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THE VOLUME OF A TRIRECTANGULAR

HYPERBOLIC TETRAHEDRON

N.V. ABROSIMOV, S.V. STEPANISHCHEV

Abstract. We consider a three-parameter family of tetrahedra in
the hyperbolic space, which three edges at one vertex are pairwise
orthogonal. It is convenient to determine such tetrahedra by the lengths
of these edges. We obtain relatively simple formulas for them expressing
the volume and the surface area. This allows us to �nd normalized volume
and investigate its asymptotics.

Keywords: hyperbolic volume, normalized volume, Poincar�e upper half-
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1. Introduction

Finding the volume of a hyperbolic polyhedron is a very old and di�cult problem.
The volume of a biorthogonal hyperbolic tetrahedron (so called orthoscheme)
was found by N. Lobachevsky [12] and J. Bolyai [17] indepentently. In 1907,
G. Sforza [16] proposed a formula expressing the volume of an arbitrary hyperbolic
tetrahedron in terms of dihedral angles. Before presenting it, we introduce some
de�nitions.

A hyperbolic tetrahedron T is a convex hull of four points in the hyperbolic space
H3. These points are called vertices of T . Let us denote them by numbers 1, 2, 3
and 4 (see Fig.1). Then denote by `ij the length of the edge connecting i-th and
j-th vertices. We put θij for the dihedral angle along the corresponding edge.
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Fig. 1. Hyperbolic tetrahedron T

A Gram matrix G(T ) of tetrahedron T is de�ned as

G(T ) =


1 − cos θ12 − cos θ13 − cos θ14

− cos θ12 1 − cos θ23 − cos θ24
− cos θ13 − cos θ23 1 − cos θ34
− cos θ14 − cos θ24 − cos θ34 1

 .

An Edge matrix E(T ) is formed by hyperbolic cosines of the edge lengths and
de�ned as follows

E(T ) =


1 cosh `12 cosh `13 cosh `14

cosh `12 1 cosh `23 cosh `24
cosh `13 cosh `23 1 cosh `34
cosh `14 cosh `24 cosh `34 1

 .

It is known that a hyperbolic tetrahedron T can be uniquely determined up to
isometry either by the Gram matrix G(T ) or the edge matrix E(T ) (see, e.g., [5]).

Theorem 1 (G. Sforza, 1907). Let T be a compact hyperbolic tetrahedron given by
its Gram matrix G. We assume that all the dihedral angles are �xed exept θ34 which
is formal variable. Then the volume V = V (T ) is given by the formula

V =
1

4

θ34∫
t0

log
c34(t)−

√
−detG(t) sin t

c34(t) +
√
−detG(t) sin t

dt,

where t0 is a suitable root of the equation detG(t) = 0, c34 is (3, 4)-cofactor of the
matrix G, and c34(t),detG(t) are functions in one variable θ34 denoted by t.

A new proof of the classical Sforza's formula and its version for the spherical
tetrahedron can be found in the paper by the �rst author and A. Mednykh [3]. An
analog of the Sforza's formula for the volume of an arbitrary compact hyperbolic
tetrahedron but in terms of edge lengths instead of dihedral angles was given in the
recent paper by the �rst author and B. Vuong [4].
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There are also three more known formulas expressing the volume of an arbitrary
hyperbolic tetrahedron in terms of dihedral angles. In 1999 solution of the problem
was introduced by Yu. Cho and H. Kim [8]. Then another formula was given by
J. Murakami and M. Yano [14]. A. Ushijima [18] found a geometrical proof for this
result which also covers the case of truncated tetrahedron. In 2005 D. Derevnin and
A. Mednykh [9] proposed a closed integral formula.

Known formulas for the volume of a general hyperbolic tetrahedron are rather
complicated and not so convenient for applications including volume calculations
for more complex polyhedra in H3. The goal of the present paper is to provide with
a new comparatively simple formula for su�ciently large subfamily of hyperbolic
tetrahedra.

A trirectangular tetrahedron is a tetrahedron where all three face angles at
one vertex are right angles. That vertex is called the right angle vertex of the
trirectangular tetrahedron and the face opposite it is called the base. The three
edges that meet at the right angle are called the legs of a trirectangular tetrahedron.

Corresponding 3-parameter family of hyperbolic tetrahedra was considered in
the PhD thesis by G. Baigonakova [6], where trigonometrical relations between the
dihedral angles and edge lengths were established.

If we consider re�ections in three pairwice orthogonal faces of a trirectangular
tetrahedron T then we obtain a hyperbolic octahedron with so called mmm-
symmetry. Such an octahedron was investigated in the paper by the �rst author
and G. Baigonakova [1], where the volume was �nd in terms of its dihedral angles.

A Coxeter polyhedron is a polyhedron with all dihedral angles of the form π/n.
F. Lann�er [11] proved that there are exactly 9 compact Coxeter tetrahedra in
H3. One of them T (θ12, θ13, θ23, θ34, θ24, θ14) = T (π/2, π/2, π/3, π/3, π/5, π/2) is
trirectangular tetrahedron. The remaining 8 Coxeter tetrahedra are ortoschemes.
Both ortoschemes and trirectangular tetrahedra, not necessarily Coxeter ones, can
be used for triangulations of more complex polyhedra in H3.

In the present paper we consider a trirectangular tetrahedron in the hyperbolic
spase given by the lengths of its legs l1, l2, l3. We obtain relatively simple formulas
for it expressing the volume and the surface area. This allows us to �nd normalized
volume and investigate its asymptotics.

Most of known results for the volume of a hyperbolic tetrahedron are based on
the classical Schl�a�i di�erential equation (see, e.g., [5], Ch. 7, Sect. 2.2).

−dV =
1

2

∑
ij

`ij dθij ,

where the sum is taken over all edges.
In the present work instead of using Schl�a�i equation, we integrate the volume

element in H3 and use Fubini's theorem.

2. Volume formula

Consider a Poincar�e model of H3. That is the upper half-space R3
+ ={

(x, y, z) ∈ R3 | z > 0
}
endowed with the metric

ds2 =
dx2 + dy2 + dz2

z2
.
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The volume element in this model has a form (see [5], Ch. 7, Sect. 2.3)

dV =
dx dy dz

z3
.(1)

Let f(x, y) be a real function de�ned on domain D ⊂ R2. An in�nite cone C over
the graph of function f is the set formed by vertical lines starting on this graph

C =
{
(x, y, z) ∈ R3

+ | z ≥ f(x, y), (x, y) ∈ D
}
.

Using (1) and Fubini's theorem we get the volume of in�nite cone C over the
graph of function f(x, y)

V (C) =

∫∫∫
C

dx dy dz

z3
=

∫∫
D

∞∫
f(x,y)

dx dy dz

z3
=

1

2

∫∫
D

dx dy

(f(x, y))2
.(2)

Consider a trirectangular tetrahedron T = T (`1, `2, `3) given by the lengths of
its legs (i.e. pairwise ortogonal edges). Let us enumerate the vertices 1, . . . , 4 in such
a way that `13 = `1, `14 = `2, `12 = `3. There exist an isometry of H3 which maps
vertex 1 to point (0, 0, 1) ∈ R3

+, guides `3 along the axis 0z, and put vertices 3 and 4
in coordinate planes 0xz, 0yz correspondingly (Fig. 2). We refer this con�guration
of tetrahedron T in R3

+ as standard position. Further we assume without loss of
generality that T is in this position.
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Fig. 2. Hyperbolic tetrahedron T in standart position

Theorem 2. Let T = T (`1, `2, `3) be a compact hyperbolic tetrahedron de�ned by
lengths of pairwise ortogonal edges. Then the volume V = V (T ) is given by the
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formula

V =
1

2

tanh `1∫
0

tanh `2(tanh `1−x)
tanh `1∫
0

[
1

1− x2 − y2
+

1

x(x− 2x0) + y(y − 2y0)− e2`3

]
dx dy,

where x0 =
1− e2 `3
2 tanh `1

and y0 =
1− e2 `3
2 tanh `2

.

Proof. Let Q and P be the lower and upper bases of T . Denote by VQ and VP the
volumes of in�nite cones over them. Then the required volume V = VQ − VP . We
use formula (2) in order to calculate VQ and VP . To do this we de�ne the functions
fQ(x, y) and fP (x, y) which determine hyperplanes Q,P then �nd the limits of
integration.

Face Q is the part of Euclidean unit sphere x2 + y2 + z2 = 1, since it is spanned
by the edges `1 and `2 orthogonal to Oz. Then

f2Q(x, y) = 1− x2 − y2.
To �nd fP (x, y) we de�ne the coordinates of vertices 2, 3 and 4.
Let the vertex 2 has coordinates (x2, y2, z2). Since it lies on axis Oz we have

x2 = y2 = 0. In addition, we know that the distance between 1 and 2 is ρ(1, 2) = `3.
On the other hand, (see [10], Ch. III, Sect. III.4)

ρ(1, 2) =

z2∫
1

dz

z
= ln z2.

Therefore, z2 = e`3 and 2 has coordinates (0, 0, e`3).
Let ϕ1 be the angle between axis 0z and radius-vector of vertex 3 (Fig. 3). This

vertex lies on the edge `1 which is the part of unit semi-circle. So 3 has coordinates
(sinϕ1, 0, cosϕ1). Hyperbolic length of the arc connecting vertices 1 and 3 is `1.

x

z

1 l
 

 

1

φ1

3

Fig. 3. Angle ϕ1 between axis 0z and radius-vector of vertex 4

At the same time, `1 and ϕ1 are related as follows ([10], Ch. III, Sect. III.4)

cosh `1 =
1

cosϕ1
,

where we can also get tanh `1 = sinϕ1. Thereby, vertex 3 has coordinates(
tanh `1, 0,

1

cosh `1

)
.
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For the 4-th vertex we can get coordinates

(
0, tanh `2,

1

cosh `2

)
in the same

way.
Let hyperbolic plane (i.e. Euclidean semi-sphere) that contains P has a center

(x0, y0, z0). Take into consideration that z0 = 0 as a center of any hyperbolic plane
lies on the absolute. In general we have

(x− x0)2 + (y − y0)2 + z2 = R2.

Substituting the coordinates of vertices 2, 3, 4 in this equation we get the system
of three equations with variables x0, y0, R

(tanh `1 − x0)2 + y20 +

(
1

cosh `1

)2

= R2,

x20 + (tanh `2 − y0)2 +
(

1

cosh `2

)2

= R2,

x20 + y20 + e2`3 = R2.

Solving that we �nally obtain

f2P (x, y) = −x(x− 2x0)− y(y − 2y0) + e2l3 ,

where x0 and y0 are given by relations x0 =
1− e2 `3
2 tanh `1

and y0 =
1− e2 `3
2 tanh `2

.

Integration in formula (2) is taken over the domain of function f(x, y). In our
case Q and P are projected on the absolute into triangle D, that is the domains of
integration for VQ and VP coincides. Thus, we can rewrite di�erence of integrals as
integral of di�erence.

(0, 0) (0, th l )  

1

2

(th l , 0)

 
x

y

D

Fig. 4. Projection of faces P and Q on the absolute

Consider triangle D (Fig. 4). Its vertices are (0, 0), (tanh `1, 0) and (0, tanh `2).
We �nd equation of the straight line passing through the last two points

y =
tanh `2(tanh `1 − x)

tanh `1
.

Therefore, while x varies within 0 and tanh `1 the second coordinate y runs from 0

to
tanh `2(tanh `1 − x)

tanh `1
.

Now we can apply (2) with functions fQ(x, y), fP (x, y) and prescribed integration
limits to �nd VQ and VP . Thus we get the fromula from statement of the theorem
using the fact that V = VQ − VP . �
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3. Formula verification

To check the formula we have obtained, we use Sforza's formula (see Theorem 1).
We take `1 = `2 = `3 = `.

` Theorem 1 Theorem 2

0.25 0.0025398399. . . 0.0025398399. . .

0.5 0.0188499596. . . 0.0188499596. . .

1 0.1124224663. . . 0.1124224667. . .

2 0.3463865845. . . 0.3463863000. . .

4 0.4538079351. . . 0.4538079400. . .

8 0.4579801973. . . 0.4579810839. . .

Table 1. Volume of a tetrahedron T , calculated by di�erent formulas

We note that for large values of `, the integral in Sforza's formula accumulates a
calculation error while the formula in Theorem 2 works well. As `→∞, the volume
tends to 1/8 of the volume of regular ideal octahedron, that is

lim
`→∞

V (T ) =
1

2
G = 0, 457982797 . . . ,

where G =

∞∑
n=0

(−1)n

(2n+ 1)2
= 0.9159655941 . . . is Catalan's constant.

4. Normalized volume

In the work by O. Nemoul and N. Mebarki [15] the normalized volume of a
compact regular hyperbolic tetrahedron is given. Let us �nd it for 3-parameter
family of tetrahedra under consideration. Following [15] we de�ne normalized

volume as ν(T ) =
V

S3/2
, where V is the volume of T and S is its surface area.

Let X,Y,Z be the areas of rectangular faces 1�2�3, 1�2�4, 1�3�4
correspondingly and W is the area of 2�3�4 (Fig. 5).

Fig. 5. Areas of the faces of a tetrahedron T
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One of the analogs of Heron's formula for the area of a hyperbolic triangle is
known as Bilinsky formula [7] (see also [2]).

cos
X

2
=

cosh `1 + cosh `3 + coshh+ 1

4 cosh `1
2 cosh `3

2 cosh h
2

,(3)

where h is hypotenuse in the triangle 1�2�3. By Pythagorean theorem

coshh = cosh l1 cosh l3.(4)

We substitute (4) in (3) and use equality 1 + cosh ` = 2 cosh2 `
2 to �nd

cos
X

2
=

cosh `1
2 cosh `3

2

cosh h
2

,

and equivalently

sin
X

2
=

sinh `1
2 sinh `3

2

cosh h
2

.

Using these relations for X, Y, Z we get the areas of rectangular faces

X = 2arctan

(
tanh

`1
2
tanh

`3
2

)
,

Y = 2arctan

(
tanh

`2
2
tanh

`3
2

)
,

Z = 2arctan

(
tanh

`1
2
tanh

`2
2

)
.

Then we use a hyperbolic version of De Gua's theorem for the faces of a
tetrahedron given by B. McConnell [13] to get the face area W =

2arccos
1− tanh2 `12 tanh2 `22 tanh2 `32√

(1 + tanh2 `12 tanh2 `32 )(1 + tanh2 `22 tanh2 `32 )(1 + tanh2 `12 tanh2 `22 )
.

Thus, the normalized volume ν(T ) =
V

S3/2
is calculated by Theorem 2 and S =

X+Y + Z+W.
To �nd the asymptotics of the normalized volume we take `1 = `2 = `3 = `. As

`→∞ the faces areas X, Y, and Z attend to
π

2
as the areas of right triangles with

two vertices at in�nity. The face area W attends to π as the area of a regular ideal

hyperbolic triangle. Therefore, lim
`→∞

S =
5π

2
. Thus,

lim
`→∞

ν = lim
`→∞

V

S3/2
=

√
2G

(5π)3/2
= 0.0208071557 . . . ,

where G = 0.9159655941 . . . is Catalan's constant.
Consider the behavior of the normalized volume ν(T ) = ν(`) for the case `1 =

`2 = `3 = ` (Fig. 6). It monotonically decreases for ` ∈ (0,+∞).
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Fig. 6. Graph of the normalized volume of a tetrahedron T
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