СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports
http://semr.math.nsc.ru
Том 20, №1, cmp. 132-139 (2023)
УДК 510.67
DOI 10.33048/semi.2023.20.012
MSC 03C07, 03C10, 03C68

ALMOST n-ARY AND ALMOST n-ARITIZABLE THEORIES

S.V. SUDOPLATOV

Abstract

We study possibilities for almost n-ary and n-aritizable theories. Their dynamics both in general case, for ω-categorical theories, and with respect to operations for theories are described.

Keywords: elementary theory, almost n-ary theory, almost n-aritizable theory.

We continue to study arities of theories and of their expansions [1]. In the present paper we introduce natural notions of almost n-ary and almost n-aritizable theories, and describe their dynamics both in general case, for ω-categorical theories, and with respect to operations for theories.

1. Preliminaries

Recall a series of notions related to arities and aritizabilities of theories.
Definition [2]. A theory T is said to be Δ-based, where Δ is some set of formulae without parameters, if any formula of T is equivalent in T to a Boolean combination of formulae in Δ.

For Δ-based theories T, it is also said that T has quantifier elimination or quantifier reduction up to Δ.

Definition $[2,3]$. Let Δ be a set of formulae of a theory T, and $p(\bar{x})$ a type of T lying in $S(T)$. The type $p(\bar{x})$ is said to be Δ-based if $p(\bar{x})$ is isolated by a set of formulas $\varphi^{\delta} \in p$, where $\varphi \in \Delta, \delta \in\{0,1\}$.

The following lemma, being a corollary of Compactness Theorem, noticed in [2].

[^0]Lemma 1. A theory T is Δ-based if and only if, for any tuple \bar{a} of any (some) weakly saturated model of T, the type $\operatorname{tp}(\bar{a})$ is Δ-based.

Definition [1]. An elementary theory T is called unary, or 1-ary, if any T-formula $\varphi(\bar{x})$ is T-equivalent to a Boolean combination of T-formulas, each of which is of one free variable, and of formulas of form $x \approx y$.

For a natural number $n \geq 1$, a formula $\varphi(\bar{x})$ of a theory T is called n-ary, or an n-formula, if $\varphi(\bar{x})$ is T-equivalent to a Boolean combination of T-formulas, each of which is of n free variables.

For a natural number $n \geq 2$, an elementary theory T is called n-ary, or an n-theory, if any T-formula $\varphi(\bar{x})$ is n-ary.

A theory T is called binary if T is 2-ary, it is called ternary if T is 3 -ary, etc.
We will admit the case $n=0$ for n-formulae $\varphi(\bar{x})$. In such a case $\varphi(\bar{x})$ is just T-equivalent to a sentence $\forall \bar{x} \varphi(\bar{x})$.

If T is a theory such that T is n-ary and not $(n-1)$-ary then the value n is called the arity of T and it is denoted by $\operatorname{ar}(T)$. If T does not have any arity we put $\operatorname{ar}(T)=\infty$.

Similarly, for a formula φ of a theory T we denote ${\operatorname{by~} \operatorname{ar}_{T}(\varphi) \text { the natural value }}$ n if φ is n-ary and not $(n-1)$-ary. If a theory T is fixed we write $\operatorname{ar}(\varphi)$ instead of $\operatorname{ar}_{T}(\varphi)$.

Clearly, $\operatorname{ar}(\varphi) \leq|\mathrm{FV}(\varphi)|$, where $\operatorname{FV}(\varphi)$ is the set of free variables of formula φ.
The following example illustrates the notions above, and it will be used below.
Example 1. Recall $[4,5,6]$ that a circular, or cyclic order relation is described by a ternary relation K_{3} satisfying the following conditions:
(co1) $\forall x \forall y \forall z\left(K_{3}(x, y, z) \rightarrow K_{3}(y, z, x)\right)$;
(co2) $\forall x \forall y \forall z\left(K_{3}(x, y, z) \wedge K_{3}(y, x, z) \leftrightarrow x=y \vee y=z \vee z=x\right)$;
(co3) $\forall x \forall y \forall z\left(K_{3}(x, y, z) \rightarrow \forall t\left[K_{3}(x, y, t) \vee K_{3}(t, y, z)\right]\right)$;
(co4) $\forall x \forall y \forall z\left(K_{3}(x, y, z) \vee K_{3}(y, x, z)\right)$.
Clearly, $\operatorname{ar}\left(K_{3}(x, y, z)\right)=3$ if the relation has at least three element domain. Hence, theories with infinite circular order relations are at least 3-ary.

The following generalization of circular order produces a n-ball, or n-spherical, or n-circular order relation, for $n \geq 4$, which is described by a n-ary relation K_{n} satisfying the following conditions:
(nbo1) $\forall x_{1}, \ldots, x_{n}\left(K_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \rightarrow K_{n}\left(x_{2}, \ldots, x_{n}, x_{1}\right)\right)$;
(nbo2) $\forall x_{1}, \ldots, x_{n}\left(K_{n}\left(x_{1}, \ldots, x_{i}, x_{i+1}, \ldots, x_{n}\right) \wedge\right.$

$$
\left.\wedge K_{n}\left(x_{1}, \ldots, x_{i+1}, x_{i}, \ldots, x_{n}\right) \leftrightarrow \bigvee_{i=1}^{n-1} x_{i}=x_{i+1}\right)
$$

(nbo3) $\forall x_{1}, \ldots, x_{n}\left(K_{n}\left(x_{1}, \ldots, x_{n}\right) \rightarrow \forall t\left[K_{n}\left(x_{1}, \ldots, x_{n-1}, t\right) \vee K_{n}\left(t, x_{2}, \ldots, x_{n}\right)\right]\right)$; (nbo4) $\forall x_{1}, \ldots, x_{n}\left(K_{n}\left(x_{1}, \ldots, x_{i}, x_{i+1}, \ldots, x_{n}\right) \vee K_{n}\left(x_{1}, \ldots, x_{i+1}, x_{i}, \ldots, x_{n}\right)\right), i<$ n.

Clearly, $\operatorname{ar}\left(K_{n}\left(x_{1}, \ldots, x_{n}\right)\right)=n$ if the relation has at least n-element domain. Thus, theories with infinite n-ball order relations are at least n-ary.

Definition [1]. A T-formula $\varphi(\bar{x})$ is called n-expansible, or n-arizable, or n aritizable, if T has an expansion T^{\prime} such that $\varphi(\bar{x})$ is T^{\prime}-equivalent to a Boolean combination of T^{\prime}-formulas with n free variables.

A theory T is called n-expansible, or n-arizable, or n-aritizable, if there is an n-ary expansion T^{\prime} of T.

A theory T is called arizable or aritizable, if T is n-aritizable for some n.
A 1-aritizable theory is called unary-able, or unary-tizable. A 2-aritizable theory is called binary-tizable or binarizable, a 3-aritizable theory is called ternary-tizable or ternarizable, etc.

Definition. [8] The disjoint union $\bigsqcup_{n \in \omega} \mathcal{M}_{n}$ of pairwise disjoint structures \mathcal{M}_{n} for pairwise disjoint predicate languages $\Sigma_{n}, n \in \omega$, is the structure of language $\bigcup_{n \in \omega} \Sigma_{n} \cup\left\{P_{n}^{(1)} \mid n \in \omega\right\}$ with the universe $\bigsqcup_{n \in \omega} M_{n}, P_{n}=M_{n}$, and interpretations of predicate symbols in Σ_{n} coinciding with their interpretations in $\mathcal{M}_{n}, n \in \omega$. The disjoint union of theories T_{n} for pairwise disjoint languages Σ_{n} accordingly, $n \in \omega$, is the theory

$$
\bigsqcup_{n \in \omega} T_{n} \rightleftharpoons \operatorname{Th}\left(\bigsqcup_{n \in \omega} \mathcal{M}_{n}\right)
$$

where $\mathcal{M}_{n} \models T_{n}, n \in \omega$. Taking empty sets instead of some structures \mathcal{M}_{k} we obtain disjoint unions of finitely many structures and theories. In particular, we have the disjoint unions $\mathcal{M}_{0} \sqcup \ldots \sqcup \mathcal{M}_{n}$ and their theories $T_{0} \sqcup \ldots \sqcup T_{n}$.

Theorem 1. [1]. 1. For any theories $T_{m}, m \in \omega$, and their disjoint union $\bigsqcup_{m \in \omega} T_{m}$, all T_{m} are n-theories iff $\bigsqcup_{m \in \omega} T_{m}$ is an n-theory, moreover,

$$
\operatorname{ar}\left(\bigsqcup_{m \in \omega} T_{m}\right)=\max \left\{\operatorname{ar}\left(T_{m}\right) \mid m \in \omega\right\}
$$

2. For any theories $T_{m}, m \in \omega$, and their disjoint union $\bigsqcup_{m \in \omega} T_{m}$, all T_{m} are n-aritizable iff $\bigsqcup_{m \in \omega} T_{m}$ is n-aritizable.

Definition [7]. Let \mathcal{M} and \mathcal{N} be structures of relational languages $\Sigma_{\mathcal{M}}$ and $\Sigma_{\mathcal{N}}$ respectively. We define the composition $\mathcal{M}[\mathcal{N}]$ of \mathcal{M} and \mathcal{N} satisfying the following conditions:

1) $\Sigma_{\mathcal{M}[\mathcal{N}]}=\Sigma_{\mathcal{M}} \cup \Sigma_{\mathcal{N}}$;
2) $M[N]=M \times N$, where $M[N], M, N$ are universes of $\mathcal{M}[\mathcal{N}], \mathcal{M}$, and \mathcal{N} respectively;
3) if $R \in \Sigma_{\mathcal{M}} \backslash \Sigma_{\mathcal{N}}, \mu(R)=n$, then $\left(\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right) \in R_{\mathcal{M}[\mathcal{N}]}$ if and only if $\left(a_{1}, \ldots, a_{n}\right) \in R_{\mathcal{M}}$;
4) if $R \in \Sigma_{\mathcal{N}} \backslash \Sigma_{\mathcal{M}}, \mu(R)=n$, then $\left(\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right) \in R_{\mathcal{M}[\mathcal{N}]}$ if and only if $a_{1}=\ldots=a_{n}$ and $\left(b_{1}, \ldots, b_{n}\right) \in R_{\mathcal{N}}$;
5) if $R \in \Sigma_{\mathcal{M}} \cap \Sigma_{\mathcal{N}}, \mu(R)=n$, then $\left(\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right) \in R_{\mathcal{M}[\mathcal{N}]}$ if and only if $\left(a_{1}, \ldots, a_{n}\right) \in R_{\mathcal{M}}$, or $a_{1}=\ldots=a_{n}$ and $\left(b_{1}, \ldots, b_{n}\right) \in R_{\mathcal{N}}$.

The composition $\mathcal{M}[\mathcal{N}]$ is called e-definable, or equ-definable, if $\mathcal{M}[\mathcal{N}]$ has an \emptyset-definable equivalence relation E whose E-classes are universes of the copies of \mathcal{N} forming $\mathcal{M}[\mathcal{N}]$. If the equivalence relation E is fixed, the e-definable composition is called E-definable.

Using a nice basedness of E-definable compositions $T_{1}\left[T_{2}\right]$ (see [7]) till the formulas of form $E(x, y)$ and generating formulas for T_{1} and T_{2} we have the following:

Theorem 2. [1]. 1. For any theories T_{1} and T_{2} and their E-definable composition $T_{1}\left[T_{2}\right], T_{1}$ and T_{2} are n-theories, for $n \geq 2$, iff $T_{1}\left[T_{2}\right]$ is an n-theory, moreover, $\operatorname{ar}\left(T_{1}\left[T_{2}\right]\right)=\max \left\{\operatorname{ar}\left(T_{1}\right), \operatorname{ar}\left(T_{2}\right)\right\}$, if models of T_{1} and of T_{2} have at least two elements, and $\operatorname{ar}\left(T_{1}\left[T_{2}\right]\right)=\max \left\{\operatorname{ar}\left(T_{1}\right), \operatorname{ar}\left(T_{2}\right), 2\right\}$, if a model of T_{1} or T_{2} is a singleton.
2. For any theories T_{1} and T_{2} and their E-definable composition $T_{1}\left[T_{2}\right], T_{1}$ and T_{2} are n-aritizable iff $T_{1}\left[T_{2}\right]$ is n-aritizable.

2. Almost n-ary and n-ARITIZABLE THEORIES, THEIR DYNAMICS

Definition. (Cf. $[5,6]$) A theory T is called almost n-ary if there are finitely many formulae $\varphi_{1}(\bar{x}), \ldots, \varphi_{m}(\bar{x})$ such that each T-formula is T-equivalent to a Boolean combination of n-formulae and formulae obtained by substitutions of free variables in $\varphi_{1}(\bar{x}), \ldots, \varphi_{m}(\bar{x})$.

In such a case we say that the formulae $\varphi_{1}(\bar{x}), \ldots, \varphi_{m}(\bar{x})$ witness that T is almost n-ary.

Almost 1-ary theories are called almost unary, almost 2-ary theories are called almost binary, almost 3-ary theories are called almost ternary, etc.

A theory T is called almost n-aritizable if some expansion T^{\prime} of T is almost n-ary.
Almost 1-aritizable theories are called almost unary-tizable, almost 2-aritizable theories are called almost binarizable, almost 3-aritizable theories are called almost ternarizable, etc.

The following properties are obvious.

1. Any n-ary (respectively, n-aritizable) theory is almost n-ary (almost n-aritizable).
2. Any almost n-ary (respectively, n-aritizable) theory is almost k-ary (almost k-aritizable) for any $k \geq n$.
3. Any theory of a finite structure is almost unary.

Families of weakly circularly minimal structures produce examples of almost binary theories which are not binary [5, 6]. Similarly natural generalizations of weakly circularly minimal structures till n-circular orders give examples of almost $(n-1)$-ary theories T_{n} with $\operatorname{ar}\left(T_{n}\right)=n, n \geq 4$.

Assuming that the witnessing set $\left\{\varphi_{1}(\bar{x}), \ldots, \varphi_{m}(\bar{x})\right\}$ is minimal for the almost n-ary theory T we have either $m=0$ of $l(\bar{x})>n$.

Thus we have two minimal characteristics witnessing the almost n-arity of T : m and $l(\bar{x})$. The pair $(m, l(\bar{x}))$ is called the degree of the almost n-arity of T, or the aar-degree of T, denoted by $\operatorname{deg}_{\text {aar }}(T)$. Here we assume that n is minimal with almost n-arity of T, this n is denoted by $\operatorname{aar}(T)$. Clearly, $\operatorname{aar}(T) \leq \operatorname{ar}(T)$, and if $m=0$, i.e., $n=\operatorname{ar}(T)=\operatorname{aar}(T)$ then it is supposed that $l(\bar{x})=0$, too.

We have $\operatorname{aar}(T) \in \omega$ if and only if $\operatorname{ar}(T) \in \omega$. So if $\operatorname{ar}(T)=\infty$ then it is natural to put $\operatorname{aar}(T)=\infty$.

Besides, $n=\operatorname{ar}(T)=\operatorname{aar}(T) \in \omega$ means that the set $\Delta_{n}(T)$ of T-formulae with n free variables allows to express all \emptyset-definable sets for T by Boolean combinations and taking any set $\Delta_{k}(T)$ of T-formulae with $k<n$ free variables all \emptyset-definable sets for T can be expressed by Boolean combinations of formulae in Δ_{k} and substitutions of infinitely many formulae $\varphi(\bar{x})$ only, where $l(\bar{x})=n$.

By the definition if $\operatorname{aar}(T)=n$ then

$$
\begin{equation*}
\operatorname{deg}_{\mathrm{ar}}(T) \in\{(0,0)\} \cup\{(m, r) \mid m \in \omega \backslash\{0\}, r \in \omega, r>n\} \tag{1}
\end{equation*}
$$

The described pairs in the relation (1) are called admissible.
Theorem 3. For any $m, n \in \omega \backslash\{0\}$ with $m \leq n$ there is a theory $T_{m n}$ with $\operatorname{aar}(T m n)=m$ and $\operatorname{ar}\left(T_{m n}\right)=n$.

Proof. We use disjoint unions of dense n-spherically ordered theories T_{n} with infinite orders, i.e., theories, generated by n-spherical orders $K_{n}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$ satisfying the axioms

$$
\begin{aligned}
& \forall x_{1}, x_{2}, \ldots x_{n}\left(K_{n}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right) \wedge \bigwedge_{i \neq j} \neg x_{i} \approx x_{j} \rightarrow\right. \\
& \left.\quad \rightarrow \exists y\left(\bigwedge_{i \leq n} \neg x_{i} \approx y \wedge K_{n}\left(x_{1}, y, x_{3}, \ldots, x_{n}\right)\right)\right) .
\end{aligned}
$$

For $n=2$ we take the theory T_{2} of dense linear order $K_{2}\left(x_{1}, x_{2}\right)$ without endpoints, having $\operatorname{ar}\left(T_{2}\right)=2$, and for $n=1-$ the theory T_{1} of the empty languages, having $\operatorname{ar}\left(T_{1}\right)=1$.

Similarly to dense linear orders and dense circular orders, dense n-spherical orders produce quantifier eliminations with $\operatorname{ar}\left(T_{n}\right)=n, n \in \omega \backslash\{0\}$.

Using Theorem 1 we obtain $m=\operatorname{ar}(T)=\operatorname{aar}(T)$ taking $T_{m m}=\bigsqcup_{r \in \omega} T_{m}^{r}$, where T_{m}^{r} are copies of T_{m} in disjoint languages $\left\{K_{m}^{r}\right\}, r \in \omega$. Indeed, disjoint predicates K_{m}^{r} producing $\operatorname{ar}\left(T_{m}\right)=m$ witness that $\operatorname{ar}\left(T_{m m}\right)=m$. Finitely many these predicates can not define all definable sets for $T_{m m}$ since there are infinitely many of them. Thus, $\operatorname{aar}\left(T_{m m}\right)=m$, too.

Now for any $m<n$ we form $T_{m n}=T_{n} \sqcup \bigsqcup_{r \in \omega} T_{m}^{r}$. By T_{n} in $T_{m n}$ and $m<n$ we have $\operatorname{ar}\left(T_{m n}\right)=n$. And $\operatorname{aar}\left(T_{m n}\right)=m$ since there are infinitely many disjoint predicates of arity m.

The following theorem shows that all admissible pairs are realized.
Theorem 4. For any admissible pair (m, r) and $n \in \omega \backslash\{0,1\}$ there is a theory T with $\operatorname{aar}(T)=n$ and $\operatorname{deg}_{\mathrm{ar}}(T)=(m, r)$.

Proof. The admissible pair $(0,0)$ with $\operatorname{ar}(T)=n$ is realized by Theorem 3 . Now for an admissible pair $(m, r) \neq(0,0)$ we can take a disjoint union T of countably many dense n-spherically ordered theories and of m dense r-spherically ordered theories. Using arguments for Theorem 3 we obtain $\operatorname{aar}(T)=n$ and $\operatorname{deg}_{\mathrm{ar}}(T)=$ (m, r).

Proposition 1. Any almost n-ary theory T is k-ary for some $k \geq n$.
Proof. Let T be an almost n-ary theory witnessed by the formulae $\varphi_{1}(\bar{x}), \ldots$, $\varphi_{m}(\bar{x})$. Then taking the set Δ_{k} of all formulae with $k=\max \{n, l(\bar{x})\}$ we observe, using $\varphi_{1}(\bar{x}), \ldots, \varphi_{m}(\bar{x})$, that T is Δ_{k}-based, i.e., T is k-ary.
Corollary 1. Any theory T is n-ary for some n iff T is almost m-ary for some m.
Corollary 2. Any theory T is n-aritizable for some n iff T is almost m-aritizable for some m.

3. ω-CATEGORICAL ALMOST n-ARY AND n-ARITIZABLE THEORIES

Proposition 2. If T is an almost n-ary ω-categorical theory, for some n, then T is almost k-ary for any $k \in \omega \backslash\{0\}$, i.e., $\operatorname{aar}(T)=1$.

Proof. If $k \geq n$ then T is almost m-ary, as noticed above. If $k<n$ then we collect in a set Z all formulae $\varphi_{1}(\bar{x}), \ldots, \varphi_{m}(\bar{x})$ witnessing the almost n-arity of T and, by Ryll-Nardzewski Theorem, all non-equivalent formulae $\psi_{1}(\bar{y}), \ldots, \psi_{r}(\bar{y})$ with $l(\bar{y})=n$. Clearly, the set Z witnesses that T is almost k-ary. Taking $k=1$ we $\operatorname{obtain} \operatorname{aar}(T)=1$.

Corollary 3. For any ω-categorical theory T either $\operatorname{aar}(T)=1$ with $\operatorname{ar}(T) \in \omega$, or $\operatorname{aar}(T)=\infty$ with $\operatorname{ar}(T)=\infty$.

The following example illustrates Corollary 3.
Example 2. Taking a dense linear order K_{2} without endpoint we can step-by-step extend it to a chain of dense n-spherical orders $K_{n}, n \geq 2$, in the following way.

We put $(a, b, c) \in K_{3}$ if $(a, b) \in K_{2}$ and $(b, c) \in K_{2}$, or $(b, c) \in K_{2}$ and $(c, a) \in K_{2}$, or $(c, a) \in K_{2}$ and $(a, b) \in K_{2}$. If $K_{n}, n \geq 3$, is defined then we put $\left(a_{1}, \ldots, a_{n+1}\right) \in$ K_{n+1} if $\left(a_{1}, \ldots, a_{n}\right) \in K_{n}$ and $\left(a_{2}, \ldots, a_{n+1}\right) \in K_{n}$, or $a_{2}, \ldots, a_{n+1} \in K_{n}$ and $\left(a_{3}, \ldots, a_{n+1}, a_{1}\right) \in K_{n}$, or $\left(a_{3}, \ldots, a_{n+1}, a_{1}\right) \in K_{n}$ and $\left(a_{4}, \ldots, a_{n+1}, a_{1}, a_{2}\right) \in K_{n}$. The obtained structure \mathcal{M}_{∞} in the language $\Sigma_{\infty}=\left\{K_{n} \mid n \in \omega \backslash\{0,1\}\right\}$ has an ω-categorical theory T_{∞} with $\operatorname{aar}\left(T_{\infty}\right)=\operatorname{ar}\left(T_{\infty}\right)=\infty$, since each new K_{n} increases the arity. The same characteristics have restrictions of T_{∞} to any infinite sublanguages.

At the same time each restriction \mathcal{M} of \mathcal{M}_{∞} to a finite nonempty sublanguage $\left\{K_{n_{1}}, \ldots, K_{n_{m}}\right\}$ produces a theory T with $\operatorname{aar}(T)=1$ with

$$
\operatorname{ar}(T)=\max \left\{n_{1}, \ldots, n_{m}\right\}
$$

By Corollary 3 and the definition of almost aritizability we immediately have:
Corollary 4. Any restriction T of n-ary ω-categorical theory T^{\prime} is almost unarytizable.

4. Operations for almost n-ary and n-aritizable theories

In this section we consider links for arities of theories with respect to disjoint unions of theories and E-definable compositions of theories.
Theorem 5. 1. For any theories T_{1}, T_{2} and their disjoint union $T_{1} \sqcup T_{2}$, both T_{1} and T_{2} are almost n-ary iff $T_{1} \sqcup T_{2}$ is almost n-ary, moreover, $\operatorname{aar}\left(T_{1} \sqcup T_{2}\right)=$ $\max \left\{\operatorname{aar}\left(T_{1}\right), \operatorname{aar}\left(T_{2}\right)\right\}$.
2. For any theories T_{1}, T_{2} and their disjoint union $T_{1} \sqcup T_{2}$, both T_{1} and T_{2} are almost n-aritizable iff $T_{1} \sqcup T_{2}$ is almost is n-aritizable.

Proof. 1. Let Φ_{1} and Φ_{2} be finite sets of formulas witnessing that T_{1} and T_{2} are almost n-ary, respectively. Using the definition of disjoint union and Theorem 1 we obtain that the finite set $\Phi_{1} \cup \Phi_{2}$ witnesses that $T_{1} \sqcup T_{2}$ is almost n-ary. Conversely, if a finite set Φ of formulas witnesses that $T_{1} \sqcup T_{2}$ is almost n-ary then Phi witnesses that both T_{1} and T_{2} are almost n-ary.

The equality $\operatorname{aar}\left(T_{1} \sqcup T_{2}\right)=\max \left\{\operatorname{aar}\left(T_{1}\right)\right.$, $\left.\operatorname{aar}\left(T_{2}\right)\right\}$ follows from the definition of disjoint union since if $\operatorname{aar}\left(T_{1} \sqcup T_{2}\right)=k$ then the maximal value of $\operatorname{aar}\left(T_{1}\right)$ and $\operatorname{aar}\left(T_{2}\right)$ is responsible for this equality.

Item 2 follows from Item 1 since expansions of T_{1} and T_{2} correspond expansions of $T_{1} \sqcup T_{2}$: some expansions of T_{1}^{\prime} and T_{2}^{\prime} of T_{1} and T_{2}, respectively, are almost n-ary iff $T_{1}^{\prime} \sqcup T_{2}^{\prime}$ produces an almost n-ary expansion of $T_{1} \sqcup T_{2}$.

Using induction we obtain the following:
Corollary 5. 1. For any theories $T_{1}, T_{2}, \ldots, T_{m}$ and their disjoint union $\bigsqcup_{i=1}^{m} T_{i}$, all $T_{1}, T_{2}, \ldots, T_{m}$ are almost n-ary iff $\bigsqcup_{i=1}^{m} T_{i}$ is almost n-ary, moreover,

$$
\operatorname{aar}\left(\bigsqcup_{i=1}^{m} T_{i}\right)=\max \left\{\operatorname{aar}\left(T_{i}\right) \mid i \leq m\right\}
$$

2. For any theories $T_{1}, T_{2}, \ldots, T_{m}$ and their disjoint union $\bigsqcup_{i=1}^{m} T_{i}$, all $T_{1}, T_{2}, \ldots, T_{m}$ are almost n-aritizable iff $\bigsqcup_{i=1}^{m} T_{i}$ is almost n-aritizable.

Remark 1. Both almost n-arity and almost n-aritizability can fail taking disjoint unions of infinitely many theories $T_{i}, i \in I$. Indeed, each theory T_{i} can have its own finite set Φ_{i} of formulas witnessing the almost n-arity/ n-aritizability, say in disjoint languages, whereas finite unions $\bigcup \Phi_{i}$ can not witness the almost n-arity $/ n$ aritizability for $\bigsqcup_{i \in I} T_{i}$.

Generalizing Theorem 2 we obtain:
Theorem 6. 1. For any theories T_{1} and T_{2} and their E-definable composition $T_{1}\left[T_{2}\right], T_{1}$ and T_{2} are almost n-ary iff $T_{1}\left[T_{2}\right]$ is almost n-ary, moreover, $\operatorname{aar}\left(T_{1}\left[T_{2}\right]\right)=$ $\max \left\{\operatorname{aar}\left(T_{1}\right), \operatorname{aar}\left(T_{2}\right), 2\right\}$, if models of T_{1} and of T_{2} have at least two elements, and $\operatorname{aar}\left(T_{1}\left[T_{2}\right]\right)=\max \left\{\operatorname{aar}\left(T_{1}\right), \operatorname{aar}\left(T_{2}\right)\right\}$, if a model of T_{1} or T_{2} is a singleton .
2. For any theories T_{1} and T_{2} and their E-definable composition $T_{1}\left[T_{2}\right], T_{1}$ and T_{2} are almost n-aritizable iff $T_{1}\left[T_{2}\right]$ is almost n-aritizable.

Proof. 1. Let T_{i} be Δ_{i}-based for $i=1,2$. Since $T_{1}\left[T_{2}\right]$ is E-definable it is Δ-based, where Δ consists of formulae in $\Delta_{1} \cup \Delta_{2}$ and $E(x, y)$ [7]. Now assuming that T_{1} and T_{2} are almost n-ary we can choose Δ_{i} consisting of n-formulae and finitely many formulae forming $\Phi_{i}, i=1,2$. Hence $T_{1}\left[T_{2}\right]$ is almost n-ary.

Conversely, if $T_{1}\left[T_{2}\right]$ is almost n-ary and it is witnessed by a set Φ of formulae then Φ witnesses that T_{1} and T_{2} are almost n-ary.

If models of T_{1} and of T_{2} have at least two elements then $T_{1}\left[T_{2}\right]$ is at least binary that witnessed by the formula $E(x, y)$. Thus since $T_{1}\left[T_{2}\right]$ is Δ-based we have $\operatorname{aar}\left(T_{1}\left[T_{2}\right]\right)=\max \left\{\operatorname{aar}\left(T_{1}\right), \operatorname{aar}\left(T_{2}\right), 2\right\}$. If T_{1} or T_{2} is a theory of singleton then $T_{1}\left[T_{2}\right]$ is $\left(\Delta_{1} \cup \Delta_{2}\right)$-based implying $\operatorname{aar}\left(T_{1}\left[T_{2}\right]\right)=\max \left\{\operatorname{aar}\left(T_{1}\right), \operatorname{aar}\left(T_{2}\right)\right\}$.

Item 2 follows from Item 1 repeating the arguments for Item 2 of Theorem 5.
Theorem 6 immediately implies
Corollary 6. Any composition of finitely many almost n-ary (almost n-aritizable) theories, for $n \geq 2$, is again many almost n-ary (almost n-aritizable).

5. Conclusion

We considered possibilities for almost arities and almost aritizabilities of theories and their dynamics both in general case, for ω-categorical theories, and with respect to operations for theories. It would be interesting to describe values of almost arities and almost aritizabilities for natural classes of theories.

References

[1] S.V. Sudoplatov, Arities and aritizabilities of first-order theories, Sib. Èlektron. Mat. Izv., 19:2 2022, 889-901.
[2] E.A. Palyutin, J. Saffe, S.S. Starchenko, Models of superstable Horn theories, Algebra Logic, 24:3 (1985), 171-210. Zbl 0597.03017
[3] S.V. Sudoplatov, Classification of Countable Models of Complete Theories, Novosibirsk : NSTU, 2018.
[4] B.Sh. Kulpeshov, H.D. Macpherson, Minimality conditions on circularly ordered structures, Math. Log. Q., 51:4 (2005), 377-399. Zbl 1080.03023
[5] A.B. Altaeva, B.Sh. Kulpeshov, On almost binary weakly circularly minimal structures, Bulletin of Karaganda University, Mathematics, 78:2 (2015), 74-82.
[6] B.Sh. Kulpeshov, On almost binarity in weakly circularly minimal structures, Eurasian Math. J., 7:2 (2016), 38-49. Zbl 1463.03011
[7] D.Yu. Emel'yanov, B.Sh. Kulpeshov, S.V. Sudoplatov, Algebras of binary formulas for compositions of theories, Algebra Logic, 59:4 (2020), 295-312. Zbl 1484.03053
[8] R.E. Woodrow, Theories with a finite number of countable models and a small language, Ph. D. Thesis, Simon Fraser University, 1976.

Sergey Vladimirovich Sudoplatov
Sobolev Institute of Mathematics
Academician Koptyug avenue, 4
630090, Novosibirsk, Russia.
Email address: sudoplat@math.nsc.ru
Novosibirsk State Technical University
K. Marx avenue, 20

630073, Novosibirsk, Russia.
Email address: sudoplatov@corp.nstu.ru

[^0]: Sudoplatov, S.V., Almost n-ary and almost n-aritizable theories.
 (C) 2023 Sudoplatov S.V.

 The work of the author was carried out in the framework of the State Contract of the Sobolev Institute of Mathematics, Project No. FWNF-2022-0012 (Sections 1-3), and of Committee of Science in Science and Higher Education Ministry of the Republic of Kazakhstan, Grant No. AP19674850 (Section 4).

 Received December, 28, 2021, published February, 19, 2023.

