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ON THE PRESERVATION OF THE WIENER INDEX OF CUBIC

GRAPHS UPON VERTEX REMOVAL

A.A. DOBRYNIN

Abstract. The Wiener index, W (G), is the sum of distances between
all vertices of a connected graph G. In 2018, Majstorovi�c, Knor and
�Skrekovski posed the problem of �nding r-regular graphs except cycle
C11 having at least one vertex v with property W (G) = W (G − v). An
in�nite family of cubic graphs with four such vertices is constructed.

Keywords: distance invariant, Wiener index, �Solt�es problem.

1. Introduction

All graphs G considered in this paper are simple and connected. The cardinality
of the vertex set V (G) is called the order of G. Denote by G−v the graph obtained
by removing a vertex v from G. The distance d(u, v) between vertices u, v ∈ V (G)
is the number of edges on a shortest path connecting these vertices in G. The vertex
distance for v ∈ V (G) is de�ned as the sum of distances from v to all the other
vertices of G, dG(v) =

∑
u∈V (G) d(v, u). A half of the sum of vertex distances is the

Wiener index of G that has found numerous applications [4, 5, 6, 10, 14],

W (G) =
1

2

∑
v∈V (G)

dG(v).

One of directions in the study of the Wiener index is that how it changes under
graph transformations. In 1991, �Solt�es posed the following problem: �nd all graphs
G having the propertyW (G) = W (G−v) for all vertices v ofG [12]. Such graphs will
be called �Solt�es graphs. The simple cycle C11 is the unique known example of �Solt�es
graphs. Unsuccessful attempts to �nd new �Solt�es graphs led to the formulations of
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various relaxed problems [1, 2, 3, 8, 9, 11, 7]. The following problem was proposed
in [9]:

Problem 1. Are there r-regular connected graphs G other than C11 for which the
equality W (G) = W (G− v) holds for at least one vertex v ∈ V (G)?

In this paper, an in�nite family of cubic graphs having four such vertices v is
constructed.

2. Main result

Consider a cubic graph G of order 2(2k + s + 2) shown in Fig. 1. It consists of
the left and right symmetrical ladders with k rungs and the middle ladder between
them with s rungs. Let Gk,s be a family of such graphs where k ≥ 4 and s ≥ 2. The
following statement is the basis for solving Problem 1 for the case of cubic graphs
(r = 3).

... ...

... ...

.........

.........

.........

.........

a b

a’ b’

v
k

1
v

1

v
2

v
k/2

v
k/2+1

v
k-1

1
u u

s
u

s/2
u

s/2+1

1
u’ u’

s
u’

s/2
u’

s/2+1

v’
k

1
v’

1

v’
2

v’
k/2

v’
k/2+1

v’
k-1

w
k

1
w

w
2

w
k/2

w
k/2+1

w
k-1

1
w’

w’
2

w’
k/2

w’
k/2+1

w’
k

w’
k-1

L RM

Fig. 1. Cubic graph G ∈ Gk,s.

Proposition 1. Let G ∈ Gk,s and integers k and s are even. Then

W (G) = 3k3 +
1

2
k2(12s+ 39) + k(4s2 + 20s+ 19)

+
1

3
s(2s2 + 15s+ 34) + 8,

W (G− us/2) = 3k3 +
1

2
k2(12s+ 41) + k(4s2 + 20s+ 15)

+
1

3
s(2s2 + 15s+ 28) + 4.

The proof of this proposition will be given in the next section.
Since W (G)−W (G− us/2) = −k2 + 4k + 2s+ 4 and vertices us/2, us/2+1, u

′
s/2,

and u′s/2+1 belong to the same orbit of the automorphism group of G, we obtain

the following result.
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Corollary 1. If k ≥ 6 is even and s = (k2−4k−4)/2, then a cubic graph G ∈ Gk,s
has four vertices v for which W (G) = W (G− v).

Table 1 contains order and the Wiener index of graphs G ∈ Gk,s of Corollary 1
for the initial values of k and s.

Table 1. Graphs G ∈ Gk,s for even k ≥ 6.

k s |V (G)| W (G)
6 4 36 3368
8 14 64 19800
10 28 100 77780
12 46 144 236572
14 68 196 603792
16 94 256 1356528
18 124 324 2766300
20 158 400 5227860

3. Proof of Proposition 1

If distances dG(u, v) are considered in graph G, then we will drop the subscript
G. Let d(X,Y ) be the sum of distances between vertices of subsets X and Y in
a graph, d(X,Y ) =

∑
x∈X,y∈Y d(x, y). Denote by pn and cn the distances of a

pendent vertex of the simple path Pn and a vertex of the simple cycle Cn of order
n, respectively. It is known that pn = n(n − 1)/2 and cn = n2/4 for even n, and
W (Pn) = n(n2 − 1)/6.

Let G ∈ Gk,s where k and s are even. Divide the vertex set of G into eight
disjoint subsets: V = {v1, v2, . . . , vk}, V ′ = {v′1, v′2, . . . , v′k}, W = {w1, w2, . . . , wk},
W ′ = {w′1, w′2, . . . , w′k}, U = {u1, u2, . . . , us}, U ′ = {u′1, u′2, . . . , u′s}, A = {a, a′},
and B = {b, b′} (see Fig. 1). Denote by L, R, and M the induced subgraphs of G
with vertex sets V ∪V ′∪A, W ∪W ′∪B, and U ∪U ′, respectively. Then the Wiener
index of G can be represented as the sum of several parts:

W (G) =
1

2
[ d(L,L) + d(R,R) + d(M,M) ] + d(L,R) + d(L,M) + d(R,M)

=
1

2
d(M,M) + d(L,L) + d(L,R) + 2d(L,M).(1)

The last equality is valid due to the symmetric structure of G. Next we will calculate
the summands of equation (1) .

1. Consider distances between vertices of subgraph M . For vertices ui ∈ V (M),
i = 1, 2, . . . , s, we have

d(ui) =

s∑
j=1

d(ui, uj) +

s∑
j=1

d(ui, u
′
j) = 2dPs

(ui) + s.

By symmetry of G, d(ui) = d(u′i), i = 1, 2, . . . , s. Then

d(M,M) = 2

s∑
i=1

d(ui) = 2

s∑
i=1

(2dPs
(ui) + s) = 2(4W (Ps) + s2)

=
2

3
s(s+ 2)(2s− 1).
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2. Consider distances between vertices of subgraphs L and M . Since vertices vi
and v′i, i = 1, 2, . . . , k, belong to the same orbit of the automorphism group of G,
we can write

d(ui, L) = 2

k/2∑
j=1

[d(ui, a) + d(a, vj)] + 2

k∑
j=k/2+1

[d(ui, a
′) + d(a′, vj)]

+ d(ui, a) + d(ui, a
′)

= 2

k

2
i+

k/2∑
j=1

d(a, vj)

+ 2

k

2
(i+ 1) +

k∑
j=k/2+1

d(a′, vj)

+ 2i+ 1

= (k + 1)(2i+ 1) + 4pk/2+1 =
1

2
k2 + 2k(i+ 1) + 2i+ 1.

By symmetry of vertices of U and U ′,

d(L,M) =

s∑
i=1

d(ui, L) +

s∑
i=1

d(u′i, L) = s(k2 + 2k(s+ 3) + 2(s+ 2)).

3. Consider distances between vertices of subgraphs L and R. Note that d(vi, a)+
d(a, u1) < d(vi, a

′) + d(a′, u′1), i = 1, 2, . . . , k/2 (see Fig. 1). This implies that all
shortest paths from vertices of L to vertices of R lie in the subgraph shown in Fig. 2.
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Fig. 2. Subgraphs with the shortest paths for d(L,R).

By symmetry of L and R, it is su�cient to calculate distances from vertices vi,
i = 1, 2, . . . , k/2. Then

d(L,R) = 4

k/2∑
i=1

[2d(vi,W ) + d(vi, B)] + 2[2d(a,W ) + d(a,B)].

We have d(vi,W ) =
∑k

j=1[d(vi, u1)+ d(u1, wj)] = k(i+1)+ ck+2s+2− ps+1− ps+2,

d(vi, B) = 2(i+1)+2s+1, d(a,W ) = k+ck+2s+2−ps+1−ps+2, and d(a,B) = 2s+3.
As a result, we obtain

d(L,R) = 2(k + 1)(k2 + k(2s+ 5) + 2s+ 3).

4. Consider distances between vertices of subgraph L. By symmetry, it is su�cient
to calculate distances for vertex vi, i = 1, 2, . . . , k/2.

4.1. Distances form vertex vi to vertices of V ∪A. The shortest paths from vertex
vi to vertices of V ∪A are located in subgraphs shown in Fig. 3a. Denote by C the
cycle (vi, . . . , v1, a, u1, u

′
1, a
′, vk, . . . , vi+1, vi) of length k + 4. Then

d(vi, V ∪A) = ck+4−d(vi, u1)−d(vi, u′) = ck+4−(i+1)−(i+2) =
1

4
k2+2k−2i+1.
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Fig. 3. Subgraphs with the shortest paths for d(L,L).

4.2. Distances form vertex vi to vertices of V ′. The shortest paths from vi
to vertices of V ′ are located in subgraphs shown in Fig. 3bc. Denote by C the
cycle (v′i, . . . , v

′
1, a, u1, u

′
1, a
′, v′k, . . . , v

′
i+1, v

′
i). Subpath (vi, vi−1, . . . , v1, a) is a part

of the shortest paths form vi to vertices v′k, v
′
k−1, . . . , v

′
j , i = 1, 2, . . . , k/2− 2. It is

convenient to �nd distances from vi to all vertices of C subtracting excess values:

d(vi, V
′) =

∑
x∈C

[d(vi, v
′
i) + d(v′i, x))]− d(v′i, a)− d(v′i, u1)− d(v′i, u

′
1)− d(v′i, a

′)

− (k/2− 1− i)

= (k + 4) + ck+4 − (i+ 1)− (i+ 2)− (i+ 3)− (i+ 4)− (k/2− 1− i)

=
1

4
k2 +

5

2
k − 3i− 1.

For i = k/2−1, k/2, path (vi, vi−1, . . . , v1, a) does not a�ect the shortest distances
vi to vertices of V ′ (see Fig. 3cd for i = k/2− 2 and i = k/2− 1). Then d(vi, V

′) =
k+pi+pk+i−1 = k2/2−k(2i−3)/2+ i2− i and, therefore, d(vk/2−1) = k2/4+k+2
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and d(vk/2−1) = k2/2 + k. Then

d(vi, L) =


1
4k

2 + 5
2k − 1− 3i, i = 1, 2, . . . , k/2− 2,

k2/4 + k + 2, i = k/2− 1,

k2/2 + k, i = k/2.

To calculate distances d(a, L) and d(a′, L), it is su�cient to consider the shortest
paths in cycles (a, u1, u

′
1, a
′, vk, vk−1 . . . , v1, a) and (a, u1, u

′
1, a
′, v′k, v

′
k−1 . . . , v

′
1, a)

(see Fig. 1). Then we can write d(a, L) = d(a′, L) =
∑

x∈V ∪V ′ d(a, x) + d(a, a′) =

2ck+4−2d(a, u1)−2d(a, u′1)−d(a, a′) = 2ck+4−9 = k2/2+4k−1. Finally, we have

d(L,L) = 4

k/2−2∑
i=1

d(vi, L) +

k/2∑
i=k/2−1

d(vi, L)

+2d(a, L) =
1

2
(2k3+15k2+6k+4).

Substituting expressions for d(L,L), d(M,M), d(L,R), and d(L,M) back into
equality (1), we obtain

W (G) = 3k3 + k2(6s+ 39/2) + k(4s2 + 20s+ 19) + 2s3/3 + 5s2 + 34s/3 + 8.

5. To quickly calculate Wiener index of graph G − us/2, we use the following
graph operation. Let G1 and G2 be graphs of order n1 and n2, respectively. If
vertices v1 ∈ V (G1) and v2 ∈ V (G2) are connected by path P3, then the Wiener
index of the resulting graph H can be written as follows [4]

(2) W (H) = W (G1)+W (G2)+(n1+1)dG2(v2)+(n2+1)dG1(v1)+2n1n2+n1+n2.

Let G1 and G2 be graphs of order n1 = 2k+ s and n2 = n1 + 2 with vertex sets
V ∪V ′∪A∪{u1, . . . , us/2−1}∪{u′1, . . . , u′s/2−1} and W ∪W ′∪B∪{us/2+1, . . . , us}∪
{u′s/2+1, . . . , u

′
s}, respectively. Then we can represent Wiener indices of graphs G1

and G2 as W (Gi) = (d(L,L) + d(M,M))/2 + d(L,M), where ladder M has order
2(s/2 − 1) in G1 and 2s in G2. Path P3 connects vertices v1 = us/2−1 in G1 and
v2 = us/2+1 in G2 .

Now calculate distance of vertex us/2−1 in G1. Let U∗ = {u1, u2, . . . , us/2−1,
u′1, u

′
2, . . . , u

′
s/2−1}. It is easy to see that d(us/2−1, U

∗) = ps/2−1+ps/2. The shortest

paths from vertex us/2−1 to vertices of V ∪A pass on the subgraph of G1 shown in
Fig. 4.
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Denote by C the cycle (u1, a, v1, v2, . . . , vk, a
′, u′1, u1) of length k + 4. Then

dG1
(us/2−1) = d(us/2−1, V ∪ V ′ ∪A ∪ U ′)

= 2
∑

x∈V (C)

[d(us/2−1, u1) + d(u1, x)] + d(us/2−1, U
′)

− 2d(us/2−1, u1)− 2d(us/2−1, u
′
1)− d(us/2−1, a)− d(us/2−1, a

′)

= 2(k + 4)(s/2− 2) + 2ck+4 + ps/2−1 + ps/2 − 2(s/2− 2)− 2(s/2− 1)

− (s/2− 1)− s/2

= k2/2 + ks+ s2/4.

By similar consideration, we have dG2
(us/2+1) = k2/2 + k(s + 2) + s2/4 + s + 1.

Substituting the obtained expressions back into equality (2), we get

W (G− us/2) = 3k3 + k2(6s+ 41/2) + k(4s2 + 20s+ 15) + 2s3/3 + 5s2 + 28s/3 + 4.

4. Other graphs of Gk,s
Computer calculations show that families of cubic graphs G with the property

W (G) = W (G − v) for some vertices v exist also for odd k ≥ 7. Here we present
two examples.

The left part of Table 2 contains data for a family of cubic graphs G ∈ Gk,s of
order 2(2k + s + 2) with odd k ≥ 7 and s = (k + 1)(k − 5)/2. As for graphs with
even k, vertex us/2 and three symmetrical vertices can be removed from G without
changing the Wiener index.

Cubic graphs G of the right part of Table 2 consist of ladders of distinct odd
lengths. Namely, the left, right, and central ladders have k, k+6, and s = k+1 rungs,
respectively. In this case, vertex u4 and symmetrical vertex u′4 can be removed from
graphs G of order 2(2k + s+ 8) without changing the Wiener index.

Table 2. Graphs G with property W (G) = W (G− v) for odd k ≥ 7.

k s |V (G)| W (G) k k + 6 s |V (G)| W (G)
7 8 48 8110 7 13 8 60 14764
9 20 80 39166 9 15 10 72 25226
11 36 120 135546 11 17 12 84 39724
13 56 168 377810 13 19 14 96 58914
15 80 224 904854 15 21 16 108 83452
17 108 288 1936950 17 23 18 120 113994
19 140 360 3802626 19 25 20 132 151196
21 176 440 6969386 21 27 22 144 195714
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