2)\}.$

2. For any theories T_1 , T_2 and their disjoint union $T_1 \sqcup T_2$, both T_1 and T_2 are almost n-aritizable iff $T_1 \sqcup T_2$ is almost is n-aritizable.

Proof. 1. Let Φ_1 and Φ_2 be finite sets of formulas witnessing that T_1 and T_2 are almost n-ary, respectively. Using the definition of disjoint union and Theorem 1 we obtain that the finite set $\Phi_1 \cup \Phi_2$ witnesses that $T_1 \sqcup T_2$ is almost n-ary. Conversely, if a finite set Φ of formulas witnesses that $T_1 \sqcup T_2$ is almost n-ary then Phi witnesses that both T_1 and T_2 are almost n-ary.

The equality $\operatorname{aar}(T_1 \sqcup T_2) = \max\{\operatorname{aar}(T_1), \operatorname{aar}(T_2)\}$ follows from the definition of disjoint union since if $\operatorname{aar}(T_1 \sqcup T_2) = k$ then the maximal value of $\operatorname{aar}(T_1)$ and $\operatorname{aar}(T_2)$ is responsible for this equality.

Item 2 follows from Item 1 since expansions of T_1 and T_2 correspond expansions of $T_1 \sqcup T_2$: some expansions of T_1' and T_2' of T_1 and T_2 , respectively, are almost n-ary iff $T_1' \sqcup T_2'$ produces an almost n-ary expansion of $T_1 \sqcup T_2$.

Using induction we obtain the following:

Corollary 5. 1. For any theories T_1, T_2, \ldots, T_m and their disjoint union $\bigsqcup_{i=1}^m T_i$, all

 T_1, T_2, \ldots, T_m are almost n-ary iff $\bigsqcup_{i=1}^m T_i$ is almost n-ary, moreover,

$$\operatorname{aar}\left(\bigsqcup_{i=1}^{m} T_{i}\right) = \max\{\operatorname{aar}(T_{i}) \mid i \leq m\}.$$

2. For any theories T_1, T_2, \ldots, T_m and their disjoint union $\bigsqcup_{i=1}^m T_i$, all T_1, T_2, \ldots, T_m are almost n-aritizable iff $\bigsqcup_{i=1}^m T_i$ is almost n-aritizable.

Remark 1. Both almost n-arity and almost n-aritizability can fail taking disjoint unions of infinitely many theories T_i , $i \in I$. Indeed, each theory T_i can have its own finite set Φ_i of formulas witnessing the almost n-arity/n-aritizability, say in disjoint languages, whereas finite unions $\bigcup \Phi_i$ can not witness the almost n-arity/n-aritizability for $\bigsqcup_{i \in I} T_i$.

Generalizing Theorem 2 we obtain:

Theorem 6. 1. For any theories T_1 and T_2 and their E-definable composition $T_1[T_2]$, T_1 and T_2 are almost n-ary iff $T_1[T_2]$ is almost n-ary, moreover, $\operatorname{aar}(T_1[T_2]) = \max\{\operatorname{aar}(T_1), \operatorname{aar}(T_2), 2\}$, if models of T_1 and of T_2 have at least two elements, and $\operatorname{aar}(T_1[T_2]) = \max\{\operatorname{aar}(T_1), \operatorname{aar}(T_2)\}$, if a model of T_1 or T_2 is a singleton.

2. For any theories T_1 and T_2 and their E-definable composition $T_1[T_2]$, T_1 and T_2 are almost n-aritizable iff $T_1[T_2]$ is almost n-aritizable.

Proof. 1. Let T_i be Δ_i -based for i=1,2. Since $T_1[T_2]$ is E-definable it is Δ -based, where Δ consists of formulae in $\Delta_1 \cup \Delta_2$ and E(x,y) [7]. Now assuming that T_1 and T_2 are almost n-ary we can choose Δ_i consisting of n-formulae and finitely many formulae forming Φ_i , i=1,2. Hence $T_1[T_2]$ is almost n-ary.

Conversely, if $T_1[T_2]$ is almost n-ary and it is witnessed by a set Φ of formulae then Φ witnesses that T_1 and T_2 are almost n-ary.

If models of T_1 and of T_2 have at least two elements then $T_1[T_2]$ is at least binary that witnessed by the formula E(x,y). Thus since $T_1[T_2]$ is Δ -based we have $\operatorname{aar}(T_1[T_2]) = \max\{\operatorname{aar}(T_1), \operatorname{aar}(T_2), 2\}$. If T_1 or T_2 is a theory of singleton then $T_1[T_2]$ is $(\Delta_1 \cup \Delta_2)$ -based implying $\operatorname{aar}(T_1[T_2]) = \max\{\operatorname{aar}(T_1), \operatorname{aar}(T_2)\}$.

Item 2 follows from Item 1 repeating the arguments for Item 2 of Theorem 5.

Theorem 6 immediately implies

Corollary 6. Any composition of finitely many almost n-ary (almost n-aritizable) theories, for $n \geq 2$, is again many almost n-ary (almost n-aritizable).

5. Conclusion

We considered possibilities for almost arities and almost aritizabilities of theories and their dynamics both in general case, for ω -categorical theories, and with respect to operations for theories. It would be interesting to describe values of almost arities and almost aritizabilities for natural classes of theories.

References

- S.V. Sudoplatov, Arities and aritizabilities of first-order theories, Sib. Elektron. Mat. Izv., 19:2 2022, 889-901.
- [2] E.A. Palyutin, J. Saffe, S.S. Starchenko, Models of superstable Horn theories, Algebra Logic, 24:3 (1985), 171-210. Zbl 0597.03017
- [3] S.V. Sudoplatov, Classification of Countable Models of Complete Theories, Novosibirsk: NSTU, 2018.
- [4] B.Sh. Kulpeshov, H.D. Macpherson, Minimality conditions on circularly ordered structures, Math. Log. Q., 51:4 (2005), 377–399. Zbl 1080.03023
- [5] A.B. Altaeva, B.Sh. Kulpeshov, On almost binary weakly circularly minimal structures, Bulletin of Karaganda University, Mathematics, 78:2 (2015), 74-82.
- [6] B.Sh. Kulpeshov, On almost binarity in weakly circularly minimal structures, Eurasian Math. J., 7:2 (2016), 38-49. Zbl 1463.03011
- [7] D.Yu. Emel'yanov, B.Sh. Kulpeshov, S.V. Sudoplatov, Algebras of binary formulas for compositions of theories, Algebra Logic, 59:4 (2020), 295-312. Zbl 1484.03053
- [8] R.E. Woodrow, Theories with a finite number of countable models and a small language, Ph. D. Thesis, Simon Fraser University, 1976.

SERGEY VLADIMIROVICH SUDOPLATOV SOBOLEV INSTITUTE OF MATHEMATICS ACADEMICIAN KOPTYUG AVENUE, 4 630090, NOVOSIBIRSK, RUSSIA. *Email address*: sudoplat@math.nsc.ru

Novosibirsk State Technical University K. Marx avenue, 20

630073, Novosibirsk, Russia.

Email address: sudoplatov@corp.nstu.ru