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ABSTRACT. For unipotent elements of prime order, the Jordan block
structure of their images in infinitesimally irreducible representations of

the classical algebraic groups in odd characteristic whose dimensions are

at most 100, is determined. The approach proposed can be applied for
solving a similar problem for representations of bigger dimensions. A
detailed information on small cases is important for stating reasonable
conjectures on the behavior of unipotent elements in irreducible representations
of the classical algebraic groups.
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1. INTRODUCTION

In this paper the canonical Jordan form of the images of unipotent elements of prime
order in irreducible p-restricted representations of the classical algebraic groups in odd
characteristic p whose dimensions are at most 100, is determined. Observe that in many
cases the picture differs heavily from the situation in characteristic 0 even if the dimension
of the irreducible representation with a certain highest weight is the same. The approach
proposed to find this form can be applied to solve a similar problem for representations of
bigger dimensions. The information obtained can be used for stating reasonable conjectures
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on the behaviour of unipotent elements in representations of algebraic groups. The study
of such behaviour is important for solving recognition problems on representations of
linear groups. At present very little is known on the block structure of images of arbitrary
unipotent elements in representations of the classical algebraic groups, hence a detailed
study of such images for representations of small dimensions is useful.

Indeed, in the majority of cases only the maximal size of a Jordan block (the degree
of the minimal polynomial) of a given element in a fixed representation is known. Such
polynomials were found in [27] for unipotent elements of a prime order and all simple
algebraic groups and in [29] for arbitrary unipotent elements and the classical algebraic
groups in odd characteristic. M. Barry [1, Theorem 2] found recursive formulae for the
canonical Jordan form of regular unipotent elements on the wedge and symmetric squares
of the standard modules of the special linear groups in odd characteristic. One can apply
these results for solving the problem for arbitrary unipotent elements of this groups
embedding nonregular elements into proper subsystem subgroups and using the description
of the restrictions of relevant modules to this subgroups (see Lemma, 19). Recall that in odd
characteristic the wedge and symmetric squares of the standard modules are irreducible
for the special linear groups, the wedge square is irreducible for the spinor groups and the
symmetric square for the symplectic ones (see Proposition 3 and 4 and Theorem 5 and 6).

It is well known that in odd characteristic the following modules have a unique nontrivial
composition factor (see, for instance, [18, Theorem 5.1]):

a) the tensor product of the standard module and its dual for a special linear group;

b) the wedge square of the standard module for a symplectic group;

c) the symmetric square of such module for a spinor group.

In all these cases T. Korhonen [16, Theorem 6.1 and Corollaries 6.2 and 6.3] described
the canonical Jordan form of unipotent elements acting on these factors, for a special
linear group the question is solved without restrictions on the ground field characteristic.
These results were applied by him in [15] for classifying irreducible representations of the
classical groups where all Jordan blocks in the image of some unipotent element have
different sizes.

R. Lawther [17] determined the canonical Jordan form of all unipotent elements of
the exceptional algebraic groups in the action on the nontrivial modules of the minimal
dimensions and the adjoint modules.

2. PRELIMINARY RESULTS

In what follows N is the set of natural numbers, C is the complex field, K is an
algebraically closed field of odd characteristic p, G is a simply connected algebraic group
of a classical type, n is a rank of G, w; and «; with 1 <4 < n are the fundamental and the
simple roots of G, g; with 1 <i <nfor G # Ap(K) and 1 <i<n+1for G= A,(K) are
weights of the standard G-module defined in [4, §13], (i, @) is the value of a weight 1 on
aroot « (in the sense of [25, §1]), p is the halfsum of the positive roots of G. The symbols
wi, €; and «; are used not only for the group G, but for other simple algebraic groups, it is
clear from the context what group is considered. Recall that an irreducible representation

n
¢ in characteristic p with highest weight > a;w; is called p-restricted if all the coefficients
i=1
a; < p. If T is a simple algebraic group over C or K, then Xg is the root subgroup
associated with a root 8, I'(f1, ..., Bx) is the subgroup in I" generated by the root subgroups
Xipy, s Xap,, W(T) is the Weyl group of I'; A(T") and AT (T") are the set of weights and
the set of dominant weights of I'. Set X¥+; = X+q,;, ['(i1,...,0%) = I'(ay,, ..., a5, ). We also
use the notation I'(i1, ..., g, B) for the group I'(ay,, ..., o, , B) and other similar notation.
Below z4;(t) is the root element of I" associated with the root +a; and an element ¢ of
the field, X+ is the element in the hyperalgebra of I' associated with the root +a; and
an integer t. For I' = G set W = W/(G). The labelling of simple roots is such as in [3]. A
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subsystem subgroup is the subgroup generated by all root subgroups associated with the
roots from some subsystem of the root system of G.

Below dim M (dim ¢) is the dimension of a I'-module M (a representation ¢), A(M) and
AT (M) (A(p) and AT (p)) are the sets of weights and dominant weights of a module M (a
representation ), and M* is the dual module to the module M. If w € AT (T), then M (w),
V(w), T'(w), and p(w) are the irreducible module, the Weyl module, the indecomposable
tilting-module, and the irreducible representation of I" with highest weight w; w(p) (w(M))
is the highest weight of a representation ¢ (a module M); w(m) is the weight of a weight
vector m from some module; Irr M is the set of composition factors of a module M (up
to isomorphism). If " is a simple simply connected algebraic group over K, then I'c is the
simple simply connected algebraic group over C with the same root system as I'; for an
irreducible representation ¢ of I we denote by ¢¢ the irreducible representation of I'c with
highest weight w(y); similarly we define the I'c-module Mg for an irreducible I-module
M.

If H is a subgroup of I'; then M|H is the restriction of a Imodule M to H. The
weights and roots of I" are considered with respect to a fixed maximal torus 7. If T N H
is a maximal torus in H, then w|H is the restriction of a weight w to T'N H. In this case
for a weight vector m from some I'-module put wg(m) = w(m)|H. Note that TN H is a
maximal torus in H for a subsystem subgroup H. If M is an irreducible I'-module, then
v € M is a nonzero highest weight vector. For an element € G and a representation (,
we use the symbol d,(z) to denote the degree of the minimal polynomial of ¢(z). The set
of the weights of the group A;(K) is identified with the set Z of integers in the standard
way: awi — a.

For a unipotent element g € GL(n, K) that has k1 Jordan blocks of size d1, k2 blocks of
size dag, ..., k¢ blocks of size d; with d1 > d2 > ... > d; and kid1 + kada + ... + kidy = n, we
shall write .J(g) = (d*, ...,d"). For # € G the symbol J(z) denotes the sequence J(¢(z))
for the standard representation ¢. It is well known that the canonical Jordan form of the
image of a unipotent element in a representation of G is the same as for its image in the
dual representation.

In what follows V is the standard (natural) module of G, e1,ea,...,e, is a basis of
V, (vi,v2,..,vr) ((V1,Va,..., V) is the subspace generated by vectors v1, va,..., vr (by
subspaces Vi, Va,..., V). We assume that n > 1 for G = A,(K) or Cr(K), n > 2 for
G = By (K), and n > 3 for G = D, (K).

The following facts will be used in this paper.

By [2, Proposition 5.13], the following formula holds for an element m of an arbitrary
G-module M, a root v of G, and an element ¢t € K:

z(t)m = Z t' X, im.
=0

This formula will be applied without special references.

Lemma 1. [2, Lemma 5.14] Let v and 0 be roots of a semisimple algebraic group. Then
the following formulae hold:
Xy Xya=XyaXy — Hy Xy a1+ (d— 1)X7,d717
d
XyaXs=XsXya+ Y ctXyi5:Xya1, ¢t €L

t=1

(where Hy, = [X,X_,]). We have X; s X_jq=X_;aXsx fori#j.

Probably, Proposition 1, Lemma 3, and Corollary 1 are well known, but we cannot give
explicit references.

Proposition 1. Let T be a group and U be a T-module. Assume that IrrU = S1 U Ss,
the subsets S; # &, and that there are no indecomposable I'-modules with two composition
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factors My and Mz such that M; € S;, 1 =1,2. Then U = N1® N2 where N; are I'-modules
and Irr N; = S;.

Proof. We use the induction on the number of composition factors of U. Suppose that
U has | composition factors and that the proposition holds for modules with a smaller
number of composition factors. Obviously, we can assume that [ > 3. Let M C U be
an irreducible submodule. Set U = U/M. Without loss of generality we can assume that
M € S;. It is clear that So C Irr U. First suppose that Irr U = So. Obviously, there exists
a submodule U; C U such that M C U; and Uy has | — 1 composition factors. It is clear
that Irr(U1 /M) C S2. Therefore by the induction hypothesis, Uy = M @& Uz where Us is a
I-module and Irr Uz C Sz. Set P = U/Us. It is clear that P has two composition factors,
one of them is isomorphic to M and another lies in S2. Then by the assumptions of the
proposition, P = P; @& P> where P, 2 M and P> € S2. Set N1 = M, and let N2 denote
the full preimage of P in U. It is clear that Irr No = S3, N1 N N2 = 0, and the module
N> has [ — 1 composition factors. This implies that N = N1 & Na.

Let Irr U # S2. By the induction hypothesis, U = N; @ N2 where N; are I'-modules,
Irr N1 C Si, and Irr Na = S2. Let N7 be the full preimage of Ny in U. It is clear that
Irr Ny = 57 and that for all modules @ € Si, the multiplicities of the composition factor
isomorphic to @ in the modules N; and U coincide. Let Z be the full preimage of Nz in U.
By the induction hypothesis, Z = M @& N> where N> is a I'-module and Irr No = S>. It is
clear that for all modules F' € S5, the multiplicities of the composition factor isomorphic
to F' in the modules U and N> coincide. Since N3 N Nz = 0, this yields that U = N1 ® Na.
(|

In what follows I' is a semisimple algebraic group over K unless otherwise stated. We
shall use the symbol Extf(Mz, M) to denote the extension group of a I'-module M; by
Mo, i.e. the set of equivalence classes of short exact sequences of I'-modules of the form

0= M 5 M My —0

with the standard operation. Recall that for irreducible modules M; and M2 a module M
in such sequence is completely reducible if Ext{(Mz, M;) = 0.

Lemma 2. [13, Part 2, Item 2.12, Formulae (1) and (4)] Let My and M; be irreducible
I'-modules. Then

1) Extl(My, M) = 0;

2) E:Etll—\(Ml, MQ) = E.’Etll—\(MQ, Ml)

Proposition 2. [13, Part 2, Proposition 2.14] Let A and 1 € AT (') and u # X. Then
Exti(M(N), M(p)) = Homr (radrV (), M (1)),
where radrV () is the mazimal submodule in V(X).

Lemma 3. Let U be a I'-module, M = M(w), and Irr U = M UI. Suppose that the module
V(w) is irreducible and M ¢ Irr V(X)) if M(X) € I. Then U = Ny @ Na where Ni is the
direct sum of several copies of M, N2 is a I'-module, and Irr Ny = 1.

Proof. By Proposition 2 and Lemma 2, Ext(M,Q) = Exti(Q, M) = 0 for any Q € I.
Hence there are no indecomposable I'-modules with two composition factors one of which
is isomorphic to M and another is contained in I. By Proposition 1, U = N; & N2 where
N;j and N2 are ['-modules, Irr N1 = M, and Irr N2 = I. It remains to prove that Np is
completely reducible.

Let [ be the number of composition factors of Ni. Apply induction on [. For | = 1, our
assertion is trivial. For | = 2, it follows from Lemma 2. Assume that [ > 2. Suppose that
the assertion holds for modules that have less than ! composition factors. Obviously, N;
contains a submodule S with [ — 2 composition factors. Lemma 2 implies that N,/S =
U,®U, where U; = M. Let U; be the full preimage of U; in Ni. It is clear that N1 = U1 +Us.
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As the modules U; have | — 1 composition factors, each of them is completely reducible
by the induction hypothesis. This implies that N; is completely reducible. O

Corollary 1. Let U be a I'-module. Assume that V(X) is irreducible if M(\) € IrrU.
Then U is completely reducible.

Proof. Apply induction on the order ¢ of Irr U. For ¢ = 1, argue as for the module N; in the
proof of Lemma 3. Let ¢t > 1. Assume that the assertion of the corollary is true for modules
F with |Irr F| < t¢. Fix a module M € IrrU and set I = Irr U \ M. Since the modules
V()) are irreducible if M()\) € Irr U, then by Proposition 2 there are no indecomposable
modules with two composition factors one of which is isomorphic to M and another lies in
I.Hence M and I satisfy the assumptions of Lemma 3. By this lemma, U is the direct sum
of several copies of M and a module U; with Irr U; = I. By the inductive hypothesis, the
module U; is completely reducible as |I| = ¢ — 1. This yields the assertion of the corollary.

a

Corollary 2 is well known and appears in different forms in numerous publications on
representation theory. We include it to show a connection with more general facts.

Corollary 2. Let I' = A1 (K) and U be a I'-module all whose weights are less than p.
Then U is completely reducible.

Proof. It is well known that the Weyl modules of I' with highest weights less than p are
irreducible. Therefore our assertion follows from Corollary 1. O

Lemma 4. [13, Part 2, Lemma 2.13b and Formula (2.14.1)] A I"-module generated by a
nonzero vector of weight \ fized by all root subgroups associated with positive roots, is a
homomorphic image of the Weyl module V()\) of I'. The quotient module of this module
by its mazimal submodule is isomorphic to M()).

Corollary 3 is well known, but we formulate it for the convenience of the reader.

Corollary 3. Let H C I’ be a subsystem subgroup and M be a I'-module. Suppose that
a weight vector m € M is fized by all root subgroups associated with positive roots of H.
Then the module KHm and hence the restriction M|H has the composition factor with
highest weight w(m)|H (here w(m)|H is defined such as for G).

Proof. It follows from [25, Theorem 39b] that the module K Hm is indecomposable. Then
we use Lemma 4. UJ

Lemma 5. [31, Lemma 1] Let A € AT(I") and module V()) be irreducible. Suppose that
A is the mazimal weight of a U'-module U and the weight subspace of this weight in U is
one-dimensional. Then U =V & N where N 2 M ().

Lemma 6. [21, 1.5] Let M be an irreducible I'-module, m € M be a nonzero weight
vector, f be a root of I', X3 fiztes m, and 0 < (w(M),B) < p. Then X_g.m # 0 if
0<c<{(w(M),p).

Recall that a I'-module is called a tilting module if it has both a filtration by Weyl
modules and a filtration by dual Weyl modules.

Lemma 7. [22, Lemma 1.1]

(a) For each dominant weight X\ there exists an indecomposable tilting module T'(\), unique
up to isomorphism, with highest weight .

(b) Any tilting module is the direct sum of tilting modules of form T(\).

(c) A direct summand of a tilting module is a tilting module.

(d) The tensor product of tilting modules is a tilting module.

In Definition 1 and Lemmas 8- 9 I' is a simple algebraic group of a classical type over
K.
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Definition 1. A closed connected subgroup A of type A1 in T is called good if the images of
all roots under the homomorphism o : A(T') — A(A) induced by the restriction of weights
from a mazimal torus T of T to the mazimal torus Ta =T N A in A are at most 2p — 2.

Lemma 8. [22, Proposition 2.2] For any element © € I' of order p there exists a good
subgroup A containing x and all such subgroups are conjugate; one can chose such system
of simple roots that o(c;) € {0, 1,2} and coincides with the ith label on the labelled Dynkin
diagram of x© (here o is the homomorphism from Definition 1).

It is well known [8, Chapter 5] that for a regular element = the integer o(a;) = 2 for
all 4.

Lemma 9. Let a be the mazimal short root and p be the halfsum of positive roots of T'.
If (w+ p,a) < p, then the Weyl module V (w) is irreducible.

Proof. This lemma follows from [13, Part II, Proposition 8.19] since one easily observes
that (w+ p, 8) < (w+ p, a) for any positive root 3 of T O

Lemma 10. [3, Table I, 11,IV] Let « be the mazimal root of G and w = >, a;w;. Then

i=1

Zn:lai for G = An(K) or Cr(K);
(w,a) = { a +an+2§:ai for G = B,(K);
a1+ an—1 +an+2ni22ai for G = Dp(K).
If G = Bp(K) or Cn(K) and 8 is the mazi;nal short root of G, then
n—1

(w,B) = an +2 Z a; n the first case
i=1

and

(w,B) =a1 + 2Zai in the second one.
1=2
Theorem 1. [24] Let S = G(i1,...,ix) € G, M be an irreducible G-module with highest
weight w, and v € M be a nonzero highest weight vector. Then a subset KSv C M is an
irreducible S-module with highest weight w|S and a direct summand of the S-module M.

Corollary 4. Let S = G(1,2,...,i — 1,i+ 1,....,n), M be an irreducible S-module with

highest weight w, Qr = {X € A(M)|A =w—koy — > bja;}, and Uy = (M,|p € Q). Then
iFi

M|S =Uy @ ... ® U, where h = h(M) = max{k|Q, # @}, Ur are S-modules, the modules

Uo and Uy, are irreducible, w(Up) = w|S, and the lowest weight of Uy, is the restriction to

S of the lowest weight of M.

Proof. It is obvious that Uy are S-modules and direct summands of M. Let Y C G be the
subgroup generated by all root subgroups X, with negative a.. Since M = KYv, one easily
observes that K Sv = Uy. Hence the S-module Uj is irreducible by Theorem 1. Applying
Theorem 1 to a lowest weight vector and the negative roots, we conclude that the module
Uy}, is irreducible, too. Now the assertion on the highest and lowest weights is obvious. [J]

Lemma 11. Let 1 <i<n, Gi =G(1,..,i—1,i+1,...,n), and M be an irreducible G-
module. Suppose that M = M*. For k € Z% set i, = {\ € A(M)|A = w—ka; — Y x5},
J#i

Ui = (Mx|X € Q). Let h = h(M) be the mazimal integer with Qp # @. Then the
G1-modules Uy, and Up—y are dual.
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Proof. Let T be a fixed maximal torus with respect to which the weights and the roots
of G are determined. Then T normalizes the subgroup Gi. It is clear that Uy is a direct
summand of the restriction M|T'G;. Since M = M™, then its lowest weight is equal to
—w(M), Qp_r ={N € A(M)|—X € Qi}, and M|TG; has a direct summand U isomorphic
to Uy. Taking into account that dim(Ux)x = dimU_, for any weight A € A(M) and
analyzing the action of torus 7" on the subspaces U;, we get that U = Up_. UJ

Remark 1. If G = B, (K) or C,(K), Lemma 11 holds for all irreducible modules.
Indeed, it is well known that for such groups all irreducible modules are self-dual.
Lemma 12. [29, Lemma 2.46] Let M be an irreducible G-module with highest weight
i a;w; and v € M be a nonzero highest weight vector. Let 1 < s,t < n and s,t < n for
51: D, (K). Assume that 0 < ay < p. Set by = —{awt1,ax) and cx, = — (-1, ). For

an integer d with 0 < d < a; define the vector v(s,t,d) as follows. Put dy = d. If s < t, set
dr = ak + di+1b, for s < k <t. If s > t, put d, = ax + di—1cx for s > k > t. Now take

U(S,t, d) = X—s,ds-~~X—k,dk~--X—t,dv-
For s =t put v(s,t,d) = X_sqv. Then v(s,t,d) # 0 and Xmpv(s,t,d) = 0 for positive
m # s and b > 0. Hence X, fizes v(s,t,d).

The notation v(s, t,d) is intensively used below.

Corollary 5. Let H=G(i,i+1,...,n), 1 <i<n; and let ¢ be a p-restricted irreducible
representation of G with highest weight

a1W1 + oo + An—1Wn—1 + apwn, a; # 0.

Suppose that t is an integer and 0 < t < a;. Then @|H has a composition factor with
highest weight

(aiz1 + a; — t)wi + (aix1 + H)w2 + Givows + ... + ApwWn—it1.
Proof. Put m = v(i—1,4,t). By Lemma 12, m # 0 and the subgroups X; with j > i —1 fix

m. Hence m generates an irreducible H-module with highest weight wg(m). One easily
concludes that wg(m) is equal to the weight above. This yields the corollary. O

Theorem 2. [20] Let ¢ be a p-restricted irreducible representation of G. Then A(p) =
A(epc).

For groups of types A, and D, this theorem is true for p = 2 as well. For groups of
type A, it has been proved in [26].

Lemma 13. For d < p an esterior power A%V is a direct summand in @V (a special
case of the result [11, Corollary 2.6e]).

Corollary 6. Let G = A, (K), A be the image of a completely reducible representation
of A1(K) with p-restricted irreducible components, and i < p. Then M (w;)|A is a tilting
module.

Proof. This follows immediately from Lemmas 13 and 7(c,d). O

Lemma 14. Let A C G be a connected semisimple closed subgroup and w € AT (G).
Suppose that the module V (w) is irreducible and that there are weights A1 and A2 € AT (G)
such that w = A1 + A2 and the restrictions M(M1)|A and M(X\2)|A are tilting modules.
Then M(w)|A is a tilting module.

Proof. It is clear that the dimension of the weight subspace of weight w in the module
M(A1) ® M(X2) is equal to 1. Then by Lemma 5, M(w) is a direct summand of this
tensor product. It remains to use Lemma 7(c,d). O
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Corollary 7. Let A C G be a connected semisimple closed subgroup and M be an
irreducible G-module with highest weight w. Suppose that the restrictions to A of irreducible
G-modules with fundamental highest weights are tilting modules and that (w + p,a) < p
for the mazimal short Toot o of G. Then M|A is a tilting module.

Proof. Let w = Z a;w;. Set s = Z a;. Apply induction on s. For s = 1 the assertion of

the corollary is true by hypothe51s Let s > 1 and a; # 0 for some j. Put \y = w — wj,
A2 = wj. By the induction hypothesis and the assumptions of the corollary, M (\;)|A is
a tilting module for 7 = 1 and 2. The module V(w) is irreducible by Lemma 9. Now our
assertion follows from Lemma 14. 0

Corollary 8. Let G = A,(K), A be the image of a completely reducible representation of
the group A, (K) with p-restricted irreducible components, M be the irreducible G-module
with highest weight aiw1, and a1 < p. Then M|A is a tilting module.

Proof. 1t is clear that M (w1)|A is a tilting module. It is well known that V(ajwi) is
irreducible. It suffices to apply Lemma 14 several times. O

Lemma 15. [5] Let G = Az(K) and M be an irreducible p-restricted G-module with
highest weight w = ai1w1 + asw2. Then the module V(w) is irreducible for a1 +a2 <p—1
and has two composition factors M(w) and M(w — d(an + «2)) for a1 + a2 =p+d—2
with d > 0.

Lemma 16. Let G = A3(K), M be an irreducible p-restricted G-module with highest
weight w = a1w1 + aswa, a1 + a2 #p—1, 0 < k < a1, and az # 0. Then the multiplicity
of the weight w — ka1 — a2 in M is equal to 2.

Proof. Put A = w — kay — ag. Obviously, A € A(M(w — d(a1 + a2))) for d > 1. Hence
Lemma 15 yields that dim M = dim V(w)x. By [21, 1.5], this dimension is equal to 2. [J

Theorem 3. [10, Chapter VIII, Theorem 2.7] Let 1 < s <t < p. Then

JJs @) =(t—s+1, t—s+3, ..., t+s—1) fors+t<p and

JJs®J) = (", t—s+1, ..., 2p—t—s—1) for s+t >p and k = s+t —p. In particular,
J(Js @ Jp) = (p°)-

Lemma 17. [23, Lemma 2.3 and the remark after Proposition 2.8 | If G # D, (K) or a
unipotent element © € G has at least one Jordan block of odd size in the standard realization
of G, then the conjugacy class containing x is uniquely determined by the Jordan form of its
elements in the standard realization. If G = D, (K) and x has Jordan blocks of even sizes
only in the standard realization, then the set of elements with such Jordan form is divided
into two congugacy classes. Furthermore, a unipotent element from SL,(K) is conjugate
to an element from Spn(K) if and only if the multiplicities of all Jordan blocks of odd sizes
are even, and it is conjugate to an element from SO, (K) if and only if the multiplicities
of all Jordan blocks of even sizes are even (here we mean blocks of this element in the
standard realization).

Lemma 18. [27, Proposition 2.12] Let x € G be an element of order p, k1 > ko > ... > k;
be all sizes of Jordan blocks of z on V', and m = dim V. Suppose that a subgroup A and a
homomorphism o are connected with x as in Lemma 8. Set

N(l‘) = (k‘1 - 1,]€1 — 3, ceey 1- kl,kz - 1, ceey 1- kt).
Then N(z) coincides with the set {o(w(e;))|1 < 7 < m}.

Remark 2. If G # D,(K) or an element x of order p has at least one block of odd size
in the standard realization, then Lemma 8 allows one to determine o(e;).
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(62) > ... > O'(En+1)

Indeed, since all o(a;) > 0, one easily observes that o(e1) > o >
= Bn(K) or Cp(K). Let

for G = An(K) and o(e1) > o(e2) > ... > o(en) > 0 for G
G = D, (K). We can conclude that

(1) o(e1) > 0(e2) > .. > o(en_1) > |o(en)

Since = has a block of odd size, then at least one of the integers o(e;) = 0. This yields
that o(en) = 0 and o(e1) > o(e2) > ... > o(en—1) > 0. As the sequence N(z) is known,
we can determine all the values o(g;).

If G = D,(K) and all blocks of z on V have even sizes, the picture is slightly more
difficult. This is discussed in detail in Section 6.

In Propositions 3-5 and Lemmas 19— 20 G = A, (K). It is well known that A, (K)
SLny1(K).

Denote by A"V, S"(V), and S™P(V) the rth exterior, rth symmetric, and the rth
truncated symmetric powers of V', respectively.

Proposition 3. [13, Part 2, Item 2.15] For 1 < r < n, the space A"V is an irreducible
G-module with highest weight w,. All weight subspaces of this module are one-dimensional.

Proposition 4. [33, Proposition 1.2] Let k and j be nonnegative integers and j < p—1.
Forr=k(p—1)+j < (n+1)(p — 1), the rth truncated symmetric power STP(V) is an
irreducible module with highest weight

(p—1—=j)wk + jwrt1.
All weight subspaces of this module are one-dimensional. In particular, for r < p, the space
ST (V) is an irreducible G-module with highest weight rws .

The following lemma is well known, we state it for the reader’s convenience.

Lemma 19. Let k+t=n—1, Hy = Ax(K), H2 = A(K), V; be the standard module for
the group H;, i = 1,2, and H = H1H> be a subsystem subgroup in G. Then the following
formulae hold:

NV P AT RAR;

i1 +ia=1,
i1 <k+1,
io<t+1
i A J i=J\/ .
@) SV P FVies Iy
0<j<i
SUPY P STV @ S PVh.
i1+ig=1,

0<i1 <(k+1)(p—1),

0<ig<(t+1)(p—1)
Proof. To proof this, consider the action of H in a basis of a relevant module associated
with some fixed bases of V7 and V2 in the standard way. OJ

Lemma 20 is well known and follows from the irreducibility of the Weyl modules with
highest weights ws and 2w; ( [13, Part 2, Proposition 2.14] and [21, Item 1.15i]).

Lemma 20. Let p > 2. Then VRV 2 A%V & S?V.

Proposition 5. (a part of [16, Theorem 6.1]) Let M1 =V @ V* and My = M (w1 + wy).
For an element x € G of order p and an integer k, denote by ri(x) the number of Jordan
blocks of size k for the action of x on M;, i =1,2.

1. Let x have at least one Jordan block of size less than p in the standard realization.
Then r(z) = ri(x) for k # 1, r3(z) = ri(z) — 1 if ptn+1, and ri(z) = ri(z) — 2 if
pin+ 1.

2. Let x have only blocks of size p in the standard realization. If p* | n + 1, then
() = rp(z) — 2, ro_1(z) = 2, and ri(z) = 0 for k #p or p— 1. If p> { n+ 1, then
ra(z) =rp(z) — 1, ra_o(x) =1, and ri(z) =0 for k #p or p — 2.
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Lemma 21. [19, Lemma 10] Let I' = A, (K), ¢ be an irreducible representation of T'
with highest weight a, and 0 < a < p. Then dimp = a+ 1 and for a nontrivial unipotent
element z € T', an element ¢(z) has a unique Jordan block of dimension a + 1.

In what follows this lemma is sometimes used without an explicit reference. The
canonical Jordan form of the image of a unipotent element in an arbitrary irreducible
representation of a group of type A; can be found with the use of Lemma 21, the Steinberg
tensor product theorem [25, Theorem 1.1], and Theorem 3.

Proposition 6. Let n < p, Gn = An(K), zn be a regular unipotent element of Gn,
and @k and @2 be the irreducible representations of G with highest weights w2 and 2ws,
respectively (we assume that ol s trivial). For an integer | setl =1 or3 ifl =1 or 3
(mod 4), respectively. If n < %_2, then
J(pn(zn)) = (2n—1, 2n =5, ..., 2n — 1), J(pa(zn)) = 2n+1, 20— 3, ..., 2n + 1).

If”2;2<n<p—1, then

J(on(za)) = (P*" 7177, 2p—2n—3, 2p—2n— 17, ..., 2p— 2n — 3),

J(@2(zn)) = (" 7P, 2p—2n—5, 2p—2n—9, ..., 2p — 2n — b).
We have
=

p=1
J(pp-1(zp-1)) = (P ) and J(pp_1(zp-1)) = (p 2 ).

Proof. In this proof for m < n, a representation ¢ of G, and a representation i of G, we
write J(¢(zn)) = (a*, J(¥(2m))) if dyp(2n) = a, ©(2,) has just k Jordan blocks of size a,
and the sequence J(¢(2,)) can be obtained from J(1)(zm)) by adding a* at the beginning.

For n = p — 1, the result follows immediately from [1, Theorem 2 (4)].

Let n < 252 It is clear that J(pi(21)) = (1). By Lemma 21, J(p?(21)) = (3). By |1,
Theorem 2 (4)],

I(pn(2n)) = J(@n-1(zn-1)), J(@n(zn)) = 20+ 1, J(pn-1(20-1)))
for n > 1. This forces that J(p3(22)) = (3) and J(¢3(22)) = (5, 1) and that
Th(n)) = (20— 1, J(8h a(en-2), T(h () = 2+ 1 I(5a(en-2)))

for n > 2. Now apply induction on n to complete the proof for n < ,)2;2.
Next, let 252 < n < p — 1. Then by [1, Theorem 2 (1)],
p+1

T ) = (0 (2 (zpmn—2))), (92 (20)) = (0 s J(@p—n—2(zp-n—2)))

(here we assume that J(¢p(20)) = @ and J(¢3(21)) = (1)). It remains to apply the results
for n < qu proven just before. O

2n+43—p
2

Lemma 22. [31, proof of Lemma 4, Formula (1)| Let G = A3(K), w = a1w1 + agw2, and
U =V (w). Suppose that n = w — toy — kaa € A(U). Then the multiplicity n, of weight p
in U is determined by the formula

ny = min{t, k} + 1 — max{0, min{t — a1 — 1,k} + 1} — max{0, min{¢, k —az — 1} + 1}.

In Lemmas 23-29, Propositions 7-8, Corollary 9, and Remarks 3— 4 I' = A;(K). Denote
by A(a) the Weyl comodule of I" with highest weight a.

The following lemma describes Weyl modules and indecomposable tilting modules with
not large highest weights for a group of type A;.

Lemma 23. [22, Lemmas 1.2 and 1.3] For 0 < ¢ < p the module T(c) = V(c) = M(c).
If p < ¢ < 2p—2, write c = r+ p. Then the mazimal submodule M in V(c) is isomorphic
to M(p—r—2) and V(c)/M = M(c). The module T'(c) has a filtration

T(C):M13M2:)M3:)M4:0
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with My /Mz 2= M3 = M(p —r — 2) and M2/M; = M(r + p);
dim(T'(c)) = 2p. In this case the module T'(c) is projective for the group Ai(p).

Lemma 24. [22, Lemma 1.4] Let 0 <r <p—2. Setc=r+p and d =p—r—2. Suppose
that the composition factors of a T'-module N are isomorphic either to M(c), or to M(d).
Then

N=T()"®V(c) aAle) ® M) e M),
where U® is the direct sum of a copies of a module U. Moreover, N is self-dual if and only
if s=t.

Remark 3. Let N be a self-dual T-module and N*" be the sum of all indecomposable
components of N with a fized highest weight p. Then the module N* and a sum of several
such modules are self-dual.

This assertion is clear since the indecomposable components of a module are determined
up to isomorphism and the highest weight of an A;(K)-module is preserved after the
transition to the dual one.

The following proposition describes the structure of indecomposable tilting modules
with highest weight bigger than p for the group A:(K).

Proposition 7. [9, Example 2] Let m > p. Then
T(m)=T(p—1+r)®@T(s)"",

where F'r is the Frobenius morphism of the group A1 (K) determined by raising elements of
the field K to the pth power, and r and s are determined by the equality m+1—p = r+ps,
0<r<p-1.

Lemma 25. Let X, and X_, be the root elements of the Lie algebra of I' associated with
the positive and the negative roots, respectively, and 0 < s < p — 2. Then the I'-module
T(p + s) contains a vector u of weight p — s — 2 such that X*T' X5y # 0, and a T-
module U with IrrU = {M(p+s), M(p—s—2)} that has no indecomposable components
isomorphic to T'(p + s), does not contain such vectors.

Proof. It is clear that there is a factor isomorphic to A(p + s) in the filtration of T'(p + s)
by dual Weyl modules. Then there exists a nonzero vector u € T'(p + s) such that w(u) =
p—s—2and X3ty # 0. Obviously, X5 u is a highest weight vector in T'(p + s). This
forces that Xithj'Hu # 0.

Let U be a I''module with IrrU = {M(p + s), M(p — s — 2)}. Assume that U has no
indecomposable components isomorphic to T(p + s). Write U = U' @ ... ® U* where U,
..., U* are the indecomposable components of U. It is clear that

Ups—o=Up o 2 ®US 2@ ...0U)_, 5.
By Lemma 24, U* € {V(p+5),A(p+5),M(p+s),M(p—s—2)}. Let u € Up_s_2. Then

U = u1 + ... + ux where u; € U;Z;SfQ. Obviously, u; = 0 for U7 = M(p + s). One easily
observes that X3t u; = 0 for U7 = M(p — s—2) or V(p+s). Let U7 = A(p + s). Then
h; = X5 u; is a highest weight vector in U7. Tt is well known that KTh; = M(p+ s) for

h; # 0. Hence X*T'h; = 0. This yields that X*T' X3 u; = 0. O

Corollary 9. Let 0 < s < p—2 and N be a I'-module such that I(N) = {2M (p+s),4M (p—
s —2)}. Assume that dim X*T'XSTIN, o =2. Then N = T(p+3s) & T(p+ s).

Proof. By Lemma 24, any indecomposable component of N is isomorphic to T'(p + s),
Vip+s), A(p+s), M(p+s), or M(p—s—2). It follows from Lemma 25 that at least one
of these components is isomorphic to T'(p + 5). Write N = N' @ N? where N' = T(p+s).
It is clear that dim NZ}_S_Q = 2. Since N contains a submodule isomorphic to V(p + s),
then KerX, N Ny_, o # 0. This and Lemma 25 imply that dim X*T'X5T'N} . , = 1.
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Assume that N2 2 T(p + s). Then it is obvious that N? has no such indecomposable
components. Hence Lemma 25 yields that XileZHNng,z =0 and
dim X*T1 X5 N, _ 5 = 1. A contradiction obtained completes the proof. O

Lemma 26. Let A and pn € Z' and one of the following hold:
a)A=2p+b,0<b<p—1,pu=2p—b—2;

b)p=>5, A=15, u = 13;

c)p=>5 A=16, u=12.

Then the mazimal submodule in V (X) is isomorphic to M (). Hence V (\) has two composition
factors: M(X\) and M (u).

Proof. This facts follow from [7]. It is not difficult to check this directly as we know the
weight sets of irreducible modules and Weyl modules of A; (K). O

Proposition 8. Let I' = A1 (K). Set M1 =2p+ b where 0 < b <p—1, and

S1 = {A,\1 —b—2,b}. For p =5 put A2 = 15, A3 = 16 and S2 = {15, 13, 5, 3},
Sz = {16, 12, 6, 2}. Suppose that M is a I'-module with the mazimal weight \;. Then
M = My & Mz where M; is a I'-module, Irr M1 C S;, and Irr Mo N'S; = & or Ms = 0.

Proof Let a € S;, b € Z*, b ¢ S;, and b < ;. Show that Ext{(M(a), M(b)) = 0. By
Lemmas 23 and 26, M(c) is not a composition factor of V(d) for (¢,d) = (a,b). Now
Proposition 2 and Lemma 2 imply that Ext(M(b), M(a)) = 0. To complete the proof,
we use Proposition 1. O

Lemma 27. LetT' = A1(K). Set A\=p+1i,0<i<p—2,and S={p+i,p—1i—2}.
Suppose that M is a I'-module with the mazimal weight \. Then M = M; & My where M
is a I'-module, Irr M1 C S, and Irr Mo NS = @ or Mz = 0.

Proof. The proof follows from Proposition 1 and Lemma 23. |

Lemma 28. Let N be an indecomposable I'-module generated by a highest weight vector
v, a be the positive root of T', and w(v) = a. Suppose that a = p+1 or2p+1 withl <p—1
and that X't'v #0. Then N 2V (a).

Proof. By Lemma 4, N is isomorphic to a quotient module of V'(a). Lemmas 23 and 26 yield
that in all the cases under consideration the module V' (a) has two composition factors.
One easily observes that w(N) — (I + 1)a € A(M(a)). Hence N 2 M (a). This implies our
assertion. UJ

Lemma 29. Let N be a self-dual I'-module with the mazimal weight w =p+1i, 0 < <
p — 2. Assume that dim N, = 1 and that Xl_'zlm # 0 for a nonzero vector m € N,,. Then
N has a direct summand isomorphic to T'(p + 7).

Proof. Let F' be an indecomposable component of N containing the subspace N, (such
component exists since dim N, = 1). By Lemma 28, KI'm = V (p + ). This implies that
F is reducible. It is clear that F' is self-dual as NV is self-dual and w is not a weight of an
indecomposable component of N distinct from F'. Now the lemma follows from Lemma 23.

a

Remark 4. If a self-dual I'-module has a filtration by Weyl modules, then it is a tilting
module.

Indeed, this module has a filtration by dual Weyl modules due to self-duality.
In Theorems 4 and 5 and Proposition 9 G = Cp (K). It is well known that G 2 Spa, (K).
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Theorem 4. [32] The irreducible representations

p—3 p—1
Pin =@ | wWno1+ 5 wn and  pan =@ 5 Wn

of G have the dimensions pn;l and pn;l, respectively, and all their weights have multiplicity 1.
Let k < n, Hy and Hy C G be commuting subsystem subgroups of types Ci and Cp_,

respectively, and H = Hi1H>. Then
prn|H = pa g ® pan—k ® pak @ p1n—k,

2| H 2 g1k @ pin—r D ok @ t2,n—k

(here the first tensor multiplier is a representation of H1 and the second one is a representation
Of Hz, wop = 0).

Theorem 5. [21, 8.1] The irreducible G-modules with highest weights awi for a < p or
aw; +(p—1—a)wiy1 where 1 <i < n and a # 0 fori =n—1, are equivalent to restrictions
to G of the irreducible modules of the group Asn—1(K) with the same highest weights.

Proposition 9. (a part of [16, Corollary 6.2]) Let M, = AV and Ma = M(w2). For an
element © € G of order p and an integer k, denote by r;,(z) the number of Jordan blocks
of size k for the action of x on M;, i =1,2.

1. Let x have at least one Jordan block of size less than p in the standard realization.
Then ri(x) = ri(x) for k # 1, ri(z) = ri(x) — 1 if ptn, and ri(z) = ri(z) — 2 if p|n.

2. Let = have only blocks of size p in the standard realization. If p*> | n + 1, then
r2(z) = rp(x) — 2, r2_1(z) = 2, and ri(x) = ri(z) fork £p orp— 1. If p* fn+ 1, then
ro(z) =rp(z) — 1, rp_o(z) = 1, and ri(z) = ri(z) for k #p or p— 2.

In Theorems 6 and 7, Lemma 30, and Proposition 10 G = B, (K) or D,(K). It is well
known that

B, (K) 2 Spingnt1(K) and Dy (K) = Spina,(K);
the group B2(K) = Cy(K).
Theorem 6. (see, for ezample, [29, Proposition 2.34|) Let
t=2n—-1,i<n—1 for G =D,(K) and
t=2n,i <n for G=B,(K).

Then the G-module M (w;) is isomorphic to the restriction to G of the irreducible Ai(K)-
module with the same highest weight.

The following lemma is well known, but we failed to find an explicit reference.

Lemma 30. Let G = Bn(K), H1 = G(1,2,...,i — 1,61 + &), Ho = G(i + 1,...,n),
1<i<n, H=H1Hs, and T = G(2,3,...,n). Then

M (wn)|H = M(wi—1) @ M(wn—i) ® M(wi) ® M(wn—i)

(here in each tensor product the first multiplier is an Hi-module and the second one is an
Hj-module),
M(Wn)|r = M(Wn—l) @ M(wn_l).

Proof. 1t is clear that Hy = D;(K) and Hz & B,_;(K). Let M = M(w,) be a G-module.
Denote by Q1 (respectively, Q2) the subspace in A(M) consisting of all the weights of the
form {+e;+ea£...£e;£...£e, }/2 with an odd (respectively, an even) number of symbols
”minus” for £, 1 < j < 4; and let N; = (Mx|\ € ©;). Obviously, M = N1 @ Na. One easily
observes that N; and N2 are H-modules. Taking into account the weight structure of M,
we conclude that N1 2 M(w;—1) ® M(wn—;) and No 2 M(w;) @ M (wn—;).

The proof of the second assertion is similar. Here Q1 = {(—e1 &2 + ... £ &,)/2} and
QQZ{(€1 ié‘giié‘n)/Q} D
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Theorem 7. [29] Let G = D,(K), f+g =n—1, and let B = By(K) X By(K) be
the subgroup in G determined by the natural embedding SOz541(K) X SO2441(K) C
SOz, (K) (here we put Bo(K) = 1). Then the restriction to B of the representations
P(wn-1) and @(wyn) are irreducible and equivalent to the tensor product p(wys) ® @(wg).
For B = B,_1(K) these restrictions are equivalent to the spin representation ¢(wn—1).

Proof. The proof follows from the description of the restrictions of weights of G to the
relevant subgroups, see [29, Lemma 2.23].
OJ

Proposition 10. (a part of [16, Corollary 6.3]) Let My = S*V and Ms = M(2w:). For
an element x € G of order p and an integer k, denote by ri(x) the number of Jordan
blocks of size k for the action of x on M;, i = 1,2. Set t = 2n+ 1 for G = B,(K) and
t =2n for G = D,(K).

1. Let x have at least one Jordan block of size less than p in the standard realization.
Then ri(z) = ri(z) for k #1, ri(z) =ri(z) — 1 if ptt, and ri(z) = ri(z) — 2 if p|t.

2. Let = have only blocks of size p in the standard realization. If p° | t, then ra(z)
rp(z)—2, 721 (x) = 2, and ri(z) = r4(z) fork # p orp—1. If p* { t, then r(z) = rp(z)—
r2_o(z) =1, and ri(x) = ri(x) for k#p or p— 2.

1,
3. THE GENERAL SCHEME OF PROOF

The list of p-restricted irreducible representations of the classical algebraic groups whose
dimensions are at most 100 can be found in Lubeck’s article [18, Theorem 5.1 and Tables in
§6]. Obviously, we can omit the standard and trivial modules as well as modules obtained
from the standard one with the help of a graph automorphism of a group. Taking this into
account, we conclude that the following groups have representations we are interested in:
An(K), n <13, Bp(K), n <6, Cp(K) and D, (K), n < T.

In what follows ¢ is a p-restricted irreducible representation of G, M is a module
affording ¢, w = w(M), Mx C M is the weight subspace of weight A, v € M is a nonzero
highest weight vector. If Hy, H> C G are simple subsystem subgroups and H = HiH>,
then a weight p of H is written in the form (p1,pu2) where p1 = p|Hi and pe = u|He.
An analogical notation is used for subgroups with three simple components. If A C G
is a fixed subgroup of type Ai, then « is the positive root of A, X, and X_, are the
root operators of its Lie algebra. If N is an A-module, Irt(N) = {M(a1),..., M(ar)},
and the multiplicity of the composition factor M (a;) is equal to b;, 1 < i < k, then set
I(N) = {b1M(a1),b2M(az),...,bis M (ar)}. Throughout the text Inv(M,) is the subspace
in M,, consisting of vectors invariant with respect to X.. It is always clear from the context
what group is considered. For an element = € G of order p, let A, and o, : A(G) — Z be
a good Ai-subgroup containing z and a homomorphism from Lemma 8. It is obvious that
oz(w) = ug}\%) o« (). It occurs that for representations being considered, o, (w) < 3p+3

and for majority of them, o, (w) < 2p — 2. To find the dimensions of Jordan blocks of x
on M, we determine the indecomposable components of the module M, = M|A,. First
we find the composition factors of M,. For this purpose, it is necessary to know the
dimensions of the weight subspaces of M. By Theorem 2, the set A(M) = A(Mc). The
latter set can be determined using [4, Chapter 8, §7] if we take into account that A(Mc)
is invariant under the Weyl group W. In some cases the Weyl module V' (w) is irreducible,
i.e. M 2 V(w). Then these dimensions are calculated by known formulas [12, §22, Item
3]. The module M often turns out to be a module with one-dimensional weight subspaces
from Propositions 3, 4, and Theorem 4. In other cases the composition factors of V(w)
are determined with the use of the Jantzen filtration [13, Part II, §8, Proposition 8.19] or
bases of weight subspaces for dominant weights of M are constructed explicitly.

n—2
Lemma 31. Let G # Dy (K) orw =Y, aiw;. Then the module M, is self-dual.

=1
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n—2
Proof. For G = Bn(K) or Cr(K) and for G = Dn(K), w = Y a;w;, the module M is
=1

i=
self-dual, therefore M, is self-dual. Let G = A,(K), ¢* and M™* be the representation
and the module dual to the representation ¢ and the module M. It is clear that M*|A, is
dual to M. Let 7 be the graph morphism of G. It is well known that ¢* = ¢ o 7. As the
graph automorphism does not change the canonical Jordan form of x on V' and therefore
fixes its conjugacy class, then the subgroups A, and 7(A;) are conjugate in G. Hence
©*|Ag =2 p|A,. This implies that the restrictions ¢|A,; and M|A, are self-dual. O

Corollary 10. In the assumptions of Lemma 31 let M, = N1 & N2 & ... ® N; and
Irr(N;) NIrr(N;) = @ for i # j. Then the modules N; are self-dual. If N; = F1 @ F> where
Fy is an indecomposable module and the mazimal weight of F1 is bigger than any weight
from A(F»), then F1 and F> are self-dual.

Proof. The corollary follows easily from the self-duality of M. |

Lemma 32. Let G = Ax(K) and a weight w = aiwi1 + asws € AT(G) be p-restricted.
Assume that a1 + az = p or p+ 1. Then the restriction M(w)|G(1) is a tilting module.

Proof. Put H = G(1), M = M(w), and Q; = {u € A(M)|p = w — iaa — kaz}. Since
w — (a1 + a2)(a1 + a2) is the lowest weight of M, then Q; = & for i > a1 + a2. Set

a a
Fi= (My|ji € ), 0 < i < ar-+as. It is clear that F; is an H-module and M|H = & F,.
Put p; = w —ia for 0 < i < ag and p; = w — bag — iag for i = az + b > as. Obi/igusly7
dim M,,;, = 1 as for 7 > az the weight u; lies in the same W-orbit with the weight w —ba;.
Lemma 12 implies that in all cases p; € A(M).

One easily observes that a weight v = w — caq — (a2 + b)az & A(M) for 0 < c < b
since (v, az) < —(az + b). This yields that y; is the maximal weight of the H-module F;.
If k; = (ui,0n) < p, then by Corollary 2, F; is a direct sum of irreducible p-restricted
H-modules. Observe that k; = a1 +¢ for i < as and k; = a1 +a2 —bfor i =as +b > as.
Hence for a1 + a2 = p, the integer ko, = p and k; < p for i # a2. If a1 + a2 = p+ 1, then
kay =D+ 1, kay—1 = kay+1 = p, and k; < p for i € {a2 — 1,a2,a2 + 1}. For a1 + a2 = p,
set m = X_24,v. If a1 + a2 =p+ 1, then a1,a2 > 1 as M is p-restricted. In this case we
put mi = X_2,4,-1v, M2 = X_2,4,v, and ma = X_2 q,+1X-1v. By Lemma 12, m, m1,
ma, and ms are nonzero. We shall show that

(3) KHm >~ KHmi 2 KHms =2 V(p), KHm:2V(p+1).

By Lemma 28, for this it suffices to show that X_1m, X_1m1, X_1m3, and X2;may # 0.
Put v = X27Q2X_1m, Uy = Xz,a2_1X_1ml, U2 = Xg,anglmg, and us = X27a2+1X_17TL3.
Taking into account the commutation relations in the Lie algebra of G, we obtain that
u=cX_1v,u1 = 1 X190, uz = chzlv, and us = c3X_1v wherecandc¢; € K*,1 <1< 3.
Since a1 # 0 and a1 > 1 for a1 + a2 = p+ 1, Lemma 6 implies that all the vectors u, u1,
ugz, and ug # 0. Therefore m, m1, ma, and ms # 0 and Formula (3) holds.

For a1 + a2 = p, set Q = F,, and denote by N the indecomposable component of
module ) containing m. For a1 +a2 =p+1, set Q1 = Fuy—1, Q2 = Fa,, and Q3 = Foyt1
and denote by Ni, N2, and N3 the indecomposable components of the modules Q1, Q2,
and Q)3 containing the vectors mi, ma, and ms, respectively. Such components exist since
the weight subspaces of M containing these vectors are one-dimensional.

Since N, N1, N2, and N3 contain the Weyl modules V(p) or V(p+ 1), then Lemmas 23
and 27 yield that N, Ni, and N3 are isomorphic to T'(p) or V(p) and No = T(p+ 1) or
V(p + 1). By Lemma 31, the module M|H is self-dual. Hence the modules N, N2, and
N1 @ Nj are self-dual since other indecomposable components of M|H have no weights p,
p+ 1, and p in the first, the second, and the third cases, respectively. This implies that
N = N; 2 N3 2 T(p) and N2 = T(p + 1). Other indecomposable components of M|H
have all weights less than p. Therefore they are p-restricted irreducible modules. 0
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Next, often it is necessary to prove that for some weight vector m € M invariant with
respect to the group X., the module K Aym is isomorphic to V(p+b) with0 <b<p—1
or 2p + b with b < 4. For this, we always use Lemma 28.

In a number of cases Corollary 7 allows one to prove that M, is a tilting module.
Then it is a direct sum of modules T'(\). In particular, by Lemma 14, M, is a tilting
module for w = aw1, a < p, if G = A, (K) or Cp(K). If M, is a tilting module, then
its indecomposable components T'(\) are determined with the use of Lemma 23 and
Proposition 7. In situations where a priori it is not clear whether M, is a tilting module,
explicit calculations are used to determine indecomposable components of M,. The action
of the root elements of the Lie algebra of A, and elements from the hyperalgebra of this
group on certain weight elements of M, is considered here. An essential role is played by
Lemma 23. Often it is necessary to find out whether a module M, has a direct summand
of the form T'(A\) & M(X) or V(A) @ A(X) for A = p+a, a < p — 1. For this, we use

Lemma 25. Obviously, o,(w) = H/I\%\(/I) ox(p) as oz(a;) > 0. So by Corollary 2, M, is
HeE

a direct sum of p-restricted modules if o,(w) < p. If the module M, is a direct sum of
irreducible submodules and tilting modules, then the block structure of ¢(z) is determined
with the use of Lemmas 23 and 7 and the formula from Theorem 3.

Let y be a regular unipotent element and M; = M;(y) be the sum of all weight subspaces
My with oy(A) = i. It is well known that for G # D,(K), the restriction V|A, is an
irreducible module M (a) with a < p. Recall that in this situation the module M (a) = V(a)
is infinitesimally irreducible too. Hence V has a basis where the action of the operators X+,
is determined by the same formulae as for the irreducible module with highest weight a
in characteristic 0. These formulae can be found in [4, Chapter 8, §13.1]. For G = B, (K)
or C,(K), we can determine explicitly an A,-invariant symmetric or skew-symmetric
nonsingular bilinear form on V' (unique up to scalars). Then we choose a basis in which
this form has a canonic form (as in [4, Chapter 8, §13.2 and §13.3]). Now using the formulae
from [4, Chapter 8, §13.1-§13.3] describing the action of the root operators X+; in the
standard modules for the classical Lie algebras, for all three series one can deduce explicit
formulae for expressing the operators X, and X_, as linear combinations of the operators
X; and X_;, respectively. Analyzing the action of A, on V, it is not difficult to show that
all coefficients in these linear combinations are nonzero.

To investigate the block structure of other unipotent elements, we use an analysis of
direct summands of restrictions of ¢ to subsystem subgroups. For wedge, symmetric and
reduced symmetric powers of the standard module for a group of type A,, the explicit
formulae (2) from Lemma 19 are used. Below if z is conjugate to an element from a
proper subgroup I' = G(i1,42,...,ix) and M is a direct sum of irreducible I-modules,
then the block structure of ¢(x) is determined on the base of results obtained earlier and
the formulae from Theorem 3. In what follows this approach is applied without special
comments. Let z be a regular unipotent element from such subgroup I'. Then there exist a
subgroup A C I' and maximal tori T4 C A and Tt C I" such that A = A;(K), x € A, and
the homomorphism ¢ : A(I') — Z determined by restricting weights from Tt to T4 takes
the root o, ..., o, (more exactly, their restrictions to I') to 2. For such elements in some
cases we consider not the subgroup A, and the homomorphism o, but the restriction
M]|T, the subgroup A, and the homomorphism o; here « is the positive root of A. In all
these situations it is explicitly indicated in what subsystem subgroup z is contained, the
notation A and o is used.

4. SPECIAL LINEAR GROUPS

In this section the problem is solved for representations of special linear groups. We
apply Theorem 3 and Proposition 5 to solve the problem for w = w; +w, and Proposition 6
to do this for a regular unipotent element of order p and w = w2 or 2w;. If a unipotent
element is not regular, then it is conjugate to a regular element from a proper subsystem
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subgroup. To determine the block structure of such element of order p on a wedge,
symmetric, or reduced symmetric power of the standard module, we use Theorem 3,
Lemma 19, and an information on such structure for regular unipotent elements in analogical
modules for groups of type A; and smaller rank. This permits us to fill the corresponding
positions in Tables 2-12. Hence we do not need to discuss the block structure of nonregular
unipotent elements in such modules in more detail. Now we can and shall assume that
w ¢ {wg, 2&.}1, w1 —|—wn}.
n n
It is well known that if w(p) = > a;w;, then the highest weight of ™ equals > ant1—iw;.
i=1 i=1
As we have mentioned in Section 3, it suffices to consider only one of the representations
p and ™.
Let x be a transvection. Obviously, then oz(c1) = 1, 0z(ent+1) = —1, 02(g;) = 0 for

2 <i<mn,and o;(w) = Y a;. Corollary 2 yields that M, is a direct sum of p-restricted
i=1

modules if Y a; < p.
i=1

Now we shall indicate when M, is a tilting module for any element x of order p by the
results of Section 2. By Lemma 13, M, is a tilting module for w = w;, ¢ < p. Lemma 14
implies that M, is a tilting module if w = aw;1 with 2 < a < p. Here we choose (a — 1)w1
and w; for the weights A1 and A2 from Lemma 14. It is clear that M, is a tilting module
for w = aw, with a < p as well since in this case w(yp*) = aw.

1. Let G = A2(K). By Lemma 14, M, is a tilting module for any element x of order p
in the following cases:
for w = 2w + w2 and p > 3;
for w = 2wy + 2w> and p # 5;
for w € {w1 + w2, 4w1 + w2} and p > 5;
for w € {4w1 + 2w2, 4wi + 3w} and p # T;
for w € {3w1 + w2, 3w1 + 2wz} and p > T;
for w € {bwi + wa, 6wr + wa,3wr + 3w, Twi + w2, 5w + 2w, 8w1 + w2} and p > 11.
Here if w = awi + bwo2, we take A1 = aw1 and A2 = bws> in the assumptions of Lemma 14.

2. Let G = A3(K). By Corollary 7, M, is a tilting module for any element x of order p
for w € {w1 + w2,2w>} and p > 5;
for w € {w1 + w2 + w3, 3w1 + w2, 2w1 + 2w3} and p > 7.

Lemma 14 yields that M, is a tilting module for the following w and p:

w € {w1 + ws, 2w1 + w2, w1 + 2w2} and p > 3;
w = 2wy + ws and p # 5;
w € {3w2, 3wi +ws} and p > 5.

3. Let G = A4(K). By Lemma 14, M, is a tilting module for the following w and p:
w = w1 +wsz and p # 3;
w=wi +ws and p > 3;

w € {2w2, 2w1 + w4, w2 +ws} and p > 5.

4. Let G = A5(K). Lemma 14 implies that M, is a tilting module for the following w
and p:

w = w1 + w2 and p # 3;
w = w1 +ws and p # 5.

To apply Lemma 14 to the representations indicated in Items 2-4, we take Ay = aw;
and A2 = gw; if w = aw; + bw;, i < j, and A\ = (@ — 1)wz, A2 = w2 if w = aws.

In all these cases V(w) is irreducible. So for a fixed element z of order p, we can find
the composition factors and the indecomposable components of M, using the approaches
described in Section 3.

Now we consider the remaining representations. It what follows Remark 3 and Lemma 28
are used without special comments.
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Using the arguments at the end of the previous section, we can assume that for a
regular unipotent element y of order p the following holds

Xa=X1+2Xo+ ... +iX; + ...+ ’an,

“) Xa=nX_14+n-1)X_o+ ..+ X_p.
I. Let G = A2(K). Then Xo = X1+ 2X2, X_o = 2X_1 + X_» for the root elements
of the Lie algebra of A,. First we deal with ¢(y) and M,.

IL Let p = 5 and w = 3w; + w2. Then dimy = 18 and M = S55(V). One can
directly verify that oy(w) = 8, dim Mg = 1, dim Mg = 2, dim My = 2, dim M, = 3, and
dim My = 2. Hence I(M,) = {M(8), M (6),2M(2)}. By Lemma 23, M, = M(8) @ N
where I(N) = {M(6),2M(2)}. Prove that N = T'(6). It is not difficult to see that the
subspace Ms is generated by the vectors X_;v and X_ov and contains a nonzero vector
m invariant with respect to X,. The vector m is determined up to scalars. We have
m = i X_1v + baX_ov with by # 0. Since X2,m # 0, then X2, m # 0. Hence by
Lemma 29, N = T'(6).

LIL. Let p = 5 and w = 2w; + 2wa. Then dimp = 19 and M = S®3(V). Tt is easy
to show that dim Ms = 1, dim Mg = 2, dim My = 3, dim M = 2, and dim M, = 3.
Therefore I(M,) = {M(8), M (6),M(4),2M(0)}. By Lemma 23, M, = N & M (6) & M (4)
where I(N) = {M(8),2M (0)}. Prove that N = T'(8). Obviously, v € N. One can directly
verify that 3X3 X _504+3X_1 X »X? v4+3X%, X _»X_,vis a weight component of X* .
Taking into account that all weight subspaces of M are one-dimensional, we can show
that 3X3,X 20+ 3X 1 X 2X2,0 +3X2, X 2X v = 4X3,X 50 # 0 (by Lemma 12)
and hence X*,v # 0. Then N = T(8) by Lemma 29.

LIII. Let p = 7 and w = 5w1 + wz. Then dimy = 33 and M & S7’7(V). One can
directly verify that dim M2 = 1, dim Mo = 2, dim Mg = 2, dim Mg = 3, dim My = 3,
dim M, = 4, and dim My, = 3. We have I(M,) = {M(12), M(10), M (6),2M(2)}. By
Lemma 23, M, = M(12) ® N @& M(6) where I(N) = {M(10),2M(2)}. Prove that N 2
T(10). It is not difficult to check that the vector mio = X_1v + X_sv is invariant under
Xo. Then X2 mio # 0 since X2 v # 0. It is clear that mio € N, therefore by Lemma 29,
N 2 T(10).

LIV. Let p = 7 and w = 4w1 +2w2. Then dim ¢ = 36 and M = S*7(V). One can directly
verify that dim M1z = 1, dim M1 = 2, dim Mg = 3, dim Mg = 3, dim M4 = 4, dim My = 3,
and dim Mo = 4. Hence I(M,) = {M(12), M(10), M(8),2M(4),2M(0)}. By Lemma 23,
M, = Ny ® M(10) @& Na where I(Ny) = {M(12),2M(0)} and I(N2) = {M(8),2M(4)}.
Prove that N; & T(12) and Ny & T'(8). Obviously, v € Ni. One can directly check
that 3X%,X2,v is a nonzero weight component of X®_ v. So X%,v # 0. By Lemma 29,
N = T(12).

It is clear that dimInv Mg < 1 and it is easy to show that the vector mg = 4X311) +
X_1X_ov+4X?,v is invariant under X,. So X% ;v # 0, then X2 _msg # 0. Now it follows
from Lemma 29 that N, = T'(8).

LV. Let p = 7 and w = 3w; + 3wa. Then dimp = 37 and M = S*7(V). One can
directly verify that dim M2 = 1, dim Mg = 2, dim Mg = 3, dim Mg = 4, dim My = 3,
dim Ms = 4, and dim My = 3. Therefore

I(M,) = {M(12), M(10), M (8), M(6),2M (2)}.

By Lemma 23, M, = M(12) & N & M(8) & M(6) where I(N) = {M(10),2M(2)}. Prove
that N = 7(10).

One easily observes that dim Inv M9 < 1. Set mig = X_1v 4+ 3X_ov. One can directly
verify that mio € Inv M7o and that 4X31X,2v is a nonzero weight component of X4_am10.
Hence Inv M19 = {m1o). Since X muo # 0, then by Lemma 29, N = T(10).
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ILVI. Let p =5 and w = 3w1 + 2wz. Then dim ¢ = 39. Set

Ae ={w — 201,w — 2a2,w — a1 — a2 };
Ay ={w —3a1,w — 201 — @2, w — a1 — 2a2};
Ao ={w — 3a1 — a2, w — 2011 — 202, w — a1 — 3az2};

Ao ={w — 31 — 202, w — 41 — a2, w — 201 — 32}

One easily concludes that M; = (M,|p € A;). By [21, 6.9], dim My = 2 for A = w—a1 —ae.
By Lemma 15, the maximal submodule of V(w) is isomorphic to M (w;). Now using the
Freudenthal formula [12, §22, Item 3|, we can show that dim M, = 2 for p € {w — 2a; —
a2, w—2a1 —2az}. Put A = {w— a1 — 2a2,w — 301 — a2, w — 201 — 3z, w — 31 — 200}
and Q = {w—3a1,w—2a2,w —201,w — a1 — 3az,w —4a; —az}. One easily observes that
w—a1 —2a2 and w —3a;1 — a2 lie in the same W-orbit with the weight w — a1 — a2; the
weight w — 2a; — 3oz in the same W-orbit with w — 2a1 — a2 the weight w — 3a; —2a2 in
the same W-orbit with w — 21 — 2ai2; the weight w — a1 — 32 in the same W-orbit with
w — aq; and the weight w —4a;1 — a2 in the same W-orbit with w — ap. Hence dim M, = 2
for 4 € A and dim M, = 1 for g € . This implies that dim Mio = 1, dim Mg = 2,
dim Mg = 4, dim M4 = 5, dim M = 5, and dim My = 5. We have

I(M,) = {M(10),2M (8),2M (6), M (4),2M (2), M(0)}.

By Proposition 8 and Lemma 27, M, = N1 & N2 @ M (4) where
I(N1) = {M(10),2M (8), M (0)} and I(N2) = {2M(6),2M (2)}.

Show that Ny = T'(10) and Na = T(6) & M(6).

Obviously, v € Ni. Since X_1v # 0, the vector X_,v # 0. Hence KAyv = V(10) by
Lemma 28. Let F be the indecomposable component of N; containing v and F = F/K Ayv.
As Mg = (X_1v, X_2v), the subspace Inv My is one-dimensional. Since F' N Inv Mg # 0,
then M, has no indecomposable components with highest weight 8 and therefore M (8) €
Irr F'. It is not difficult to show that the pairs (X3, X250, X2,X3 v) and (X_2X? X2 ,0,
X3,X2,v) consist of linearly independent vectors. This implies that

X4 X v, X3 X200, X2, X3 0, X0 X2 X% 00, X2, X2 v

is a basis in Mj. Using this basis, we can check that there are no nonzero X,-invariant
vectors in My. Hence there are no submodules isomorphic to M (0) in M,. This forces that
N; = F. The module N; is self-dual because M, is self-dual. Hence we conclude that IV;
has no factor modules isomorphic to M (0). Therefore N; has a filtration by Weyl modules.
As Nj is self-dual, it has a filtration by dual Weyl modules as well. Hence N; is a tilting
module. Therefore N1 = T'(10).

It is clear that dimInv Mg < 2. Set u; = lev + XEQ’U + X _2X_ v and
up = 2X2,v4+4X2,0 4+ X_1 Xov. One can directly verify that u; and up € Inv M. Hence
Inv Ms = (u1,uz). It is not difficult to check that each of the pairs (X_2X3,v, X3, X _5v)
and (X2, X2%,v, X?,X2,9) consists of linearly independent vectors. Therefore the vectors
X oX3 v, X31X ov, X3,X v, X2, X2,v, and X2,X2,v form basis in M. Set
U = (u1,u2) N X2 My and M} = NoN M. Tt is clear that U = (u1, ue) N X2 Mj. Using the
basis of M, indicated above, we easily show that dimU = 1 and X2,U # 0. This yields
that No # M(6) @ M (6) & M(2) & M(2) or V(6) @ A(6) (the latter by Lemma 25). Using
the self-duality of N> and Lemma 23, we get that No = T'(6) @ M (6).

ILVIL. Let p = 5 and w = 3w1 + 3wz2. Then dimy = 63. One easily observes that
oy(w) = 12. It follows from [18, Table 6.6] that dim V' (w) = dim M (w)+1. Hence dim M,, =
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dim V(w), for p # 0 and dim M, = dim V (w),, — 1 for g = 0. Set
As ={w — 201, w — a1 — @2, w — 22 };
A ={w — 3a1,w — 201 — a2, w — a1 — 202, w — 3az};
Ay ={w — 301 — az,w — 201 — 2a2,w — a1 — 3az};
Ao ={w —4da1 — a2,w — 31 — 2a2,w — 201 — 3a2,w — a1 — 4az};
Ao ={w —4a1 — 2a2,w — 31 — a2, w — 2011 — 4}

One easily concludes that M; = (M, |p € A;). Taking into account Lemma 22, we can
show that dim M, = 2 for p € {w — a1 — @2, w — 201 — @2, w — a1 — 2a2} and dim M, = 3
for 4 = w — 2a1 — 2a2. Using the Freudenthal formula, we obtain that dim M, = 3 for
u = 0. It is not difficult to observe that the weights w — 3a1 — a2 and w — a1 — 3az
lie in the same W-orbit with w — a1 — a2, the weight w — 41 — 2a2 lies in the same
W-orbit with w — a1 — 2a2, the weight w — 2a; — 4as lies in the same W-orbit with
w — 201 — a2, the weights w — 3a; — 2a2 and w — 2a; — 32 lie in the same W-orbit
with w — 2a1 — 2a2, the weight w — a1 — 4as lies in the same W-orbit with w — ag,
and the weight w — 41 — v lies in the same W-orbit with w — as. Hence dim M2 = 1,
dim M1 = 2, dim Mg = 4, dim Mg = 6, dim My = 7, dim My = 8, and dim My = 7.
Therefore I(M,) = {M(12), M(10),3M(8),3M (6), M (4),3M(2), M (0)}.

By Proposition 8 and Lemma 27, M, = N1 & N2> @& M (4) where
I(N1) = {M(12),3M(6),3M (2)} and I(N2) = {M(10),3M (8), M (0)}.

Show that N1 = T(12) @ T(6). By Lemma 12, X2, X_;v and X%, X_2v # 0. One can
verify that the pairs (XEIX,QU, X,QXEIU) and (X,1X32'v, XEQX,N)) and the triples
(X231 X250, X 2 X3 X ov, X2,X3 v) and (X2, X210, X_1X3,X 10, X2 X3 40) consist
of linearly independent vectors. Hence

M =(X2 v, X2 X o0, X 2X? 0, X 1X%50, X2,X 10, X2 ,0),
Mo =(X* X ov, X3 X%,0, X 2X? X ov, X2,X3 0, X3,X2 0,
X 1 X2,X v, X2 X350, X2,X q10).

Set mg = 3X3 v+ X2 1 X sv+X_1X2wand mg = 2X 2 X2 v+ X2, X _10+3X3 0. Using
the bases of Ms and M- indicated above, it is not difficult to show that Inv Ms = (mg, mg)
and dimInv My = 1. Let N1 = F1 & F> where F1 is the indecomposable component of Ny
containing v. As X3 ,v # 0, the vector X2 v has a nonzero component of weight w — 3o
and hence X2 v # 0. This and Lemma 26 yield that K A, v 2 V(12). Put F1 = Fi /K Ayv.
By Corollary 10, F; and F» are self-dual.

Show that F; = T'(12). Lemma 23 implies that the indecomposable components of
F1 are isomorphic to V(6), A(6), T(6), M(6), or M(2). Now we prove that there are no
components isomorphic to A(6) or M(6) in Fi.

Suppose that Fy has an indecomposable component isomorphic to A(6) or M (6). Now
Lemma 23 yields that one of the following holds:

1)F1 A()@A()@Ul,Ul@FQ%M(2);

2) F1 2 A(6) @V (6) @ Us, Ur & F2 = M(2);

3) Fi2AMB)OM(6)D UL, U © Fo =2 M(2) ® M(2);

1) Fi = A®6), P = T(6);

5) F1 = A(6) @ Ur, F> =2 M(6) @ U, Uy @ Uz = M(2) @ M(2);

6) F1 =2 M(6)d M(6)® U, U ® Fo = M(2) ® M(2) & M(2);

7) FL = M(6) ®V(6) S U, U © Fp = M(2) © M(2);

8) [ X M(6) DU, Fo XT(6) D Us, Ui @ Us = M(2) ® M(2);

9) Fi 2 M(6)d U, Fo 2 M(6)® Uz, Ui ® Uz = M(2) ® M(2) ® M(2).

We shall show that N; has a submodule isomorphic to M (2) & M(2) in all these cases.

Put L = M(2) ® M(2) ® Uy in Case 1), M(2) ® U; in Cases 2), 3), and 5), M(2) in
Case 4), and U; in Cases 6)-9). As A(6) has a factor module isomorphic to M(2), one
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easily observes that F} has a factor module isomorphic to L in all cases. Then there is
a submodule isomorphic to L in F} since Fy is self-dual. Set L' = L & M(2) in Case 4),
L@U; in Cases 5) and 9), L® M (2) @ U, in Case 8), and L@ F5 in other cases. Since T'(6)
has a submodule isomorphic to M(2), it is obvious that N; has a submodule isomorphic
to L’ in all cases. It is not difficult to see that L' = M (2)® M (2) or M (2)® M (2) ® M (2).
This implies that N1 has a submodule isomorphic to M (2) & M (2). But dim Inv(Mz) = 1.
A contradiction obtained shows that F7 has no indecomposable components isomorphic
to A(6) or M(6).

Now it is easy to see that F} has a filtration by Weyl modules. Then F; has a filtration
by dual Weyl modules as it is self-dual. Hence Fi is a tilting module. This forces that
L 2T(12).

Proposition 7 yields that I(Fz) = {M(6),2M(2)}. As dimInv(M3) = 1, then F> 2
M(6) ® M (2) ® M (2). Since F3 is self-dual, then by Lemma 23, F> 2 T'(6).

Show that N2 2 T(10) @ M(8). One easily observes that the vectors X2 v, X_1X_ov,
X_1X_ov, and ngv form a basis in Mg. Using this basis, we can show that dim Inv Mg =
2’

Inv Mg = (2X2 04+ 4X 1 X 50,3X% 10+ 3X 1 X _ov 4+ X2,0),

and that X*_ m = 0 for m € Inv Mg. Therefore Lemma 4 implies that each nonzero vector
from Inv Mg generates a submodule isomorphic to M(8). Put mio = 3X_1v + X_ov.
One can directly verify that Xomi0 = 0. Hence Inv M19 = (m1o). Since X2 v # 0, then
X_amio # 0 and so KAymio = V(10). Let Fi be the indecomposable component of N
containing m1o (such component exists as dim(N2 N Mig) = 1). Set Fy = F1/KA,m1o
and v = X? v +4X_1 X _ov. It is obvious that the weights of F are less than 10. One can
directly check that Xou = mio. Let No = Fy @& F> where F5 is an Ay-module. Then all
weights of F5 are at most 8. We write u = u1 + us where u; € F;. It is clear that u; € Mg
and that Xqus = 0. Thus Xqu1 = mio. We can directly check that X_o 5mi0 # 0 and
X4 u & (X_a,5mio0). As ug € MgN Fs, then us € Inv Mg and the facts proved above yield
that X*_ us = 0. Therefore X* u; Z (X _a,5mi0).

Let ur be the image of u; under the canonical homomorphism Fy — Fj. As the
weight subspaces in Weyl modules for A, are one-dimensional, then it follows from the
facts proved above that X,u1 = 0 and XfalTl # 0. Then Lemma 28 implies that the
vector U1 generates a submodule isomorphic to V/(8) in Fy. Let S be the preimage of this
submodule in Fi, ¢ € Inv Ms \ (X_amao), and Q = KAyq. It follows from above that
Q = M(8). It is clear that SNInv Mg = (X_amio). Then @ ¢ S by the choice of g. Since
Q is irreducible, we have SN Q = {0}. Now it is clear that N, = S® Q and F; = S.
Since F has a filtration by Weyl modules and is self-dual, it has a filtration by dual Weyl
modules. Therefore F; is a tilting module and F; 2 T(10).

LVIII. Let p =7 and w = 5wi 4 2w2. Then dim ¢ = 71. It is not difficult to show that
oy(w) = 14. Set

Ao = {w — 2a1,w — 202, w — a1 — a2},

As = {w —3a1,w — 201 — a2, w — a1 — 22},

As = {w — 4o, w — a1 — a2, w — 201 — 2a2,w — a1 — 3oz},

Ay ={w — bar,w —4ar — az,w — 3a1 — 202, w — 201 — 3z},

Ao = {w —ba1 — az,w — a1 — 202, w — 3a1 — 3ag,w — 201 — dan},

Ao = {w — 601 — az2,w — bar — 2a2,w — 4a1 — 3az,w — 3a1 — 4az}.
One easily concludes that M; = (M,|p € A;). It follows from Lemma 15 that dim M, =
dimV(w), for p = w — kay — a2 or p = w — a1 — lag, and dim M, = dim V(w), — 1 for
w=w-—2a1 —kay with 2 <k <4 p=w-—Ila; —2a with 2 <[ <5, and p = 0. We

observe that the weight w — 31 — 3 lies in the same W-orbit with w —3a1 —2a2 and the
weight w — 3a1 — 4az lies in the same W-orbit with w — 31 — a2. Now using Lemma 22,
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we can show that dim M, = 2 for

s {w—al —ao,w — 201 — a2, w — 1 — 202, w — 301 — Q2,w — 201 — 2aiz,
w—4a1 — a2, w — 31 — 202, w — 201 — a2, w — Sy — a2, w — dag — 2a2,

w—3a1 — 3a2,w — 201 — 4ag,w — bag — 22, w — 4oy — 3as,w — 3a 74a2}

and all other weights from the union Ao U Ag U A¢ U Ay U A2 U Ay have multiplicity 1.
Hence dim M14 = 1, dim M12 = 2, diliO = 4, dimMg = 5, dim Me = 6, dimM4 = 7,
dim M> = 7, and dim My = 7. This implies that

I(M,) = {M(14),2M (12),2M (10), M (8), M (6),3M (4),2M (2), M(0)}.
By Proposition 8 and Lemma 27, M, = N1 & N2 & N3 & M (6) where
I(N1) = {M(14),2M (12), M (0)}, I(N2) = {2M(10),2M(2)}, I(N3) ={M(8),2M(4)}.

Show that Ny = T'(14), Na 2 T(10) & M(10), and N3 2 T'(8).

It is clear that v € N;. Observe that X_1v # 0. Hence X_qv # 0 and KA,v = V(14).
Let F be the indecomposable component of N; containing v, and F = F/KA,v. Since
Mo = (X_1v, X_2v), we have dim Inv M12 = 1. Then Inv M2 C KAyv and therefore M
has no indecomposable components with highest weight 12. It is not difficult to show that
each of the pairs (X°;X%,0, X2,X%v), (X3,X% 0, X X% X?%,0), and (X*,X3 v,
X2,X3,X?,0) consists of linearly independent vectors. Hence the vectors

X% X ov, X2, X250, X2,X% v, X3, X% 0, X oX* X200, X2,X3 0, X2,X3 X2

form a basis of Mo. Using this basis, we check directly that Inv My = 0. Therefore M
has no submodules isomorphic to M (0). This yields that Ny = F and the module Ny
is self-dual. Now we conclude that N has no factor modules isomorphic to M (0). Then
Lemma 23 implies that F' = V/(12). Therefore N; has a filtration by Weyl modules and so
a filtration by dual Weyl modules as N; is self-dual. This forces that Ny = T'(14).

It is clear that dimInv(Mio) < 2 and the vectors

mio=3X2 v+ X_1 X ov+2X%vand mig = X2 v+ X 2 X_1v+4X2 50

are linearly independent. One can directly verify that they belong to Inv Mo and hence
Inv Mip = (mig, mip).

It is not difficult to check that each of the pairs (X2,X2% v, X2, X2,0), (X3,X3 0,
X 5X3,X%,0), and (X2, X2 v, X2,X2,X2,0) consists of linearly independent vectors.
Hence the vectors

X% X ov, X2, X% 0, X2 X250, X3,X3 0, X oX3 X% 00, X2,X% 0, X2,X2% X%

form a basis of M. Set U = (mig, mig) N XAM> and M} = No N Mo. Tt is clear that
U = (mio, mis) N X2 M}. Using the basis of M. indicated above, we easily deduce that
dimU =1 and X2,U # 0. By Lemma 25, we conclude that No = T'(10) @ M (10).

One easily observes that

Mg = (X210, X 2X% 10, X 1X 2X 10, X2,X 10, X 2X 1X 50).
Set mg = 6X3,0+3X 2X2 04+ X 11X 2X 10+3X2,X_ 10+ X 2X 1 X _ov. It is not

difficult to verify that dimInv(Ms) = 1 and Inv Mg = (ms). It is clear that ms € Ns.
Since X%,v # 0, then X2, mg # 0. Now Lemma 29 implies that N3 = T'(8).
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IIX. Let p = 7 and w = 4wi + 3w2. Then dimy = 75. One easily observes that
oy(w) = 14. Set
Ao = {w — 201, w — 202, w — 1 — a2},
As = {w — 30[1,{,«.} — 20[1 —Q2,Ww — Q1 — 20[2,3&2},
As = {w —dar,w — a1 — a2, w — 201 — 2a2,w — a1 — 3aez},
Ay ={w —4a1 — a2,w — 301 — 202, w — 201 — 32, w — a1 — 4as},
Ay = {w —ba1 — az,w — 41 — 202, w — 31 — 3az,w — 2a1 — 4as},
Ao = {w — bar — 2a2,w — 4o — Baz,w — 3a1 — 4az,w — 2aq — Sas}.
We can conclude that M; = (M,|p € A;). By Lemma 22, it is not difficult to show that
dim M,, = 2 for
pe{w—2a1 — az,w — a1 — 22, w — 31 — a2, w — 201 — 202, w — a1 — 3z,
w—3a1 — 2aa,w — 2a1 — 3a2,w — 4oy — a2, w — 4o — 2ae,w — 3a; — 3ae,
w— 201 — dag,w — bag — 2az,w — 4day — a2, w — 3a1 — das}
and all other weights from the union Ao U Ag U A¢ U Ay U Ao U Ay have multiplicity 1.
Hence dim M14 = 1, dilig = 2, dilio = 4, dlmMg = 6, dim Me = 7, dlmM4 = 7,
dim M> = 7, and dim My = 7. This yields that
1(M,) = {M(14),2M(12), 20 (10), 2M (8), M (6), 2M (4), 2M (2), M (0)}.
By Proposition 8 and Lemma 27, M, = N1 & N> & N3 & M (6) where
I(Nl) = {M(14),2M(12)7 M(O)}, I(NQ) = {QM(IO),QM(Z)}, I(Ng) = {2M(8),2M(4)}.

Show that Ny = T'(14), N» = T(10) ¢ M(10), and N3 = T'(8) & M (8).
The proofs for N; and N» are similar to Case I.VIII. For computations related with
the subspaces M2 and My, we use their bases

X5 X gv, X2, X% 0, X2 X250, X3,X3 0, X2, X350, X2, X2 v, X_2X2, X350 and

X5,X2% 0, X2 X2,0, X1 X2, X0, X3,X% 0, X2 X530, XA, X3 0, X_oX3, X530,
respectively. Set
mip = X210+ X 2X 10+ 3X%0 and mip = 6X2 0+ X 1 X v+ 2X,0.

One can directly check that Inv Mo = (mig, miy) and dim(X?, Inv Mio) = 1.
Now show that N3 = T'(8) @ M (8). It is clear that dim Inv(Ms) < 2 and the vectors

ms =X 0 +5X oX2 v+ X2, X_1v+3X3,0 and
mg = X210 +6X2X v+ X 1X2,0+6X>,0

are linearly independent. One can directly verify that they belong to Inv Ms. Hence
Inv Mg = (mg, m3). It is not difficult to check that dim(X2, Inv Ms) = 1 and that each
of the pairs (X_2X% v, X2, X ov), (X2,X310, X3, X2,0), and (X3,X2,v, X2, X3,0)
consists of linearly independent vectors. Therefore the vectors

XX 10, Xoo X0, X2 X o, X2,X2 0, X2, X250, X3,X2% 0, X2, X300

form a basis in My. Set U = (mg,m3) N X2M, and M; = N3 N My. It is clear that
U = (mg,m3) N X2Mj. Using the basis in My indicated above, one easily deduces that
dimU =1 and X2,U # 0. Tt follows from Lemma 25 that N3 = T'(8) @ M(8).

Assume that p = 11. Below in Items I.X-I.XIV we analyze representations afforded by
reduced symmetric powers of the standard module.

I.X. Let w = 9w; +w2. Then dim ¢ = 75 and M = S*1(V). Tt is not difficult to show
that O'y(w) = 20, dim My = 1, dim M1s = 2, dim M1 = 2, dim M4 = 3, dim M2 = 3,
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dim Mo = 4, dim Mg = 4, dim Ms = 5, dim My = 5, dim M> = 6, and dim My = 5. This
yields that

I(M,) = {M(20), M(18), M(14), M(10), 2M (6), 2M (2)}.
By Lemma 27, M, = M(20) & N1 & N> & M (10) where I(N;1) = {M(18), 2M(2)} and
I(N2) = {M(14),2M (6)}. Show that N1 = T'(18) and N, = T'(14).

It is clear that Mis = (X_1v,X_2v) and M4 = (X3,0, X%, X v, X%,X_10) and
that dimInv M; < 1 for 7+ = 18 and 14. Put mis = X_1v + X _ov and mi14 = Xilv +
6X2,X _ov+X2,X_1v. One can directly verify that m; € Inv M; and hence Inv M; = (m;)
for i = 18 and 14. Since X2 v # 0, the vectors X2 ,mis and X®;m14 # 0. Then Lemma, 29
forces that Ny 22 T'(18) and N, = T'(14).

ILXI. Let w = 8wi + 2wz. Then dimy = 82 and M = 312’11(V). We can check that
ay(w) = 20, dimM20 = 1, dilig == 2, diliG = 3, dimM14 = 3, dil’nM12 = 4,
dim M10 = 4, dim Mg = 57 dlmMe = 5, dim M4 = 6, dim M2 = 57 and dim Mo = 6. Then

I(My) = {M(20), M(18), M(16), M(12),2M(8),2M (4),2M(0)}.
By Lemma 27, M, = N1 @ M(18) & N2> ® N3 where
I(N1) ={M(20),2M(0)}, I(N2) = {M(16),2M(4)}, I(Ns) = {M(12),2M(8))}.
We show that N; = T'(20), N2 = T(16), and N3 = T(12).

One can directly check that 9X°,X_,v is a nonzero weight component of the vector
X1% v. Then Lemma 29 implies that N; 2 T(20).

It is clear that Mg = (X2 v, X_1X_2v, X2,0),

Mis = (X0, X 2X3,0, X2,X2% v, X3,X_1v) and that dimInv M; < 1 for i = 16 and
12. Set
mic = X210 +5X_ 2 X 10+ X250, miz = 3X20+5X 2 X2 0+ 9X2, X2 0+ X2, X .

We can directly verify that m; € Inv M; and hence Inv M; = (m;) for i = 16 and 12.
As X8,v # 0, the vectors X%, mis and X2, mi2 # 0. Then Lemma 29 implies that
N, = T(16) and N3 2 T(12).

ILXII. Let w = Twy + 3ws. Then dim ¢ = 87 and M & Slg’ll(V). We can directly check
that O'y(w) = 20, dim M20 = 1, dimM18 = 2, dim M16 = 3, dimM14 = 4, dim M12 = 4,
dim Mo = 5, dim Mg = 5, dim Mg = 6, dim My = 5, dim M = 6, and dim Mo = 5. Then

I(My) = {M(20), M (18), M (16), M (14), M(10),2M (6),2M (2)}.
By Lemma 27, M, = M (20) & N, & M(16) & Na & M (10) where
I(N1) = {M(18), 2M(2)}, I(Nz2) = {M(14),2M (6)}.
We show that N; = T'(18) and N2 = T'(14).
It is obvious that Mg = (X_1v, X_2v), Mis = (X310, X 2X% v, X%, X _1v, X3,0)
and that dimInv M; < 1 for ¢ = 18 and 14. Set
mis =TX 10+ X _ov, mia = X210 +4X 2 X2 04+ 7X2,X v+ X250

We can directly check that m; € Inv M;. Hence Inv M; = (m;) for ¢« = 18 and 14. As
X71v #0, then X*_ mi4 # 0. One can easily verify that 5X%; X _5v is a nonzero weight
component of the vector X® _m1s. Then by Lemma 29, N7 = T(18) and N» = T(14).
LXIIL. Let w = 6w; + 4ws. Then dimg = 90 and M = S'*''(V). One can check
that ay(w) = 20, dimMgo = 1, dilis = 2, dimM16 = 3, dimM14 = 4, dilig = 5,
dim M9 = 5, dim Mg = 6, dim Mg = 5, dim My = 6, dim M2 = 5, and dim My = 6. Then
I(My) = {M(20), M(18), M(16), M (14), M (12),2M (8),2M (4), 2M (0)}.
Lemma 27 implies that M, = N1 & M (18) @ N2 @ M (14) & N3 where
I(N1) = {M(20),2M(0)}, I(N2) = {M(16),2M(4)}, I(N3) = {M(12),2M (8)}.
We show that N; 2 T'(20), N2 = T(16), and N3 = T(12).
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Obviously, v € N;. One can directly verify that 9X2 X2 ,v is a nonzero weight component
of the vector X% v. So Lemma 29 yields that N; = T(20).
It is clear that Mg = (X2 v, X_2X_ 10, X2,0),

Mo = <X§11), szXil’l), XEQXEl'U, )(32)(71’07 XigU)
and that dimInv M; <1 for 7 = 16 and 12. Set mig = 8X31v + X 1 X 9v +4X32v,
miz = X 04+ TX oX2 0+ 9X2, X2 0+ 6X2,X_1v+ X*,0.

We can directly check that Inv M; = (m;) for i = 16 and 12 and that X', X _ov is a
nonzero weight component of the vector X% mis. As X% v # 0, then X2 ,m12 # 0. Then
by Lemma 29, No 2 T(16) and N3 = T'(12).

LXIV. Let w = 5wy + 5we. Then dim ¢ = 91 and M = S* (V). We can directly verify
that ay(w) = 20, dimMgO = 1, dilig = 2, dimM16 = 3, dimM14 = 4, diliz = 5,
dim Mo = 6, dim Mg = 5, dim Ms = 6, dim M4 = 5, dim M> = 6, and dim My = 5. Then

I(M,) = {M(20), M(18), M (16), M (14), M (12), M (10),2M (6),2M (2)}.
Lemma 27 forces that M, = M (20) & N1 & M (16) & N2 @ M(12) & M (10) where
I(Ny) = {M(18), 2M(2)}, I(N2) = {M(14),2M (6)}.

Show that N & T'(18) and Na = T'(14).
It is clear that Mis = (X_1v, X_ov), M = (X310, X 2X%0, X2,X_1v, X3,0)
and that dim Inv M; <1 for 4 = 18 and 14. Set

mis = X_10+5X_ov, mis = 8X> 0+ 9X 2 X210+ 3X2,X_1v+ X3 ,0.

One can check that InvM; = (m;) for i+ = 18 and 14 and that 2X*,X2,X3 v and
5X5, X_ov are nonzero weight components of the vectors X8 ,mg and X% m14, respectively.
Then by Lemma 29, N; = T'(18) and N, = T'(14).

The problem is solved for the regular unipotent elements in the group As(K).

If z is a transvection, then the arguments at the beginning of the section imply that
it remains to consider the cases where p = 5 and w € {3w1 + 2w2,3w1 + 3wz} orp =7
and w € {bw1 + 2ws, 4w1 + 3wz }. Notice that in all these situations the dimensions of the
weight subspaces of M have been already determined when we found such dimensions for
M,. Hence we can find the dimensions of the subspaces M;. Set H = G(1). By Lemma 32,
M |H is a tilting module.

LXV. Let w = 3w1 + 2wz and p = 5. Then dimp = 39, o,(w) = 5, dim M5 = 1,
dim My = 2, dim M3 = 4, dim M> = 5, dim M; = 5, and dim My = 5. Hence

M,|H 2T(5)@2M(4) ®2M(3) ®3M(2) & M(1).

IXVI. Let w = 3wi + 3wz and p = 5. Then dimy = 63, 0z(w) = 6, dimMs = 1,
dimMs = 2, dim My = 4, dim M3z = 6, dimMy = 7, dimM; = 8, and dim My = 7
Therefore

M:|H 2T(6)®27T(5) ®3M(4) ®2M(3) @ 2M(2) ® 2M(1).

LXVIL Let w = 5w1 + 2wz and p = 7. Then dimyp = 71, o,(w) = 7, dim M7 = 1,
dim Mg = 2, dim M5 = 4, dim My = 5, dim M3 = 6, dlrnM2 =7, dmM =17, and
dim My = 7. Hence

Mo |H =2T(7)®2M(6) ®2M((5) ®3M(4) ®2M(3) ®2M(2) & M(1).

LXVIIL Let w = 4w; + 3wz and p = 7. Then dimp = 75, o,(w) = 7, dim M7 = 1,
dim Mg = 2, dimMs = 4, dim My = 6, dim Mz = 7, dim My = 7, dim M; = 7, and
dim My = 7. Therefore

My|H = T(7)®2M(6) @ 2M(5) ®2M(4) & 3M(3) @ M(2).

For G = A2(K) the problem is solved.
II. Let G = As(K).
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First consider the behaviour of a regular unipotent element. As before, let y be such
element. Since |y| = p, we have p > 5. Using the arguments at the end of Section 3, we can
assume that Xo = X1 +2Xo4+3Xsand X_o =3X_1+2X_ 2+ X 3. As V, =2 M (3), one
easily observes that oy(e1) = 3, oy(e2) = 1, oy(es) = —1, and o,(c4) = —3. This forces
that oy (w) = 3a1 + 4az + 3as.

ILI. Let p = 5 and w = 2w; + ws3. Then dimy = 32 and oy(w) = 9. It is clear that
dim Mg = 1 and dim M; = 2. Set

As ={w — 201,w — a1 — a2, w — a3 — az,w — a1 — as},

Az ={w — 201 — a2, w — a1 — a2 — az,w — 2a1 — as},

A ={w — 201 — 202, w — 2011 — a2 — a3, wW — a1 — a2 — 203, w — a1 — 202 — Az},
and A = w — a1 — a2 — a3. Then A = wi. We can show that M; = (My|p € A;). Using the
Jantzen filtration [13, Part 2, §8, Proposition 8.19], we get that the maximal submodule
in V(w) is isomorphic to M(A). As dimV(w)x = 3 by Freudenthal’s formula, we have
dim M)y = 2. Since the weight ¥ = w —2a1 — a2 — a3 lies in the same W-orbit with A, then
dim M, = 2. Obviously, dim M, =1 for p € {w — a1 — a2, w — a2 — a3z, w — a1 — az,w —
2000 — a2, w — 2001 — ag,w — 2a1 — 22} as all weight subspaces of the As(K)-modules
M (w1) and M (2w) are one-dimensional and the operators X_; and X_3 commute. Let
B =w—a1—2as—az or w—a1 —az—2as. Then § lies in the same W-orbit with w—a1 —as
or w— a1 — a2, respectively, therefore dim Mg = 1. This yields that dim M5 = dim M3 = 4
and dim M; = 5. Then I(M,) = {M(9),M(7),2M(5),2M (3),2M(1)}. By Lemma 27,
M, = M(9) & N1 & Ny where I(Ny) = {M(7), 2M (1)} and I(N2) = {2M(5), 2M (3)}.
Show that Ny 22 T(7) and Ny 2 T'(5) & M(5).

Let m = X_1v 4+ X_3v. One can directly verify that m € Inv M7 and that XEQXEl’U
is a nonzero weight component of X2 m. Lemma 29 implies that N; = (7).

Put mi = X2 04+ X 1 X 30—-X oX svandm? = X 2 X 10+ X 1 X 30— X _2X_3v.
We can check that the vectors mi and m2 € Inv Ms and that they are linearly independent.
As dimInv M5 < 2, then Inv M5 = (mi, m2). It is not difficult to show that the vectors
X_2X_3X_jvand X_1X_2X_3v are linearly independent. Hence X_2X_3X_1v,

X 1X 92X 3v, X 2X2 v, and X_3X2,v form a basis in M. Set U = (m§, m2)N X, Ms. It
is clear that U = (m}, m#) N X« (M3N N2). Using the basis of Mj indicated above, it is not
difficult to check that dimU = 1 and X_,U # 0. Lemma 25 yields that N> = T'(5) M (5).

ILIL Let p = 5 and w = 3w; + w2. Then dimy = 52 and M = S$55(V). One can
easily verify that oy(w) = 13, dim M1z = 1, dim M11 = 2, dim My = 3, dim M7 = 4,
dim M5 = 4, dim M3 = 6, and dim M; = 6. Then

I(My) = {M(13), M(11), M(9),2M (7), M (5),2M (3), M(0)}.
By Proposition 8 and Lemma 27, M, = N1 & N2 & M(9) where
I(N1) = {M(13),M(5),2M(3)}, I(N2) = {M(11),2M (7), M (1)}.
Show that Ny = M(13) & T(5) and Ny = T(11).

One can check that X2 v = 0. Hence K A,v = M(13). Set N1 = N1/K Ayv. Obviously,
I(N1) = {M(5),2M(3)}. As Ny is self-dual, we conclude that it contains a submodule U
with I(U) = I(Ny). It is clear that U N K Ayv = 0. Therefore Ny = KAyv & U. We show
that U 2 T(5). Put

ms = X2,X% 0 +4X_sX o X2 v+ X_3X2,X_qv.

We can verify that X, fixes ms and that X_,ms has a nonzero weight component
2X3,X2,v. One easily observes that ms € N; and so ms € U. By Lemma 29, U = T'(5).

Put mi1; = X_1v 4+ X_ov. One can check that X, fixes mi;. Since X3,v # 0, then
X2 _m11 # 0. Therefore K A,mi; = V(11). Taking into account Lemmas 12 and 6, it is
not difficult to conclude that the vectors

X2.X2,X% 0, X s X3,X2% 0, X s X2,X3 0, X2,X3% 0, X2 X 53X ov, X_oX* X ov
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form a basis of M. We use this basis to show that Inv M1 = 0. Since N> has no submodules
isomorphic to M (1), then N3 has no such factor modules as it is self-dual. Now Lemma 23
yields that No/KAymi1 2 V(7) and N» has a filtration by Weyl modules. Then N> has a
filtration by dual Weyl modules since it is self-dual. Hence N> is a tilting module and so
Ny = T(11).

ILIIL. Let p =5 and w = w1 + w2 + ws. Then dim ¢ = 58 and oy (w) = 10. Set

As ={w—a1 —az,w—a1 —asg,w — az —as};
Ay ={w—201 —az,w — a1 — 202,w — a1 — a2 — a3, w— 20z — az,w — a2 — 2a3};
Ao = {w — 201 — 202, w — 201 — a2 — a3, w — a1 — 2002 — a3,

w— a1 —az —2a3,w — 2a2 — 2as};

Ao ={w — 201 — 202 — a3, w — 201 — a2 — 2a3,w — a1 — 3oz — a3, w — a1 — 202 — 2a3}.

It is not difficult to show that M; = (M,|u € A;). By Lemma 22, dim My = 2 for
A€ {w— a1 —az, w—as —az}. One easily observes that dim M,, = 2 for u € {w —ay —
a2 — 2a3, w — 201 — a2 — ag} since each of these weights lies in the same W-orbit with
Ww— o1 — Qg Or W — o — (3. Put

Y={w—-—a1 —a3, w—201 — a2, w— a1 — 22, w— 202 — a3, w— az — 2a3,

w—2a1—2a2,w—2o¢2—2a37w—20¢1—a2—20¢3,w—al—Sag—ag}.

It is clear that dim M, = 1 for o € ¥ as all weights from ¥ lie in the same W-orbit with
w. Set 4t = w — a1 — az — as. Then p = wy. Using the Jantzen filtration [13, Part 2,
§8, Proposition 8.19], we can find out that V(w) has two composition factors: M (w) and
M (p). Hence dim M, = dim V(w), — 1. By Freudenthal’s formula, we get dim V' (w), = 4
and dim M,, = 3. The weights 7 € {w—a1 —2a2 —as, w—2a1 —2a2 — a3, w—a1 —2a2 —2a3}
lie in the same W-orbit with u, therefore dim M, = 3. This implies that dim Mo = 1,
dim Mg = 3, dim Mg = 5, dim My = 7, dim M2 = 9, and dim My = 8. Then

I(My) = {M(10),3M (8),2M (6),2M (4),4M (2), M (0)}.

By Proposition 8 and Lemma 27, M, = N1 ® N2 ® 2M (4) where
I(N1) = {M(10),3M(8),M(0)} and I(N2) = {2M(6),4M (2)}. We show that
Ny = T(10) @ M(8) and N = 2T(6).

Obviously, X_,v # 0. Hence K A,yv =2 V(10). Set ms = X_1v and mg = 2X_1v+X_3v.
One can directly verify that X, fixes m§, X2 ,m§ = 0, Xoms = v, that the vector X_, 5v
has a weight component u; = 3X2,X_3X_2X_1v, and the vector X*_ msg has a weight
component uz = 3X_1X_3X_2X 3X_1v and a trivial component of weight w(ui). We
claim that u; and us # 0. Indeed, we have Xou; = X2,X 3X jv # 0 and X3Xus =
3X_1X_3X_2v # 0 by Lemma 6. Tt is clear that ms € N; and X% ,ms ¢ KA,v. Put
N; = Ni/KA,v and denote by the symbol g the image of ms under the canonical
homomorphism N; — Ni. The arguments above yield that K A,ms = V(8). Let N{ be
the full preimage of K A,mg in Ni. It is clear that Irr N| = {M(10), M (8), M (0)} and that
N{NInv Mg = (X_,v). Let N} = KA,m§. As X* mj = 0, the A,-module N} = M(8).
Since mg € X_,v, one easily observes that N{ N N5 = 0. This yields that N1 = Ni & N3.
Show that N7 is indecomposable. Obviously, Ni has only one indecomposable component
with highest weight 10. Denote it by N*. As X_,v € NT, then N{ NInv Mg C N*.
Therefore N; has no indecomposable components with highest weight 8.

Show that Inv My = 0. Suppose this it false. Then N; has a submodule isomorphic to
M(0). As N; is self-dual, it also has a factor module isomorphic to M (0). Then N; &
M(0) & U where I(U) = {M(10),3M (8)}. It is clear that Mo and Mg C U. Hence
KAyv C U and mg € U. We come to a contradiction as K Aymg = V(8). Hence Inv My =0
and Ni has no indecomposable components with highest weight 0. This implies that N{
is indecomposable. By Corollary 10, Nji is self-dual. Since Nj has a filtration by Weyl
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modules, it has a filtration by dual Weyl modules as well. Therefore N is a tilting module.
Now it is obvious that Ni 2 T'(10).

Set mg = 4X 2 X 1v+3X 3X v+ X 3X ovand mg = X 1 X ov+ X 3X v+
X _5X_3v. One can directly verify that X, fixes m§ and m2, X2, mé = X_1X2,X_ v+
3X_5X23X ov +u, and X2, ,md = 4X_1X2,X_1v + 3X_2X23X_sv + ug where the
vectors u; have no nontrivial components of weights w — 2a; — 2a2 and w — 2a2 — 2as.
Lemma 12 implies that X_1X2,X v and X_2X23X 50 # 0. As dimInv Ms < 2, this
yields that Inv Mg = (m¢,m) and dim X2, Inv Ms = 2. Now Corollary 9 forces that
N> = T(6)®T(6).

ILIV. Let p = 5 and w = 2w; + 2wz. Then dimy = 68 and M = 56’5(V). It is not
difficult to show that oy (w) = 14, dim M4 = 1, dim M2 = 2, dim Mo = 4, dim Mg = 4,
dim Ms = 6, dim My = 6, dim M> = 7, and dim M, = 8. Hence

I(My) = {M(14), M (12),2M (10),2M (8),3M (6),3M (2), M (0)}.
By Proposition 8 and Lemma 27, M, = M (14) & N1 ® N> where
I(Ny) = {M(12),3M (6),3M (2)}, I(N2) = {2M(10),2M(8), M(0)}.

Show that Ny 2 T'(12)  T'(6) and N» = T(10) @ M(10).

Put mi2 = X_1v + 2X_2v. One can directly verify that X, fixes mi2 and the vector
X3 ,mi2 has a weight component X2;X2,v and hence X3 ,mis # 0. By Lemma 28,
KAymia =2 V(12). Set N1 = N1/K Ayma2. Applying Lemma 12, it is not difficult to see
that the vectors

X1 X200, X2,X3 X ov, X3 X2, X%0, X23X2, X2 0,
X 3X3,X% 0, X2, X200, X2,X3,X v

form a basis in Ms. Using this basis, we can check that dim Inv My = 1. Show that N; is
a tilting module. One easily observes that N; has a filtration by Weyl modules if it has no
direct summands isomorphic to A(6) or M(6). Since N1 has no submodules isomorphic
to M(2) @ M(2) and is self-dual, it has no such factor modules. This yields that N; has
no direct summands of the form A(6) ® U where U € {A(6), M (2),T(6)}, and M(2) ® F
where F = M(2) or T(6). Since I(N1) = {2M(6),3M(2)}, now Lemma 23 yields that
Ny has no direct summands isomorphic to A(6) or M(6). This implies that N; has a
filtration by Weyl modules and therefore it has a filtration by dual Weyl modules as well
since N is self-dual. Hence N is a tilting module. As we know I(N1), we conclude that
N, 2T(12) @ T(6).

Set mip = 2X2 0 +4X 1 X ov+ X _3X ov, mig = X250+ 2X 1 X _ov+ X2,0, and
ms = 4X31X,21) + 4X,1X321). One can directly verify that X, fixes m’io, Xamg = m%o,
X_amiy # 0, X_amip = 0, and X2 ms & (X_o5mio). Then KA,m?, = V(10) and
N2/K Aym3, has a submodule isomorphic to V(8). Let U be the full preimage of this
submodule in N2. Show that U is indecomposable. We can check that dimInv Mg = 1.
Since X_,m3, € Inv Mg, then U has no indecomposable components with highest weight
8. AsUNM, = <X7a,5m}0,X£ams>, then U has no indecomposable components with
highest weight 0. Since dim(U N M) = 1, this implies that U is indecomposable.

It is clear that KA,mi, = M(10). As mi, € U N Mo = (m3) and KA,mi, is
irreducible, we conclude that K A,mi,NU = 0. Hence No = U ® K A,m},. The module U
is self-dual as Vs is self-dual. Since U has a filtration by Weyl modules, it has a filtration
by dual Weyl modules as well. Therefore U is a tilting module. This forces that U 2 T'(10)
and completes the analysis of the case under consideration.

ILV. Let p = 5 and w = w;y + 3w2. Then dimy = 80 and M = S"5(V). One can
directly verify that ay(w) = 157 dimM15 = 17 diI’IlMlg = 2, dilil = 3, dlmMg = 5,
dim M7 = 6, dim M5 = 7, dim M3 = 8, and dim M; = 8. This implies that

I(M,) = {M(15),2M (13), M (11),2M(9),2M (7),2M (5),2M (3), M (1)}.
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By Proposition 8 and Lemma 27, M, = N1 ® N2> ® M(9) ® M(9) where
I(N1) = {M(15),2M (13),2M (5),2M (3)}, I(N2) = {M(11),2M (7), M (1)}.

Show that Ny = T(15) & T(5) and Ny = T(11).

Set m13 = X_2v. Since X_1v # 0, one easily observes that X_,v # 0. It is not difficult
to check that Xomis = v and X2 ,mis & (X_a,50). Set N, = N1/K Ayv and denote by
the symbol 13 the image of mis under the canonical homomorphism N; — Nj. The
arguments above and Lemma 28 yield that KAyv = V(15) and KA,miz = V(13). Let
U be the full preimage of K A,miz in Ni. Then I(N,/U) = {M(5),2M (3)}. Since N; is
self-dual, it has a submodule F with I(F) = {M(5),2M(3)}.

Obviously, the vectors

X3 X% 0, X2, X3 X2 ou, X2, X3 ,0, X X 1,
X 3X32,X v, X2;X3,0, X2,X2,X v

form a basis of Ms. Set Q = KerXo N Ms, ms = 3X3,X2,0 4+ X2,X3,0, and m} =
X4, X 104+ 3X 3 X3, X v +4X2:X350 + X23X%,X_qv. Show that Inv Ms = (ms).
Using the basis indicated above, we can check that @ = (ms,m3), Xasms = 0, and
Xa,sms # 0. As Inv M5 C @, this implies that Inv M5 = (ms). It is not difficult to verify
that X_oms # 0. Obviously, ms € F. One easily observes that UNF = 0as M(3) ¢ Irr U.
Hence N1 = U @ F and the modules U and F are self-dual since Nj is such. As U has
a filtration by Weyl modules, this yields that it has a filtration by dual Weyl modules as
well. Therefore U is a tilting module. This forces that U = T'(15). As ms € F, X_oms5 # 0,
and F is self-dual, then by Lemma 29, F' = T'(5).

Set mi11 = ngv + 4X_3X_3v. One can directly verify that X, fixes mi; and that
the vector X2,m11 has a weight component 4X2;X2,v # 0. Lemma 28 implies that
KAymu = V(ll)

Put N2 = No/KA,mai. It is clear that I(N2) = {M(7),M(1)}. We can check that
Inv My = 0. Therefore N2 has no submodules isomorphic to M (1). As N is self-dual, we
conclude that No and N3 have no factor modules isomorphic to M(1). Hence by Lemma 23,
Ny = V(7) and Ns has a filtration by Weyl modules. Since N is self-dual, it has a filtration
by dual Weyl modules as well. Therefore N; is a tilting module and N2 2 T'(11).

ILVI. Let p =5 and w = 2w; + 2ws3. Then dim ¢ = 83 and oy (w) = 12. Set

As ={w—2a1,w—a1 —az,w — a1 — a3z, w — a2 — az,w — 2as};
Ae ={w — 201 — a2, w — 201 — a3, w — a1 — @2 — a3, w — a2 — 203, w — a1 — 2a3};
Ay ={w—201 — 202, w— 2011 — @2 — a3, w— 201 — 203, W — a1 — 202 — as,
w—a1 — a2 —2a3, w—2a2 — 2a3};
Ao = {w — 201 — 202 — a3, w — 201 — a2 — 203, w — 31 — a2 — A3,
w—a1—2a2 —2a3, w— a1 —az —3az};
Ao ={w — 201 — 202 — 23, w — 31 — 202 — a3, w — 31 — a2 — 2as,
w—2a1 —az — 3as,w — 201 — 3a2 — a3, w — a1 — 3az — 2a3,w — a1 — 202 — 3as ).
One easily observes that M; = (M, |p € A;). By [18, Table 6.7], the maximal submodule

in V(w) is isomorphic to M(0). Hence dim M,, = dimV(w), for u # 0 and dim M,, =
dimV(w), — 1 for = 0. Put

Y={pe AM)|p =w—aa1 — baz — cas,abc = 0}.

One easily concludes that dim M, = 1 for o € X. Using Freudenthal’s formula, we get that
dim M, =3 for p = w—a1 —az—a3 and dim M, = 5 for p = w—2a1 — 202 —2a3 = 0. It is
not difficult to show that the weight A lies in the same W-orbit with p = w — a1 — a2 —as
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for
Ae{w—201 — a2 —az, w— a1 — a2 — 2as3,

w—2a1—2a2—a3, w—2a1—a2—2a3, w—a1—2a2—2a3},

so dim M = 3 for these A. Finally, the weight p lies in the same W-orbit with a weight
from ¥ for

pwe{w—ar — 202 —a3, w—3a1 — a2 — a3z, w— a1 — a2 — 3a3,
w—3a1 — 2 — a3, w— 31 — a2 — 2a3, w — 201 — a — 3as,

w—201 —3az —az, w — a1 — 3az — 203, w— a1 — 2a2 — 3as}.

Therefore dim M,, = 1 for all these . Now we easily deduce that dim M1z = 1, dim Mg =
2, dim Mg = 5, dim Mg = 7, dim My = 10, dim M> = 11, and dim My = 11. This yields
that I(M,) = {M(12), M(10),4M (8),3M(6),3M (4),3M(2),3M(0)}. By Proposition 8
and Lemma 27, M, = Ny @ Na @ 3M(4) where I(N1) = {M(12),3M(6),3M(2)} and
I(N2) = {M(10),4M (8),3M(0)}. Show that Ny = T(12)®T(6) and No = T'(10)®T(8) B
M(8).

It is not difficult to verify that the vector X3,v has a nonzero weight component
X_3X2,v. Hence KA,v = V(12) by Lemma 28. Set Ny = Ni/KAyv. Then I(Ny) =
{2M(6),3M(2)}. Put

me =X231X oX av+4X 3X2,X2 04+ 2X2,X 3X2 0+ 2X2,X 90X v+
+2X X2, X 35X 0 +3X21X 0 X204+ 2X 1 X2, X250+
+ X2 X X200+ X s X2 X s X v+ X3, X 50X v

One can directly verify that each of the triples

(X_3X2,X2% 0, X25X 3X2 0, X 1X2,X 3X_qv),
(X 1X25X%50, X2,X 1X250, X 3X2,X 3X_qv),
(X2 X23X2 0, X23X 2X2 10, X2 X 2X230)

consists of linearly independent vectors. Therefore the vectors

X_3X2,X2% v, X2,X_3X? v, X_1X2,X 3X_1v, X_1X2,X2 50,
X2,X 1X%50, X 3 X2,X 53X v, X 2X23X2% 0, X2,X X2 v,
X2 X 5X%0, X3, X 09X _3v, X23X 02X v

form a basis in M. Using this basis, we can show that dim Inv M = 1 and Inv M2 = (ma).

Hence N7 has no submodules isomorphic to M (2)® M (2). As N is self-dual, this yields
that N; and N; have no such factor modules. Hence Nj has no direct summands of the
form T'(6) @ A(6), T(6) & M(2), A(6) & M(2), or M(2) @ M(2). Then by Lemma 27,
N1 = T(6)®V(6) or V(6) @V (6) ® M(2). Therefore N; has a filtration by Weyl modules
and it has a filtration by dual Weyl modules as N; is self-dual. Hence N; is a tilting
module. As we know I(Ni), we conclude that Ny = T'(12) & T'(6).

Set mio = X_1v+3X_sv. It is clear that X _ om0 # 0 since X2;v # 0. One can directly
verify that X, fixes mio. Therefore Inv M19 = (m1o). By Lemma 28, K A,m1o = V(10).
As dim(N2N Mjio) = 1, the module N» has an indecomposable component N2 1 containing
the vector mig. Put m = Ny1/KAymqo and write No = Na1 @ N2z where N is a
K Ay-module. By Corollary 10, N2 ;1 and N»» are self-dual. Show that Na; = T(10) and
Nao 2 T(8) @ M(8).

It is not difficult to observe that the vectors X235 X2,X2 v, X2,X25X2 v,

X 3X2%,X 3X2,0, X 1X 3X%,X 3X_qv,and X_1X2,X2;X_,v are linearly independent.
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Taking into account Lemmas 12 and 6, we conclude that the vectors
X2 X2,X X v, X3 X 0X2%00, X3,X 3X2 0, X3,X2,X v,
X3.X 0X2 v, X oX3,X oX v, X23X2,X% v, X2,X2,X2 v,
X 3X2,X 3X% 0, X 1X 3X%,X 3X 1v, X 1X2,X%,X v

form a basis of My. Using this basis, we check directly that dimInv My = 1. Hence N2
has no submodules isomorphic to M (0) & M(0). As N is self-dual, it has no such factor
modules. This implies that there are no direct summands isomorphic to 7'(8) ® A(8),
T(8)® M(0), A(8)BA(8), A(8)®M(0), or M(0)® M(0) in N21 and N2z, and that there
are no direct summands isomorphic to T'(8) or M(0) in N2 2 if N2 ; has an indecomposable
component isomorphic to 7'(8), A(8), or M(0).

Suppose that there is an indecomposable component isomorphic to A(8) in Na .
Lemma 23 and the arguments above imply that No; =2 A(8) or V(8) & A(8). Using
Lemma 23 and the self-duality of N2, we come to a contradiction with the facts proven
above on indecomposable components of N2 1 and N» 2. Hence N 1 has no direct summands
isomorphic to A(8).

Assume now that N2 1 has an indecomposable component isomorphic to M (8). As Na o
is self-dual, Lemma 23 and the arguments above yield that N2 1 = T(8) @ V(8) ® M (8),
V(&)@ V(8) @ M(8), V(8)dV(8) ® M(8)® M(0), or V(8) & M(8). Check that all these
possibilities cannot be realized.

Obviously, the vectors X2 v, X _2X_1v, X_2X_3v, X250, and X_3X_;v form a basis
of Ms. Set mg = 3X2 v +2X 2 X 10+ X_2X_ 30+ 3X?30,
mE=2X20+ X _3X_1v+4X X _3zv,and md =2X X 30+ X25v.

It is clear that the vectors mj, 1 < i < 3, are linearly independent. One can directly
verify that Inv Mg = (mg, m2, m3) and that dim X, Inv Mg = 1. Hence dim(KerX?*, N
Inv Mg) = 2. Set S = KerX*, NnInv Ms.

First we assume that the multiplicity of the composition factor M (8) in the module

N1 equals 3. Then Inv Mg C N2.1 as Inv Mg C Na2. Observe that Na1 =2 M(8) ® U where

Ue{T@®)aV(s), V(&)@ V(8), V(8)®V(8) & M(0)}.
In all cases we have

(5) Xt u#0

for a nonzero vector u € U of weight 8. Let U be the full preimage of U in N2 1. Let m € S
and m ¢ KAymig. Such vectors exist since dim(KAymio N Mg) = 1 and dim S = 2.
Set F = KA,m. Since X*,m = 0, then by Lemma 28, F = M(8). As m ¢ KAymo,
Formula (5) implies that m ¢ U. Then U N F = 0 since F is irreducible. Therefore
N1 = U @ F which yields a contradiction as N1 is indecomposable.

Let Na1 = V(8)®M (8). Then I(Nz2) = {M(8),2M(0)}. Since Nz 2 has no submodules
isomorphic to M(0) & M(0) and is self-dual, Lemma 23 forces that N2 2 = T'(8). Then
K Ayz 2 V(8) for any vector z € (Mg N N22)\ {0}. Therefore X2,z # 0 and so S C Na ;.
As dimS = 2, then S ¢ KAymio. Let m € S and m ¢ KAymio. Arguing as above, it
is not difficult to show that the module N’ = KA,m is isomorphic to M(8) and that
N2y = N' & N” where KAymi9 C N” and N”/KAymio = V(8). We again come to a
contradiction since N ; is indecomposable. This implies that N ; has no indecomposable
components isomorphic to A(8) or M (8). Then Lemma 23 implies that N» ; has a filtration
by Weyl modules and a filtration by dual Weyl modules as N is self-dual. Hence N 1
is a tilting module and this forces that N ; = T'(10).

It is clear that I(Na2) = {2M(8),2M (0)}. As N3 5 has no direct summands isomorphic
to M(0)® M (0) and is self-dual, Lemma 23 yields that N2 2 = T(8) @M (8) or V(8)BA(8).
Show that the first possibility is realized. Set Q = X2 My NInv Mg and

2=2X2 0 +2X 2X_ sv+ X_1X_sv+4X2 ;0.
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Using the basis of My indicated above, we can directly check that dim@ = 2, Q =
(X_—amaio, 2), and X2 .z # 0. It is clear that Q C Ns since Inv Mg C Na. Let z = X2z
where zg € My. We can assume that zo € No. Write 2o = 24 +22 and z = 2+ 22 where 2} €
N2 ;MM and 2° € Na ;N Ms. Then X228 = 2*. As NaoNMs C Inv Mg, dim(N22NMsg) = 2,
and dim Mg = 3, it is clear that dim(N2,1 N Inv Mg) = 1. Since 2! € Inv Mg, we conclude
that 2' € (X_amio) C KA,mio and X2 2" = 0. Therefore X2 2% # 0. This yields that
X* (X423) # 0. Now Lemma 25 forces that No = T(10) @ T'(8) & M(8).

ILVIL Let p = 5 and w = 4ws. Then dimy = 85 and M = S%°(V). One can
directly verify that ay(w) = 167 diliG = 17 dimM14 = 17 dimM12 = 3, dimM10 = 4,
dim Mg = 6, dim Mg = 7, dim M4 = 8, dim M2 = 8, and dim My = 9. This yields that
I(My) = {M(16),3M(12), M (10),3M (8),3M (6), M (4), M(2),3M(0)}. By Proposition 8
and Lemma 27, M,, = N1 ® N, @® M (4) where I(Ny) = {M(16),3M (12),3M (6), M (2)} and
I(N2) = {M(10),3M(8),3M(0)}. Show that N1 = T(16) ®T(12) and N2 =2 T(10)®T'(8).
As X2,v # 0, then X2 v # 0. Hence KA,v = V(16). Set mi2 = 3X_1X_2v + X2,v and
u= Xzzv. We can check that X, fixes mia, Xgu = v, and

(6) X2 oud (X_asv), X2amiz & (X_asv, X2 u).

Put N; = N1/KAyv and denote by @ the image of u under the natural homomorphism
N1 — Ni. Let U be the full preimage of KAyuin N; and F = KAymiz. Formula (6)
implies that KA,u = F = V(12) and U N F = 0. Indeed, any nontrivial submodule of
F contains the vector X3 _,mi2 which does not lie in U. Set Ni = N1/(U @ F). Then
I(N7) = {M(6), M(2)}. It is clear that the vectors

X 3 X2 X0, X 1 X2, X400, X3, X0, X3,X 2,0,
X2 X2, X350, X 1 X3, X530, X2 X s X3,0, X 20X 1 X _sX* v

form a basis of M>. Using this basis, we can show that Inv My = 0. Hence N; has no
submodules isomorphic to M(2). As N; is self-dual, the modules N; and Nj have no
such factor modules. Now Lemma 23 yields that Ni = V(6). Hence N; has a filtration
by Weyl modules and N; is a tilting module. Since we know I(N1), we conclude that
Ny =T(16) © T(12).

Set mio = 3X30 4+ X_1 X250+ 2X_3X2%,0+ X_1X_3X_ov. One can directly verify
that X, fixes mio and that X_,mio has a nonzero weight component X*,v. Therefore
KAymio = V(10). Put Na = No/KAymio. Then I(N2) = {2M(8),3M(0)}. Show that
N> has no indecomposable components isomorphic to A(8) or M(8). Taking into account
Lemmas 6 and 12, we can conclude that the vectors

X_3X31Xi2’l), X_1X33X§2’U, X31X33Xi21], Xlefgv, Xﬁgxig’l},
X3 X2, X300, X2, X3, X3 0, X3,X2, X 5 X2v, X3, X 1X2:X%,0

form a basis of My. Using this basis, one can directly check that dim Inv My = 1. Hence
N3 has no submodules isomorphic to M (0) & M (0). Since N3 is self-dual, the modules N,
and N> have no such factor modules. Therefore N> has no direct summands isomorphic to
T(8) ® A(8), T(8) ®d M(8), A(8) & A(8), A(8) ® M(0), or M(0) & M (0). Taking this into
account and using Lemma 23, we conclude that Ny has no indecomposable components
isomorphic to A(8) or M(8). Then Lemma 23 forces that N> has a filtration by Weyl

modules. Therefore N» is a tilting module. We know I(N2) and can conclude that No =
T(10) ® T(8).
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ILVIIL Let p = 7 and w = 4w;i + w3. Then dim¢ = 100 and oy(w) = 15. It is clear
that dim M5 = 1 and dim M;3 = 2. Set

A ={w -2, w—01 —az,w— a2 —az,w—o1 —az};
Ao = {w —3a1,w — 201 — a2, w — 201 — a3, w — Q1 — Q2 — QA3 };
A7 ={w —4dar,w — 301 — a2, w — 3a1 — az,w — 2a1 — 2ae,
w—201 — a2 —az,w— a1 — 202 — a3,w — a1 — Q2 — 203 };
A5 = {w—4a1 — Q2,Ww —4(11 — Q3,Ww —3(11 — 2(12,(4.) — 30[1 — Q2 — (a3,

w—2a1 — 202 — a3z, w — 201 — a2 — 203, W — a1 — 202 — 2a3};

Az :{w740¢172a2, w—4a; —az — a3, w— 3a1 — 3a2, w— 3a1 — 202 — as,

w—301 —az — 2as3, w— 2a1 — a2 — a3, w— 201 — 2a2 — 2a3};

A = {w—5a1 — a2 —as,w —4a; — 3az,w — 4o — 202 — az,w — 4o — a2 — 2as,
w—3a; —3az —asz,w — a1 — 202 — 2a3,w — 201 — 3 — 203, w — 200 — 20 — 3a3}.
One easily observes that M; = (My|p € A;) for 1 <4 < 11. Now we shall determine the
dimensions of the subspaces M, for u € Uil A;. Put
A= {;L S A(M)\,u =w—bia; — byas — bgag, b1babs = 0};
Alz{w7a172a27a3, w—ap —az —2a3, w— 201 — a2 — 203, W — a1 — 202 — 203,
w—3a1 —az —2a3, w— 201 — 302 — a3, w—Oda1 — gy — a3z, w—4da; — a2 — 2as3,
w— 201 — 3a2 — 2a3, w— 2a1 — 202 — 3as};
YS={w—a1—a2— a3, w—201 —az — a3, w— 301 — 202 — az};
Z/:{w730617&27a3, w — 201 — 202 — as,
w—2a1 — 20 — 2a3, w — 4oy — 20 — a3, w — 31 — 3a2 — as,
w—4dor — oz — az, w—3a1 — 202 — 2a3}.
Using Theorem 1 and Proposition 4, we can conclude that dim Ms = 1 for § € A. It is
clear that dim M., = 1 for v € A’ since v lies in the same W-orbit with a weight from
A. By [13, Part II, 8.20], the maximal submodule in V(w) is isomorphic to M (3w;) =
M(w — a1 — a2 — as). So it is clear that dim M, = dimV(w), — 1 for o € 3. Using
Freudenthal’s formula, we get that dimM, = 2 for ¢ € X. If v € ¥/, then v lies in
the same W-orbit with a weight from X, hence dim M, = 2. Now all dimensions of the
subspaces M, we need are found.

The arguments above imply that dim My, = 4, dim My = 5, dim M7 = 8, dim M5 = 9,

dim M3 = 10, and dim M; = 11. Now we can see that
I(M) = {M(15), M(13), 3M (1), M(9), 3M(7), AM(5), 2M(3), 3M (1)},
By Proposition 8 and Lemma 27, M, = N1 © M(13) & N2> & N3 where
I(Ny) = {M(15),3M(11),3M (1)}, I(N2) = {M(9),2M(3)}, I(Ns) = {3M(7),4M (5)}.
Remark 3 implies that the modules N; are self-dual. Show that Ny = T'(15) @ T'(11),
N2 2 T(9), and N3 = 2T(7) @ M(7).

Since X2,v # 0, then X2 v # 0. This forces that KA,v = V(15). One easily
check that the pairs (X_3X2,X* v, X2, X 3X*v), (X3,X_3X3 0, X_3X3,X3v),
and (X25X2,X3 v, X_3X%,X_3X2,v) consist of linearly independent vectors. Now it
is obvious that the vectors

X 3X2,X% 0, X2, X 3 X% v, X3,X 3X3 0, X 3X3,X3 0,
X2, X%, X% 0, X_s X2 X 3 X2 0, X2, X 0X_sv, X2,X* v,
X2.X oX% 0, X2,X2.X oX% 0, X3, X2,X2% 0

form a basis of M;. Using this basis, we directly verify that dimInv M; = 1.
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Set N1 = Ni/KAyv. Then I(N7) = {2M(11),3M(1)}. As the module N; has no
submodules isomorphic to M (1) @& M (1) and is self-dual, both Ny and N; have no such
factor modules. Hence N; has no direct summands of the form M (1)@M (1), A(11)@M (1),
T(11) @ M(1), A(11) @ A(11), or T(11) @ A(11). Using Lemma 23, we conclude that
N1 = T(11) @ V(11) or V(11) @ V(11) @ M(1). Therefore N; has a filtration by Weyl
modules. By remark 4, N; is a tilting module. As we know I(N1), we conclude that
Ny 2 T(15) @ T(11).

Set mo = 2X3 04+ 6X_2X2 v+ 2X_3X2,04+ X _3X 2X_1v. One can directly check
that X, fixes mg and that the vector Xiamg has a nonzero weight component 6X32X4_1v.
Hence K Aymg =2 V(9). By Lemma 29, N, 2 T(9).

We can show that the pairs (X,3X,2Xilv, X31X72X73/U) and
(X_3X32X31v, X_1X32X_1X_3v) consist of linearly independent vectors. Then the
vectors

X oX* v, X_aXtiv, X2,X2 0, X2,X 0X2 v, X_s X2, X_3X_1v,
X 3X oX% 0, X3, X 09X _3v, X 3X2,X2% 0, X_1X%,X_1X_sv
form a basis in M5. Put
my =2X* 046X 2 X? 0 +5X 3X> 04+ 5X2,X% v+
+5X%3X 20X 104+ 6X2,X 3X 104+ 6X21 X _2X 30,
m2=4X* v+ 2X 2 X3 v +3X2, X2 v+ 6X%3 X o X 10+
+3X_3X o X2 v+ X2, X 3 X v+ X2 X_2X_3v.

Using the basis indicated above, we check that X, MsNInv M7 = (m%, m?2). Set uy, us € Ms
and X u; = m@. As we know the structure of N1 @& Na, we conclude that M, = N & N3
and the module N has no composition factors isomorphic to M (7). Write u; = uj + u?
where u} € N and u? € N3. The arguments above yield that X,u? = m?%. One can directly
verify that X_,m? has nonzero weight components 3X_3X*;v and 4X_»X* v and the
vector X_,m? has a nonzero weight component 4X_3X*,v and the zero component of
weight w — 4a1 — ae. Hence the vectors X_,m3# and X_,m3 are linearly independent and
dim X _ o (Xa(Ms N Ns)NInv M7) = 2. Arguing as in the proof of Corollary 9, we conclude
that N3 = 27°(7) & M(7).

All possibilities are considered for regular unipotent elements in As(K).

II.IX. Let x be not regular. The arguments at the beginning of the section imply that
it suffices to consider the following cases:

a) p=0>5, w = 2w + ws;

b) p=3or5, w=uw +ws +ws;
c)p=3orb w=2w + 2ws;
d)p="7, w=4w + ws.

First we assume that J(x) = (3,1) or (2,1?). Then z is conjugate to an element from
the subgroup H = G(1,2). Suppose that z is such element.

ILIX.I Let p = 5, w = 2w1 +2ws, and J(z) = (3, 1). In this case x is a regular unipotent
element of H. Assume that A C H and o : A(H) — Z are a subgroup of type A; containing
x, and the homomorphism described at the end of Section 3; X, and X_, are the root
operators of the Lie algebra of A. Taking into account Formula (4), we can suppose that
Xoe=X1+2Xoand X_o =2X_1+ X_5. Set

Q; = {)\ c A(M)\)x:w—aoq — bas —iag}, 0 < 7 < 4, U, = <M>\|)\ c QZ>,

QF = {\ € Q2|o(N\) > 0}. Tt is clear that U; are H-modules and
M|H =Up® U ®U2® U3z @ Us. By Lemma 11, Up = Uj and Uy =2 U;. Corollary 4 implies
that Uy 2 M (2w1) and Us = M (2ws).
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It is not difficult to show that
Q1 :{w—ag,,w—ag —Qa3,w — a1 —043,0.)—2&1 —Q3,W — Q1 — Q2 — Q3,
w—2a1 —a2 —a3,w— a1 — 202 — a3, w — 201 — 202 — a3, W — 31 — Q2 — A3,

w =301 — 2a2 — ag,w — 2a1 — 3oz — ag,w — 3a1 — 32 — az}.

Recall that dim M, =3 for p € {w — a1 — a2 —az,w — 201 — a2 — a3, w — 201 — 22 — a3}
and dim M, = 1 for other weights p € Q4. This yields that dim U; = 18. Put w = X _3v.
It is obvious that the vector w € U; and is invariant under X; and X>. Hence U; has a
composition factor with highest weight A1 = wy(w) = 2w1 + wa.
Set v =w—a1 —az —asz. As dim M, 4o, = dim My 44, = 1 and dim M, = 3, one easily
observes that
dim(KerX: N M,) = dim(KerX, N M,) = 2.

Now it is clear that there exists a nonzero vector u € M, such that X;u = Xou = 0.

This yields that Xz fixes u for all positive roots 8 of H. Therefore U; has a composition

factor with highest weight A2 = wg(u) = wi. Since dim M (A1) = 15 and dim M (\2) = 3,

the H-module U; has no other composition factors. Observe that the modules V(A1) and

V(A2) are irreducible (see [18, Table 6.6]). Hence U1 =2 M (A1) @ M (A2) by Corollary 1.
One easily checks that

) :{w—2a3, w—aoag — 203, w— a1 —2a3, w— 201 — 203, w — 202 — 243,
w—ap —a2 —2a3, w— 201 — g — 2a3, w — a1 — 202 — 203,

w— 21 — 2a2 — 23, w — 31 — a2 — 203, w — a1 — 3az — 2a3}.
Recall that dim M, = 3 for
weE{w—ar —az —2a3, w—2a1 —az — 2as, w— a1 — 202 — 203},

dim M, =5 for v = w — 21 — 22 — 23, and dim M = 1 for all weights A € Qg. This
yields that dim U = 35. Now one easily concludes that

I(Us]|A) = {M(8), M(6),3M (4),2M(2),2M (0)}.

By Lemma 27, we get that Uz|A = N1 & N2 @ 3M (4) where I(N1) = {M(8),2M (0)} and
I(N2) = {M(6),2M (2)}. Show that Ny = T(8) and N2 = T'(6).

Set mg = X230, mg = X_2X2304+2X 1 X230, f1 = X2, X 2X2%5v, and
fo = X,2X31X33v. It is clear that msg € Nj. One can directly verify that the vector
X2 ,mg has a nonzero weight component 2X3,X_1 X230, mg € Inv Mg, the vector X2 ,mse
has a weight component f; + f2, and that X3f1 =0, X3f2 # 0, and X3 f, # 0.

Hence the vectors fi and f» are linearly independent and X2, me # 0. Since Us is
self-dual, now Lemma 23 implies that N1 = T'(8) and N2 = T'(6).

Using the results from Item I and Lemma 23, we can determine J(p(z)).

Now let J(z) = (2,1?). In this case one easily concludes that o, (w) = 4 < p. Hence by
Corollary 2, M, is a direct sum of p-restricted irreducible modules. As the dimensions of
all weight subspaces of M are known (see Item IL.IV), it is not difficult to find irreducible
components of the module M, and to determine J(p(x)).

ILIX.IL In other cases using the results of [6], we show that the modules M|H are
completely reducible and find their irreducible components. After that we apply the results
of Item I.

Now we need some additional notation. Let I' = A¢(K) and A € A(T") be a dominant
weight. For A # 0 we write A = biwi;, + ... + brw;, where 41 < ... < i} and by, ..., by > 0.
For A\ = 0 we assume that £ = 0. For 1 <[ <m < k set

B\ =im — i1+ »_b; € K.
j=l
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We say that A satisfies Condition (JS1) if for any I, m, and b with 1 <! < m < k and
0 < b < by + by, the difference By, —b # 0 (in K). We say that \ satisfies Condition (JS2)
if B, =0foralll<k.

For 1 <i <tset a(i,t) = a;+...+as. We say that the weight © € A(T") is A-admissible
if 4 =X —mnialii,t) — ... — nga(ir,t), n; € ZT and the following conditions hold:
(1) 0<n, <b, 1<j<k
(2) if n; # 0 and B]’-\,m = 0 for some m with 7 < m < k, then n,, = by,.

Let A be p-restricted and I'y = I'(1,2,...,¢t — 1). By [6, Theorem 1.4], the restriction
M(X)|T'y is completely reducible if and only if A = 0 or satisfies one of Conditions (JS1)
or (JS2). In these cases

(7 M)y = @ M(ulTy)

where p runs over the set of all admissible weights. Now we use Formula (7) in all remaining
cases.

Let p = 5 and w = 2w1 + w3. Then k = 2, BY; = 5 = 0, w satisfies Condition (JS1),
and

M|H = M(le) (&) M(2w1 + (JJQ) (&) M(w1 +(JJ2) (&) M((JJQ).

Let p=3 and w = w1 + w2 +ws. Then k =3, BYs = B33 =3=0,BY3=5=2,w
satisfies Condition (JS2), and

M|H:M(OJ1 +OJ2)€BM(W1+2¢U2)®M(2wl +W2)@M(wl -|—(4J2).

Let p=5and w = w1 + w2 +w3. Then k = 3, BY» = B33 = 3, BY’3 = 5 = 0, w satisfies
Condition (JS1), and

MlH = M(wl + wg) D M(wl =+ 20.)2) (&) M(QW1 + wg) D M(?wl) (&) M(OJ1 -|-(/J2) (&) M(2WQ).

Let p = 3 and w = 2w; + 2ws. Then k = 2, BY;, = 6 = 0, w satisfies Condition (JS2),
and

M|H = M(le) (&) M(2w1 + UJQ) D M(ZOJ1 + QWQ) [S3) M(wl + 20.)2) D M(ZUJQ).

Let p = 7 and w = 4w; + w3. Then k = 2, BY, = 7 = 0, w satisfies Condition (JS2),
and

M|H = M(4w1) D M(4w1 +WQ) D M(3UJ1 + UJQ) D M(Zwl +UJ2) D M(w1 +W2) D M(UJQ).

Hence for J(x) = (3,1) or (2,1?), all possibilities are considered.

ILIX.IIL. Let J(z) = (2%). Then z is conjugate to a regular unipotent element of
the subsystem subgroup H = G(1,3) and we can assume that z € H. Obviously, H =
G(1)G(3). Recall that the set A(A1(K)) is identified with Z, hence we can suppose that
uw € A(H) is equal to (a,b) where a,b € Z. It is not difficult to check that o,(w) < p
for p > 5. Therefore it remains to consider the representations with highest weights w =
w1 + w2 + w3 and 2w + 2ws for p = 3. While analyzing these representations, we will
consider the restriction of M to a subgroup A constructed as at the end of Section 3
and the homomorphism o : A(H) — A described there. One easily observes that for
w= (a,b) € A(H) the image o(u) =a+b.

Let p =3 and w = w1 + w2 + ws. Then o, (w) = 4. Set
O = {)\ c A(H)P\ =w—aq] — iy — bOég}, 0<1< 4, U; = <M)\|)\ S QZ>,

Qf = {\ € Ulo(\) > 0}. Tt is clear that U; are H-modules and
M|H = Up®U1®U2®Us @ Us. Lemma 11 implies that Uy = Uy and Uy = U;3. Corollary 4
yields that Up & M (w1) @ M (wy).
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One easily concludes that

le{w—ag, W —00] — a2, W— Q2 —Q3, w—QOél—OéQ, W — Qa1 — a2 —Q3,
w—a2—2a3, w—2a1 — a2 — a3, W— a1 — Q2 — 203, W — 201 — a2 — 203};
Qo ={w—0a1 — 202, w—2a2 — az, w — 2a1 — 202, w — a1 — 202 — as,

w—2a2 — 2a3, w— 201 — 202 — az,w — a1 — 202 — 2a3}.
Put p=w—a1 —az —asz, Ay = {w, w— a1 — a2, w—az — as},

A ={w—0a1, w—a2, w—a3, w—a1 —asz, w—2a1 — a2, w— az — 2as,
w—201 —a2 — a3, w— a1 — a2 — 203, W — 201 — a2 — 243,
w—a1—2a2, w—2a2—a3, w—2a1—2a2, w—2a2—2a3},

Az ={w—a1 —2a2 — az,w — 201 — 2a2 — a3, w — a1 — 2a2 — 2as}.

Show that dim M, = 2. It is clear that M, is generated by the vectors X_1 X »X_3v,
X X 3X ov, X 3X o9X v, and X_2X_3X_1v. By Theorem 1 and Proposition 4, the
weight subspaces in M of the weights w — a1 — a2 and w — a2 — a3 are one-dimensional.
This implies that M, is generated by the vectors X_1 X _3X_ov and X_2X_1X_3v. One
can directly verify that they are linearly independent.

Obviously, dim My = 1 for A € A;. One easily observes that dim M, = 1 for 7 € As
since 7 lies in the same W-orbit with a weight from A;. It is clear that dim M, = 2 for
v € Ag as v lies in the same W-orbit with p.

Now one easily concludes that dimU; = 10 and dim Uz = 16. Let w = X_qv. It
is clear that the vector w € U; and is invariant under X; and X3. Therefore U; has a
composition factor with highest weight 6 = wg(w) = (2,2). Since dim My = 9, then U,
has two composition factors: M () and the trivial one. As V(0) is irreducible, Proposition 2
implies that U1 = M(2) ® M(2) & M(0) ® M(0).

Denote by Us,; the weight subspace of weight ¢ in the module Us. Using Formula (4),
we can assume that X, = X; + X3 and X_o = X_1 + X_3. We know the dimensions
of the weight subspaces in M and so can show that dimUs 4 = 2, dim U2 = 4, and
dim Usz,o = 4. Hence I(Uz|A) = {2M(4),2M (2),2M (0)}. By Lemma 23, U;|A = N & N’
where I(N) = {2M(4),2M(0)} and N’ = 2M(2). Show that N = T'(4) @& M(4). Set
mo = X_QX_3X31X_2'U. One can check that Ximo = X_QX_3X_2U + 2X_2X_1X_3U
and X2, X2mo # 0. Since U = N®N', then mo = my+ma where m € N, m% € N’, and
my, mi € Uap. It is clear that X2m3 = 0, therefore X2, X2m{ # 0. Hence by Lemma 25,
N =T(4)® M(4).

Now we can determine the canonical Jordan form of ¢(x) using Lemma 21 and Theorem 3.

Let w = 2wy + 2ws and p = 3. Set Q; = {w — a1 — iz —baz}, 0 < i <4,

U = (Ma]A € ), QF = {\ € Qilo(\) > 0}. It is clear that U; are H-modules and
M|H =Up® U1 ®U; ®U3 @ Us. By Lemma 11, U 22 U and Uy =2 U3. Corollary 4 implies
that Uy =2 M (2) & M (2).

It is not difficult to see that

N ={w—a1—a2, w—a2—az, w—2a1 — a2, Ww— 01 — Q2 — A3,
w—az —2a3, w— 201 —Qz — a3, w— Q1 — a2 — 2a3};
QQ:{w—2a1—2a2, w—2a2 —2a3, w— a1 — 200 — a3, W — 201 — 202 — @3,
w— a1 — 2as — 2a3, w — 201 — 202 — 203, w — 31 — 2a2 — az,w — a1 — 202 — 3as}.
Set f = w — a1 — a2 — a3 = wi + wz. Show that dim M, = 2. Using the Jantzen
filtration [13, Part 2, §8, Proposition 8.19], we can conclude that the maximal submodule

in V(w) is isomorphic to M (11). Hence dim M, = dim V' (w),,—1. Then we use Freudenthal’s
formula.
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Put
A ={w—201 —az —az,w — a1 —az — 2a3, w — 201 — 202 — az,w — a1 — 2a2 — 243},
Ao = {w,w— a1,w — az,w — a1 —as},
As={w—a1 —az, w—az — a3, w— 201 — a2, w— az — 2a3, w — 2az — 2as3,

w—2a1—2a2,w—a1—2a2—a3,w—3a1—2a2—a3,w—a1—2a2—3a3}.

Since a weight v € A; lies in the same W-orbit with p, then dim M, = 2. It is clear
that dim My = 1 for A € Az. One easily observes that dim M,, = 1 for n € A3z as 7 lies
in the same W-orbit with a weight from As. Since dim M = 69, then dim M, = 3 for
T=w— 201 — 2002 — 2ac3 = 0.

Now one easily deduces that dimU; = 16 and dim Uz = 19. Below U, ; and Uz ; are
the weight subspaces of the weights ¢ and j in the A-modules U; and Us, respectively. It
is not difficult to check that dimU; 4 = 2, dim Uy 2 = 4, and dim Uy o = 4. Arguing as for
w = w1 + w2 + w3, we can see that U1|A = N @ 2M(2) where I(N) = {2M(4),2M (0)}.
Show that N = T'(4) @ M(4). Set mo = X_2X_3X2,v. We can directly verify that
X2mo = X_2X 30 +2X_2X_1vand X2,X2mo has a nonzero weight component
f=X2X 52X 3v+ X_3X_1X_2X_1v (one easily observes that X>f # 0). Arguing as
for w = w1 + w2 + w3, we get that there exists a vector m{ € N such that X2, X2mj # 0.
Then by Lemma 25, N = T'(4) & M (4).

As we know the dimensions of weight subspaces in M, it is not difficult to check that
dim Uz,4 = 3, dim Uz2 = 4, and dim Uz,o = 5. Then I(Us|A) = {3M(4), M(2), 4M(0)}.
By Lemma 23, Uz|A = N & M(2) where I(N) = {3M(4), 4M(0)}. Show that N 2
2T (4) @ M(4).

One can directly verify that X _oX_ 1 X _3X X 3X_ v, X_3X 2X%,X »X_3v, and
X2,X2,X2,v are linearly independent. Then the vectors

X2 X2,X 35X 10, X253 X2, X 3 X 10, X _0X 1X 53X 2X_3X_1v,
X2.X2,X2% v, and X_sX_2X2, X _5X_sv

form a basis of Us,g. Put u1 = X2, X _3X_10, us = X2, X% 30+ X%, X2 v, w1 = X2 us,
and w2 = X2 uz. We can check that dim X2Uzo = 2, X2Uso = (u1,u2) and that
the vector w; has a nonzero weight component X23X2,X_3X_1v, but the vector ws =
X2,X2%,X204+X25X2,X2 v # 0. This implies that w; and ws are linearly independent.
Arguing as before for the A-module U;, we get that there exists vectors m; and ms €
N N Us,o such that XzaXiml = w; and XgaXimg = ws. Arguing as in the proof of
Corollary 9, we conclude that N = 27'(4) & M (4).

For G = A3(K), the problem is solved. The arguments at the beginning of the section
yield that it is solved for G = A4(K) and Ag¢(K) as well.

ITI. Let G = As(K). Observe that the order of a regular unipotent element is greater
than p for p = 3 or 5. The arguments at the beginning of the section imply that it remains
to consider only the case where p = 5 and w = w1 +wa. Then dim ¢ = 78. If x has a Jordan
block of size 2 in the standard realization of GG, then z is conjugate to a unipotent element
of the subgroup I' = G(1,2,3,5). Show that the restriction M|I" is completely reducible.
Set U; = (Mx|X =w—iaq— Y, bja;). One easily concludes that M|I" = Uy ®U; U2 @ Us.

Jj#4

Corollary 4 implies that Uy 2 M ((w1,0)) and Us &2 M ((we, 1)).

Set my = X74U, mai1 = XE4X73X72X71U, and ma2 = X74X75X73X74U. It is
obvious that m; € U; and meo,; and ma2 € U:. By Lemma 12, the vectors m; and
ma,1 # 0 and they are invariant under the subgroups X; for ¢ # 4. Using Lemma 6 several
times, one easily observes that Xymoo = X_5X_3X_4v # 0. This yields that mo 2 # 0.
Taking into account the weight structure of M, we conclude that the subgroups X; for i # 4
fix ma,2. Hence U has a composition factor isomorphic to M (wr(m1)) = M ((w1 +ws,w1))
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and U, has composition factors Z; and Z, with highest weights pu; = wr(mey;), 1 = 1,2.
One easily deduces that u1 = (w3, 2) and p2 = (w1 + w2, 0).

Now dimensional considerations imply that U; is irreducible and Us has exactly two
composition factors. Since the modules V(1) and V (u2) are irreducible, then by Lemma 3,
Uy & Z1 ® Zo. Therefore M|I' 2 Uy @ U1 & Z1 ® Z2 @ Us. One can apply Theorem 3,
Lemma 21, and the results of Item II to determine the block structure of ¢(z).

Let J(z) = (3,3). Set ' = G(1,2,4,5) and U; = (Mx|A\ = w —iasz — Y. bja;). One

)

J
easily observes that M|I" = Uy & Uy @ Uz @ Us. Corollary 4 implies that Uy = M ((w1,w1))
and U3 = M((wl,wl)). Set mi1 = X,3X,2X,1v, mi2 = X73X74’U, and ma1 =
X2,X 4 X _5X_qv. It is clear that my, and my2 € Uy and ma; € Us. By Lemma 12,
ma,; # 0 and the groups X; for ¢ # 3 fix these vectors. Hence U; has composition factors Z;
and Z» with highest weights p1 = wr(mi,1) = (0,2w1) and p2 = wr(mi,2) = (w1 +w2,w2).
Applying Lemma 6 several times, we show that mz; # 0. One easily observes that
w(maz,1) + a; & A(M) for i # 3. Therefore the subgroups X; fix mz,; for ¢ # 3. This yields
that Uz has a composition factor with highest weight us = wr(me,1) = (w2, w1 + w2).

Put A = w — a2 — 2a3 — 2a4 — as. One easily concludes that A lies in the same W-
orbit with w, hence A € A(M). Let ma2 € My \ {0}. Taking into account the weight
structure of M, we get that Xomo 2 = Xsma,2 = Xamo,2 = 0. This forces that the groups
X; fix the vector mo for i # 3. Therefore U, has a composition factor with highest
weight pa = wr(maz,2) = (2w1,0). Now dimensional considerations imply that the modules
U, and U have exactly two composition factors. Observe that the modules V' (u;) are
irreducible for 1 < ¢ < 4. Hence by Lemma 3, the modules U; and U, and M|I" are
completely reducible. Using Theorem 3 and the results of Item I, we can determine the
block structure of ¢(z).

All other unipotent elements distinct from a regular unipotent element, have blocks
of size 1 in the standard realization of G. Such elements are conjugate to elements from
the subsystem subgroup H = G(1,2,3,4). Set U; = (MA|A = w —ias — Y bjey). One

J#5
easily observes that M|H = Uy ® Uy @ Us. Corollary 4 implies that Up = M (w1 + wa)
and Uz &2 M (ws). Let m = X_5X_4v. By Lemma 12, m # 0 and the subgroups X; fix m
for ¢ # 5. Hence Uy has a composition factor with highest weight wm(m) = w1 + ws. By
dimensional considerations, U; is irreducible. Therefore the restriction M|H is completely
reducible. Using the results of Item III, we can determine the canonical Jordan form of
o(x).

For G = As5(K) the problem is solved.

IV. Let 7 < n < 13. Recall the assumptions at the beginning of the section and
conclude that it suffices to consider the cases where w = w3 or ws. Then M, is a tilting
module by Lemmas 13. As we know the weight multiplicities of M, we can determine the
indecomposable components of M, and the canonical Jordan form of ¢(z). For nonregular
elements, Lemma 19 is applied.

All p-restricted representations of A, (K) of dimension < 100 have been considered.

5. SYMPLECTIC GROUPS

In this section G = C,,(K). We apply Propositions 4 and 9, Theorem 5, and the results
of Section 4 to solve the problem for w = aw; or aw; + (p — 1 — a)wi+1 where a # 0 for
t =n — 1, and for w = ws. Thereafter these cases are not considered. It follows from [4,
§13, Ttem 3] that the formal character of the G-module A*V is equal to the sum of the
formal characters of the Weyl modules V (ws) and V(w1) and the formal character of the
G-module A*V is equal to the sum of the formal characters of the modules V (wa), V (w2),
and V(0). The group G can be naturally embedded into the group Gi1 = A2,—1(K).
Let N3 and Ny be the irreducible Gi-modules with highest weights ws and ws. Then
Proposition 3 and Corollary 1 imply that N3|G & M (ws) @ M (w1) if V(ws) is irreducible,
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and N4 |G = M(ws) ® M (w2) @ M(0) if V(ws) and V(w2) are irreducible. These facts are
used for solving the problem for w = ws and wa.

Observe that the order of a regular unipotent element is greater than p for p = 3. As
in Section 4, y is a regular unipotent element.

I. Let G = C2(K). One can check that oy(w) = 3a1 + 4a2 for w = a1w1 + a2w2 and
that o,(w2) < p for any element x of order p. Hence in this case M, is a direct sum of
p-restricted modules and certainly is a tilting module. Theorem 5 and Lemma 14 imply
that M, is a tilting module for w = awi, a < p.

Now using Lemma 14, we conclude that M, is a tilting module in the following cases:
p# 5 and w = 2ws or wi + wa;

p > 7 and w € {3ws, 4w2, 3wi + w2, w1 + 3wa};

p# 3 and w = 2w + we;

p#5,7and w = w1 + 2wz or 2wy + 2ws;

p > 11 and w = bwa.

Here in the notation of Lemma 14 we take A1 = aw: and A2 = bws if w = awi + bw» and
A1 = (a — 1wz and A2 = ws for w = aws.

First consider the block structure of ¢(y). Using arguments given at the end of Section 3,
we can assume that X, = X; —6Xz and X o =3X 1 — 2X _,.

In Items I.I — LIV by Theorem 4, dim M, = 1 for all u € A(M). Taking this into
account, it is not difficult to find the dimensions of the subspaces M;.

I Let p = 5 and w = w1 + wa. Then dimp = 12 and o,(w) = 7. One easily
observes that dim M7 = 1, dim M5 = 2, dim M3 = 1, and dim M; = 2. Hence I(M,) =
{M(7),M(5),2M(1)}. By Lemma 27, My, = N @ M(5) where I(N) = {M(7),2M(1)}.
Prove that N = T'(7).

One can directly verify that Xiav = leX_2’1)+X_2X_1X_2v # 0. As N is self-dual,
Lemma 29 implies that N = T'(7).

LII. Let p = 5 and w = 2ws. Then dim¢ = 13 and o,(w) = 8. One easily observes
that dim Ms = 1, dim Mg = 1, dim My = 2, dim M> = 2, and dim My = 1. Then I(M,) =
{M(8),M(4)}. By Lemma 27, M, = M(8) & M (4).

LIII. Let p = 7 and w = w; + 2w2. Then dimy = 24 and oy(w) = 11. One easily
concludes that dim M1, = 1, dim My = 2, dim M7y = 2, dim M5 = 2, dim M3 = 3, and
dim M; = 2. Hence I(M,) = {M(11),M(9),2M(3)}. By Lemma 27, M, = M(11) & N
where I(N) = {M(9),2M (3)}. Show that N = T(9).

Set mg = 5X_1v + X_5v. One can directly verify that mg € Inv My and X3 . mg =
2X2,X%,04+3X_2X_1X?%,0 # 0. Hence mg € N. As N is self-dual, Lemma 29 implies
that N 2 T(9).

LIV. Let p = 7 and w = 3wz. Then dimyp = 25 and oy(w) = 12. One can check
that dim M2 = 1, dilio = 1, dlmMs = 2, d1mM6 = 3, dim My = 2, dim My = 2,
and dim My = 3. Then I(M,) = {M(12),M(8),M(6),2M(0)}. By Lemma 27, M, =
N @ M(8) @ M(6) where I(N) = {M(12),2M(0)}. Show that N = T'(12). One can
directly verify that the vector X% v has a nonzero weight component 2X*; X2,v and so
X8 v #0. Since N is self-dual, N = T(12) by Lemma 29.

ILV. Let p = 5 and w = 3ws. Then dimy = 30 and oy(w) = 12. It is clear that
dimM12 = 1, dilio = 1, and dim Mg = 2. Set

As ={w — 32, w — a1 — 202, w — 201 — a2 };
Ay ={w — a1 — 3az,w — 201 — 202 };
Ao ={w — 201 — 3az,w — 3a1 — 2a2};
Ao ={w — 211 — 42, w — 31 — 32, w — 4o — 2a2}.
One easily observes that M; = (Mx|X € A;) for i € {0,2,4,6}. Since M (w) = V(w) (see,

for example, [18, Table 6.22]), the weight multiplicities of M can be determined with the
help of Freudenthal’s formula [12, §22, Item 3]. Using this formula, we get that dim M, = 2
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for 4 = w—2a1 — 22 and w — 31 — 3a2 and dim M, = 1 for 7 = w — a1 — a2. The weight
vV = w — 2a1 — 3oz lies in the same W-orbit with the weight w — 2a; — 22 and the weight
1N =w — 3a1 — az lies in the same W-orbit with 7. Hence dim M, = 2 and dim M, = 1. It
is clear that dim My = 1 for 0 = w — a1 — a2 and dim M, = 1 for 0 = w — a1 — 32 since
o lies in the same W-orbit with 6. All other weights A € Ag U A2 U A4 U Ag lie in the same
W-orbit with w, therefore dim M, = 1. Now we can deduce that dim Mg = 3, dim M4 = 3,
dim M, = 3, and dim My = 4. Then I(M,) = {M(12), M(8),2M (6), M(2),2M(0)}. By
Proposition 8 and Lemma 27, M, = N; @ Nz where I(N;) = {M(12),2M (6), M(2)} and
I(N2) = {M(8),2M(0)}. Show that Ny = T(12) and No = T'(8).

Since X3,v # 0, then X2 v # 0. Then Lemma 28 implies that K A,v = V(12). Set
N = N;/KAyv. One can directly verify that the vectors X2, X3,v and X2,X2,X v
are linearly independent. This implies that the vectors X2;X3,v, X2,X2,X v, and
X3,X?,v form a basis of M,. Using this basis, we can directly check that Inv M> = 0.
Since N; has no submodules isomorphic to M (2) and is self-dual, it has no such factor
modules. Now Lemma 23 yields that N 2 V(6) and N; has filtrations by Weyl modules
and by dual Weyl modules. Hence N is a tilting module and N; = T'(12).

Set ms = X2%,v + 2X_1X_5v. One can directly verify that ms € Inv Mg and that
X%,X2%,v is a nonzero weight component of X*_ ms. As Na is self-dual, by Lemma 29,
we get Ny = T'(8).

I.VI. Let p = 5 and w = w1 + 2w2. Then dim¢ = 40 and oy (w) = 11. It is clear that
dilil =1 and dlmMg = 2. Set

A7 ={w — 202, w — ay — az};
As ={w — a1 — 202, w — 201 — a2}
As ={w — a1 — 3a2,w — 201 — 202, w — 31 — Q2 };

Ay ={w — 201 — 32, w — 3a1 — 22},

One easily observes that M; = (Mx|A € A;) for i € {1,3,5,7}. Since M (w) = V(w) (see,
for example, [18, Table 6.22]), the weight multiplicities of M can be determined with the
use of Freudenthal’s formula. By this formula, dim M, = 2 for 7 = w — a1 — a2 and
dim My = 3 for § = w — 2a1 — 2. It is clear that dim M, = 1 for p € {w — 2a2, w —
a1 — 32, w— 3a1 — az} since p lies in the same W-orbit with w, dim M, = 2 for
o € {w— 201 — az,w — a1 — 2a2,w — 2a1 — 3@z} as o lies in the same W-orbit with
7, and dim M, = 3 for v = w — 3a1 — 22 since v lies in the same W-orbit with 6.
Now one easily deduces that dim My = 3, dim M5 = 4, dim M3 = 5, and dim M; = 5.
Then I(My) = {M(11), M(9),2M(7), M (5),2M(3), M(1)}. Proposition 8 and Lemma 27
imply that M, = Ny @ M(9) & Na where I(Ny) = {M(11),2M(7), M(1)} and I(N2) =
{M(5),2M (3)}. Show that N1 = T(11) and N2 = T'(5).

Since X2,v # 0, then X2 v # 0. By Lemma 28, KA,v = V(11). Set N = N1 /K Ayv.
It is clear that I(N) = {M(7), M(1)}. One can directly verify that the pair (X_2X3; X2 ,v,
X _1X3,X_1v) and the triple (X2 X250, X2, X2, X _1v, X_2X3, X_5v) consist of linearly
independent vectors. Hence the vectors

X oX3 1 X%0, X1 X3,X qv, X2, X% 0, X2 X2,X v, X_2X3 X _ov

form a basis of M;. Using this basis, it is not difficult to show that Inv M; = 0. Therefore
N; has no submodules isomorphic to M(1). As N is self-dual, it has no such factor
modules. Now Lemma 23 yields that N 2 V(7) and N; has filtrations by Weyl modules
and by dual Weyl modules. Hence N; is a tilting module and so N; = T'(11).

Set ms = 2X_1X%,0 4+ X2, X _5v. One can directly check that ms € Inv Ms and
that the vector X_,ms has a nonzero weight component 3X>;X_5v. As Ny is self-dual,
Lemma 29 implies that N, 2 T'(5).
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LVIL Let p = 7 and w = 3wi + w2. Then dimy = 44 and o,(w) = 13. One easily

observes that dim M73 = 1 and dim M7, = 2. Set

Ao ={w — 201, w — a1 — a2},

A7 ={w —3a1,w — 201 — a2, w — a1 — 22},

As = {w — 3a1 — az,w — 2aq — 2a2},

As ={w — 41 — a2,w — 3a1 — 2a2,w — 201 — 3z},

A ={w —ba1 — az,w — 41 — 2a2,w — 31 — 3az}.
It is not difficult to conclude that M; = (Mx|A € A;) for ¢ € {1,3,5,7,9}. Put p =
w—a1—Q2, ¥V = w—2a1 —ag, and 0 = w—3a1 —2as. By [13, Part 2, §8, Proposition 8.19], the
maximal submodule of the module V(w) is isomorphic to M (u). Observe that v = p — as
and 0 = g — 21 — ag. It is clear that dim(M,), = 1. Taking into account Theorem 5
and Lemma 14, we can show that dim(M,), = 2. Hence dim M, = dimV(w), — 1,
dim M, = dimV (w), — 1, and dim M, = dim V' (w), — 2. Applying Freudenthal’s formula
for calculating the weight multiplicities of V' (w), we get that dim M, = 1 and dim M, =
dim M, = 2. Set A = {w—aa1,0 < a < 3; w—az}. It is clear that dim Ms = 1 for § € A.
Obviously, dim M, = 1 for

7€ {w— a1 —2a2, w—2a1 — 32, w—4a; — a2, w—bar — 2az}
since 7 lies in the same W-orbit with a weight from A or with p. One easily observes that
dim My = 2 for

0 € {w—3a1 —az,w— 201 — 2a2,w — 4y — 2a2,w — 31 — 3z}
as 0 lies in the same W-orbit with v or o. It is not difficult to show that dim My = 2,
dim M7 = 4, dim M5 = 4, dim M5 = 4, and dim M; = 5. Hence
By Lemma 27, M, = M(13) & N1 & Ny where I(N;) = {M(11),2M (1)} and I(Nz) =
{2M(7),2M (5)}. Show that N1 = T'(11) and N> = T(7) @ M(7).

Set m11 = X_1v + 4X_ov. One can directly verify that mi1 € Inv M;; and that the
vector X° ,m1; has a nonzero weight component 5X°; X_sv. As N is self-dual, Lemma 29
implies that N1 = T'(11).

Putu = 6X20v+3X2%, X_2v+X2,X_1v. One easily observes that the pairs (X_2 X3, v,
X31X ov) and (X2,X2 v, X_2X2, X _v) consist of linearly independent vectors. Hence
the vectors X_2X3,v, X3, X _ov, X2,X2 0, and X_2X2,X_,v form a basis in Ms. Using
this basis, it is not difficult to show that

XoMs = (4X3 04+ 4X 52X 0+ X2 X _ov;

AX_ o X2 10+ X2 X 00+ 6X25X_10,3X% 0+ X o X2 0+ 4X7 5, X qv),
u € X4 Ms, and the vector X_,u has a nonzero weight component 3X_»X3,v+2X?, X_,v.
Since Inv M7 C Na, this yields that there exists a vector m € Nz N M5 such that
X_aXam # 0. As N; is self-dual, Lemmas 24 and 25 imply that No = T(7) & M (7).

LVIIL Let p = 7 and w = 4wz. Then dim¢ = 54 and oy(w) = 16. It is clear that
dim M6 = 1, dim M14 = 1, and dim M1 = 2. Set

Ao ={w — 3az,w — a1 — 202, w — 201 — a2}

As ={w — 201 — 202, w — @1 — 3z, w — dan};

As ={w — 3a1 — 22, w — 21 — 3z, w — a1 — dan};
Ay ={w — 41 — 202, w — 31 — Bz, w — 201 — dan};
Ao ={w — 4oy — 3z, w — 3a1 — dag,w — 201 — Sas};

Ao ={w — b1 — 3, w — 41 — 4o, w — 31 — Saen}.
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One easily observes that M; = (Mx|\ € A;) for i € {0,2,4,6,8,10}. It follows from [18,
Table 6.22] that the maximal submodule of the module V(w) is isomorphic to M (0).
Hence dim M, = dimV(w), for p # 0 and dim M, = dimV(w), — 1 for p = 0. Set
Y={w—-a02,0<a<4w—a1 —a},y=w— a1 — 22, § =w — 201 — 22,
T=w—2a1 —3az, ) =w—3a1 —3ag, and 0 = w —4aq — 4as. It is clear that dim M, = 1
for o € ¥. Using the formula in [4, Chapter 8, §9, Item 3], it is not difficult to deduce that
dim M, =1 and dim M5 = dim M, = dim M,, = dim My = 2. It is clear that dim M) =1
for
A€{w—201 — a2,w — a1 — 3az,w — 3a1 — 2a2,w — a1 — 4ag,
w— 4o — 2a2,w — 21 — bag,w — 3a1 — bag,w — bag — 3z}

since A lies in the same W-orbit with v or with a weight from the set X, and dim M, = 2
for v € {w — 200 — 4az,w — 41 — 32, w — 3a1 — 4az} as v lies in the same W-orbit
with one of the weights 0, 7, or . Now one can observe that dim Mo = 3, dim Mg = 4,
dim Mg = 4, dim My = 5, dim M3 = 5, and dim My = 4. Therefore

I(M,) = {M(16), M(12), 2M(10), M(8), 2M(4), M(2)}.
By Proposition 8 and Lemma 27, M, = N1 & M (12) ® N2 where
I(N1) = {M(16), 2M(10), M(2)} and I(N2)={M(8),2M(4)}.

Obviously, X3 ,v # 0. Then by Lemma, 28, K A,v = V(16). It is not difficult to check
that the pairs (X3, X*,0, X2,X3,X2%,0) and (X*, X250, X2, X2,X2%, X _5v) consist of
linearly independent vectors. Now it is clear that the vectors X3, X%,v, X2,X3, X2 v,
X4 X2%,0, X2, X%2,X% X 50, and X?,X2, X v form a basis of M». Using this basis, it
is easy to check that Inv My = 0. This yields that N; has no submodules isomorphic to
M (2). Since N is self-dual, it has no such factor modules. Now Lemma 23 implies that
Ni/KAyv = V(10) and N; has filtrations by Weyl modules and by dual Weyl modules.
Hence N is a tilting module and so N; 2 T'(16).

Set ms = 4X2, X250 4+ X_2X%, X _ov. It is not difficult to check that Inv Mg = (msg)
and X2 _msg has a nonzero weight component 6X%; X2,v. As N, is self-dual, then Ny 2
T'(8) by Lemma 29.

In Items I.IX and I.X by Lemma 4, dim M = 1 for all A € A(M). This fact is used for
calculating the dimensions of the subspaces M;.

LIX. Let p = 11 and w = w1 + 4ws. Then dim ¢ = 60 and oy (w) = 19. It is not difficult
to ShOW that dimM19 = 17 dimM17 = 2, dimM15 = 2, dilig = 3, dimM11 = 47
dim My = 3, dim M7 = 4, dim M5 = 4, dim M3 = 3, and dim M; = 4. Then

I(My) = {M(19), M(17), M (13), M (11),2M (7),2M (1)}.

By Lemma 27, M, = N1 @ M(17) & N> & M(11) where I(N1) = {M(19),2M (1)} and
I(Ny) = {M(13), 2M (7)}.

Set miz = 9X2, X 2v+X_1X_2v+9X3,0. One can directly verify that mi3 € Inv M3,
the vector X° ,v has a nonzero weight component 7X°,X?; X_,v, and the vector X3 ,mi3
has a nonzero weight component 8X°,X_;v. As N; and N» are self-dual, now Lemma 29
implies that N1 2 T'(19) and Ny = T'(13).

I.X. Let p = 11 and w = 5w2. Then dim¢ = 61 and oy(w) = 20. One easily deduces
that dimM20 = 17 dilig = 1, dimM16 = 2, dimM14 = 37 dilig = 3, dimM10 = 47
dim Mg = 4, dim Mg = 3, dim M4 = 4, dim M2 = 4, and dim My = 3. Then

I(My,) = {M(20), M(16), M (14), M (10),2M (4)}.
By Lemma 27, M, = M(20) & N @ M (14) & M (10) where I(N) = {M(16),2M (4)}. Show
that N = T(16).
Set mig = 6X32’U 4+ X_1X_2v. One can directly verify that mi¢ € Inv M6 and the

vector X° _ mi6 has a nonzero weight component X%, X3,v. As N is self-dual, N = T(16)
by Lemma 29.
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I.XI. Let p = 7 and w = 2w1 + 2w2. Then dim ¢ = 71 and oy (w) = 14. It is clear that
dim Mi4 = 1 and dim M2 = 2. Set

Ao ={w — 201, w— a1 — a2, w— 2a2};

Ag ={w — 201 — a2, w — a1 — 2a2};

A ={w — 3a1 — a2, w — 201 — 2a2, w — a1 — 3az};
Ay ={w —4a1 — a2, w—3a1 — 2a2, w — 2a1 — 3az};
Ar ={w —4a1 — 202, w — 31 — B2, w — 201 — 4dan};

Ao ={w — b1 — 22, w — 4da1 — 3a2, w — 3a1 —4as}.

One easily observes that M; = (M| € A;). By [13, Part 2, §8, Proposition 8.19], M (w) =
V(w)/M(2w1). We have 2w = w — 2a1 — 2. Set N = M(2w;). Taking into account
Theorem 5, one easily concludes that dim N, = 1 for p € A(N) \ {0} and dim Ny = 2.
Now the weight multiplicities of M can be found with the help of Freudenthal’s formula
for the weights of V(w). Set ¥ = {w, w—a1, w—a}, p =w—a1 — a2, ¥ = w—2a1 — Qg,
T=w-—2a1 — 202, N = w — 3a1 — 22, and Y = w — 4a; — 3ae = 0. One can show that
dim M, = dimV(w), = 2, dim M, = dimV (w), = 3, dim My = dimV(w)s — 1 = 3 for
0 = 7 or n, and dim My = dim V (w)y — 2 = 3. It is clear that dim My =1 for

A€{w — 201, w —202,w — a1 — 3az,w — dar — a2, w — 201 — 4das}
since A lies in the same W-orbit with a weight from 3, dim Ms = 2 for
0 €{w—2a1 —3a2,w — 301 — az2,w — by — 2a2,w — 31 — das}
as 0 lies in the same W-orbit with p, and dim M, = 3 for
v € {w — 201 — 3z, w — 4da1 — 202, w — 3a1 — 3az}

since + lies in the same W-orbit with v, 7, or n. Now one easily observes that dim Mo = 4,
dim Mg = 5, dim Mg = 6, dim M4 = 7, dim M = 7, and dim My = 7. This yields that

I(My) = {M(14),2M(12),2M (10), M (8), M (6),2M (4),2M (2), M(0)}.
Proposition 8 and Lemma 27 imply that My, = N1 & N2 @ N3 @ M (6) where
I(N1) ={M(14),2M (12), M (0)}, I(N2) = {2M(10),2M (2)}, I(N3) = {M(8),2M (4)}.

Show that N1 = T(14), N, =2 T(10) @ M(10), and N3 = T'(8).

Obviously, X_ov # 0 since X_1v # 0. Then by Lemma 28, KA,v = V(14). Set
N1 = Ni/KAyv. Tt is clear that I(N1) = {M(12), M(0)}. One can directly verify that
the pairs (X°, X%, X3, X2,X2,v) and (X%,X3,X%,0, X_1X%,X%,v) and the triple
(X oX* X250, X2,X3 X 5 X 10, X2, X3,X2,v) consist of linearly independent vectors.
Then the vectors X2, X2, X2%,0, X_1X%,X% v, X_oX* X%, X2,X3,X 12X v,
X2, X3,X2%0, X5,X%,v, and X3, X2,X2,v form a basis of My. Using this basis, it
is not difficult to check that Inv My = 0. Hence N; has no submodules isomorphic to
M(0). As N is self-dual, it has no such factor modules. Now Lemma 23 yields that
Ni/KAyv =2 V(12) and N; has filtrations by Weyl modules and by dual Weyl modules.
Hence NV; is a tilting module and so N1 =2 T'(14).

Set mo = X_1 X2, X% v and ms = 4X% X 2v+4X 2 X% v +2X 1 X%0v+ X2 X .
One can directly verify that X*_ X2mo # 0, X3ma = 0, mg € Inv Mg, and the vector
Xzams has a nonzero weight component 5Xf1X,21). It is clear that My = N» @ N’ where
N' = N1 ® N3® M(6). As N'NInv Mg = 0, the arguments above imply that there exists a
vector mb € NoN Mo such that X*, X2mj # 0. Then by Lemma 25, N2 = T(10) & M (10)
and by Lemma 29, N3 = T'(8).
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L.XII. Let p =7 and w = w1 + 3wz. Then dim ¢ = 76 and o, (w) = 15. It is clear that
dim M35 = 1 and dim M3 = 2. Set

A ={w — a1 — a2, w—2a2};

Ao ={w — 201 — @2, w— a1 — 2a2, w — 3az};

A7 ={w — 301 — a2, w— 201 — 22, w — a1 — 3az2};
As ={w — 3a1 — 22, w — 21 — 3a2, w— a1 —4as};
As ={w — 41 — 22, w — 3a1 — 3a2, w — 201 —4as};
A ={w — 5a1 — 202, w — 41 — 3ae, w — 31 — 4an}.

One easily observes that M; = (Mx|X € A;) for @ € {1,3,5,7,9,11}. By [13, Part 2, §8,
Proposition 8.19], M(w) = V(w)/M(w1). We have w1 = w — 3a1 — 3a2. Now the weight
multiplicities of M can be found with the use of Freudenthal’s formula for the weights of
V(w). Set ¥ = {w,w—az,w—2a2}, p =w—a1— a2, ¥ = w—a1 —2az, T = w—2a1 — 22,
and 7 = w — 3a1 — 3az. We can show that dim My = dimV(w)g = 2 for § = u or v,
dim M, = dimV(w), = 3, and dim M,, = dim V(w), — 1 = 3. Obviously, dim M, = 1 for
c€X, dimMy =1for A € {w—3az,w — 301 — a2,w — a1 — dao,w — ba1 — 2a2} since
A lies in the same W-orbit with a weight from ¥, dim Ms = 2 for § € {w — 201 — a2, w —
a1 — 3z, w— 2a1 — 4as,w — 4as — 2a2} as 0 lies in the same W-orbit with p or v, and
dim M, = 3 for v € {w — 3a1 — 2a2, w — 21 — 32, w — 3a1 — 4oz, w — 4a1 — 3as} since
~ lies in the same W-orbit with 7 or . Now it is not difficult to show that dim M;; = 3,
dim My = 5, dim M7 = 6, dim M5 = 7, dim M3 = 7, and dim M; = 7. Hence

I(My) = {M(15), M(13),2M (11),2M (9), M (7),2M (5),2M (3), M (1)}.
By Proposition 8 and Lemma 27, M, = N; & M(13) & N2 & N3 where
I(N1) = {M(15),2M (11), M (1)}, I(N2) = {2M(9),2M (3)}, 1(N3) = {M(7),2M(5)}.

Show that Ny 22 T(15), N2 &2 T(9) @ M(9), and N3 = T'(7).

Since X2,v # 0, we have X2 v # 0. Then Lemma 28 implies that K A,v = V(15). Set
N1 = Ni/KAyv. Then I(N7) = {M(11), M(1)}.

One can check that the triples (X*; X250, X3, X3,X_1v, X 2X*,X?%,0) and
(X2, X2, X 0, X 2 X3 X3 ,0, X2,X2%,X2,X_1v) consist of linearly independent vectors.
Then the vectors X2 X2,0, X4, X3,0, X3, X3, X 1v, X_ 2 X%, X2%,0, X2, X2,X 10,
X_2X3,X3,0, and X2,X2,X2,X_,v form a basis of M;. Using this basis, we can show
that Inv M7 = 0. Therefore N1 has no submodules isomorphic to M(1). As Ni is self-
dual, it has no such factor modules. Now Lemma 23 yields that N, = V(11) and N; has
filtrations by Weyl modules and by dual Weyl modules. Hence N; is a tilting module and
so Ny 2 T'(15).

Put

ms=6X1 X200 +2X% X 2 X2 X ov+6X o X 1 X304+ X2, X3,X v,
mr =4X2 X ov+4X2, X250 + X 1 X250,

One can directly verify that X3, X2ms has a nonzero weight component 6X%; X2,0v +
6X_1X_2X3, X _ov, X2, m3 = 0, m7 € Inv M7, and the vector X_,m7 has a nonzero
weight component X%, X_;v. It is clear that M, = N> ® N where N = N; @ M (13) & Ns.
As N NInv My = 0, there exists a vector mj € No N M3 such that X3, X3m} # 0. Then
by Lemma 25, No & T(9) @ M(9). It is clear that m7 € Ns. Since N3 is self-dual, then
N3 = T(7) by Lemma 29.

In Items I.XIII and I.XIV by Lemma 4, dim M,, = 1 for any p € A(M). This fact is
used for calculating the dimensions of the subspaces M;.

I.XIII. Let p = 13 and w = w1 + 5we. Then dim ¢ = 84 and oy(w) = 23. We can show
that dimMzg = 17 dimM21 = 2, dimM19 = 2, dimM17 = 37 dil’ans = 4, dimM13 = 4,
dim Mi1 = 4, dim My = 5, dim M7 = 4, dim M5 = 4, dim M3 = 5, and dim M; = 4. Hence
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I(M,) = {M(23), M(21), M(17), M(15),2M(9),2M(3)}. Lemma 27 implies that M, =
M(23)® N1 @ M(17)® N2 where I(N1) = {M(21),2M(3)} and I(N2) = {M(15),2M (9)}.
Show that Ny 2 T'(21) and N, =2 T'(15).

Set ma1 = 4X_1v+ X_2v and mis = 7X? X ov+ 11X2, X250 + 5X_1 X250+ X 0.
One can directly verify that mz; € Inv Moy, mis € Inv Mis, the vector X2, my; has
a nonzero weight component 3X”, X3,v, and the vector X3 _,m5 has a nonzero weight
component X%, X _jv. It is clear that ma1 € Ny and mis € N2. As N; and N- are self-dual,
N; 2 T(21) and N2 2 T(15) by Lemma 29.

ILXIV. Let p = 13 and w = 6wz. Then dim¢ = 85 and oy (w) = 24. One can check
that dimM24 = 17 dimMgg = 1, dimMzo = 2, dilig = 37 diliﬁ = 3, dimM14 = 4,
dim M2 = 57 dilio = 47 dlIl’lMg = 4, dlmMG = 5, dim My = 47 dim My = 47 and
dim My = 5. Hence

I(M,) = {M(24), M(20), M (18), M (14), M (12), 2M (6), 2M (0)}.
By Lemma 27, M, = N1 & M (20) & N2 @ M (14) M (12) where I(N1) = {M(24),2M(0)}
and I(Ny) = {M(18),2M (6)}. Show that Ny = T'(24) and N = T(18).

Put mis = 7X31X_2v + 5X_1X32'u + Xigv. One can directly verify that mis €
Inv Mis, the vector X*2,v has a nonzero weight component 4X%,X*,v, and the vector
X% _,mas has a nonzero weight component 12X3, X%,v. Tt is clear that v € N; and mig €
Ns. Since N7 and N; are self-dual, Lemma 29 yields that Ny = 7'(24) and N2 = T(18).

ILXV. Let p = 5 and w = 2w1 + 3w2. Then dimy = 86 and oy (w) = 18. One easily
observes that dim Mis = 1 and dim Mis = 2. Set p = 2w; + 2wz, M’ = M (),

A14 :{w — 2(117 wW— 01 — a2, W— 2&2};

Ao ={w — 201 — a2, w— a1 — 2a2, w— 3az};

Ao ={w — 301 — a2, w— 201 — 2002, W — 1 — 3az2};

As ={w — 4oy — a2, w—3a1 — 202, w — 201 — 32, w — a1 —4das};

As ={w — daq — 2a2, w — a1 — 32, w— 201 —4das};

Ay ={w — b1 — 2a2, w — 4o — 32, w— 31 — dag, w — 2a1 — Sz}

Ay ={w — 61 — 2a2, w — B — 32, w — 4oy — 4oz, w— 3a1 — bas};

Ao ={w — 6a1 — a2, w — Ba1 — dae, w— 4o — Bbas}.
One easily deduces that M; = (Mx|\ € A;) for ¢ € {0,2,4,6,8,10,12,14}. By [13, Part 2,
§ 8, Proposition 8.19], M (w) = V(w)/M’'. We have pp = w — a1 — a2. By Proposition 4
and Theorem 5, M’ = S%5(V). This fact is used to find the weight multiplicities of M’.
After that we can find such multiplicities for M taking into account Freudenthal’s formula
for the weights of V(w). Set v = w —2a1 — a2, T = w — a1 — 2a2, § = w — 201 — 2a2,
y=w—3a1 — 202, d =w —3a1 — 3a2, 0 =w —4a1 — 3az, x = w — ba1 — 4az = 0, and
Y ={w, w—o1, w—az, u, 7}. Obviously, dim M}, = dim M, = dim M, = 1. Using the
realization of M’ mentioned above, it is not difficult to show that dim M{ = dim M, = 2,
dim Mj = dim My = 3, and dim M; = 4. Now we can conclude that dim M, = 1 for
o € ¥, dimM, = dimM¢ = dim Ms; = dim M, = 2, and dim My = 3. It is clear that
dim My =1 for

A€ {w—3a1 —az, w— a1 —3a2, w— a1 —4az, w—4a; — az,
w — 21 — bag, w— bar — 2a2, w — 3a1 — bag, w — 6a1 — 2as}
since A lies in the same W-orbit with a weight from 3, dim M, = 2 for
P € {w — 201 — 32, w—2a1 — dag, w— 4o — 2as,
w— 31 — 4daz, w— bag — 3az, w— 61 — 32, w — 4o — Sas}

as v lies in the same W-orbit with v, &, v, or ¢, and dim M,, = 3 for n = w—4a1 —4as since
71 lies in the same W-orbit with 6. One easily observes that dim M4 = 3, dim Mi2 = 4,
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dim Mo = 4, dim Mg = 6, dim Mg = 6, dim My = 7, dim M> = 7, and dim My = 6. Hence
I(M,) = {M(18), M(16), M (14), 2M (12), M (10),2M (8), M (6), M (4), M (0)}.
By Proposition 8 and Lemma 27, M, = N1 & N2 @ M (14) ® M (4) where
I(Ny) = {M(18), M(10),2M (8), M(0)}, I(N2) = {M(16),2M (12), M (6)}.

Show that N; 22 M (18) & T'(10) and N2 = T'(16).

Set mig = XEIX,QU + 4X31X32v. One can directly verify that Xfav =0, mio €
Inv Mo, and the vector X_omio has a nonzero weight component 3Xf1X,2v. Therefore
KAyv = M(18) and KAymio = V(10). Set N1 = N1/KAyv. It is clear that I(Ny) =
{M (10),2M(8), M (0)}. As Nj is self-dual, it contains a submodule U with I(U) = I(Ny).
We have U N KAyv = 0. Hence N; = KAyv & U. Show that U = T(10). Obviously,
mio € U. It is not difficult to check that the pairs (X2, X3,X2% v, X2, X2,X2, X _ov),
(X3, X2,X2 0, X3, X3,X2% X _o0), and (X2, X2, X 2 X2 v, X2, X2, X2, X_5v) consist
of linearly independent vectors. Therefore the vectors X4 X3,X2% 0, X4 X2,X2, X _ov,
X3 X4,X2 0, X3, X3,X2 X ov, XA, X2, X X2 v,and X2, X%, X2, X_ov form a basis
of My. Using this basis, we can deduce that Inv My = 0. Hence U has no submodules
isomorphic to M (0). The module U is self-dual as N; is such. Therefore U has no factor
modules isomorphic to M (0). Hence U/K Aymio has no direct summands isomorphic to
M(0) or A(8). Lemma 23 implies that U/ K Aymio = V(8). Therefore U has a filtration
by Weyl modules and is a tilting module by Remark 4. As we know I(U), we conclude
that U = T'(10).

Set mis = 2X_1v+3X_ov. We can directly verify that mis € Inv Mi¢. Since X350 # 0,
then X2 _ mie # 0. Then by Lemma 28, KA,mis = V(16). Put No = No/KAymys. It is
clear that I(N2) = {M(12), M(6)}. It is not difficult to check that the pairs
(X21X 2 X2, X 9v, X2 X2,X210), (X_1X2,X2, X o0, X_1X3,X2,0), and
(X3,X2,X _ov, X2,X2,v) consist of linearly independent vectors. Hence the vectors
X21X X2 X 50, X2, X%2,X% 0, X 1 X2,X2, X 90, X 1 X3,X2 0, X3,X2, X 50, and
X%,X2% v form a basis of M. Using this basis, we can directly verify that Inv Mg = 0.
Therefore N> has no submodules isomorphic to M (6). As N is self-dual, the modules N
and N> have no such factor modules. Hence N: is indecomposable. Now Lemma 4 yields
that N5 is generated by a nonzero vector of weight 12 and Ny = V(12). Therefore N; has
a filtration by Weyl modules and it is a tilting module by Remark 4. As we know I(N2),
we conclude that N, 2 T'(16).

For regular unipotent elements of the group C2(K) all possibilities are considered.

LXVL Let J(z) = (2,2). Then oy (ai1wi + aew2) = a1 + 2a2. One easily observes that
oz(w) < pfor w € {w1 + w2, 2w1 + w2, 2wz} and p > 3, for w € {wi + 2w2, w2, 2w +
2wz, 3wi + wa} and p > 5, and for w € {4dws, Swa, w1 + 3wz, w1 + 4wz} and p > 7. In
this case M, is a direct sum of irreducible p-restricted modules. As we know the weight
multiplicities of M, it is not difficult to find these modules and determine the block
structure of p(z). Let p = 3 and w = 2ws, or p = 5 and w € {3ws, 4wz, w1 + 3wz}, or p =7
and w = bwa. Set p1 = p2 = wo for p = 3 and w = 2ws; p1 = 2ws and po = wa for p =5
and w = 3wz; g1 = 2wz and p2 = w1 + w2 for p = 5 and w = wi + 3wsz; w1 = p2 = 2ws
for p = 5 and w = 4ws; and p1 = 3w and pe = 2w, for p = 7 and w = 5wz. In all
these cases it is clear that the restrictions M (u;)|As are tilting modules since all their
weights are less than p. As the module V(w) is irreducible for such weights w, then M,
is a tilting module by Lemma 14. Using Lemma 14 again, we conclude that M, is also a
tilting module for w = w1 + 2w2 and p = 3 (set p1 = w1 and p2 = 2w2). Since we know
the weight multiplicities for all these modules, we can present the module M, in the form
of a direct sum of indecomposable tilting modules and determine the block structure of
¢(z) using Lemma 23 and Proposition 7.

Set I' = G(2e1, az2). It is clear that I' =2 C1 (K) x C1(K) = A1 (K) x A1(K) and that x
is conjugate to a regular unipotent element of I'. We use Theorems 4 and 3 and Lemma 21



THE JORDAN BLOCK STRUCTURE 353

to determine the canonical Jordan form of ¢(x) when p = 11 and w € {w1 + 4w2, 5wa} or
p =13 and w € {w1 + Swa, 6w2}. Recall that for p = 3 the representation ¢(2wi + 2ws) is
the Steinberg representation and hence ¢(x) has only blocks of size 3 for all elements z of
order 3 (see [30]). Taking into account the arguments at the beginning of this section, we
can conclude that it remains to consider the following cases:

1) p=3, w=2w1 + ws;

2) p=75, w =2w1 + 3wz or w1 + 2ws;

3) p="7,w=4ws or wi + 3w2.

Observe that x is conjugate to a short root element. Set H = G(1). We can assume that
x € H. To determine the block structure of ¢(z), we consider the restriction M|H. Put
Qi ={p € AM)|p=w—kar —ias}, Uy = (M,|p € Q;), and QF = {\ € Q|a()) > 0}.
Below (M) is the maximal index ¢ such that ; # & and U; ; is the weight subspace of
weight j in the H-module U;. Theorem 1 and Lemma 11 imply that U; = U;ar)—;, the
H-modules Uy and Uj(ary are irreducible, and Up = Uj(ar).

I.XVI.1) Let p = 3 and w = 2w1 +ws. Then i(M) = 4 and Uy = Us =2 M (2). One easily
observes that Qf = {w —ia1 — a2|0 <4 < 2} and QF = {w — i1 — 22|l < i < 3}. Show
that U; 2 T'(4) and Uz = M(4) & M(2).

Set N = M(2w:). By [13, Part 2, §8, Proposition 8.19], M(w) = V(w)/N. We have
2w1 = w — a1 — az. Using Theorem 5, one easily concludes that dim N, = 1 for p €
A(N)\ {0} and dim Ny = 2. Now the weight multiplicities in M can be found with the use
of Freudenthal’s formula for the weights of V(w). Put ¥ = {w, w — a1, w — a1 — a2} and
A =w —2a1 — az. One has w — 3a; — 2a2 = 0. Taking into account the arguments above,
one can verify that dim Ms = 1 for § = w — a1 — 2az or 0 and dim My = 2. Now it is clear
that dim M, = 1 for o € 3. Obviously, dim M, = 1 for 7 = w — 2a1 — a2 since T lies in
the same W-orbit with a weight from ¥, and dim M, = 2 for v = w — 201 — 2a2 as v lies
in the same W-orbit with A. This yields that dimU; 4 = 1, dimUi 2 = 1, dimU; 0 = 2,
dim U2’4 = 1, dimUQ’Q = 2, and dim Ugyo = 1. Hence I(Ul) = {M(4),2M(0)} and I(UQ) =
{M(4),M(2)}. By Lemma 27, Us = M (4) & M(2).

Set miy = X_sv and mo = X,2,3X311). It is clear that m; € Ly and ma € L3. By
Lemma 12, the vectors m; and mz # 0 and the group X; fixes these vectors. Show that
KA,m; = V(4). For this, it suffices to show that X%;m; # 0. Put u1 = X2;m; =
X2 X ovand ug = X2 1me = X2, X 23X% 0. As XoX2, X 9v = X% v # 0, then
u1 # 0. Since

XoX7X3us =Xo X7 X211 X X210 =Xo X1 (X 1 X 2X2 0 4+2X%,X 2X 1v) =
=Xo(2X 1 X 2 X 10+ X 1 X 20X 10+ X2 X _0v) = X210 # 0,
then ws # 0. This implies that the H-modules U; and Us contain submodules isomorphic
to V(4). As M is self-dual, now Lemma 24 yields that U; = Us = T'(4).
I.XVI.2) Let p =5 and w = 2w; + 3wz. Then (M) = 8 and Uy = Us = M(2). One can
check that
Qf ={w —ion — 2|0 <i < 2}; QF = {w —ioq — 202|0 < i < 3};
OF ={w —ion — 3a2]|0 < i <4}; QF = {w — i1 — 4az|1 <i <5}
The dimensions of the weight subspaces with the weights from the sets Qj’ are determined
in Item I.XV. Now one easily observes that dimU; 4 = 1, dimU;2 = 1, dim U0 = 2,
dingyG = 1, dimU2,4 = 1, dimUzyz = 2, dimUzy() = 2, dingyg = 1, dimU376 = 1,
dimU3,4 = 2, dimU3,2 = 2, ding,,o = 3, dimU4,8 = 1, dimU4,6 = 2, dimU4,4 = 2,
dim Uy 2 = 3, and dim Uys,o = 2. This yields that
I(U) = {M(4), M(0)}, I(Uz) = {M(6),2M (2)},
I(Us) = {M(8),M(4),2M(0)}, I(Us) = {M(8), M(6),2M (2)}.
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By Lemma 27, Uy =2 M (4) @ M(0), Uz 2 T(6), U3 =2 N @& M(4) where

I(N) = {M(8),2M(0)}, and Us = M(8) ® N1 where I(N1) = {M(6),2M(2)}. As the
modules Us @ Us and Uy are self-dual, we conclude that N; is self-dual and Us has a direct
summand N’ such that [(N) = I(N’) and the module N & N’ is self-dual. Show that
Uz 2 T(6), N = N = T(8), and N1 = T(6). First we prove that the H-modules Us,
N1, and Us contain submodules isomorphic to V(6), and N and N’ contain submodules
isomorphic to V(8).

Set m; = XEQU, ms = X,275Xf1X,2v, ms = XEQU, my = X,2,5X31v, and m =
X4,X2 0+ X3,X%, X _ov. It is clear that m1 € Us, ma € Us, ms € Us, my € Us, and
m € Us. One can directly verify that m € Inv Uy . Observe that the group X; fixes the
vectors m1 and mg. Since w(u) + a1 € A(M) for u = mo or ma, then the group X; fixes
u. Obviously, ms € N, msy € N’, and m € N;. By Lemma 28, it suffices to show that
X2 imi #0, X21ma #0, X2 1ms #0, X21my #0, and X2;m # 0. One can check that

X2X2% my =2X2 0 #0,
X3XEX3X2 me =3X5 X1 X2, X2, X X _ov =
= XOXTUX 1 X2 X X ov 4 2X21 X2, X2 X 0v) = 2X5 X7 X2 1 X200 X2 X v =
=2X5 X1 (X1 X2 X2 X 0o+ X2 X250 X 1 X ov) =
=X3(8X2,X2,X su+2X 1X2,X 1X su+3X2,X3,0) =
= X7(2X 2 X2 X 20 +4X2, X2 0 +4X 1 X o X 1 X ov 4 X1 X2, X o+
+4X2,X%,0) == Xo(3X 2 X210+ 3X 1 X X 10) =2X2 0 #£0,
XoX2X2XY ms = 2Xo X2 X2 X 00 = 3Xo X2 X v = 4X2 0 £ 0,

X3XTX3XY ma = 2X5 XX X 03X2 0=

= X5 X7(3X3 X 03X2 w4+ 4X2 X 03X _1v) =

= X5X7(3X2,X 03X2 0 +4X% X 53X 104+ 3X1,X 530) =

= X3X1(3X 1 X 23X% 0+ 4X2 X 93X 10 +3X>1X _930) =

= X5(2X 23X2 10+ X 1 X 23X 104 2X21 X _230) = X2 0 #0,
XIXTX3X2 m = X5 X7 Xo(3X2 1 X2, X2 1 X v+ X2 X2, X2 0) =

= X3 X7 (2X2 1 X 2 X2 X ov+3X2, X2, X2 0) =

= XX 1(4X 11X 9 X2 X 00 +2X% X 0X 1 X v+ X 1 X2, X2 0+

+ X21X20X 10) = X3(3X o X2 X ov+ X 1 X o X 1 X 204 2X2, X2 0+

+3X 1 X5X 1v) = X2 (X2 X o+ X1 X 2 X_qv) = 2X2 0 # 0.

Hence the H-modules Uz, N, N1, N’, and Us have the required submodules. As the
modules Us @ Us, N & N’, and N; are self-dual, we conclude that Uz = Us = T(6),
N = N’ = T(8), and Ny = T(6).

I.XVI.3) Let p = 5 and w = wi + 2wz. Then ¢(M) = 5 and Uy = M(1). One easily
observes that QF = {w — as,w — a1 — a2} and QF = {w — i1 — 202|0 < i <
2}. The dimensions of the weight subspaces with the weights from Q) are determined
in Item ILIV. Now we can conclude that dimU; 3 = 1, dimU;; = 2, dimUss = 1,
dim U2,3 = 2, and dim Uzyl = 3. This yields that I(Ul) = {M(?)),M(l)} and I(Uz) =
{M(5),2M(3), M(1)}. Lemma 27 implies that U; = M(3) & M(1) and Uz = N & M(1)
where I(N) = {M(5),2M (3)}. As Uz 2 Uy, then Us 2 N’ & M (1) where N’ = N*. Show
that N 2 N’ = T'(5). First we prove that the H-modules N and N’ contain submodules
isomorphic to V(5). Set m1 = X2,v and ma = X3, X_qv. Tt is clear that mi € N and
ma2 € N’. By Lemma 12, the vectors m; and mz # 0 and the group X fixes these vectors.
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By Lemma 28, it suffices to show that X_1mi1 # 0 and X_1ms # 0. One can directly
verify that X3X_1m; = 4X_1v # 0,

XTX5X 1mo =2X7X 1 X 20X 10 =2X1(X_2X_ 10+ X_1X_20) =3X_ov #0.

Hence N and N’ have the required submodules. As N @ N’ is self-dual, Lemma 24 yields
that N = N’ 2 T'(5).

I.XVI.4) Let p = 7 and w = 4wz. Then (M) = 8 and Uy = M(0). One easily observes
that

Qf ={w—io1 — )0 <i<1}; QF ={w—io —2a0|0 < i< 2}
OF ={w —ion — 3020 < i < 3}; QF = {w — i1 — 402|0 < i < 4},

The dimensions of the weight subspaces with the weights from Q] are determined in
Item I.VIIL. Now we can show that dimU; 2 = 1,dim U0 = 1;dimUsz 4 = 1, dim Uz 2 =1,
dimUz’o = 27 dimU3,6 = 17 dimU3,4 = 1, dimU3’2 = 2, ding’Q = 2, dimU478 = 1,
dimUse = 1, dimUsa = 2, dimUs2 = 2, and dim U0 = 2. This yields that I(U1) =
{M2)}, I(Uz) = {M(4), M(0)}, I(Us) = {M(6), M(2)}, and I(Us) = {M(8),2M(4)}.
By Lemma 27, U; = M(2), Us = M(4) ® M(0), and Us = M(6) & M(2). Show that
Us = T'(8). First we prove that the H-module Uy contains a submodule isomorphic to
V(8). Set m = X2%,v. It is clear that m € Us. By Lemma 28, it suffices to show that
X2,m # 0. One can directly verify that X2 X2 ;m = 4X2,X?,v # 0 by Lemma 6. As U,
is self-dual, Lemma 24 imply that U, = T'(8).

I.XVIL5) Let p = 7 and w = wi + 3wz. Then i(M) = 7 and Uy = M(1). One easily
observes that

Qf = {w—as,w—ai—az}; QF = {w—ic1—2a2|0 < i < 2}; QF = {w—ia1—3a2/0 < i < 3}.

The dimensions of the weight subspaces with the weights from the sets Q; are determined
in Item I.XII. Now we can show that dimU; 3 =1,dimU;,;;1 = 2; dimUs 5 = 1, dimUs 3 =
2, dimU271 = 3, dlm U3’7 = 17 d1m U375 = 2, dimU373 = 3, and dimU371 = 3. Then

I(U) = {M(3), M(1)}, I(Uz) = {M(5), M(3), M(1)}, I(Us) = {M(7),2M(5), M(3)}.

By Lemma 27, Uy = M(3) & M(1), Uy = M(5) & M(3) & M(1), and Us = N @& M(3)
where I(N) = {M(7),2M (5)}. Since Us = U3, then Uy & N’ & M(3) where N’ = N*.
Show that N = N’ = T(7). For this we prove that the H-modules N and N’ contain
submodules isomorphic to V(7). Set m1 = X3,v and ms = X2,X_jv. It is clear that
m1 € N and ma2 € N'. By Lemma 12, m; and ma # 0 and the group X; fixes these
vectors. By Lemma 28, it suffices to show that X_1m; # 0. One can directly verify that

XoX_1m1 =3X_1X%,0#£0,
XiXoX 1me =4X7X 1 X2, X j0=X(6X3,X 10 +4X 1X%,0) =6X2,0#0.

As N @ N’ is self-dual, Lemma 24 yields that N = N’ = T'(7).

For an element x with J(x) = (2, 2) all possibilities are considered.

LXVIL Let J(z) = (2,1,1). Then oy(aiw1 + azw2) = a1 + a2. Obviously, M (\)|A, is
a tilting module if 0,(A\) < p. Using Lemma 14 and arguing as in Item I.XVI, we can
show that M|A; is a tilting module for p = 3 and w = w1 + 2w2 (in the assumptions
of Lemma 14 set A1 = w1 and A2 = 2ws). Therefore it remains to consider the following
cases:

1) p=3, w="2w1 + wy;
2) p=>5, w = 2w + 3wa.

Recall that = is conjugate to a long root element. Set H = G(2). We can assume that
xz € H. To determine the block structure of ¢(x), we consider the restriction M|H. Set
Qi ={p e AM)|p=w—iar —kas}, Uy = (Mu|p € Q;), and QF = {\ € Q|o(\) > 0}.
Define ¢(M) and U;,; as in Item I.XVI. By Theorem 1 and Lemma 11, the H-modules Up
and U;(yy are irreducible, U;(ay—; £ Uy, and w(Uo) = w|H.
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I.XVIL.1) Let p = 3 and w = 2w; + we. Then ¢(M) = 6 and Uy = M (1). One easily
observes that Qir ={w-—o,w—a1 —as}, Q;L = {w — 2a1,w — 201 — a2}, and Q;’ =
{w — 3a1 — az,w — 3a1 — 2a2}. The dimensions of the weight subspaces with weights
from the sets Q) are determined in Ttem I.XVI.1). Now we can show that dimU; > = 1
and dimU;o = 1 for ¢ = 1 or 3; dimUsz3 = 1, and dimUsz;; = 2. This yields that
I(Uy) = I(Us) = {M(2)} and I(Uz) = {M(3),2M(1)}. Obviously, U1 = Us = M(2).
Show that U; = T'(3). First we prove that the H-modules Uz and Uy contain submodules
isomorphic to V(3). Set m1 = X2 ,v and my = X_1,4X_ov. It is clear that mi1 € Us
and mo € Us. By Lemma 12, m; and mo # 0 and the group X, fixes these vectors. By
Lemma 28, it suffices to show that X_2m; # 0. One can directly verify that

X2X_omy = X_ov #£0,
X3XIX omo = X3X1X 20X 13X ov=X3X 2X2 X ov=
= Xo(X2 X ov 4+ X 2X20) = X2 0 #0.

As Uz @ Uy is self-dual, Lemma 24 implies that Uz = Uy = T'(3).
I.XVIL.2) Let p =5 and w = 2w1 + 3ws. Then i(M) = 10 and Uy = M (3). One easily
observes that Q = {w — a1 —ia2|0 <i < 2};

OF ={w —2a1 —iaz|0 <i <2} QF = {w—3a1 —ias|l <i <3}
Qf ={w —4a1 —iaz|1 <i <3} QF = {w— 501 —iaz|2 <i < 4},

The dimensions of the weight subspaces with weights from Q; are determined in Item I.XV.
Now we can conclude that dimU; 4 = 1, dimU; 2 = 1, dimUi o = 1, dimUszs = 1,
dim U2,3 = 2, dim U2,1 = 2, dim Ui,4 = 17 dim Ui,2 = 2, dim Ui70 =2 fOI" 7 = 3 and 5,
d1m U4’5 = 17 dlrﬂ U4’3 = 2, and d1m U4’1 = 3 Then

I(Uh) = {M (D)}, 1(U2) = {M(5),2M (3)},
I(Us) = I(Us) = {M(4), M(2)}, I(Ua) = {M(5),2M(3), M(1)}.

By Lemma 27, Uy = M(4), Us =2 Us & M(4) ® M(2), and Uy & N @ M(1) where
I(N) = {M(5),2M(3)}. As Us = Uy, then Us = N’ & M(1) where N’ & N*. Show
that Uy 2 Us 2 N = N’ = T'(5). First we prove that each of these modules contains
a submodule isomorphic to V(5). Set m1 = X2 v, ma = X1 X o0, m3 = X_1,6X2o0,
and ms4 = X_18X>%,v. It is clear that m; € Uz, ma € N, m3z € N’, and m4 € Us. By
Lemma 12, m; # 0 and the group X, fixes these vectors. By Lemma 28, it suffices to show
that X_om; # 0. One can directly verify that X?X _om; = 4X_ov # 0, X{X_omg =
X2,0 #0,

X?Xo X1 X _oms =2X7XoX_0X% X2 v =
=X7(2X% 1 X204+ 3X X2 X 5v) =2X2,0 #£0,

X{XIXTX omy =4XTX5X 20X 14X% 0 = X{Xo(AX 14X2 042X 52X 1 4X250) =
=XT(8X_14X200+3X 2X_ 14X _20) = X{(4X_13X°50 43X _2X_ 13X _ov) =
=X7(3X% X200+ 3X 2X2 X 20) =3X1 X 2 X 1 X o0 =2X2,0 #0.

As Uy @ Us and N @ N’ are self-dual, Lemma 24 implies that Us 2 Us 2 N = N’ 2 T'(5).

For the group C2(K) all possibilities are considered.

II. Let G = C3(K). It follows from [18, Table 6.32] that the module V' (ws) is irreducible.
Proposition 3 and the arguments at the beginning of the section imply that for all elements
z of order p the restriction M(w)|A; is a tilting module for w = w2 and p > 3 and for
w = w3. Now Lemma 14 implies that M, is a tilting module for w = w1 + wy or 2wy and
p# 3,7, for w=w; +ws and p > 3, and for w = 2ws and p # 5.

Obviously, p > 5 if |y| = p. Taking into account the arguments at the beginning of the
section, one easily observes that for a regular unipotent element it suffices to consider the
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case where p = 7 and w = w; + w2 or 2ws. Observe that oy(w) = 5a1 + 8az + 9as for
w = ai1wi + aswsz + asws. Using the arguments at the end of Section 3, we can assume that
Xa = Xl + 2X2 + 2X3 and X,a = 5X,1 + 4X,2 + X,3.

ILI. Let p = 7 and w = w1 +ws2. Then dim ¢ = 58 and oy (w) = 13. One easily concludes
that dim Mi3 = 1 and dim M1 = 2. Set p = w — a1 — ag,

Ay ={w—a1 — a2, w—az — as};

Ar={w—a1 —az — a3z, w— 201 — a2, w— a1 — 2a2, w — 202 — asz};

As ={w—201 —a2 — a3, w— a1 — 202 — a3, w— 201 — 2a2};

As ={w—2a1 — 202 — a3, w— a1 — 3a2 — a3, w— a1 — 2a2 — 2a3};

A ={w—3a1 — 202 — a3, w—2a1 — 3a2 — a3, W — 201 — 2a2 — 2a3,
w— a1 — 3az — 2as}.

It is not difficult to show that M; = (Mx|X € A;) for i € {1,3,5,7,9}. It follows from [13,
Part 2, § 8, Proposition 8.19] that the maximal submodule in V' (w) is isomorphic to M (w).
We have wi = w—a1 —2a2 — as. Now using Freudenthal’s formula for the weights of V (w),
we can deduce that dim M,, = dim V' (w), = 2 and dim M., = dimV(w)w, —1 = 3. One
easily observes that dim M, =2 forv € {w —a1 —as —as, w— a1 —3a2 — a3, w— a1 —
3az — 2ai3} since v lies in the same W-orbit with p, dim Ms = 3 for § = w—2a1 —2a2 —as
or w— 2a1 — 3ae — ag as ¢ lies in the same W-orbit with w1, and dim M, = 1 for other
weights 7 € Ag U A7 U ... U A; since they lie in the same W-orbit with w. Now it is not
difficult to show that dim My = 3, dim M7 = 5, dim M5 = 5, dim M3 = 6, and dim M; = 7.
This yields that

I(My) = {M(13), M(11), M(9),2M (7),2M (5),2M (3),2M (1)}.

By Lemma 27, M, = M(13) & N1 & N2 @ N3 where I(N1) = {M(11),2M (1)},
I(N2) = {M(9),2M(3)} and I(N3) = {2M(7),2M(5)}. Show that N1 = T(11), Np =
T7(9), and N3 2 T(7) @ M(7).

Set m11 = 5X v+ X_2v,mg = X 1 X 20+3X 2 X v+ X_3X ov, u1 = X_3X_ o0,
Uy = X31X72u1, and w = X33X32X,1v. Lemma 12 implies that the vector u; # 0 and is
fixed by the subgroups X; and X>. Using Lemma 6 several times, we get that uz and w # 0
(when we consider the vector uz, Lemma 6 is applied to the vector u; in the G(1,2)-module
generated by it). One can directly verify that m11 € Inv M11, mg € Inv My, and the vectors
X% .,mi1 and X3 _,mo have nonzero weight components 4u; and 5w, respectively. Hence
X3 . mi1 and X2 .,mo # 0. As N; and N> are self-dual, then by Lemma 29, N1 = T'(11)
and Ny = T(9).

Put U = Xo M5,

a=2X_9X_ 1 X 20+5X_ 1 X o X 10+2X_ 1 X _3X 20+6X_3X o X _ 10+3X_o2X_3X _ov.

It is not difficult to check that the vectors X_3X_oX_1X_ov, X_2X_3X_2X_ v, and
X_1X_2X 3X_sv are linearly independent. Now one easily observes that the vectors
X 1X%,X v, X2 X 3X 9v, X 3X 2X 1X 9v, X 59X 3X 52X v, and
X_1X_2X_3X_ov form a basis of Ms. Using this basis, we can verify that
U = <X72X71X72U -+ 2X71X72X711),
X 1 X 3X sv+ 2X_1X_2X_1’l), X _3X 2 X_ v+ 2X_2X_1X_2’U,
X72X73X72U + 4X,3X,2X,1’U + 4X,2X,1X,2’U>,

U NInv M7 = {a), and the vector X_,a has a nonzero weight component 6X2; X_3X_»v.
As Inv M7 C N3, there exists a vector m € Ms N N3 such that X_,X,m # 0. Since N3 is
self-dual, now Lemmas 24 and 25 imply that N3 = T(7) & M (7).

ILII. Let p = 7 and w = 2w>. Then dim ¢ = 89 and o, (w) = 16. One easily concludes
that dim M6 = 1, dim Mq4 = 1, and dim M2 = 3. Set p = w — 200 — 3, vV = w — @1 —
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20&2—&3,
Ao={w—a1 — 202, w—a1 —az — a3, w— 202 — as};
As ={w—2a1 — a2, w— a1 — 2a2 — a3, w— 2a2 — 203, w — 32 — az};
A = {w — 201 — 202 — a3, w— a1 — 22 — 203, W — a1 — 32 — a3, w — a2 — 2a3};
Ay = {w — 201 — 202 — 2a3, w — 201 — 32 — as,
w— a1 —3az — 2a3, w— a1 — 4oz — a3, w— 4daz — 2a3};
As = {w —3a1 — 3a2 — a3, w— 2a1 — 3a2 — 2as,
w— 201 —das — az, w— a1 — 4oz — 2a3};
Ao = {w — 31 — 3a2 — 2a3, w — 3a1 — das — a,
w—2a1—4a2—2a3, w—a1—4a2—3a3, w—a1—5a2—2a3}.

One easily observes that M; = (Mx|A € A;) for i € {0,2,...,10}. By [18, Table 6.32],
dim M (w) = dim V(w) — 1. Therefore M (w) = V(w)/M(0). This implies that dim My =
dim V' (w) for XA # 0 and dim My = dim V' (w) — 1 for A = 0. Using Freudenthal’s formula,
we can show that dim M, = 2, dim M, = 3, and dim M = 5 for A = 0. One easily deduces
that dim M, =2 for vy = w — 201 — 2a2 — a3 or w — 201 — 4ae — a3 since because 7 lies
in the same W-orbit with p, dim M, = 3 for 7 € {w — a1 — 3a2 — a3, w — 201 — a2 —
@z, w— a1 — a2 — 2a3, w— 201 — 3az2 — 23, w — a1 — 4ae — 2a3} as 7 lies in the same
W-orbit with v, all other weights § € Ag U As U... U Ajg lie in the same W-orbit with w
or w — a2, hence dim Ms = 1. Now one easily observes that dim Mo = 4, dim Mg = 6,
dim Mg = 7, dim M4 = 9, dim My = 9, and dim My = 9. This implies that

I(M,) = {M(16),2M (12),2M (10),2M (8), M (6),4M (4), M (2),2M (0)}.

Proposition 8 and Lemma 27 yield that M, = N1 & N> & N3 & M(6) where I(N;) =
{M(16),2M (10), M (2)}, I(N2) = {2M (12),2M (0)}, and I(Ns) = {2M (8),4M (4)}. Show
that N1 = T'(16), N2 = T(12) ¢ M(12), and N3 = 27'(8).

One easily concludes that X3 _,v has a nonzero weight component 5X_3X_1X_ov.
Then by Lemma 28, KAyv = V(16). Set N; = Ni/KAyv. It is clear that I(Ny) =
{M (10), M (2)}. One can directly verify that the triples

(X 20X 3X 1X2,X 3X o0, X 3X%,X 1X 3X2,0, X2,X 1X%5X2,0)

and (X_3X_2X21X 20X 3X ov, X21X 2X23X2%50, X_2X2,X%;X2,v), and the pair
(X2,X2,X 3X%0, X_2X2,X2,X_3X_5v) consist of linearly independent vectors. Set
u = X_3X_ov. By Lemma 12, the vector u # 0 and is fixed by the subgroups X; and X».
Applying Lemma 6 to the G(1,2)-submodule generated by u, we can get that the vector
XEIX32X73X72’U # 0. Therefore the vectors

X 90X 3X 1X%,X 53X 90, X 3X2,X 1X 3X%0, X2, X 1X2,X% 0,
X 53X 0X%1X 20X 3X 00, X2, X 0 X2, X200, X 2 X2 X2, X2 ,0,
X2, X2 X s X200, X 0 X2 1 X%, X 3 X 00, X3 1 X%, X _3X v

form a basis of M,. Using this basis, we can directly check that Inv M> = 0. This yields
that N1 has no submodules isomorphic to M(2). As N is self-dual, N; and N; have no
such factor modules. Now Lemma 23 forces that N1 = V(10) and N; has a filtration by
Weyl modules. By Remark 4, N; is a tilting module. As we know I(N1), we conclude that
Ny = T(16).

Set m = X2,X2,X2,X2%,0. It is clear that m € M. One can directly verify that the
vector X%, X%m has a nonzero weight component 2X_3X2%,X_;X2,X2,v. Obviously,
XSm € Inv M, since XZw = 0 for any w € M. The facts proved earlier yield that
M, = N2® N’ where N'NInv M;2 = 0. This implies that there exists a vector mo € NoNMy
such that X6, X8%mo = X%, X%m # 0. Hence by Lemmas 24 and 25, N> = T(12)® M (12).
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Put t1 = X22X23X22’U7 to = X%QX_3X_1X32U, f1 = X%aXith and f2 = XzantQ.
One can directly check that X2t; € Inv Mg, the vector f1 has nonzero weight components
X2,X2,X2,0 and 6X2,X%2;X2%,v, and fo has such components 3X2;X2;X2,v and
X2,X2,X2,0. This forces that f; and fo are linearly independent. It is clear that M, =
N3 @ N” where N” NInv Mg = 0. Therefore there exist vectors {; and ls € N3 N My such
that X2, X2l; = fi, i = 1,2. Corollary 9 implies that N3 = 27'(8).

For regular unipotent elements of the group Cs(K) all possibilities are considered.

ILIII. Let = have a block of size 4 or 2 in the standard realization of G. Set H =
G(2e1,a2,a3). It is clear that H = C1(K) x C2(K). We can assume that © € H.

To determine the block structure of element ¢(x), we analyze the restriction M|H. For
p =5 and w = wz + w3 or 2wz, we use Theorems 4 and 3 and Lemma 21. Taking into
account the arguments at the beginning of section, it suffices to consider the following
cases:

A)p=3, w=uw +ws;

B)p=7w=wi+ws;

C) p= 7, 2ws.

Show that in all these cases the module M|H is completely reducible. Set u1 = X_qv
and us = X%, X _5X_3v in Case A), u1 = X_1v and uz = X2,X v in Case B), and
w1 = X_1X_2v and uz = X2, X2,0 in Case C); uo = w|H and p; = w(w;)|H for i = 1,2.
In Case A) one easily observes that XoXjus = 2X_3v # 0 and that w(uz) + ae and
w(uz) + as & A(M). Hence the groups X2 and X3 fix uz. In the other cases Lemma 12
implies that u; # 0 and the groups X2 and X3 fix u;. Obviously, the groups Xa., always
fix u;. This yields that the restriction M|H has composition factors with highest weights
pi, 0 <4< 2.

In Case B) set A = w — a1 — a2. Recall that dim My = 2. Since dim M,,—o, = 1, there
exists a nonzero vector m € My such that Xom = 0. Therefore X5 fixes m. This forces
that M|H has a composition factor with highest weight s = A\ H.

In Case C) put T =w — a1 —2a2 — a3, 11 =T+ a2, 2 = T + a3, and puz = 7| H. Recall
that dim M, = 3 and dim M., =1 for ¢ = 1,2. This yields that

dim(KerXs N M;) = dim(KerXs N M;) = 2.

Hence KerXosNKerXsNM; # {0}. Let w € KerXoNKerXsNM; and w # 0. Obviously,
the group Xs., fixes w. Therefore M|H has a composition factor M (us).

One easily observes that in Case A) po = (2wi,w2), u1 = (w1,w1 + w2), and p2 =
(0,2w1); in Case B) po = (2w1,w1), p1 = (w1,2w1), pe = (0,w1 + w2), and puz = (w1, ws2);
in Case C) po = (2w1,2w1), p1 = (w1,w1 + w2), p2 = (0,2ws2), and ps = (wi,w1). As
we know the dimension of M, we can conclude that in Cases A) and B) M|H has only
three composition factors M (u;). In Case C) set pg4 = (0,w2). Since we know the weight
multiplicities of M, we can show that the formal character of the restriction M|H is equal
to the sum of the formal characters of the modules M (u;) for 0 <7 < 4. Therefore in Case
C) the restriction M|H has five composition factors M (p;) with 0 < ¢ < 4. Observe that
in all Cases A), B), and C) the modules V' (u;) are irreducible. Now Corollary 1 yields that
M| H is completely reducible. To determine the block structure of v(z), we use the results
of Item I and Theorem 3.

ILIV. It remains to consider the case where J(z) = (3,3). Set H = G(1,2). Then
H > Ay(K) and we can assume that x is a regular unipotent element from H. In this
case oz (a1w1 + asws + asws) = 2a1 + 4az + 4as. It is clear that o,(w) < p for p = 7,
w = w1 +ws. For p =3 and w = w2 we use Proposition 9. The arguments at the beginning
of the section yields that it suffices to consider the following cases:

1) p=5, w = wy + w3 or 2ws;

2) p=3, w=wi +ws;

) p=7,w="2ws.

In all these cases we analyze the restriction M|H. Set Q; = {\A € A(M)|A = w — zaq —
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yaz —ias}t and U; = (M| € Q;). Define the parameter i(M) as above. By Theorem 1
and Lemma 11, U = U;ay—; and Up = M (w|H).

IL.IV.1) Assume that one of the following holds:
A)p=5 w=ws+ ws;
B) p =5, w=2ws.
Cases A) and B) are considered together since the approach is the same. Show that the
H-modules U; are irreducible and indicate their highest weights. One easily concludes that
(M) =51in Case A) and 6 in Case B). Set o = w; 1 = w — as, and p2 = w — a2 — 2a3
in Case A); 1 = w — as, g2 = w — 2as, and ps = w — 2a2 — 3ag in Case B); in both
cases let 0; = p;|H and N; = M(§). One easily observes that in Case B) the weight
w—zay —yoae — 3az & A(H) for y < 2 (consider the W-orbit of such weight). Now it is
clear that §; is a maximal weight in the H-module U;. Show that U; = N;. It is clear that
U; has such composition factor. The Weyl group of H can be naturally identified with a
subgroup Wy C W. Any weight A € ; lies in the same Wg-orbit with a weight 7 € Q;
such that 7|H € AT (H). It is clear that 7 < p;. By [4, Chapter VIII, § 7, Proposition 5.iv],
7|H is a weight of the irreducible A3(C)-module with highest weight §;. By [26], the set of
weights of such module coincides with A(NN;). Hence 7|H and A|H € A(N;). By Theorem 4,
all weight subspaces in M are one-dimensional. This yields that the H-module U; has one
composition factor. Therefore U; = N;. One easily checks that in Case A) do = w2,
01 = 3ws, and d2 = w1 + 3we; in Case B) dg = 0, §1 = 2wz, d2 = 4wz, and 3 = 2w1 + 2w>.
Now we can use the results of Item I of Section 4 to determine the block structure of p(x).

II.IV.2) Here and in Item ILIV.3) A C H is a good Aj-subgroup containing z, o :
A(H) — Z is the homomorphism determined by the restriction of weights from a maximal
torus Ty C H to a maximal torus T4 C A such that o(a;) =2 for i = 1,2; X, and X_,
are the root elements of the Lie algebra of A; Qf = {\ € Q;|o(\) > 0}, and U, ; is the
weight subspace of weight j in the A-module U;. Using the formulae from [4, Chapter 8,
§13.1], we can assume that X, = X7 +2Xs and X_o =2X_1 + X_o.

Let p =3 and w = w1 + ws. Then dim ¢ = 57, (M) = 4, and Uy = M (w1). One easily
observes that
O ={w—a3, w—az— a3z, w— a1 — a2, w—2a — as,

w—Qa1 —o2 — a3, w— a1 — 20 — a3, w — 201 — a2 — a3, W — 201 — 202 — a3,

w—a1 —3az —asg, w—2a1 — 3a2 — az,w — 31 — 3a2 — as};
OF ={w— 202 — 203, w — a1 — a2 — 2a3, W — a1 — 202 — 203, W — a1 — 3oz — 203,
w—a1 —4dag — 2a3, w — 201 — 202 — 2a3, w — 201 — 3a2 — 2a3, w — 301 — 202 — 2a3}.

Set n=w—a1 —az —az and v = w — 2a;1 — 3oz — 2a3. Then 7 = w2 and v = 0. We can
verify that dim M, = 2. Since dim V' (w), = 3 by Freudenthal’s formula, this yields that
V(w) has a composition factor M (n). Taking into account the dimensions of the modules
M (w) and M (n), we get that M (w) = V(w)/M(n). Using the same Freudenthal’s formula
and taking into account that all weight subspaces of M(n) are one-dimensional, we get
that dim M, = 3. One easily concludes that dim M, = 2 for

pwe{w—ar —az —az,w— a1 —2a2 — az,w — 201 — 202 — as,
w— a1 — 2as — 2a3,w — 201 — 202 — 203, w — a1 — a2 — 2a3}

since p lies in the same W-orbit with n, and that dim M, = 1 for other nonzero weights 7 €
0 LJQQ+ as 7 lies in the same W-orbit with w or w— age —as. This implies that dim U; = 15,
dim U2,6 = 2, dim U2,4 = 2, dim U2,2 = 4, and dim UQ,() =5.Setd = (w—a3)|H = w1 +2w2.
Obviously, the H-module U; has a composition factor M (4). Since dim U; = dim M (§),
then Uy =& M (). The canonical Jordan form of z in U; can be determined with the use
of the results of Item I of Section 4.

By the arguments above, we get that I(Uz|A) = {2M(6),2M (4),2M(2), M (0)}. Then
by Proposition 8, the restriction Uz|A & N @2M (2) where I(N) = {2M (6),2M (4), M (0)}.
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ShOW that N = T(G) EBM(6) Set uy = ngX_QX_l’U, U2 = )(_3)(32)(_31)7 mé = U —|—U2,
mg = u1 + 2ug, and my = X_3X%,X_3X_1v. By Lemma 12, u1 # 0 and the subgroups
X, fix uy for ¢ = 1,2. Hence mé % 0. One easily observes that X; and X, fix us as
w(uz) +ai & A(M) for i = 1,2. This yields that m§ € Inv Uz 6. We can directly verify that
Xoma=mé, X_am =0, X_om? #0, and X2, m4 & (X_ag,m%). Then KAm2 = V(6).
One easily deduces that N/K Am3 has a submodule isomorphic to V(4), this submodule
is generated by the image of m4 under the canonical homomorphism. Let F' be the full
preimage of this submodule in N. Show that F' is indecomposable. We can directly check
that dimInv Us 4 = 1. Since X_omZ € Inv Us 4, then F has no indecomposable components
with highest weight 4. As FNUs,0 = (X_q3mg, X2om4), F has no such components with
highest weight 0. Since dim(F N Usz6) = 1, this yields that F' is indecomposable.

It is clear that K Am¢ = M(6). As mg € FNUss = (m3) and K Amj is irreducible, we
conclude that KAmiNF = 0. Hence N = F & K Am{. The module F is self-dual since N
is such. As F' has a filtration by Weyl modules, then by Remark 4, F is a tilting module.
We know I(F) and can prove that F = T(6).

IL.IV.3) Let p = 7 and w = 2ws. Then ¢(M) = 4 and Uy = M (2w2). One easily observes
that

Ql+ :{W*Cm —Q3,Ww— Q] — Q2 — a3, w — 202 — a3, w — 302 — a3,
w—a1 — 202 — az,w — 2a1 — 202 — az,w — a1 — 3a2 — Az };

Q; :{w — 29 — 2a3,w — a1 — 2a — 203, w — 3a2 — 2a3,w — 4das — 2a3,
w—2a2 — 202 — 2a3,w — a1 — 32 — 203, w — 201 — 32 — 23,

w—a1 —4dag — 2a3,w — 31 — 3a2 — 2a3,w — a1 — Hag — 2a3,w — 201 — dae — 203}

The dimensions of the weight subspaces with weights from Qf and QF are determined in
Item ILII. Now one can show that dimU; 6 = 1, dimU; 4 = 3, dimU; 2 =4, dim U0 = 5,
dim Uz,g = 17 dim U2,6 = 2, dim U2,4 = 5, dim U2,2 = 6, and dim UQ,O = 7. Then

I(U,|A) = {M(6),2M (4), M (2), M (0)} and I(Uz|A) = {M(8), M(6),4M (4), M (2), M(0)}.
By Lemma 27, U1 |A = M (6)®2M (4)® M (2)® M (0) and U2|A = NOM (6)® M (2)® M (0)
where I(N) = {M(8),4M (4)}. Show that N = T'(8) & 2M (4).

Set m = X%3;X2%,0. Since X2;m # 0, then X2_,m # 0. The module N is self-dual as
Us is self-dual. Then by Lemma 29, N = T'(8) & 2M (4).

For n = 3 all possibilities are considered.

IT1. Let n > 4. As the multiplicities of all blocks of odd sizes in the canonical Jordan form
of x in the standard realization are even, then for n = 4 all unipotent elements distinct
from regular are conjugate to elements from subsystem subgroups of types C3 x Ci or
Cs x (5. Therefore we can use Theorems 4 and 3, the results of Items I, II, and Lemma 21
to solve the problem for the elements of order 3 for n = 4, p = 3, and w = w3 or wa. It
follows from [18, Table 6.33| that the module V(w4) is irreducible for n = 4 and p > 3.
Taking into account the arguments at the beginning of the section, it suffices to consider
the cases where w = ws, n = 5, 6, or 7, and p = 5, 3, or 7, respectively. In these cases
each element of order p is conjugate to an element from a subsystem subgroup H and
the restriction M|H is completely reducible. Then to determine the block structure of
o(x), one can apply the results of Section 4 and the results of this section for the groups
of smaller ranks. If all block sizes in the canonical Jordan form of x in the standard
realization are odd, we can set H = G(1,...,n — 1) and use Proposition 9. Assume that x
has a block even size in the standard realization. Below o = w|H. Obviously, in all cases
M|H has a composition factor M (o).

a) Let G = C5(K) and p = 5. Since |z| = p, then z has a block of size 4, or two
blocks of size 2, or a block of size 2 and two blocks of size 1 in the standard realization of
G. Set H = G(a1,2e2, a3, aa, a5). It is clear that H =2 Cy(K) x C3(K). We can assume
that x € H. Obviously, p1 = (w2,0). Let v1i = X_ov, v2 = X_2X_3X_1X_»v, and
i = w(vi)|H. Then p1 = (w1,w1) and p2 = (0,ws2). By Lemma 6, v1 # 0. One easily
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observes that X1 X3 Xove = X_ov # 0 and that w(v2) + aq and w(va) + as € A(M). Now
it is clear that the vectors v and vs are fixed by all subgroups Xg € H with positive roots
B. Hence M|H has composition factors M (u1) and M (u2).

b) Let G = Cs(K) and p = 3. As |z| = 3, then = has a block of size 2 in the standard
realization of G. Set H = G(a1, ..., a4, 2e5, ). It is clear that H =2 C5(K) x C1(K) and
to = (w2,0). We can assume that x € H. Set v1 = X_5X_4X_3X_ov and p1 = w(v1)|H.
Then p1 = (w1,w1). By Lemma 12, v1 # 0 and the groups ¥; fix v; for i # 5. Obviously,
X fixes v1 for all positive roots 8 of the subgroup H. Therefore M|H has a composition
factor M (p1).

c) Let G = C7(K) and p = 7. Recall that = has Jordan blocks of size at most 7 in the
standard realization of G.

(i) Let z has a block of size 6 or 3 in the standard realization. Set
H = G(a1,02,2e3,04,a5,a6,a7). One easily observes that H & C3(K) x C4(K) and
o = (w2,0). As  has an even number of blocks of size 3 in the standard realization, we
can assume that x € H.

Set v1 = X_3X _ov, va = X_3X 2X 14X 3X 1X_ov, and p; = w(v;)|H. Then p1 =
(wi,w1) and p2 = (0,w2). By Lemma 12, the vector v1 # 0 and is fixed by the subgroups
X, for i # 3. One can directly verify that X;XoXszve = X_4X_3X_ov # 0. It is not
difficult to check that w(v2) + oy € A(M) for ¢ # 3. It is clear that X,., fixes the vectors
v1 and vz. This yields that M|H has composition factors M (1) and M (pe2).

(ii) Assume that z has no blocks of sizes 6 and 3 in the standard realization of G.
Set H = G(a1, a2, as, as, 2¢5, ag, ar). It is not difficult to conclude that H = C5(K) X
C2(K) and po = (w2,0). Arguing as in Item a), we can assume that x € H. Set v1 =
X_5X_4X_3X_2’U7 V2 = X_5X_4X_3X_2X_1X_6X_5X_4X_3X_21}, and i = w(v,)\H
Then p1 = (w1,w1) and p2 = (0,ws). Lemma 12 implies that the vector v1 # 0 and is fixes
by the subgroups X; for i # 5. Let m = v(6,2). Lemma 12 yields that the vector m # 0
and generates an indecomposable G(1,...,5)-module with highest weight w;. The vector
vz coincides with the vector m(5, 1) constructed in this module. By Lemma 12, vo # 0 and
is fixed by X; for ¢ < 5. It is not difficult to show that w(v2) + as lies in the same W-orbit
with w — a1 and therefore does not belong to A(M). Then it is clear that Xz fixes v; and
vz for all positive roots 3 of H. This forces that M|H has composition factors M (u1) and
M (p2).

Taking into account the dimension of M, we can conclude that in all Cases a), b), and
c) the composition factors of the restriction M|H are exhausted by the modules M (u;).
Observe that for all weights p; the modules V(u;) are irreducible. Hence by Corollary 1,
the restriction M|H is completely reducible.

For the groups of type C),, the problem is solved.

6. SPINOR GROUPS

In this section G = B, (K) or D, (K).

We use Theorem 6, Proposition 10, and results of Section 4 to solve the problem for
w = w; where i < n for G = By(K) and i <n — 1 for G = D,(K), and for w = 2w;. So
these weights will not be considered afterwards.

To handle certain representations, we need to describe representatives of the unipotent
conjugacy classes in D, (K) that have only Jordan blocks of even sizes in the standard
realization of the group. Let G = Dy, (K), k1 > k2 > ... > ks, k1 + k2 + ... + ks = n, and
all integers k1, k2, ..., ks are even. Obviously, n is even. Set

I :{khkl —+ kg, ...,k1 + ko + ...+ ksfl,n},
I1 :{1,...,71}\1712 = Il \ {TZ - 1},
21 :Zl(kl,..,,k's) = H l‘l(].) c G,

=



THE JORDAN BLOCK STRUCTURE 363

z2 ZZz(kl,...,k's) = 1) H CIZ’l(l) [S G;
i€ly
H, = G(1,2, ey n— 1), and Hs = G(l,...,n ’I’L). Then H; = Hy & An_l(K), z1 € Hy,

and zo € Ho. In [27, Subsection 2.1] it is proved that J(z1) = J(z2) = (k%,...,k2) and
that the elements z; and z2 are not conjugate. Let 1, w2 € Irr G, w(p1) = arwr + ... +
An—2Wn—2 + bwn_1, and w(p2) = a1w1 + ... + Gn—2wn—2 + bwy,. Then the representation
2 can be obtained from ¢; with the help of the graph morphism of G permuting the
elements z; and z2. Hence the canonical Jordan form of ¢2(z;) is the same as of 1(z;)
for {¢,7} = {1,2}. We use the notation N(z;) introduced in Lemma 18.

Obviously, the collection N(z;) contains no zeros and at least two ones. Therefore
Formula (1) implies that o, (e,) = £1. It is clear that o (wn) > 0z(wWn-1) if oz(en) =1,
and 05 (wn) < oz(wn—1) if 05(en) = —1. It follows from [27, Lemma 2.5 and Corollary 2.13]
that 0, (wn) > 02, (Wn—1) and 0z, (wn) < 02, (wn—1) for n = 0 (mod 4) and that o, (wn) <
02, (Wn—1) and 0., (wn) > 025 (wn—1) for n = 2 (mod 4). This yields that o, (en) = 1 if
n =0 (mod 4), and —1 if n = 2 (mod 4), and that o.,(¢,) = —02,(en) in both cases.
Hence the values o, (g;) can be determined for all elements x of order p. It is well known
that the graph morphism of the group D, (K) mentioned above fixes the conjugacy classes
of unipotent elements that have at least one block of odd size in the standard realization of
the group. Therefore for G = D, (K), it suffices to consider only one of the representations
(wn) or Plun—1).

I. Spinor and semispinor representations

In this item w = w, for G = By (K) and G = D, (K). Recall that A(M) consists of all
linear combinations of the form {@} for G = B, (K) and of all such combinations
with an even number of the symbols "minus" for G = D, (K); all weight subspaces of M
are one-dimensional.

One can directly verify that o,(w) < p for all elements x of order p, except the following
cases:

a) G=DBu(K), p=3, J(z) = (3%);
b) G:D5(K)7 p="T, J(x) = (773)5
p=>5 J(z) = (5%);
p=3, J(:Ij’) € {(3371),(32722)}7
c) G=Bs(K), p=11,13, J(z) = (11);
p=T, J(m) € {(77 ,1), (77 22)}5
p =5, J(LI,’) € {(527 1)7 (5732)7 (4273)}7
p =3, J(:C) € {(337 12)5 (327225 )7 (3724)}
d) G=D¢(K), p=11,13, J(x) = (11,1);
p=11, J(x) = (9,3);
p=T, J(:Ij) € {(7’ 5)7 (7737 12)7 (77 225 1)7 (62)}7
p=5, J(x) € {(5%,1%),(5,3%,1),(5,3,2%),
(4%,3,1), (4%, 2%)};
p =3, J(:Ij) € {(34)7 (337 13)7 (32722 ) (3 247 1)7 (26)}7
e) G=DBs(K), p=13,17,19, J(x)= (13);
p=11,13, J(z) = (11,17);
p=11, J(z) € {(9,3,1),(9,2%)}
p=T, J(x) €{(7,5,1),(7,3%),(7,3,1%),(7,2%,1%)
(6%, 1)};
=5,7, J(:L') € {( 2 3)7( 742)}5
=5, J( )6 {( ) 2712) (52712) (5 37227 ) (5 24)
(4%,3,1%), (42 2%, 1)k
p=3, J(z) € {(3,1), (33 2%),(3%,1),(38%,2%,1%)
(3724712)7( )}:
f) G=D7(K), p=13,17,19, J(z)= (13, )
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p=11,13, J(z) € {(11,3),(11,1%),(9,5)};

p =11, J(z) € {(9,3,1%),(9,2%,1)};

p="711, J(z) = (7?);

p="T, J(z) € {(7,5, 2) (732 1),(7,3,2%),
(7,3,1%),( ,2 ,1%), (6 2)},

p=5,17, J(x) € {(5%,3 1)7(52 22 ), (5,47, 1)}

p =5, J(z) € {(5%,1%), (5, 33) (5,32 13) (5 3,2%,1%),
(5,2%,1), (4%,3%), (4%,3,1°), (4%,2%,1*) };

p=3, J(CI:) € {(347 12)7 (3?72 71)7 (33 )7 (32,24)7
(3%,2%,11),(3,2,1%), (25,1%)}.

First we consider the behaviour of a regular unipotent element y for G = B, (K).

LI Let G = Bs(K). Then dim ¢ = 32 and oy (w) = 15. Taking into account the weight
structure of M, it is not difficult to show that dim M5 = 1, dim M3 = 1, dim M1; = 1,
dim My = 2, dim M7 = 2, dim M5 = 3, dim M3 = 3, and dim M; = 3.

Assume that p = 11 or 13. Then I(M,) = {M(15), M(9),2M (5)} for p = 11 and
I(My) = {M(15),2M(9), M (5)} for p = 13. Lemma 27 implies that M, = N & M(9) for
p =11 and M, = N’ @& M(5) for p = 13 where I(N) = {M(15),2M(5)} and I(N') =
{M(15),2M(9)}. Prove that N and N’ = T(15). Since X_1X_2X_3X_4X_5v # 0, then
X5 v # 0 and hence X2 v # 0. As N and N’ are self-dual, Lemma 29 yields that N and
N2 T(15).

LII. Let G = Bg(K). Then dimy = 64 and oy(w) = 21. As we know the weight
structure of M, we can conclude that dim M2 = 1, dim M1g = 1, dim M17 = 1, dim M5 =
2, dilig = 2, dilil = 3, dlmMg = 4, dlmM7 = 4, dlmM5 = 47 dlmMg = 5, and

It is convenient to consider together the cases where p = 17 or 19. One easily observes
that I(M,) = {M(21), M(15),2M (11), M(9), M (3)} for p = 17 and
I(M,) = {M(21),2M(15), M (11), M (9), M (3)} for p = 19. Lemma 27 forces that M, =
NOM(15)®eM(9)®M (3) for p = 17 and My, = N'@M (11)®M (9)® M (3) for p = 19 where
I(N) = {M(21),2M(11)} and I(N') = {M(21),2M (15)}. Show that N and N’ = T'(21).
Since X_2X_3X_4X 5X_¢v # 0, then X® v # 0 and X3, v # 0. As N and N’ are
self-dual, our assertion follows from Lemma 29.

Now let p = 13. Then I(M,) = {M(21), M (15), M(11),2M(9),2M (3)}. By Lemma 27,
My, = N1 @ N2 @& M(11) where I(N1) = {M(21),2M (3)} and I(N2) = {M(15),2M (9)}.
Prove that N; = T(Q].) and Ny = T(15) Set mis = 4X_4X_5X_gv + X_6X_5X_¢v,
uy = ’U(3,6, 1), U2 = X74X75X76U1, us = X75X76u2, Gl = G(4,5,6), and GQ = G(5,6)
Lemma 12 implies that the vector u1 # 0 and is fixed by X; for ¢ # 3. Hence u; generates
an indecomposable Gi-module with highest weight w(u1)|G1. Applying Lemma 12 in
this module, one can deduce that uz # 0 and generates an indecomposable G2-module
with highest weight w(u2)|G2. Applying Lemma 12 in this module once again, we show
that us # 0. One can directly verify that mis € Inv M5 and Xgav has a nonzero
weight component 4us. Therefore Xgav # 0. Since X1 X_2X_3X_4X_5X_¢v # 0, then
X3 . mis # 0. As Ny and N; are self-dual, Lemma 29 implies that N1 = T(21) and
Ny 2 T(15).

For o,(w) < p (in particular, for G = B3(K) or G = D4(K)), this problem is being
solved such as in other cases where M, is a direct sum of p-restricted modules. Then
the remaining cases for the groups Bi(K), Ds(K), Bs(K), De¢(K), Bs(K), and D7(K)
mentioned above are considered in turns. Here we use the fact that = is conjugate to an
element from a proper semisimple subgroup H the restriction of M on which is completely
reducible. After that we use the results for the groups of types B, and D, of smaller ranks,
the results of Section 4, and Theorem 3. Below when describing the subgroup H and the
restrictions M|H, we consider situations in which similar constructions are used, together.
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LIII. Let G = B, (K) and one of the following hold:
a) z has a block of size [ € {2,3,5} in the standard realization,
b) J(z) = (11,1?).
Set H = G(a1,02,...,0n—2,En—2 + en—1,0a5) for | = 3, H = G(oa,a2,...,An_3,En—3 +
En—2,Qn—1,0p) forl =5 H = G(a1,e1+€2,a3,...,an—1,an) forl =2, and H 2 G(2,...,n)
in Case b). It is clear that H = D,,_1(K) x B1(K) for | = 3, D,,_2(K) x B2(K) for | = 5,
D2 (K) X Br—2(K) for | = 2, and B,—1(K) in Case b). We can assume that = € H. If
x satisfies the condition a) for several values of [, we choose any of them. Recall that
Ds3(K) = A3(K) and D2(K) =2 A;(K) x A1(K). To describe the block structure of p(z),
we use Lemma 30, results of Item II in Section 4, Lemma 21, and Theorem 3.

LIV. Let G = D,(K) and x have a block of odd size in the standard realization of G.
In this item [ is a minimal size of such block. Then [ < 7. We use Lemma 7 taking for H
the subgroups from that lemma isomorphic to B,—1(K) for | =1, Bp—2(K) x B1(K) for
1 =3, Bh_3(K) x B2(K) for l =5, and B3(K) x B3(K) for [ = 7.

LV. Let G = D¢(K) and J(z) € {(6%),(4%22),(2%)}. Set H; = G(1,2,...,5) and
H> = G(1,...,4,6). Using the facts on the unipotent conjugacy classes in D, (K) whose
representatives have only blocks of even sizes in the standard realization mentioned at the
beginning of this section, we can assume that x € H; or z € Ho.

5
Set Q2 = {u € A(M)|p = w—ias— > ajok, Ui = (Mulp e Qi), 9 = {pe A(M)|p=
=

6
w—ias — Y ajoy}, U2 = (My|u € Q), mi = X_¢v, and ma2 = X_5X_4X_¢v. It
J=1,j#5

is well known that M is self-dual. One easily observes that M|H, = U @ Ui @ U3 & Us
and M|Hy = U @ U ® UZ. Theorem 1 and Lemma 11 imply that Us = Uj = M(0),
Uy = (UD)*, U§ = (U3)* = M(ws), and U3 = M(w1). By Lemma 6, m; # 0. It is clear
that m; is fixed by X; for ¢ # 6. Applying Lemma 12 in the G(4, 5, 6)-module generated by
the vector v, we conclude that the vector ma # 0 and is fixed by X4 and Xe. It is obvious
that this vector is fixed by the subgroups X; for j < 4. Hence U{ has a composition
factor with highest weight w(m1)|H1 = ws and U} has a composition factor with highest
weight w(mz)|H2 = ws. Dimensional arguments yields that Ul = M(w4), Us = M(w2),
and U7 = M(w3). Now we can use the results of Item IV of Section 4 to determine the
block structure of ().

LVI. Let G = Bs(K) and J(z) = (6%,1). Set H = G(au,...,as,65 + 6). Then H =
Dg(K) and we can assume that « € H. It is well known that M|H = M(wn) ® M (wn—1).
Indeed, let N1 (N2) be the sum of all weight subspaces of M whose weights have the
form {(+e1 +... £ &6)/2} with an even (odd) number of minuses. It is easy to see that Ny
and N3 are H-modules and to determine their highest weights. Then we use dimensional
arguments. We apply the results of Item L.IX to determine the block structure of (x).
It does not matter which of the two classes of unipotent elements of Dg(K) with the
same J(z) is considered since the restriction M|H is the direct sum of different semispinor
representations.

For the representations ¢(w,) the problem is solved in all cases. So the problem is
solved for groups B, (K) with n > 3 and D, (K) with n > 4.

II. Some representations of the groups B3(K) and D4 (K)

Now consider the remaining representations for the groups B3(K) and D4(K).

Let G = B3(K). Observe that the order of a regular unipotent element is equal to p
only for p > 7 and an element x with J(z) = (5, 1%) has order p for p > 3. The arguments
in Item I imply that we can assume that w ¢ {2w;, w2, ws}. Recall that o,.(ws) < p for
any element z of order p and hence M (w3)|A; is a tilting module. By Lemma 14, M|A,
is a tilting module in the following cases:
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w = 2ws, p>3 (A1 =X =ws);
w=witws, pET (M =wi, 2 =uws);
w = 3wi, p#T (A =2wi, A2 =wr)

(here A1 and A2 are the weights from Lemma 14). One easily observes that
oy(w) = 6a1 4+ 10az + 6as for w = ajwy + asws2 + asws. Using the arguments of Section 3,
we can suppose that for a regular element X, = X7 +2Xs +3X3 and X_, = 6X_1 +
5X_o +4X_3. The arguments above yield that for such element it remains to consider
only the cases where p =7 and w = w1 + w3 or 3w;.

ILI. Let w = w1 +ws and p = 7. Then dim ¢ = 40 and o, (w) = 12. One easily observes
that dim M2 = 1, dim Mo = 2, and dim Ms = 3. Set A = w — a1 — a2 — as,

Ae ={w—a1 — a2 —as, w—az — 2as};
A ={w—201 —a2 — a3, w—a1 — a2 — 203, w— a1 — 2a2 — as};
Ay ={w — 201 — a2 — 2a3, w — 201 — 202 — a3, W — a1 — a2 — 3as,
w— a1 —2as — 2a3};
Ao ={w — 201 — 202 — 2003, w — @1 — 202 — 3z},
Y={w—a1 — a2 —2a3, w— a1 — 2a2 — 2a3, w — 201 — 202 — 23,
w— a1 — 2as — 3asz}.
Then A\ = ws. It is not difficult to verify that M; = (My|A € A;) for i € {0,2,4,6}.
By [13, Part 2, § 8, Proposition 8.19], the maximal submodule in V(w) is isomorphic to
M ()\). Using Freudenthal’s formula for the weights of the module V(w), one can show that
dim M = 2. One easily observes that dim M,, = 2 for p € ¥ as p lies in the same W-orbit
with A. The remaining weights from Ag U A4 U A2 have multiplicity 1 since they lie in the
same W-orbit with w. Therefore dim Ms = 3, dim My = 4, dim M = 5, and dim My = 4.
This implies that I(M,) = {M(12), M (10), M (8),2M (4),2M (2)}. By Lemma 27, M, =
M(12) @ Ny @& N, where I(N;) = {M(10),2M(2)} and I(N2) = {M(8),2M(4)}. Show
that N = T(10) and N, = T(8).

Set migp = 2X_1v+3X_3v and mg = X_2X_3v+ 5X_2X_1v. One can directly verify
that mio € Inv Mo, ms € Inv Mg, and the vectors X2, mio and X2 ,ms have nonzero
weight components X235 X >X_jv and X2, X_2X_3v, respectively. It is clear that mio €
N; and mg € Na. As the modules N; and N» are self-dual, Lemma 29 yields that Ny &
T(10) and N2 = T'(8).

ILII. Let w = 3w; and p = 7. Then dimy = 77 and oy(w) = 18. One easily observes
that dilig = 1, diliG = 1, and dimM14 = 2. Set

A2 ={w— 301, w—201 — a2, w— a1 —az —as};
Ao ={w—3a1 — a2, w—2a1 —az — az,w — 2a1 — 2a2, W — a1 — az — 2as};
Ag = {w —3a1 — a2 — a3, w—3a1 — 202, w — 201 — a2 — 2as3,
w—201 — 202 — az, w — a1 — 202 — 2a3};
As = {w —3a1 — a2 — 2a3, w— 3a1 — 202 — a3, w — 3a1 — 3az, w — 2a1 — 2a2 — 2as};
Ay = {w — 301 — 202 — 203, w — 31 — 3as — az,w — 201 — 202 — 3as,
w — 201 — 3a2 — 2a3};
Ao ={w —dan — 2a2 — 2a3, w — 31 — 22 — 3z, w — 3a1 — 3az — 2azs,
w— 201 — 202 — daz, w — 2a1 — 3oz — 3as};
Ao = {w — 4oy — 3az — 2a3, w — a1 — 202 — 4az, w — 3a1 — 3a2 — 3as,
w — 31 — daz — 2a3, w — 201 — 32 — das )
S={AeAM)A=w—z01 —ya2}, d=w—a1 —az — a3, p=w— 201 — a2 — s,

T =w—2a1 —2a2 —2a3, and n = w—3a1 —3az2 —3as = 0. It is not difficult to conclude that
M; = (Mx|X € A;) for i € {0,2,4,...,12}. It follows from [18, Table 6.23] that the module
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V(w) is irreducible. One easily deduces that dim Ms = dim M,, = 1. Using Freudenthal’s
formula, we can show that dim M. = dim M,, = 3. Theorem 1 implies that dim M, = 1 for
o € ¥ since all the weight subspaces of the Az(K)-module M (3w:) are one-dimensional.
It is easy to see that dim My = 3 for 0 = w — 31 — 22 — 2a3 or w — 31 — 32 — 2a3
as 0 lies in the same W-orbit with 7. All other weights v € Ao U ... U Ag lie in the same
W -orbit with weights from 3, §, or u, hence dim M, = 1. Now it is not difficult to show
that dim M2 = 3, dim M1 = 4, dim Mg = 5, dim M¢ = 6, dim My = 6, dim M> = 7, and
dim My = 7. Then

I(My) = {M(18), M(14),2M (12), M (10),2M (8), M (6), M (4),2M (2), M (0)}.

Proposition 8 and Lemma 27 yield that M, = Ny & N2 & N3 & M(6) where I(N;) =
{M(18),2M (8), M (4)}, I(N2) = {M(14),2M (12), M(0)}, and I(N3) = {M(10),2M(2)}.
Show that Ny = T(18), Ny = T(14), and I(Ns) 2 T(10).

Set © = X_2X33X_2X_1v. Then Lemmas 12 and 6 imply that w # 0. One can
directly verify that X5 ,v has a weight component 6u and that the vectors X>3X2,X? v,
X_2X31X33X_2X_111, and X31X_2XE3X_2X_1’U are linearly independent. Now
Lemma 28 forces that KAyv = V(18). Set N1 = Ni1/KAyv. It is clear that I(N;) =
{M(8), M(4)}. Lemmas 12 and 6 imply that X2, X 1 X25X X v = X2,X _10(3,1,1) #
0. Now so we easily conclude that the vectors

X3.X2,X2% 0, X 2X21X2.X oX 10, X2 X 2X2,X oX v,
X 3 X3,X3 0, X3,X2,X2% 0, X2,X 1X2,X 20X qv

form a basis of My. Using this basis, we can show that Inv M4 = 0. Therefore the module
N; has no submodules isomorphic to M (4). As N; is self-dual, there are no such factor
modules in N7 and in N;. Lemma 23 yields that N; = V(8) and N; has a filtration by
Weyl modules. By Remark 4, N; is a tilting module. Knowing I(N1), we conclude that
Ny 2 T(18).

Set mis =3X2 0+ X o X v, u1 =X 2X3 X 9X2,X 52X v,
up = X2,X2:X%2.X 90X v, and uz = X_2X%;X%,X2% 0. One can directly verify that
mis € Inv M14 and the vectors X33X3,X3 v, X _1X »X3:X2,X2 v, and
X,2X33X32Xilv are linearly independent. It is clear that mis € Na. Since Xilv # 0,
then X_omi4 # 0. Then by Lemma 28, KAymis = V(14). Set No = Nao/KAymia.
It is clear that I(N2) = {M(12), M (0)}. It is not difficult to check that X>X?$ Xou; =
cav(3,1,1), XiX3u2 = cv(3,1,1), and Xouz = c3v(3,1,2) where ci, ca, c3 € K*.
Therefore u; # 0 by Lemma 12. Now one easily observes that the vectors

X3, X3, X% 0, X1 X X3, X2, X2 0, X 0 X325 X%, X3 0, X2 X2, X3 0, u1, ug, us

form a basis of My. Using this basis, we can show that Inv My = 0. As Ns is self-dual,
using Lemma 23 and Remark 4 and arguing as above for the analysis of the modules N;
and Ni, we conclude that N> has no factor modules isomorphic to M(0), N2 = V(12),
N> has a filtration by Weyl modules and is a tilting module. Then it is easy to see that
N, = T(14).

Set mio = 2X2, X210+ X 3X X2 04+4X2;X X vand w=X_2X3;X2,X2 0.
By Lemma 6, Xow = X33X2,X2,v # 0. One can directly verify that mio € Inv Mg
and the vector X*_mjo has a weight component 4w. It is clear that mio € N3. As N3 is
self-dual, Lemma 29 forces that N3 = T'(10).

ILITI. Let x be not regular. By the results of Item I and the arguments at the beginning

of Item II, it suffices to consider the following cases:
Hw=witws,p=T,;
2) w=w1 +ws, p=23;
3) w=wz2+ws, p=2>;
) w=3wi,p="T.
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Let J(z) € {(5,1%),(3,1%), (2%,1®)}. Set H = G(2,3). It is clear that H = By(K). We
can assume that € H. Show that the module M|H is completely reducible, except the
case where p = 7 and w = 3w;. If M|H is completely reducible, then to determine the
block structure of x on M, we use the results of Item I of Section 5, taking into account
that Bo(K) = Ca(K). Below in this item Q; = {A € A(M)|A = w — ia1 — zop — yas},
Ui = (Mx|X € Q;), i(M) is the maximal ¢ for which Q; # &, and po = w|H. Theorem 1
and Lemma 11 yleld that Uo = Uz(M) = M(/Lo) and Ui(]V[)fj = U;.

IL.II1.1) Let w = w1 + w3 and p = 7. Then dim ¢ = 40 and po = ws. It is not difficult to
show that ¢(M) = 3. Set v1 = X_1v and p1 = w(v1)|H. Then p1 = wi +wsz. By Lemma 12,
v1 # 0. It is clear that the vector v; is fixed by X2 and X3. This forces that the H-module
U, has a composition factor M (u1).

IL.II1.2) Let w = w1 +w2 and p = 3. Then dim ¢ = 63 and po = w1. One easily concludes
that i(M) = 4. Set v1 = X_1v, v2 = X2, X _ov, and p; = w(v;)|H, i = 1,2. One easily
observes that g1 = 2w; and g2 = wi + 2ws. By Lemma 12, the vectors v; and vy # 0
and are fixed by X2 and X3. This implies that the H-modules U; have composition factors
M(p;) for i =1,2.

IL.II1.3) Let w = wy + w3 and p = 5. Then dim ¢ = 64 and po = w1 + w2. One easily
concludes that i(M) = 3. Set v1 = X_1X _2v and w1 = w(v1)|H. It is not difficult to
observe that 1 = 3ws. Using Lemma 12 and arguing as in Item IL.II1.2), we get that the
H-module U; has a composition factor M (u1).

Taking into account the dimension of M and the composition factors of the H-modules
U; found above, we conclude that in all the cases from Items II.II1.1)-II.ITI.3) the modules
U; are irreducible. Hence the restriction M|H is completely reducible.

IL.II1.4) Let w = 3wi and p = 7. One easily observes that o,(w) > p only for J(x) =
(5,1%). Recall that dim ¢ = 77 and M(w) = V(w). So the weight multiplicities of M can
be found with the use of Freudenthal’s formula, several of them, are already found in
Item ILII. Knowing these multiplicities, we determine the block structure of ¢(z) when
0 (w) < p.

Let J(z) = (5,1%). As indicated at the end of Section 3, there exist a subgroup A C H
and a homomorphism o : A(H) — Z such that A~ A,(K), z € A, o(ay) =2 for i =2 or
3, and o is induced by the restriction of weights from a maximal torus in H to a maximal
torus in A. In this item « is the positive root of A, X, and X_, are the root operators
of the Lie algebra of this group. Using the formulae from Item I of Section 5, we can
assume that X, = X2 + X3 and X_, = 3X_o +4X_3. Set QZL ={\ € Qloc(N) > 0}
and U;; = (Mx|XA € Qi,0()\) = j). It is not difficult to show that i(M) = 6. Hence
Uo =2 Us = M(0), Us 2 Uy, and Us = Us5. One easily observes that

Ql :{w—a1, Ww—01 — 02, W— Q1 — Q2 —Q3, w—al—ag—?)ag,
w— a1 — 2as — 2as};
QF ={w —201,w — 201 — az,w — 201 — 2a2,w — 201 — a2 — Az,
w =201 — s — 2a3,w — 201 — 202 — a3, w — 201 — 2a2 — 203}
QF ={w — 3a1,w — 3a1 — a2, w — 31 — 22, w — 31 — a2 — A3,
w—3a1 — a2 — 2a3,w — 31 — 202 — a3, w — 31 — 32, w — a1 — 2a2 — 2as,
w—3a1 —3az — asz,w — 3a; — 2a — 3a3,w — 3a1 — 3az — 2a3,
w—3a1 — 202 — daz,w — 31 — 3az — 3as,w — 3a1 — das — 2as}.
The dimensions of the weight subspaces M,, with u € Q;UQF UQ3+ are found in Item IL.II.
Using this, it is not difficult to show that dimU; = 5, dimUs s = 1, dimUsp = 1,
dim U274 = 2, dingg = 2, dim Ugyo = 3, dim U3712 = 1, dim U3710 = 1, dim Ugyg = 2,
dim U3,6 = 3, dim U3,4 = 4, dim U3,2 = 4, and dim U3,0 = 5.

Set w = X_1v. Lemma 6 implies that w # 0. It is clear that the vector w is fixed by
X2 and X3 and that w(w)|H = wi. This yields that the H-module U; has a composition
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factor F' = M(w1). Since dimU; = dim F, we conclude that the modules U; and Us are
irreducible. So the block structure of z on the module Uy & Uy @ Us @ U is clear.

The arguments above imply that I(Uz|A) = {M(8),2M (4), M (0)} and
I(Us|A) = {M(12), M (8), M(6),2M (4),2M (0)}. By Lemma 27, U2|A = N & M(0) and
Us|A =2 N1 ® No @ M(6) where I(N) = {M(8),2M(4)}, I(N1) = {M(12),2M (0)} and
I(Nz) = {M(8),2M(4)}. Since Us = Us, we have Us|/A = N’ & M(0) where N’ & N*.
Show that N & N’ = N, =~ T(8) and N; = T(12).

Set m1 = X210, me = X3, X 2X23X 20X v, u = X23X 2X_1v, and T = G(1,2).
Show that X2,m; # 0 for i = 1,2. By Lemma 12, X2,m; and u # 0 and the vector u
is fixed by X; and X,. Therefore it generates an indecomposable I'-module with highest
weight w(u)|T. One easily observes that mso coincides with the vector u(1,2,1) constructed
in this module. Applying Lemma 12 once again, we conclude that the vector ma # 0 and
is fixed by Xo. Since (w(mz),a2) = 2, then by Lemma 6, X2,mo # 0. This yields that
Xzami # 0 for i = 1,2. Obviously, m1 € Ua,s and ma € Uy s. Hence m; € N, me € N'.
By Lemma 28, KAm; = KAms 2V (8). As N & N’ is self-dual, Lemma 24 implies that
N = N' = T(8).

Set m3 = Xilv and myq = ngngXilv + 6X32Xilv. One can directly verify that
ma € InvUs s and the vectors Xgamg and Xzam4 have nonzero weight components
2X3,X2%2.X 5X3 v and 4X_3X3,X3 v, respectively (we use Lemma 6 several times to
show that these components are nonzero). It is clear that ms € N1 and ma4 € No. As Ny
and Ny are self-dual, Lemma 29 forces that N1 = T'(12) and N, = T'(8).

ILIV. Let J(z) = {(3%,1),(3,2%)}. Then o,(w) < p for p = 7 and w = w1 + w3
or 3wi. Recall that M(w) =2 V(w)/M(w3) for p = 7 and w = w1 + ws and that the
module V' (3w;) is irreducible for p = 7. Taking into account that the weight subspaces
of the module M (ws3) are one-dimensional and using Freudenthal’s formula, we can find
the weight multiplicities of M in these two cases. Several of them are already found in
Items II.I. and IL.II. Knowing these multiplicities, we find the irreducible components of
M| A;. Now it remains to consider the following cases:

1) w=wi +ws,p=3;
2) w:w2+w3,p:5.

Let J(z) = (3,2%). Set H = G(1,3). It is clear that H = A;(K) x A1(K) and we can
assume that x is a regular unipotent element of H. The arguments at the end of Section 3
imply that there exist a subgroup A C H and a homomorphism o : A(H) — Z such that
A= A(K), z€ A, o(a;) =2for ¢t = 1,3, and o is induced by the restriction of weights
from a maximal torus in H to a maximal torus in A. Recall that the set A(H) can be
identified in the standard way with the set Z x Z. One easily observes that o((a, b)) = a+b.
Below in this item « is the positive root of A, X, and X_, are the root operators of its
Lie algebra. Obviously, we can assume that X, = X7 + Xz and X_, = X_1 + X _s.

1) Let w = w1 + we and p = 3. Then dimy = 63. Set Q; = {A € A(M)|A =w — aa1 —
ias — bas} and U; = (My|p € Q). We define the parameter i(M), the set 2 and the
subspaces U, j;, as in Item ILIIL It is not difficult to show that (M) = 6. Corollary 4 and
Lemma 11 imply that Uy = Us = M((1,0)), Us = Uy, Us 2 Us, and the H-module Us is
self-dual. One easily observes that

U ={w—aa1 — az — bas|0 < a,b < 2},
Q+:{wfozl72012,(4)7204172042,&)72&2720(3,
w—a1 — 20 — az,w — 201 — 202 — a3, w — a1 — 202 — 2a3},
Q+z{w—2a1—Sag—a37w—a1—3a2—2a3,w—2a1—3a2—2a3,
wfa173a273a3,w73a173a272a3,w72a173a273a3,w7a173a274a3}.
Set X = {\ € AIM)|A = w—bras — baaz — bzas|bibs = 0}, p = w — a1 — a2 — as,

vV=w—a —2a2 — 2a3, and 7 = w — 2a1 — 3oz — 3az = 0. As the weight subspaces of
the C2(K)-module M (wz) are one-dimensional, Theorem 1 and Proposition 4 yield that



370 T.S. BUSEL, | LD. SUPRUNENKO |

dim M, = 1 for o € X. Using the Jantzen filtration [13, Part 2, § 8, Proposition 8.19],
we can check that the module V' (w) has three composition factors: M (2ws), M (w1), and
M (w). Taking into account the irreducibility of the modules V() for u € {2ws, w1} and
applying Freudenthal’s formula, we can show that dim M,, = dim M; = 1 and dim M, = 2.
The weight 6 = w — 2a1 — 3a2 — 2as3 lies in the same W-orbit with v, hence dim Ms =
2. All other weights § € Q1 U QF U QF lie in the same W-orbit with weights from %
or p, therefore dim My = 1. Now one easily deduces that dimU; = 9, dimUs5 = 1,
dim U273 = 3, dim U2,1 = 3, dim U374 = 2, dim U3,2 = 3, and dim U3,0 =3.Setu=X_»v
and n = w(u)|H. It is clear that n = (2,2). By Lemma 6, u # 0. Obviously, the vector
u is fixed by X; and X3. So the H-module U; has a composition factor M (n). Since
dim M (n) = dim Uy, we get that U; = Us = M (n). To determine the block structure of z
on the module Uy @ U1 @ Us & Us, we use Lemma 21 and Theorem 3.

The arguments above imply that I(Uz|A) = {M(5),2M(3),2M (1)} and
I(Us|A) = {2M(4), M (2),2M (0)}. By Proposition 8 and Lemma 27, U;|A = M(5) @ N,
and Us|A = Ny @ M(2) where I(Ny) = {2M(3),2M(1)} and I(Na) = {2M(4),2M(0)}.
Show that Ny 2 T(3) @ M(3) and No =2 T'(4) & M(4).

Set ma =X 2X%:X 95X 104+ X 3X 25X 3X 1X o0 and
ms3 = X,2X71,3X,2X33X,2v -+ X72X71X7373X32X71’U -+ 2X72X7374X32X71’U. One
can directly verify that X_,Xo,mo and X_,X,ms have nonzero weight components
X_33X%,X_qvand X_1X_2X_34X2,X_1v, respectively, and X2ms = 0. This implies
that there exist vectors m5 € N1 and m5 € Na such that X, Xombh = X_ 4 Xam2 # 0 and
X oXomlh = X_oaXams # 0. By Lemma 25, Ny = T(3) & M(3) and Ny = T(4) & M(4).

2) Let w = w2 + w3 and p = 5. Then dim ¢ = 64. Using the notation Q;, QF, U;, U, ;,
i(M), and ¥ from the previous item, one easily observes that i(M) = 6. By Corollary 4
and Lemma 11, Uy = Us = M ((0,1)), Us =2 Uy, and Us = U;. One easily checks that

O ={w—aa1 —az —baz|0 <a<1,0<b< 3
OF = {w — 200 — a3,w — 209 — 2a3,w — a1 — 200 — a3,
w— a1 — 20 — 2a3,w — 201 — 202 — a3, w — 22 — 3as},
QF = {w— a1 — 3az — 2a3,w — 3a2 — 3a3,w — 201 — 3az — 2a3,
w—a; —3az —3as,w — 3az — das,w — 201 — 3ae — 3as,w — a1 — 3as —4a3}.

Set p = w1 4wz, v =w—a1 —az —as, and n = w — a1 — 2az — 2a3. Recall that all weight
subspaces of the Az (K )-module M (w2) are one-dimensional. Now Theorems 1 and 4 yield
that dim M, = 1 for o € X. Using the Jantzen filtration [13, Part 2, § 8, Proposition 8.19],
we get that the maximal submodule in V' (w) is isomorphic to M (w1 +ws3) and V (w1 +ws) is
irreducible. Applying Freudenthal’s formula, we can show that dim M, = 1 and dim M,, =
2. One easily observes that dim M; = 2 for 7 € {w — a1 — 3a2 — 3as,w — 201 — 3a2 —
3as,w — a1 — 3ag — 4das} since 7 lies in the same W-orbit with 7. All other weights
§ € Q1 UQF UQT lie in the same W-orbit with weights from ¥ or v, hence dim Ms = 1.
Now one easily concludes that dimU; = 8, dimUz5 = 1, dimUsz 3 = 2, dim Uz, = 4,
dimUs 4 = 2, dim Us 2 = 4, and dim Uz o = 4. Arguing as for the analysis of the A-module
Ui in the previous item, we can show that U; = Us = M((1,3)). To determine the block
structure of x on the module Uy & Uy & Us & Us, we use Lemma 21 and Theorem 3.

The arguments above imply that I(Uz|A) = {M(5),2M(3),2M (1)} and I(Us|A) =
{2M(4),2M(2)}. By Lemma 27, Us|A = 2M (4) & 2M (2) and Us|A = N @ 2M (1) where
I(N) = {M(5),2M(3)}. As Uy = U3, we have Uy = N’ @ 2M (1) where N’ = N*. Set
me = X2,X 3v, w = X33X 9v, ma = X3,X jw, and T = G(1,2). It is clear that
ma2 € N and my € N'. By Lemma 12, m2 and w # 0 and the vector w is fixed by
X1 and X,. Therefore w generates an indecomposable I'-module S with highest weight
w(w)|T. One easily observes that ma4 coincides with the vector w(2,1,1) constructed in
the module S. Applying Lemma 12 to S, we deduce that the vector m4 # 0 and is fixed
by Xi. One easily observes that (w(ma4),@1) = 2. By Lemma 6, X_1m2 and X_1m4 # 0.
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Hence X_om; # 0 for i = 2 or 4. By Lemma 28, K Ams = KAm4 = V(5). As the module
N & N’ is self-dual, now Lemma 24 yields that N & N’ = T'(5).

Let J(z) = (3%,1). Set H = G(1,2). Tt is clear that H = A5(K) and we can assume
that = S H. Let Qz = {)\ S A(M)‘A = Ww — a1 — baz — ’ia3} and UZ = <Mu\,u S QZ>
We define the parameter i(M) as above. Show that in both cases being considered the
H-modules U; are irreducible.

1) Let w = w1 + w2 and p = 3. Then (M) = 6. Set vp = w, 11 = w — a2 — as,
Vo =w— g — 203, V3 = w — a1 — 20 — 3ag, and p; = v;|H. 1t is clear that p; = w1 + w2
for i = 0 and 3, 1 = 2w1, and p2 = 2w + wa.

2) Let w = w24ws and p = 5. Then (M) = 7. Set vy = w, V1 = w—ag, V2 = w—a2—2as,
v3 = w— ag — 3az, and p; = v;|H. We have po = wa, p1 = 2wz, g2 = wi + ws, and
U3 = w1 + 2wa.

Corollary 4 and Lemma 11 imply that in Case 1) Uy = Us = M (o), Us = U{, and
Us 2 U3, in Case 2) Uy =2 Ur & M (o), Us 2 U, Us 2 U3, and Uy 22 Us. In both cases
one easily concludes that v; € Q; and v; + ka; &€ A(M) for j = 1,2 and k > 0. This
yields that the H-modules U; have composition factors M (u;) for the values of 4 indicated
above. Knowing the dimensions of the modules M and M (u;), we can show that in both
cases all modules U; are irreducible. To determine the block structure of ¢(z), we use the
results of Item I of Section 4.

So for G = B, (K) all possibilities have been considered.

ILV. Let G = D4(K). The arguments above imply that it suffices to consider the
representations with highest weights 2was, w1 + wa, and ws +wa. Recall that o4 (ws) < p for
any element x of order p. Therefore by Lemma 14, M|A, is a tilting module for w = 2wy.

Lemma 33. The following formulae hold:

M (w1) ® M(wa) =M (w1 + wa) & M(ws);
M(wg) X M(W4) :M(w3 —+ w4) D M(wl).

Proof. Let w = w1 + w4 and X\ = ws. It is clear that A = w — a1 — a2 — a4. Set N =
M (w1) ® M(ws). One easily observes that dim Ny = 4 and dim M (w)x < 3. This implies
that N has a composition factor isomorphic to M(A). The dimension arguments show
that N has exactly two composition factors: M (w) and M ()). Since the modules V(w)
and V() are irreducible, Lemma 3 forces that N = M (w) & M(X).

Similar arguments are used to proof the second equality. O

To determine the block structure of x on M (w) for w = w1 + w4 or ws + w4, we apply
Lemma 33, Theorem 3, and the results of Item I.

Now all p-restricted representations of the classical groups in odd characteristic whose
dimensions < 100 have been considered.
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APPENDIX

TABLES: THE BLOCK STRUCTURE OF THE IMAGES
OF UNIPOTENT ELEMENTS OF SIMPLE ORDER IN
SOME IRREDUCIBLE MODULAR REPRESENTATIONS

OF CLASSICAL GROUPS

The tables below show the block structure of the images of unipotent elements in p-
restricted irreducible representations of the classical algebraic groups whose dimensions
are smaller than 100. If two representations can be obtained from each other with the help

of a group automorphism, we indicate only one of them.

In what follows if © € GL(n,K) is a unipotent element having k; Jordan blocks of

dimension d;, k2 blocks of dimension da,

..., k¢ blocks of dimension d; with di > d2 >

.. > dy and kidy + kada + ... 4 ked; = n, we write J(x) = (di',...,d). Tn the tables n is
the dimension and w is the highest weight of a representation ¢, J(z) is determined by
the standard realization of a group.

TABLE 1. G = A3(K)

n w T(p(@)) for J(z) = (3) T(¢(@)) for J(z) = (2,1)
6 2w (3%) (3,2, 1)
G, 1)
7 | wi+ws (3%,1) (3,2%)
8 w1 + w2 (5,3) (3, 22, 1)
10 3w1 (5%) (4,3,2,1)
(7.3)
15 4wy (5%) (5,4,3,2,1)
71
(9,5,1)
15 | 2wi +ws (3%) (3%,2,1)
(5) (4,3%,27.1)
(7,5,3)
18 | 3wi + w2 (5%, 3) (5,4%,3,2)
19 | 2w1 + 2wo (5°,3,1) (5,4%,3%)
21 5w (7%) (6,5,4,3,2,1)
(11,7,3)
24 | 3w + wo (7°,3) (5,47,3%,2% 1)
9,7,5,3)
27 | 2w1 + 2wa (39) (39)
(7°,5,1) (5, 4%, 3%, 2%1)
(9,7,5%,1)
28 6w (7%) (7,6,5,4,3,2,1)
(11%,5,1)
(13,9,5,1)
33 | 5wi + we (7%,5) (7,6%,5,4,3,2)
35 | dwi + wo (57) (5%,4,37,27,1)
(™) (6,5%,4%,37,2% 1)
(11,9,7,5,3)
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Table 1 continued
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n w p | J(p@) for J(z) = (3) J(p()) for J(z) = (2,1)

36 Twn 11 (113,3) (8,7,6,5,4,3,2,1)
13 (13%,7,3)
>17 (15,11,7,3)

36 | 4wy +2we | T (7%,5,3) (7,6%,5%,4,3)

37 [ Bwi + 3wz | 7 (7%,5,3,1) (7,6%,5%,4%)

39 [ Bwi+2w2 | 5 (57,3,1) (5%,4%,3%,2)

42 | 3wy + 2wo 7 (7%) (6,5%,4°,3%,2%,1)
> 11 (11,9,7%,5,3)

45 8wy 11 (11%1) (9,8,7,6,5,4,3,2,1)

13 (13%,5,1)
> 17 (17,13,9,5,1)

48 | Bwy + w2 11 (11°,7,5,3) (7,6%,5%,4% 3% 2% 1)
> 13 (13,11,9,7,5,3)

55 w1 11 (11°) (10,9,8,7,6,5,4,3,2,1)
13 (137,3)

17 (17%,11,7,3)
>19 (19,15,11,7, 3)

60 | 4wi + 2uwo 5 (5) (5%,4,3%,2% 1)
11 (11%,9,7,5%,1) (7,67,5%,4%3°,2% 1)
>13 (13,11,9%,7,5%,1)

63 | 6wi + wo 7 (7) (77,6,5%,47 3227 1)
11 (11°,5,3) (8,77,6%,5%,47,3% 2% 1)
13 (13%,9,7,5,3)
> 17 (15,13,11,9,7,5,3)

63 | w1 +3w2 | 5 (5%2,3) (57,47 3% 2%)

64 | 3w + 3w | 11 (11°,9,7°,5,3) (7,6%,5°,4%,3%,2% 1)
> 13 (13,11,9%,7%,5,3)

66 10w 11 (11%) (11,10,9,8,7,6,5,4,3,2,1)
13 (13°,1)

17 (17%,9,5,1)
19 (197,13,9,5,1)
> 23 (21,17,13,9,5,1)

71 [ Bwi +2we | 7 (7°,5,3) (7%,6%,5%,47,37,2)

75 | 9wi +we | 11 (11°,9) (11,10%,9,8,7,6,5,4, 3, 2)

75 | 4w + 3wo 7 (77,5,3%,1) (7%,6%,5%, 43 3)

78 11wy 13 (13%) (12,11,10,9,8,7,6,5,4,3,2,1)
17 (17%,7,3)

19 (19%,11,7,3)
> 23 (23,19,15,11,7,3)

80 | 7wy +ws | 11 (117,3) (9,87,77,67, 5%, 4% 3%,27 1)
13 (13°,7,5,3)
>17 | (17,15,13,11,9,7,5,3)

81 | bwi + 2w- | 11 (11°,7,5,3) (8,77,6%,5°,4%,3% 2% 1)
13 (13%,11,9,7%,5,3)
> 17 (15,13,11%,9,7%,5,3)

82 | 8wy + 2wy | 11 (11°,9,7) (11,10%,9%,8,7,6,5,4,3)

87 | Twi + 3w | 11 (11°,9,7,5) (11,10%,97,87,7,6,5, 4)
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Table 1 continued

n w p | J(p@) for J(z) = (3) J(p()) for J(z) = (2,1)
90 | 4wy + 3wo 5 (5™) (5'°,4,3,2,1)
11 (11°,9,7,5,3) (8,7%,6%,5%,4% 3% 27 1)
13 (13%,11,9%,7%,5,3)
>17 | (15,13,11%,9%,7%,5,3)
90 | 6wy +4ws | 11 (11°,9,7,5,3) (11,10%,9%,8%,7%,6,5)
91 12w 13 (137 (13,12,11,10,9,8,7,6,5,4, 3,2, 1)
17 (17°,5,1)
19 (19%,9,5,1)
23 (23%,17,13,9,5,1)
> 29 (25,21,17,13,9,5,1)
91 | fwi + Bwe | 11 (11°,9,7,5,3,1) (11,10%,9%,8°%,7%,67)
99 | 8wi +we | 11 (11%) (10,97,87%,7%,6%,5%,4%,37,27 1)
13 (137,5,3)
17 (17%,13,11,9,7, 5, 3)
>19 | (19,17,15,13,11,9,7,5, 3)
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TABLE 17. G = C3(K)
n w P J(p(x)) J(p(x)) J(p(x))
for J(x) = (4) for J(z) = (22) for J(z) = (2,1%)
5 wa 3 - (3,1%) (2%,1)
>5 (5)
10 2w 3 - (3%, 1) (3,2%,1%)
5 (5%)
>7 (7, 3)
12 w1 + wa 5 (5%, 2) (4%,27) (3%,2%)
13 2ws 5 (57,3) (5,3%,17) (3%,2%)
14 2w2 3 - (3%,1%) (3%,2%,1)
7 (7%) (5,3%,1%)
> 11 (9,5)
16 w1 + wa 3 - (3%,27) (3%,2%,1%)
7 (7%, 2) (4%,2%)
> 11 (8,6, 2)
20 3wy 5 [ (4%,2%) (4,3%,2%,1%)
7 (7%,6)
> 11 (10, 6, 4)
24 | wi + 2wo 7 (72,6,4) (67, 47%,2%) (42,37)
25 3wa 7 (7%,3,1) (7,52,3%,17) (4%, 3%)
25 | 2w; + ws 3 B (3%,1) (37,27)
30 3ws 5 (5%) (5%,3%,1%) (4%,3%,27,1)
11 (11%,7,1) (7,5%,3%,1%)
> 13 (13,9,7,1)
35 | 2w; + ws 5 57) (53,3%,17%) (4%,3%,25,1%)
7 (7)
> 11 (11,9,7,5,3)
35 4w 5 (57) (5°,3%,1) (5,47,3%,2%,1°)
7 (7°)
11 (11%2,7,5,1)
> 13 (13,9,7,5,1)
40 | wy + 2ws 3 - (3%,2%) (31%,2,17)
5 (5%) (5%, 4%,2°) (4%,3%,2%,1%)
11 (117%,8,6,4) (6%, 4%, 2%)
> 13 (12,10, 8, 6, 4)
44 | 3wy + wo 7 (7%, 2) (6%, 47,2%) (57,43,3%,2°)
52 | 3wi + ws 5 (519,2) (58,47, 27%) (5%,4%,3%7,2° 17)
54 dwo 7 (77,5) (7%,5%,3%,1%) (5°,4%,3%,27)
55 4o 5 (5T (52,3%,17) (5°,4%,3%,27 1)
11 (11°) (9,7%,5%,3%,1°)
13 (13%,11,5)
>17 (17,13,11,9,5)
56 5w 7 (7%) (6°,4%,2%) (6,57,4%,3%,2° 1%)
11 (117,8,4)
13 (137,12,8, 6, 4)
>17 (16,12, 10, 8, 6, 4)
60 | wi + 4dws 11 (117%,8,6,2) (107,87, 67,47, 2%) (6°,5%)
61 Bwa 11 (11%,9,5,3) (11,97,7%,5%,3%,17) (6°,5°)
64 | 3wy + we 11 (11%,8,6, 4, 2) (6%, 4%,27) (5%,4%,3%,2% 17)
13 (137,10, 82,6, 4, 2)
> 17 | (14,12,10,87% 6,4, 2)
68 | 2wy + 2wo 5 (513,3) (511,37, 1) (53,4% 3% 27 1%)
71 | 2w; + 2wo 7 (79,5, 3) (73,5°,35,17) (53,4% 3% 2%)
76 | wi + 3wy 7 (710, 4,2) (7%,62,4%,2%) (5%, 4%,3%,2%)
80 | wi + 3ws 5 (515) (517,47 25) (5%,4%,3% 2% 17%)
11 (11°,10,4) (87,67, 4%,2%)
13 (13%,10, 8, 6, 4)
>17 | (16,14, 12,107%,8,6,4)
81 | 2wy + 2wo 3 - (3%7) 377
11 (11°,7,5,3) (7%,5°,37,1°) (5%,4°,37,2°,1%)
13 (13%,11,9,7%,5, 3)
>17 | (15,13,117,9,77,5, 3)
84 | wyi + bwsy 13 (137,12, 10, 6, 4) (127,107, 87,67, 47%,2%) (7°,67)
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TABLE 17. G = Co(K)
n w P J(p(x)) J(p(x)) J(p(x))
for J(x) = (4) for J(z) = (22) for J(z) = (2,1%)
84 6w 7 (7%) (77,5°,3%,1) (7,67,5°,4%,3°,2° 17)
11 (117, 7)
13 (13°,9,7,3)
17 (17%,13,11,9,7%,3)
>19 | (19,15,13,11,9,77,3)
35 6wo 13 (13°,9,7,3,1) (13,117,9%,77 57,37 1) (77,6°)
86 | 2wy + 3wo 5 (517, 1) (51°,3%,1%) (513,47, 3%, 27)
91 5wa 7 (773) (77,5%,3%,1°) (6°,5°,4%,3%, 2% 1)
13 (137) (11,9%,7%,5%,3°,1°)
17 (17%,15,11,9, 5)
19 (197,15, 13,11, 9, 5)
>23 | (21,17,15,13,11,9,5)
TABLE 18. G = C5(K)
n w P J(p(z)) J(p(z)) J(p(z))
for J(z) = (6) for J(x) = (4,2) for J(z) = (4,1%)
14 wa 5 - (5%,3,1) (5,4%,1)
7 (7°)
>11 (9,5)
14 w3 5 - (52, 4) (5%, 4)
7 (7% (6,47)
>11 (10, 4)
21 2w 5 - (5%,3%) (57,4%,1%)
7 (7 (7,5,3%) (7,47,3,1°)
> 11 (11,7, 3)
56 3w 5 - (59,4, 2) (5%,4% 17)
7 (7%) (77,67, 43, 27) (7%,6,4%,37,17%)
11 (117,8,4) (10,8,6°,4%,27) (10,7%,6,4%,3%,17%)
13 (137,12, 8,6, 4)
>17 (16, 12, 10, 8, 6, 4)
58 | wy + wa 7 (7%,2) (7%, 67, 43%,2%) (7%,5%,43 3%,2)
62 | wo + w3 5 - (519,47 27) (519,37 27%)
63 w3 5 - (511, 3%,1%) (510,3% 2%)
64 | w1+ wo 5 - (5'%,2%) (577,47, 1%)
11 (117%,8,6, 4, 2) (8%,6%, 4%, 2%) (8,77,6,5%,4%,3% 21%)
13 (137,10, 87,6, 4, 2)
>17 | (14,12,10,8%,6,4,2)
70 | w1 + w3 5 - (5™ (5
7 (7™ (7°,5%,3%,1) (7°,5%,47 3, 2%)
11 (11°,7,5, 3) (9,7%,5%,3%,1) (8%,7,6%,5%,4%,3,2%)
13 (13%,9,7%,5,3)
>17 | (15,13,11,9,7%,5,3)
84 2w3 7 (71%) (711,37, 1) (711,3,27)
11 (117,7) (11,9%,7°,57,3%,1) (93,87%,7,67,5°,3,2%)
13 (13°,9,7, 3)
17 (177,13,11,9,72,3)
>19 | (19,15,13,11,9,77%,3)
89 2ws 7 (712, 5) (79,5%,3%,17) (79,5,4%,3%,2%)
90 2ws 5 - 1 518
11 (117,7,5,1) (9%,7%,5°,3%,1%) (9,8%,7%,67,57,4% 35,27 1)
13 (13%,11,9,7,5%,1)
>17 | (17,13%,11,9%,7,52,1)




THE JORDAN BLOCK STRUCTURE

Table 18 continued

n w P J(p(x)) J(e(x)) J((x)) for J(p(x)) for
for J(z) = (32) | for J(z) = (2%) J(z) = (2%,12) J(z) = (2,1%)

13 wo 3 (3%,1) (3%,1%) (3,2%,1%) (2%,1°)

14 wo >5 (5,3%) (3%,1°) (3,2%,1%) (2%,1%)

14 w3 3 (3%,1%) (3%,27) (3%,2%,17) (2°,17)
>5 [GS) (4,2%)

21 2w 3 (37) (3°%,1%) (3%,2%,1%) (3,2%,119)
>5 (5%,3,1°)

50 | wi + wa 3 (311,1%) (311,27 (310,28 17) (3%, 211, 11%)

56 3wy 5 (519,3%) (419, 2%) (47,3%,2%1°) (4,3%, 21 179)
> 7 (77,52, 3%)

57 | wi 4+ ws 3 (319) (31%,1%) (311,27,17) (3°,21%,110)

58 | w1 + wo 7 (7%,5°,3%,17) (43,273) (4%,3% 210 19) (3%,2™° 119)

62 | wo + ws 5 (519,37 (5%, 47, 2%) (57,4% 3%, 2% 17) (312, 21%)

63 2w3 5 (51,3,1°) (57,3%,1%) (5%,4% 3% 27 1%) (313, 21%)

64 | wy + wo 5 (51°,3%,1%) (4%,2'%) (47,38, 217 1%) (3%, 21%,179)
>11 [ (7%,5%3%1%)

70 | w1 + ws 5 (511735) (5373157110) (44,37721z719) (35,2107115)
> 7 (7%,5%,37)

34 203 3 (327715) (327715) (315,24717) (314)2167110)

7 (77,5°,1) (7,57,37,17) | (57,4%,37,2%,17)

>11 (9%,7,5%,119)

39 2w 7 (75’55’36’15) (50’315’114) (5’44’311’211’15) (310’2zu’119)
90 2uws 3 (3%9) (3%7,19) (3%2,2%,1%) (319,279 177)
5 (517715) (5(),3157115) (5744,31&721 719)

> 11 | (9,7°,57,3%,1°)
TABLE 19. G = Cy(K)
n| w | p J(p(x)) J(p(z)) J(e(x))
for J(x) = (8) | for J(z) = (6,2) | for J(x) = (6,1?)
27 | we 7 - (73,5,1) (7%,6%,1)
11 (11%,5) 9,7, 51 1) (9,6%,5,1)
>13 (13,9,5)
36 | 2wi 7 - (7,5,3) (7°,6%,1%)
11 (113,3) (11,7%,5,3%) (11,7,6%,3,1°%)
13 (13%,7,3)
> 17 (15,11,7,3)
42 | wa 7 - (7%) (7%)
11 (11%,9) (11,9%,5%,3) (10%,9,5,4%)
13 (13%,11, 5)
> 17 (17,11,9,5)
8 ws | 7 - (7°,6) (7°,6)
11 (11%,4) (10%,8,67,4%) (10,9%,6,5%,4)
13 (13%,12,6,4)
>17 | (16,12,10,6,4)
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Table 19 continued
n | w P J(p(z)) J(p(x)) J(p(z))
for J(z) = (42) for J(z) = (4, 22) for J(z) = (4,2, 12)
27 | wa 5 (5°,1%) (5%,3°,1° (5%,47%,3,2%,1°)
>7 (775“73,12)
36 | 2w 5 (57,1) (5%,3°,1) (5°,47,3%,27,1°)
>7 (75,573571) (775273‘),1) (6‘,52,44,371)
42 | wy 5 (5%,1%) (57,3%,1) (5°,4%,3,1)
7 (7%,5,3%,1°) (7,5,4%,37,2%,1°) (7,5°,3%,1)
>11 | (9,7%,5%,3%,1°)
48 [ ws 5 (5%,4%) (5%,4%,2%) (5°,4%,3%,2,1%)
7 (7%, 4% 29) (6%,4°,2%) (6,57,4°,37,2,1%)
>11| (87,6747 2%
Table 19 continued
n] w | p T(p(@)) T((@)) T(p()
for J(z) = (4,1*) | for J(z) = (3%,2) | for J(x) = (3%,1?)
27 [ w2 | 3 - (3%) (39)
>5 (5,4%,1%) (5,47,3%,2% 1) (5,37,1)
36 | 2w, | 3 - (377 (3T, 1%)
5 (52744’110) (53742732722,15) (55’35,16)
>7 (7,4%3,17)
40 [ ws | 3 - (32,2,1%) (377, 1%)
41 ws | 3 - (312,22 1) (372, 1°)
42| ws | 5 (5°,4%,1) (5°,3°%,2%) (5°,3%,1°)
>7 (62,5,4%,3%,2%)
48 | ws 5 (5%,4° 1% (5%,4%3% 2 1%) (5%,3%,1%)
>7 (6,51,44,3‘,25, 14)
Table 19 continued
n | w P J(p()) J(p(x)) J(p(x)) J(p(x))
for J(z) = (2%) | for J(x) = (23,12) | for J(x) = (22,1%) | for J(z) = (2, 15)
27 [ we [ >3 (35,19) (33,25,15) (3,28,18) (25,119)
36 | 2wy | >3 (310, 15) (35,26,16) (33,28, 111) (3,26,121)
40 | ws 3 (38,29) (38,24,1%) (3%,210,18) (213, 119)
11 w4 3 (311718) (37728’14) (35728’110) (2147113)
192 w4 2 5 (57397110) (42733?210’15) (357287111) (2147114)
48 w3 2 5 (447216) (4736,287110) (3472127112) (214’120)
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TABLE 20. G = C5(K)

n]w | p T(p(2)) T(p(2)) T(p(2))
for J(x) = (10) | for J(z) = (8,2) | for J(z) = (8,1%)
44 T wo 11 (11%) (11%,9,7,5,1) (11%,8%,5,1)
13 (13%,5) (13,9%,7,5,1) (13,9,8%,5,1)
>17 | (17,13,9,5)
55 | 2wy | 11 (11°) (11°,9,7,3%) (11°,8%)3,1°)
13 (13%,3) (13%,9,7%,3%) (137,8%,7,3,1%)
17 (17%,11,7,3) | (15,11,9,7%,3%) | (15,11,8%7,3,1°)
>19 | (19,15,11,7,3)
Table 20 continued
n| w | p J(p(x)) J(p(x)) J(p(z))
for J(z) = (6,4) | for J(x) = (6,2%) | for J(z) = (6,2,1?)
44 | wo 7 (7°,5,3,1) (7%,57,3,1%) (7%,67,5,2%,1%)
>11 | (92,7,5%,3,1) (9,7%,5%,3,1°) (9,7,6%,57,2% 17)
55 [ 2wi | 7 (77,3%) (7°,5%,3%,1) (7%,67,5,3,2% 17%)
>11 | (11,9,75,5,3% | (11,7°,5%,3%,1) | (11,77,6%,5,37,2%,1°)
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