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Abstract. The submonoid membership problem for a �nitely gene-
rated group G is the decision problem, where for a given �nitely
generated submonoid M of G and a group element g it is asked
whether g ∈ M . In this paper, we prove that for a su�ciently
large direct power Hn of the Heisenberg group H, there exists
a �nitely generated submonoid M whose membership problem is
algorithmically unsolvable. Thus, an answer is given to the question
of M. Lohrey and B. Steinberg about the existence of a �nitely
generated nilpotent group with an unsolvable submonoid memb-
ership problem. It also answers the question of T. Colcombet, J.
Ouaknine, P. Semukhin and J. Worrell about the existence of such
a group in the class of direct powers of the Heisenberg group.
This result implies the existence of a similar submonoid in any
free nilpotent group Nk,c of su�ciently large rank k of the class
c ≥ 2. The proofs are based on the undecidability of Hilbert's 10th
problem and interpretation of Diophantine equations in nilpotent
groups.
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1. Introduction

The submonoid membership problem for �nitely generated nilpotent groups,
which has attracted the attention of a number of researchers in recent years, is
considered. Recall that this is the problem of the existence of an algorithm that
determines, given an arbitrary element g and a �nitely generated submonoid M
of a group G, whether g belongs to M . Note that in [13] the author announced
a negative solution to this problem for a free nilpotent group Nk,c of nilpotency
class c ≥ 2 of su�ciently large rank k. This result will appear in [15]. This gives
an answer to the well-known question of M. Lohrey and B. Steinberg ([4], Open
problem 24) about the existence of a �nitely generated nilpotent group with an
unsolvable submonoid membership problem. Moreover, the existence in Nk,c of
a �nitely generated submonoid M with the unsolvable membership problem was
established. The proof shows how, from an arbitrary Diophantine equation P , an
element g and a �nitely generated submonoid M of the group Nk,c are e�ectively
constructed such that g belongs to M if and only if the equation P is solvable in
integers. Then the undecidability of Hilbert's 10th problem allows us to obtain from
this result the undecidability of the membership problem for Nk.c with respect to
M .

In [2] the authors prove that the somewhat more general the subsemigroup
membership problem is solvable for the Heisenberg group H = H(3,Z) consisting of
upper triangular integer matrices with units along the diagonal. In other words, H
is the free nilpotent group N2,2. Earlier in [3] it was shown how to solve the problem
of belonging of the identity matrix to �nitely generated subsemigroups in H. In [2],
the question was raised about the solvability of the submonoid membership problem
for a direct power of the Heisenberg group.

This paper is a continuation of our previous papers: the paper [13] mentioned
above and the recently published paper [14], in which su�cient conditions for the
solvability of the submonoid membership problem for a free nilpotent group of
the class 2 with respect to a given submonoid M were presented, as well as the
upcoming paper [15]. Our objective in this paper is to prove the undecidability
of the submonoid membership problem for a su�ciently large �nite direct power

H̃ = Hn of the Heisenberg group H. Just as in [15], we prove that, given any
Diophantine equation P , one can e�ectively construct an element g and a �nitely

generated submonoid M̃ of the group H̃ such that g belongs to M̃ if and only if
the equation P is solvable in integers. Again, the undecidability of Hilbert's 10th
problem allows us to obtain from this result the undecidability of the membership

problem for H̃ with respect to M̃ .
This result also easily implies the existence of a submonoid M of a free nilpotent

group Nk,c of su�ciently large rank k of any class c ≥ 2 with the unsolvable problem
of belonging to M .

Note that a special case of the submonoid membership problem for G is the
classical membership problem, which came from M. Dehn, where M is a �nitely
generated subgroup. In a di�erent terminology, it is called the generalized word
problem. A.I. Maltsev [5] showed that this problem is decidable for any �nitely
generated nilpotent group. It is worth noting that in the class of �nitely generated
nilpotent groups, almost all basic algorithmic problems (word, conjugacy, isomorph-
ism, etc.) are solved positively. The exceptions are the problem of endomorphic
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reducibility and a number of problems related to equations and identities in groups.
See surveys [10] � [12] on this subject.

The submonoid membership problem is the most important fragment of the more
general rational subset membership problem. See survey [4].

This problem for a non-commutative group is currently considered as a transfer of
the classical problem of integer linear programming, where the submonoid member-
ship problem for a free abelian group appears on a non-commutative platform.
A new line of research has emerged and is being developed � noncommutative
discrete optimization. The chapter �Discrete optimization in groups� in the book
[1] is devoted to this direction. In this case, special attention is paid to the class of
�nitely generated nilpotent groups, which is closest to the class of abelian groups.

2. Diophantine equations and Skolem systems

Let ζ1, . . . , ζt be an arbitrary set of commuting variables. A polynomial
D(ζ1, . . . , ζt) with integer coe�cients in these variables is called Diophantine.

In this paper, we will write an arbitrary Diophantine equation in the form

(1) D(ζ1, . . . , ζt) = υ, υ ∈ Z,

where the polynomial from the left-hand side has zero constant term.

2.1. Skolem systems. In the monograph [16], T. Skolem showed that any Diopha-
ntine equation is equivalent to a system of equations in a larger number of variables
of three types: ζζ ′ − ζ ′′ = 0, ζ + ζ ′ − ζ ′′ = 0, ζ − ζ ′ = 0, and one equation of the
form ζ−υ = 0 (υ ∈ Z), where each variable ζ, ζ ′, ζ ′′ either occurs in the notation of
the original polynomial D(ζ1, . . . , ζt), or is introduced additionally. Such a system
is called the Skolem system. In what follows, we also write the equations of the
Skolem system in the form ζζ ′ = ζ ′′, ζ + ζ ′ = ζ ′′, ζ = ζ ′, and ζ = υ, respectively.

2.1.1. Algorithm for obtaining the Skolem system. We show how to write the Skolem
system equivalent to an equation of the form (1). We assume that either all the
coe�cients of the polynomial D(ζ1, . . . , ζt) are positive, or there are coe�cients of
di�erent signs among them. If initially all these coe�cients are negative, then we
pass to the equation obtained by multiplying both parts of (1) by −1.

We take one of the non-linear monomials on the left-hand side of the considered
equation. Let ζζ ′ be the product of its two factors. We introduce a new variable ζ ′′

and write a new equation ζζ ′ = ζ ′′ into the system, simultaneously replacing the
product ζζ ′ in the monomials by ζ ′′. The degree of the monomial under consideration
will decrease by one. If it has become linear, go to the next monomial. If not, then
we continue to act similarly with the given monomial until it becomes linear.

Then we move to the next monomial, and so on. As a result, the left-hand side of
the equation will be represented as an algebraic sum of variables. Next, we introduce
new variables, replacing ζ + ζ ′ in this sum by ζ ′′ (similarly, −ζ − ζ ′ is replaced by
−ζ ′′ ), adding the equation ζ + ζ ′ = ζ ′′ to the system. We continue this process. If
all coe�cients in the algebraic sum are equal to 1, then the last equation will be of
the form ζ = υ, which we will also include in the system. If terms of di�erent signs
were present, then by transforming all the terms on the left-hand side, we arrive at
an equation of the form ζ − ζ ′ = υ. Then we set ζ = ζ ′ + ζ ′′ and ζ ′′ = υ.
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2.1.2. Nonnegative Diophantine equations and Skolem systems. ADiophantine equ-
ation that is considered solvable if it has a solution in nonnegative integers is called
nonnegative. Similarly, a Skolem system for which decidability means the existence
of a solution in nonnegative integers is called nonnegative.

Lemma 1. Solvability of an arbitrary Diophantine equation (1) is equivalent to
the solvability of some nonnegative Diophantine equation in 2t variables e�ectively
constructed from this equation. The resulting equation is equivalent to the nonnegati-
ve Skolem system Sυ.

Proof. We write each variable ζi as the di�erence of the new variables ζ ′i − ζ ′′i .
Substituting these di�erences for the variables of the equation (1), we obtain the
nonnegative Diophantine equation

(2) D1(ζ
′
1, ζ

′′
1 , . . . , ζ

′
t, ζ

′′
t ) = 0.

Obviously, the solvability of the equation (1) in integers implies the solvability of
the equation (2) in nonnegative integers, and vice versa.

Based on the nonnegative equation obtained in this way, we build the Skolem
system, as described in the 2.1.1. All substitutions of the form ζζ ′ = ζ ′′ and ζ+ζ ′ =
ζ ′′ lead to nonnegative variables of the Skolem system. An exception is possible only
at the �nal replacement, when it is necessary to transform the equation of the form
ζ − ζ ′ = υ for υ < 0. Then we set ζ ′ = ζ + ζ ′′ and ζ ′′ = −υ. In all cases the last
equation has the form ζ = |υ|. □

Consider the obtained nonnegative Skolem system Sυ. For what follows, we need
the renumbering of variables, the introduction of new variables, and the ordering
of the equations of the Sυ system. For simplicity, the notation Sυ does not change
in this process.

Assume that Sυ contains e equations of the form ζiζj = ζl. Introducing new
variables ζs and making appropriate substitutions of the form ζi for ζs, we achieve
that each variable will appear in these equations exactly once. Equations of the
form ζs = ζi for the new ζs we add to the system Sυ. Next, we renumber the
variables in such a way that all e equations take the form

ζ1ζ2 = ζ3,

(3) . . .

ζ3(e−1)+1ζ3(e−1)+2 = ζ3e.

Let the system Sυ contains d equations of the form ζi + ζj = ζl. Similarly to the
case just considered, we will ensure that among the variables of the considered set
of equations there will be no variables of the previous subsystem, and each variable
in their entries will appear in these equations exactly once. Next, we renumber the
variables of this subsystem in such a way that all d equations of the indicated form
will include only the variables ζ3e+1, . . . , ζ3(e+d), and the subsystem itself will take
the form

ζ3e+1 + ζ3e+2 = ζ3(e+1),

(4) . . .

ζ3(e+d−1)+1 + ζ3(e+d−1)+2 = ζ3(e+d).

Next, we write the third system, consisting of equations related to the equalites of
variables. We write all equalities of the form ζi = ζj , for pairs with di�erent indices
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1 ≤ i, j ≤ 3(e+ d), which follow from the set of all equalities. It su�ces to �x one
representative ζ in each class of equal variables and write down all equations of the
form ζ = ζ ′ for the remaining variables ζ ′ from this class. Then we renumber all the
equations of this subsystem by assigning them the numbers e+ d+1, . . . , e+ d+ q,
respectively. We have the system of equations
(5)
Pk ∼ ζi(k) = ζj(k), i(k) ̸= j(k), 1 ≤ i(k), j(k) ≤ 3(e+d), k = e+d+1, . . . , e+d+ q.

It remains to write a special equation

(6) ζt = |υ|.

Except for the trivial equation (1) of the form ζ1 = υ (t = 1), the variable ζt is
present in the system (5). Hence, ζ1, . . . , ζ3e, ζ3e+1, . . . , ζ3(e+d) are all variables of
the system Sυ. It is obvious that the system Sυ is equivalent to the new system
thus replaced.

3. Auxiliary assertions

Now we prove a number of auxiliary assertions. The commutator [g, f ] of two
elements g and f of a group G is de�ned as g−1f−1gf . Then gf = fg[g, f ].

Recall that the groupH is generated by the transvections a = t12 and b = t23, and
its center is the in�nite cyclic group generated by their commutator c = [b, a] = t−1

13 .

Then for any α, β ∈ Z, bβaα = aαbβcαβ . Further in the paper, Hk =
∏k

i=1 H(i)
denotes the direct product of k copies of the group H. Denote the transvections
t12, t23, t

−1
13 in the i-th copy (i = 1, . . . , k) as ai, bi, ci respectively. In what follows,

bi→j (i < j) means bi · . . . · bj .

Lemma 2. Let M be a submonoid of H generated by g1 = ac, b and g2 = a−1.
Then any representation of b in terms of the generators of M has the form

(7) b = gζ1bg
ζ
2 , ζ ∈ N ∪ {0}.

Proof. Obviously, the generator b of the submonoid M appears exactly once
among the factors of the right-hand side (7), and the total exponents of the occurren-
ces of the other two generators g1 and g2 are equal. Then the cancellation of
the degree cζ occurs only for the indicated arrangement of the generators of the
submonoid on the right-hand side (7).

The cancellation occurs during the commutator collecting process, which consists

in the transition of gζ2 through b. Namely,

(8) gζ1bg
ζ
2 = (aζcζ)a−ζb[b, a−ζ ] = b.

□
The scheme of the exact location of the generators of the submonoid M when

expressing the element b is as follows.∣∣∣∣ gζ1 b gζ2
H : b = aζcζ b a−ζ

∣∣∣∣ .
Table 1.

The following lemma allows us to interpret equations of the form ζ + ζ ′ = ζ ′′ in
the group H4.
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Lemma 3. Let M be a submonoid of H4 generated by g1 = a1c1c4, g2 = a2c2c4, g3 =
a3c3c

−1
4 , g4 = a−1

1 , g5 = a−1
2 , g6 = a−1

3 , and f1 = b1b2b3. Then the representation of

ḃ = b1→3 in terms of the generators of M has the form

(9) ḃ = gζ1g
ζ′

2 gζ
′′

3 f1g
ζ
4g

ζ′

5 gζ
′′

6

Such a representation for nonnegative integers ζ, ζ ′, ζ ′′ exists if and only if ζ+ ζ ′ =
ζ ′′.

Proof. We note that for given positive ζ, ζ ′, ζ ′′, the form (9) is uniquely determined
up to a permutation of the factors gi (i = 1, 2, 3) on the left-hand side and gj
(j = 4, 5, 6) on the right-hand side of the factor f1. For null value of ζ, ζ

′ or ζ ′′, we
assume that the corresponding generator is located as indicated.

Obviously, the generator f1 of the submonoid M occurs exactly once among
the factors of the right-hand side of (9), and the total exponents of occurrences of
any pair of generators gi and gi+3 for i = 1, 2, 3 are the same, say ζ, ζ ′ and ζ ′′,
respectively. The location of the factors gi and gi+3 for i = 1, 2, 3 with respect to
f1 follows from Lemma 2. The representation (9) for nonnegative integers ζ, ζ ′, ζ ′′

exists if and only if ζ + ζ ′ = ζ ′′. If the equality (9) holds, then the component in

H(4) must be cζ+ζ′=ζ′′

4 = 1, hence ζ + ζ ′ = ζ ′′. If the equality ζ + ζ ′ = ζ ′′ is true,
then (9) is checked directly. □

The scheme of the exact location of the components of the generators of the
submonoid M when expressing the element ḃ is as follows (empty positions corres-
pond to trivial elements).∣∣∣∣∣∣∣∣∣∣∣

ḃ = gζ1 gζ
′

2 gζ
′′

3 f1 gζ4 gζ
′

5 gζ
′′

6

H(1) : b1 = aζ1c
ζ
1 b1 a−ζ

1

H(2) : b2 = aζ
′

2 cζ
′

2 b2 a−ζ′

2

H(3) : b3 = aζ
′′

3 cζ
′′

3 b3 a−ζ′′

3

H(4) : 1 = cζ4 cζ
′

4 c−ζ′′

4

∣∣∣∣∣∣∣∣∣∣∣
Table 2.

Lemma 4. Let M ′ be a submonoid of H6 generated by g′1 = a1c1, g
′
2 = a2c2, g

′
3 =

a−1
1 a3c3, g

′
4 = a−1

2 a4c4, f
′
1 = b1b2, f

′
2 = b3b4, g

′
5 = a−1

3 a5c5, g
′
6 = a−1

4 a6c6, f
′
3 =

b5b6, g
′
7 = a−1

5 , g′8 = a−1
6 . Then the representation of b1−6 in terms of the generators

of M ′ has the form

(10) b1→6 = (g′1)
ζ(g′2)

ζ′
f ′
1(g

′
3)

ζ(g′4)
ζ′
f ′
2(g

′
5)

ζ(g′6)
ζ′
f ′
3(g

′
7)

ζ(g′8)
ζ′
.

Proof. For given positive ζ, ζ ′ the form (10) is de�ned uniquely up to a permuta-
tion of the generators g′1, g

′
2 on the left-hand side and g′3, g

′
4 on the right-hand side

of f ′
1, g

′
5, g

′
6 on the left-hand side and g′7, g

′
8 on the right-hand side of f ′

3. For null
value of ζ or ζ ′, we assume that the corresponding generator is located as indicated.

The proof is similar to the proof of Lemma 3 and follows from Lemma 2.
Obviously, each of the generators f ′

1, f
′
2, f

′
3 of the submonoid M ′ occurs exactly

once among the factors of the right-hand side of (9), and the total exponents of
occurrences of any pair of generators (g′1, g

′
3), (g

′
2, g

′
4), (g

′
3, g

′
5), (g

′
4, g

′
6) and (g′5, g

′
7),

(g′6, g
′
8) are the same, respectively. Then the quadruples of generators (g′1, g

′
3, g

′
5, g

′
7)

and (g′2, g
′
4, g

′
6, g

′
8) have the same exponents, say ζ and ζ ′, respectively. The location

of the factors g′ith with respect to f ′
jth follows from Lemma 2. □
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The scheme of the exact location of the components of the generators of the
submonoid M ′ when expressing the element b1→6 is as follows (empty positions
correspond to trivial elements).

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b1→6 = (g′1)
ζ(g′2)

ζ′
f ′
1 (g′3)

ζ(g′4)
ζ′

f ′
2 (g′5)

ζ(g′6)
ζ′

f ′
3 (g′7)

ζ(g′8)
ζ′

H(1) : b1 = aζ1c
ζ
1 b1 a−ζ

1

H(2) : b2 = aζ
′

2 cζ
′

2 b2 a−ζ′

2

H(3) : b3 = aζ3c
ζ
3 b3 a−ζ

3

H(4) : b4 = aζ
′

4 cζ
′

4 b4 a−ζ′

4

H(5) : b5 = aζ5c
ζ
5 b5 a−ζ

5

H(6) : b6 = aζ
′

6 cζ
′

6 b6 a−ζ′

6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Table 3.

Lemma 5. Consider the group H8. Let M be its submonoid generated by the
elements g1 = a1c1a7, g2 = a2c2, f1 = b1b2, g3 = a−1

1 a3c3, g4 = a−1
2 a4c4b7, f2 =

b3b4, g5 = a−1
3 a5c5a

−1
7 , g6 = a−1

4 a6c6, f3 = b5b6, g7 = a−1
5 , g8 = a−1

6 b−1
7 (whose

projections onto H6 coincide with the generators of the submonoid M ′ in the lemma
4 with the same notation, but with ′), and by the elements g9 = a8c8c7, f4 = b8, g10 =

a−1
8 . Then the representation of b̈ = b1→6b8 in terms of the generators of M has
the form

(11) b̈ = gζ1g
ζ′

2 f1g
ζ
3g

ζ′

4 f2g
ζ
5g

ζ′

6 f3g
ζ
7g

ζ′

8 gζ
′′

9 f4g
ζ′′

10 .

Such a representation for nonnegative integers ζ, ζ ′, ζ ′′ exists if and only if ζζ ′ = ζ ′′.

Proof. For given positive ζ, ζ ′ the form (11) is de�ned uniquely up to a permuta-
tion of the generators g1, g2 on the left-hand side and g3, g4 on the right-hand
side of f1, g5, g6 on the left-hand side and g7, g8 on the right-hand side of f3.
We also note that the last three generators are uniquely located relative to each
other, but in relation to other generators they can occupy any position, since
these elements commute with other generators. For given positive ζ, ζ ′, ζ ′′ the
equality ζ · ζ ′ = ζ ′′ is necessary and su�cient for the indicated occurrence of the
element b̈ in the submonoid M . For null value of ζ, ζ ′ or ζ ′′, we assume that the
corresponding generator is located as indicated. It is clear that the con�guration of
the factors in (10) is preserved for their counterparts in (11). Such a representation
for nonnegative integers ζ, ζ ′, ζ ′′ exists if and only if ζζ ′ = ζ ′′. If the equality (11)

holds, then the component in H(7) must be cζ
′′−ζζ′

7 = 1, hence ζζ ′ = ζ ′′. If the
equality ζζ ′ = ζ ′′ is true, then (11) is checked directly. □

The scheme of the exact location of the components of the generators of the
submonoid M when expressing the element b̈ is as follows (empty positions corres-
pond to trivial elements). The scheme consists of the table 4 presenting all the
generators except g9, f4, g10 and table 4' presenting these three generators with
components on the last two rows, corresponding H(7) and H(8) respectively, and
additional to table 4 three columns. The remaining components of these elements
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are trivial.∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b̈ = gζ1g
ζ
2 f1 gζ3g

ζ′

4 f2 gζ5g
ζ′

6 f3 gζ7g
ζ′

8

H(1) : b1 = aζ1c
ζ
1 b1 a−ζ

1

H(2) : b2 = aζ
′

2 cζ
′

2 b2 a−ζ′

2

H(3) : b3 = aζ3c
ζ
3 b3 a−ζ

3

H(4) : b4 = aζ
′

4 cζ
′

4 b4 a−ζ′

4

H(5) : b5 = aζ5c
ζ
5 b5 a−ζ

5

H(6) : b6 = aζ
′

6 cζ
′

6 b6 a−ζ′

6

H(7) : 1 = aζ7 bζ
′

7 a−ζ
7 b−ζ′

7

H(8) : b8 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Table 4.∣∣∣∣∣∣∣
gζ

′′

9 f4 gζ
′′

10

H(7) : cζ
′′

7

H(8) : aζ
′′

8 cζ
′′

8 b8 a−ζ′′

8

∣∣∣∣∣∣∣
Table 4'.

4. Choosing a direct power of the Heisenberg group and

constructing a submonoid in it for which the membership problem

is equivalent to the solvability of the given Diophantine equation

First, a Diophantine equation (1) is taken. Then the equivalent nonnegative
Skolem system Sυ is constructed from this equation. The variables and equations
of this system are ordered and written as speci�ed in (3�6).

To the resulting system Sυ we associate the group H̃ = H8e+4d+q+1. The �rst
8e factors of this group are sequentially divided into e blocks of 8 factors each:
B1, . . . , Be, where Bi = H(8(i − 1) + 1) × . . . × H(8(i − 1) + 8), i = 1, . . . , e. Each
block in accordance with the lemma 5 corresponds to equation with the same system
number in (3). The following d blocks of 4 factors each are Be+1, . . . , Be+d, where
Be+i = H(8e+4(i−1)+1)× . . .×H(8e+4(i−1)+4), i = 1, . . . , d. Each block Be+i

in accordance with the lemma 3 corresponds to equation with the system number
i in (4). Remaining q + 1 factors are not divided into blocks. The next q factors
H(k), k = 8e+4d+1, . . . , 8e+4d+ q correspond to the system (5). The last factor
H(8e+ 4d+ q + 1) corresponds to the equation (6).

We construct a submonoid M̃ of the group H̃ by de�ning its generating elements
in accordance with lemmas 3 and 5 modi�ed by adding multipliers to some of them
from the factors H(8e + 4d + k) for k = 1, . . . q, taking into account the equation
(6), that corresponds to the last factor H(8e+4d+ q+1). The generating elements

of the submonoid M̃ will be denoted as g̃ or f̃ with indices. The form of these
generators is de�ned below.
Construction of submonoid generators associated with the system (3).
Consider �rst the equations of system (3). The blocksB1, . . . , Be correspond sequen-
tially to these equations. We compose the group

(12) B(1) =

e∏
i=1

Bi ≃ H8e.
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Let M(1) denote the projection of the submonoid M̃ under construction into the
group B(1).

Let µi : H8 → Bi for i = 1, . . . , e be an isomorphism in which the generators
aj , bj of the factor H(j) map to a8(i−1)+j , b8(i−1)+j respectively for j = 1, . . . , 8.

For Bi (i = 1, . . . , e) we denote b(i) = µi(b̈) and set

(ḡ10(i−1)+1, ḡ10(i−1)+2, f̄4(i−1)+1, ḡ10(i−1)+3,

ḡ10(i−1)+4, f̄4(i−1)+2, ḡ10(i−1)+5, ḡ10(i−1)+6,

(13) f̄4(i−1)+3, ḡ10(i−1)+7, ḡ10(i−1)+8, ḡ10(i−1)+9, f̄4(i−1)+4, ḡ10(i−1)+10) =

= µi(g1, g2, f1, g3, g4, f2, g5, g6, f3, g7, g8, g9, f4, g10).

Denote byM i the submonoid ofBi generated by the just de�ned elements. Obviously,
M(1) =

∏e
i=1 M i. Then for eachBi, i = 1, . . . , e, the natural analog of the statement

of the lemma 5 is valid, as well as the analogue of the expression (11) with the
unknowns ζ, ζ ′, ζ ′′ replaced by ζ3(i−1)+1, ζ3(i−1)+2, ζ3(i−1)+3 respectively. Namely,

the representation of b(i) in terms of the generators of M i has the form

(14) b(i) = ḡ
ζ3(i−1)+1

10(i−1)+1 . . . f̄4(i−1)+1 . . . ḡ
ζ3(i−1)+3

10(i−1)+10.

An analogue of the assertion about the uniqueness of such a representation made
in the proof of lemma 5 is also true.

It follows from these statements and the lemma 5 that an element b̄(1) =∏e
i=1 b(i) belongs to the submonoid M(1) of the group B(1) if and only if the

variables ζi, i = 1, . . . , 3e, are a solution to the system (3).
Consider now the equations of the system (4). The blocks Be+1, . . . , Be+d corres-

pond sequentially to these equations. Now we de�ne

(15) B(2) =

e+d∏
i=e+1

Bi ≃ H4d.

Let M(2) denote the projection of the submonoid M̃ under construction into the
group B(2).

Let νi : H4 → Be+i for i = 1, . . . , d be an isomorphism in which the generators
aj , bj of the factor H(j) map to a8e+4(i−1)+j , b8e+4(i−1)+j respectively for j =
1, . . . , 4.

For Be+i (i = 1, . . . , d) we denote b(e+ i) = νi(ḃ) and set

(ḡ10e+4(i−1)+1, ḡ10e+4(i−1)+2, ḡ10e+4(i−1)+3, f̄4e+4(i−1)+1, ḡ10e+4(i−1)+4,

(16) ḡ10e+4(i−1)+5, ḡ10e+4(i−1)+6 = νi(g1, g2, g3, f1, g4, g5, g6).

Denote by Me+i the submonoid of Be+i generated by the just de�ned elements.

Obviously, M(2) =
∏d

i=1 Me+i.Then for each Be+i, i = 1, . . . , d, the natural analog
of the statement of the lemma 3 is valid, as well as the analogue of the expression
(9) with the unknowns ζ, ζ ′, ζ ′′ replaced by ζ3e+3(i−1)+1, ζ3e+3(i−1)+2, ζ3e+3(i−1)+3

respectively. Namely, the representation of b(e + i) in terms of the generators of
Me+i has the form

b(e+ i) = ḡ
ζ3e+3(i−1)+1

10e+4(i−1)+1, ḡ10e+4(i−1)+2,
ζ3e+3(i−1)+2 , ḡ

ζ3e+3(i−1)+3

10e+4(i−3)+3f̄4e+4(i−1)+1·
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(17) ·ḡζ3e+3(i−1)+4

10e+4(i−1)+4ḡ
ζ3e+3(i−1)+5

10e+4(i−1)+5ḡ
ζ3e+3(i−1)+6

10e+4(i−1)+6.

An analogue of the assertion about the uniqueness of such a representation made
in the proof of lemma 3 is also true.

It follows from these statements and the lemma 3 that an element b̄(2) =∏d
i=1 b(e + i) belongs to the submonoid M(2) of the group B(2) if and only if

the variables ζ3e+i, i = 1, . . . , 3e+ 3d, are a solution to the system (3).

We setH8e+4d
=

∏e+d
i=1 Bi and its submonoidM = M(1)·M(2) generated by their

generaing elements. We put b̄ = b(1)b(2). It follows from the above considerations
that the element b̄ belongs to M if and only if the combined system of equations
(3) and 4) is solvable in integer nonnegative numbers ζ1, . . . , ζ3(e+d).

Construction of generators of the submonoid M̃ associated with the
system Sυ. Since all variables of the systems (3) and (4) are pairwise distinct,
both of them are decidable together. It remains to take into account the equalities
between these variables in the system (5) and the system (6). So, we consider the
system Sυ of equations, which is the union of all four systems: (3) � (6). We are

going to construct a submonoid M̃ of the group H̃, whose membership problem is
equivalent to the solvability of the system Sυ in nonnegative integers.

We take the already de�ned components of the generated elements ḡith and f̄jth

of the submonoid M and de�ne them as components corresponding to the elements
g̃ith and f̃jth under construction. Then we supplement some of the elements g̃ith
with new components in the factors of H(i) for i = e+ d+ 1, . . . , e+ d+ q + 1.

We do this as follows. For any equation Pe+d+k (k = 1, . . . , q) of the form ζi(k) =
ζj(k) from (5) we �nd among the representations (14) and (17) one of the generating

elements ḡl of the submonoid M whose exponent is equal to ζi(k). Add the element

8e+4d+k to the component 8e+4d+ k of g̃l. Then we similarly �nd element ḡt with
the exponent ζj(k) and add the element c−1

8e+4d+k to g̃t,. This component will be

trivial in the considered product of generating elements of the submonoid M̃ if and
only if ζi(k) = ζj(k).

Then for equation (6), we �nd among the representations (14) and (17) one of
the generating elements ḡs of the submonoid M whose exponent is equal to ζt and
add the element c8e+4d+q+1 to the 8e + 4d + q + 1th component of g̃s. Note, that

this component is equal to cζt8e+4d+q+1 in the considered product of the generators

of M̃ .
The process of constructing the generators of the submonoid M̃ of the group H̃

is completed.
We de�ne the element

(18) g(υ) = b̄c
|υ|
8e+4d+q+1.

Then g(υ) belongs to M̃ if and only if the system Sυ has a solution in the nonnegative
integers.

5. Main results

In this section we give formal proofs of the main results.

Theorem 1. For any Diophantine equation (1) there exists a direct power H̃ = Hn

of the Heisenberg group H, a �nitely generated submonoid M̃ in it and an element



UNDECIDABILITY OF THE SUBMONOID MEMBERSHIP PROBLEM 303

g(υ) ∈ H̃ such that the equation (1) is solvable in integers if and only if g(υ) belongs

to M̃. The parameter n, the element g(υ), and the �nite set of generators of the

submonoid M̃ are e�ectively determined. The submonoid M̃ depends only on the
Diophantine polynomial D on the left-hand side (1).

Proof. We take the equation (1) and construct a nonnegative Skolem system
Sυ equivalent to it, as explained in the point 2.1.1 and Lemma 1. Suppose that
the system Sυ has a solution ζ1, . . . , ζ3(e+d). In this case equations (3�6) turn into
equalities.

We set n = 8e + 4d + q + 1. Construct the generating elements g̃i for i =
1, . . . , 10e, 10e + 1, . . . , 10e + 6d and f̃j for j = 1, . . . , 4e, 4e + 1, . . . , 4e + d of the

submonoid M̃ , as described in the section 4. We de�ne the element g(υ) by the
formula (18. From the statements obtained in section 4 it follows that g(υ) belongs

to M̃ .
Suppose now that the element g(υ) belongs M̃ . Then the equalities (3) and (4)

hold ( Lemmas 3 and 5, formulas (14) and (17)). The components with numbers
8e + 4d + k (k = 1, . . . , q) must be trivial, which corresponds to the ful�llment of

the equalities (5). The (8e+4d+ q+1)th component must be equal to c
|υ|
8e+4d+q+1,

which means that (6) satis�ed. Consequently, the exponents ζ1, . . . , ζ3(e+d), with

which the generators of the submonoid M̃ enter the representation of the element
g(υ), are the solution of the system Sυ. □

Recall that Hilbert's 10th problem is the question of the existence of an algorithm
that, given a Diophantine equation determines whether it has an integer solution.
Yu.V. Matiyasevich (see [6]�[9]) proved that such an algorithm does not exist. In
addition, he established that there exists a Diophantine polynomial D0(ζ1, . . . , ζt)
with a zero constant term such that there is no algorithm that determines the
solvability of equations of the form

(19) D0(ζ1, . . . , ζt) = υ, υ ∈ Z.

From the undecidability of Hilbert's 10th problem and Theorem 1, it follows
that the submonoid membership problem in the class of �nite direct powers of the
Heisenberg group is undecidable.

The existence of an algorithmically unsolvable equation of the form (19) with a
�xed left-hand side and parameter υ allows us to establish the following stronger
assertion.

Theorem 2. For su�ciently large n ∈ N, the direct power H̃ = Hn of the Heisenberg

group H contains a �nitely generated submonoid M̃ with an unsolvable membership
problem.

Proof. First, an equation of the form (19), which is unsolvable in integers, is
taken. Then the equivalent nonnegative Skolem system S(υ) is constructed from
this equation. The rest of the proof completely repeats the proof of the Theorem 1.
Variations of the parameter υ in the equation (19) correspond to variations of the

element g(υ). The submonoid M̃ does not change. An element g(υ) belongs to M̃
if and only if the system Sυ is solvable in nonnegative integers. This is equivalent
to saying that the equation (19) with this parameter is solvable in integers. This
implies the assertion of the theorem. □
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Note that the existence of a �nitely generated submonoid with an unsolvable
membership problem in a �nitely generated nilpotent group implies the existence
of a similar submonoid in the corresponding free nilpotent group.

Proposition 1. For k, c ∈ N, let N be a k-generated nilpotent group of class c that
has a �nitely generated submonoid M with the undecidable membership problem.

Then the free nilpotent group Nk,c contains a �nitely generated submonoid M̃ with
an undecidable membership problem.

Proof. Consider the natural homomorphism ϕ : Nk,c → N. Let M̃ denote the
full pre-image of the submonoid M in Nk,c. An element g ∈ N belongs to M if

and only if any of its inverse images g̃ belongs to M̃ . It remains to note that the

submonoid M̃ is �nitely generated.

Let M̃ is generated by elements g̃1, . . . , g̃l. For each of these generators gi, take
some inverse image g̃i in the group Nk,c. The group Nk,c is Noetherian, so ker(µ)
is a �nitely generated subgroup. Let ker(ϕ) = gp(f1, . . . , ft). Then the submonoid
M is generated by the elements g1, . . . , gl, f

±1
1 , . . . , f±1

t . □
It follows from the Theorem 2 and the Proposition 1 that a submonoid with an

unsolvable membership problem exists in any free nilpotent group Nk,c for c ≥ 2 of
su�ciently large rank k.
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