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Abstract. The purpose of present paper to study Lagrange space due to

changed Z. Shen square metric L∗ = (L+β)2

L
and obtained fundamental

tensor �elds for these space. Further, we studied about the variational
problem with �xed endpoints for the Lagrange spaces due to above
change.
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1. Introduction

The notion of (α, β)-metric was introduced by Matsumoto [7] as generalization of

Rander's metric L = α+β, where α =
√

aij(x)yiyj was a regular Remannian metric
and β = bi(x)y

i one-form metric. Rather than Randers metric there are several

important (α, β)-metric such as Kropina metric L = α2

β , Matsumoto metric L =

α2

α−β , generalized Kropina metric L = αn+1

βn , Z. Shen square metric L = (α+β)2

α etc.

Z. Shen square metric [13, 14] was also very interesting because it was constructed
from the Berwald metric by using suitable α and β, and it was projectively �at on
unit ball with constant �ag curvature.

Matsumoto [6] also introduced the transformations of Finsler metric which was
given by,

L
′
(x, y) = L(x, y) + β(x, y)

L
′′2(x, y) = L2(x, y) + β2(x, y)
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where, β = bi(x)y
i, bi(x) are components of covariant vector which was a function

of position alone. Further he had obtained the relationship between the imbedding
class numbers of (Mn, L

′
), (Mn, L

′′
) and (Mn, L). Generalizing above transformati-

ons Shibata [3] had studied the properties of Finsler space (Mn, L∗) whose fundamen-
tal metric function L∗(x, y) was obtained from L by

L∗(x, y) = f(L, β)

where, f was positively homogeneous function of degree one in L and β.

Now the geometry of a Lagrange space over a real, �nite-dimensional manifold
M had been introduced and studied as a sub-geometry of the geometry of the
tangent bundle TM by RMiron [10]. This geometry was developed together with his
collaborators in [8], [9], [10]. Compared to Finsler geometry, when the assumption of
homogeneity was relaxed then a new geometry arieses which was known as Lagrange
geometry, i.e. the Finsler geometry is a particular case of Lagrange geometry where
fundamental function is homogeneous.

Now we state some examples of Lagrange spaces which are reducible to

Finsler spaces:

Example 1. Every Riemannian space (M, gij(x)) determines a Finsler space
Fn = (M,F (x, y)) and consequently a Lagrange space Ln = (M,F 2(x, y)), where

F (x, y) =
√
gij(x)yiyj .

The fundamental tensor of this Finsler space coincides to the metric tensor gij(x)
of the Riemannian manifold (M, gij(x)).

Example 2. Let us consider the function

4
√
(y1)4 + (y2)4 + ......+ (yn)4,

de�ned in a preferential local system of coordinates on T̂M . The pair Fn =
(M,F (x, y)), with F de�ned in above is a Finsler space. The fundamental tensor
�eld gij can be easily calculated. This was the �rst example of Finsler space which
was given form the lecturer of Riemann in 1854.

Now we give example of Lagrange spaces, which are not reducible to Finsler
spaces

Example 3 The following Lagrangian from electrodynamics

L(x, y) = mcγij(x)y
iyj + 2e

mAi(x)y
i + U(x),

where γij(x) is a pseudo-Riemannian metric, Ai(x) a covector �eld and U(x) a
smooth function, m, c, e are the well-known constants from physics, determine a
Lagrange space Ln.

Example 4 Consider the Lagrangian function

L(x, y) = F 2(x, y) +Ai(x)y
i + U(x),

where F (x, y) is the fundamental function of a Finsler space, Ai(x) are the compon-
ents of a covector �eld and U(x) a smooth function gives rise to a remarkable
Lagrange space, called the Almost Finsler-Lagrange space (shortly AFL-space).
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Geometric problems derived from the variational problem of a Lagrangian which
was studied by J. Kern [4] in details. He said that the variational problem can
be formulated for di�erentiable Lagrangians and can be solved in case when we
consider the parameterized curves, even if the integral of action depends on the
parameterization of considered the curve.

In the year 2001, B. Nicolaescu [2] studied the lagranges spaces with (α, β)-
metric and variational problem with �xed endpoints in the year 2004 [1]. Further
in 2011, Pandey and Chaubey [11] considered these problem for the (γ, β)-metric,
where γ3 = aijk(x)y

iyjyk was a cubic metric and β = bi(x)y
i a one form metric on

TM. In the present paper we transform the Z. Shen square metric as L = (L+β)2

L
and studied Lagrange space due to this transformation. The above generalization
is very interesting because it enhance our understanding and geometric meaning
of non-Riemanian quantities. Further we obtained fundamental tensor �elds for
these space and also studied about the variational problem with �xed endpoints of
Lagrange spaces due to this change.

2. Lagrange metrics

In this section we give the de�nitions of a regular, di�erentiable Lagrangian

over the tangent manifolds TM and T̂M , where M is a di�erentiable, real manifold
of dimension n. Let (TM, τ,M) be the tangent bundle of a C∞-di�erentiable real
n-dimensional manifold M. If (U, ϕ) is a local chart on M, then the coordinates of
a point u = (x, y) ∈ τ−1(U) ⊂ TM will be denoted by (x, y). R. Miron [10] given
following de�ntions:

De�nition 1. A di�erentiable Lagrangian on TM is a mapping L : (x, y) ∈
TM −→ L(x, y) ∈ R,∀u = (x, y) ∈ TM , which is of class C∞ on T̂M = TM \ (0)
and is continuous on the null section of the projection τ : TM −→ M , such that

(1) gij =
1

2

∂2L(x, y)

∂yi∂yj
,

is a (0, 2)-type symmetric d-tensor �eld on TM.

De�nition 2. A di�erential Lagrangian L on TM is said to be regular if

rank∥gij(x, y)∥ = n, ∀(x, y) ∈ T̂M .

For the Lagrange space Ln = (M,L(x, y)) we say that L(x, y) is the fundamental
function and gij(x, y) is the fundamental (or metric) tensor. We will denote by gij

the inverse matrix of gij . This means that

gikgjk = δij .

Now the de�nition of a Lagrange space was given by

De�nition 3. A Lagrange space is a pair Ln = (M,L) formed by a smooth, real n-
dimensional manifold M and a regular di�erentiable Lagrangian L on M, for which

the d-tensor �eld gij from (1) has constant signature on T̂M .

Now, let L : TM −→ R be a di�erentiable Lagrangian on the manifold M,
which was not necessarily regular. A curve c : t ∈ [0, 1] −→ (xi(t)) ∈ U ⊂ M
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having the image in a domain of a chart U of M, has the extension to T̂M given by

c∗ : t ∈ [0, 1] −→ (xi(t), dxi(t)
dt ) ∈ τ−1(U). The integral of action of the Lagrangian

L on the curve c is given by the functional

(2) I(c) =

∫ 1

0

L(x(t),
dx

dt
)dt.

Consider the curve cϵ : t ∈ [0, 1] −→ (xi(t) + ϵvi(t)) ∈ M , which have the same
endpoints xi(0), xi(1) as the curve c, vi(0) = vi(1) = 0 and ϵ is a real number,
su�ciently small in absolute value, such that Imcϵ ∈ U . The extension of the curve
cϵ to TM is

c∗ϵ : t ∈ [0, 1] −→ (xi(t) + ϵvi(t), dxi

dt + ϵdv
i

dt ) ∈ τ−1(U)

The integral of action of the Lagrangian L on the curve cϵ is,

I(cϵ) =
∫ 1

0
L(x+ ϵv, dx

dt + ϵdvdt )dt.

A necessary condition for I(c) to be an extremal value I(cϵ) is
dI(cϵ)

dϵ |ϵ=0 = 0.

In order that the functional I(c) be an extremal value of I(cϵ) it is necessary that
c be the solution of the Euler-Lagrange equations,

Ei(L) =
∂L
∂xi − d

dt (
∂L
∂yi ) = 0, yi = dxi

dt .

3. The fundamental tensor of a Lagrange space with changed Z. Shen

square metric

In General we know that the component bi is the electromagnetic potential of
Ln and the tensor Fij = ∂jbi − ∂ibj is the electromagnetic tensor �eld in Lagrange
spaces. Now we de�ne the changed Z. Shen square metric as follows

De�nition 4. A Lagrange space L∗n = (M,L∗(x, y)) is known as changed Z. Shen
square metric if the fundamental function L∗(x, y) is a function L, which depends
only on L(x, y) and β(x, y),

L∗ = L{L(x, y), β(x, y)} = (L+β)2

L .

Here, we shall use the following notations throughout the whole paper,

∂̇iL = ∂L
∂yi , ∂̇iβ = ∂β

∂yi , ∂̇i∂̇jL = ∂2L
∂yi∂yj , LL = (L2−β2)

L2 , Lβ = (L+β)
L ,

LLL = 2β2

L3 , LLβ = −2β
L2 , Lββ = 2

L .

Now we have

Proposition 1. For the Lagrange space Ln, following relations hold good:

(3) ∂̇iL = L−1yi, ∂̇i∂̇jL = 2∂̇jyi − L−3yiyj , ∂̇iβ = bi(x), ∂̇i∂̇jβ = 0,

where yi = gijy
j.

Now, we introduce the moments of the Lagrangian L∗(x, y) = L(L, β(x, y)) =
(L+β)2

L ,

pi =
1
2
∂L∗

∂yi = (L+β)
2L2 {(L− β)∂̇iL+ 2L∂̇iβ)}.

Thus we have
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Proposition 2. The moments of the Lagrangian L∗(x, y) with changed Z. Shen
square metric is given by

(4) pi = ρyi + ρ1bi,

where ρ = 1
2
(L2−β2)

L3 , and ρ1 = (L+β)
L .

The two scalar functions de�ned in (4) are called the principal invariants of the
Lagrange space L∗n.

Proposition 3. The derivatives of principal invariants of the Lagrange space L∗n

due to changed Z. Shen square metric are given by

(5) ∂̇iρ = ρ−2yi + ρ−1bi, ∂̇iρ1 = ρ−1yi + ρ0bi,

where, ρ−2 = 1
2L

−5(3β2 − L2), ρ−1 = − β
L3 , ρ0 = 1

L .

Now, the Energy of a Lagrangian is given by

EL∗ = yi ∂L
∗

∂yi − L∗.

Thus we have

Proposition 4. The Energy of a Lagrangian L∗ with changed Z. Shen square metric
is given by

(6) EL∗ =
(L2 − β2)(1− L2)

L2
.

Now we can determine the fundamental tensor gij of the Lagrange space with
changed Z. Shen square metric, as follows:

Proposition 5. The fundamental tensor g∗ij of the Lagrange space L
∗n with changed

Z. Shen square metric is given as

(7) g∗ij =
(L2 − β2)

L3
gij + L−1bibj +

β

L3
(biyj + bjyi) +

(3β2 − L2)

2L5
yiyj .

The above equation can be rewritten as

g∗ij =
(L2−β2)

L3 gij + cicj ,

where ci =
√

(3β2−L2)
2L5 yi +

1√
L
bi and gij =

1
2

∂2L
∂yi∂yj .

Proposition 6. The reciprocal tensor g∗ij of the fundamental tensor g∗ij in L∗n is
given by

(8) g∗ij =
L3

(L2 − β2)
gij − 1

(1 + c2)
cicj ,

where ci = L3

(L2−β2)a
ijcj and cici = c2 and gij is reciprocal of the gij .

4. Eular-Lagrange equations in Lagrange spaces with changed Z. Shen

square metric

The Eular-Lagrange equations of the Lagrange spaces with changed Z. Shen
square metric are,

Ei(L) =
∂L
∂xi − d

dt (
∂L
∂yi ) = 0, yi = dxi

dt

considering the relations
∂L
∂xi = (L+β)

L { (L−β)
L

∂L
∂xi + 2 ∂β

∂xi }, ∂L
∂yi = (L+β)

L { (L−β)
L

∂L
∂yi + 2 ∂β

∂yi },
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d
dt (

∂L
∂yi ) =

d
dt{

(L2−β2)
L2 } ∂L

∂yi +
d
dt{

2(L+β)
L } ∂β

∂yi +
(L2−β2)

L2
d
dt (

∂L
∂yi ) +

2(L+β)
L

d
dt (

∂β
∂yi ).

By direct calculation, we have

Ei(L) =
(L2−β2)

L2 Ei(L) +
2(L+β)

L Ei(β)− ∂L
∂yi

d
dt{

(L2−β2)
L2 } − ∂β

∂yi
d
dt{

2(L+β2)
L },

yi = dxi

dt ,

its give

Ei(L) =
(L2−β2)

L2 Ei(L) +
2(L+β)

L Ei(β)− ∂L
∂yi

d
dt (

2β2

L3
dL
dt − 2β

L2
dβ
dt ) +

∂β
∂yi (

2β
L2

dL
dt − 2

β
dβ
dt ).

As well have

Ei(β) = Fir
dxr

dt ,

where

Fir = ∂Ar

∂xi − ∂Ai

∂xr ,

is the electromagnetic tensor �eld. Finally we have the following relation

Ei(L) =
(L2−β2)

L2 Ei(L)+2 (L+β)
L Fir

dxr

dt − ∂L
∂yi

d
dt (

2β2

L3
dL
dt −

2β
L2

dβ
dt )+

∂β
∂yi (

2β
L2

dL
dt −

2
β

dβ
dt ).

Proposition 7. The Euler-Lagrange equation in the Lagrange space L∗n with
changed Z. Shen square metric L∗ are,

(9) Ei(L) = Ei{
(L+ β)2

L
} = 0, yi =

dxi

dt
.

For every smooth curve c on the base manifold M, the energy function of the
Lagrangian L∗(x, y) can be written as

dEL∗
dt = −[ ∂L∂xi − d

dt (
∂L
∂yi )]y

i = 0, where yi = dxi

dt ,

or dEL∗
dt = −Ei(L)

dxi

dt .

Thus using proposition (4.1) we have

Theorem 1. In a di�erentiable Lagrangian L∗(x, y), the energy function EL∗ is
conserved along the solution curves c of the Euler-Lagrange equations for changed

Z. Shen square metric are Ei(L) = Ei{ (L+β)2

L } = 0, yi = dxi

dt .

If we have the natural parametrization of the curve ∈ [0, 1] −→ (xi(t) ∈ M),
then L(x, dx

dt ) = 1. Then we get

Proposition 8. In the canonical parametrization the Euler-Lagrange equations for
changed Z. Shen square metric in Lagrange space L∗n are

(10) Ei(L) =
(L2 − β2)

L2
Ei(L) + 2

(L+ β)

L
Fir

dxr

dt
+

∂β

∂yi
(
2β

L2

dL

dt
− 2

β

dβ

dt
).

Proposition 9. If the 1-form β is constant on the integral curve c of the Euler-
Lagrange equations for changed Z. Shen square metric, then (10) rewrite as the
Lorentz equations of the space L∗n

(11) Ei(L) =
(L2 − β2)

L2
Ei(L) + 2

(L+ β)

L
Fir

dxr

dt
.
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5. Conclution

In this paper, we have continued the investigations on the new introduced changed

Z. Shen square metric which is de�ned as L∗ = (L+β)2

L and we succeed to investigate
the dually locally �atness and the Cartan tensor for this type of metrics. The
above generalization is very interesting because it enhance our understanding and
geometric meaning of non-Riemanian quantities. Further, we obtained fundamental
tensor �elds for these spaces and the variational problem with �xed endpoints for
the Lagrange spaces.
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