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CRITICAL MULTITYPE BRANCHING PROCESSES ON A

GRAPH AND THE MODEL OF THE HIV INFECTION

DEVELOPMENT

V.A. TOPCHII, N.V. PERTSEV

Abstract. We consider the Crump-Mode-Jagers branching process
on an oriented graph in an application to modeling the development
of HIV-1 infection in a human organism. For all particles of the same
global type, located at each of the verteces or arcs of the graph, di�erent
types are assigned. Checking the criticality condition and searching for
the eigenvectors of an o�spring mean matrix in the critical case for the
original process are reduced to an o�spring mean matrix for some Galton-
Watson process. The last has the types of particles corresponding only
to the verteces of the graph.

Keywords: Crump-Mode-Jagers branching process on an oriented graph,
Yaglom type limit theorem for critical branching process, eigenvectors for
the mean matrix of high dimension, stochastic model of HIV-1 infection.

1. Introduction

Various mathematical models are used to study the development of HIV-1 infec-
tion in the human organism (see [1] � [5]). If we consider the process of developing
HIV-1 infection within a relatively short period of time after infection of a healthy
person (from several days to 3-4 weeks), then the main components of the process
are mature viral particles (virions) and productively infected cells. Virions come
into contact with target cells, for example, CD4+ T-lymphocytes, enter these cells
and start the process of converting target cells into productively infected cells.
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Productively infected cells produce new viral particles, which in turn infect new
target cells. Each virion and each productively infected cell can be located in the
lymph nodes and move between them, and may also die due to the in�uence of
various factors. The transitions of virions and productively infected cells between
two connected lymph nodes are unidirectional, which is due to the speci�city of
lymph �ow in the lymphatic vessels. Traditionally, there are two approaches to the
study of the problem. This is its study using a system of di�erential equations with
delay (see [6]) and the method of stochastic simulation (see [7] � [9]).

We will consider a stochastic model of the development of HIV-1 infection in the
human organism in the form of a branching process with several types of particles.
Suppose that the particles of type A are mature viral particles (virions) and of
type B are productively infected cells. We assume that particles of global types A
and B can be in any of the n lymph nodes or move between some pairs of lymph
nodes in one direction. The system of lymph nodes and connections between them
is interpreted as a one-connected directed graph. The evolution of particles of global
types A and B in each of the nodes and on the vessels (or in terms of graph theory:
at each of the verteces and on the arcs) are individual, and it is natural to assign
di�erent types to them. Since the number of lymph nodes in the human organism
is quite large (n ≈ 100), a very large number of particle types are presented in the
model. In addition, the particles ability of moving between nodes is limited due to
the speci�c structure of the human lymphatic system. When conducting research,
we assume that all transformations of particles occur independently of the behavior
of other particles, but signi�cantly depend on their location.

Note that in the general setting, it is possible to simulate the development of
HIV-1 infection in the human organism within the framework of a process that is
non-homogeneous in time. Non-homogeneity arises when describing the duration of
particle transitions between lymph nodes using some functions that depend on time.
Non-homogeneity leads to signi�cant di�culties when using classical analytical
methods and requires the use of simulation methods. The proposed analytical
results are important for developing e�cient algorithms and testing the correctness
of computational procedures in a simulation model.

Later we will de�ne the model of moving two type particles through the directed
graph in terms of Crump-Mode-Jagers branching process (see [10] or below in
section 3). It will be named asM model. If the graph contains n vertices, then there
can be up to n(n−1)/2 unidirectional edges. On each of these objects, the branching
process develops according to di�erent laws, i.e. we have to de�ne n(n+ 1)/2 two-
dimensional branching processes with transitions along directed edges. The result
is a Crump-Mode-Jagers process with dimensions up to (n(n + 1)) × (n(n + 1)),
which we will call the M�CMJ process.

A detailed description of the M�CMJ process associated with the lifetime of
particles, as will be shown below, is not essential for our research. Our goal is to
simplify the calculation of the eigenvalue (Perron root) of the o�spring mean matrix
(the mean numbers of all types of o�spring born to all parent types until the death
of the last) for M�CMJ process. Branching processes are traditionally divided into
supercritical (the number of all types of particles grows exponentially), subcritical
(the number of all types of particles dies exponentially quickly), and critical, where
the averages for all types of particles are asymptotically constant and the process
decays (degenerates) with probabilities inversely proportional to time (see [11], [12],
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[10]). We will concentrate on the algorithm for calculating the eigenvectors of the
o�spring mean matrix only in critical case.

The evolution of individual particles in the multi-type case are described in
terms of point processes that determine the joint distribution of a �nite number of
pairs: the ages of generation of groups of o�spring and the number of o�spring in
these groups (see Section 3). The maximum age in the pairs is the lifetime of the
particle. Age-related integer multivariate random variables describe the non-zero
number of o�spring in these groups with a distribution by type. The exception
is the number of o�spring at the time of the death of the particle, which may
be zero. Point processes describing the evolution of particles are independent and
equally distributed for coincident types of particles. The main characteristics of the
evolution of individual particles are the distributions of their lifetime and the total
number of generated o�spring. We believe that all these particle-speci�c pairs of
random variables have �nite second moments. The explicit forms and asymptotic
behavior of the �rst and second moments for the number of particles in the critical
Crump-Mode-Jagers model are described in [13]. In [13] Yaglom type limit Theorem
is also given for the number of particles of all types under the condition that the
process is non-degenerate.

These asymptotic results are expressed in terms of the eigenvectors of the mean
matrix and the functionals associated with the age of the parent at the time of
generation of the o�spring. The speci�city of the model makes it possible to transfer
transformations of particles on edges to vertices, �nd eigenvectors for auxiliary
processes of small dimension, and then return to the original problem.

More precisely, in the critical case for M�CMJ process, a simple algorithm of
calculating the eigenvectors for the matrix A of dimension up to (n(n + 1)) ×
(n(n+1)) is proposed in terms of the eigenvectors for some matrix A1 of dimension
(2n)× (2n).

The structure of the paper is as follows. In section 2, we provide a formal
description of the development of HIV-1 infection in terms of moving of some
particles on a graph and state the main result. In section 3, the classical multitype
models of branching processes and o�spring mean matrix are reminded. In section
4, an auxiliary Bellman-Harris process of a lower dimension is constructed on the
probabilistic space of the M�CMJ process. Section 5 proves the main result. In
section 6, some generalization of the M�CMJ model and empirical results are
discussed.

2. Evolution of particles on a graph

Let Γ be a directed simply connected graph without loops with weighted arcs.
The verteces of the graph Γ are denoted by Ni, and the arc going from Ni to Nj �
by Ni,j , 1 ≤ i, j ≤ n, where n is the number of verteces, respectively.

The graph structure is determined by the stochastic weight matrixG =
(
gi,j

)n
i,j=1

,

in particular, there are no arcs if their weight is zero. The weights gi,j of the arcs
Ni,j in the graph Γ are satisfying the conditions

0 ≤ gi,j ≤ 1, gi,jgj,i = 0,

n∑
j=1

gi,j = 1, 1 ≤ i, j ≤ n.
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The stochastic matrix G can be interpreted as the transitions probabilities from
states Ni to Nj , where j ̸= i, for the Markov chain. We assume that all states of
this chain are communicating.

De�ne two sets of pairs

S =
{
(i, j) : 1 ≤ i, j ≤ n, gi,j > 0

}
, S0 = S ∪

{
(i, i), 1 ≤ i ≤ n

}
.

Assume that a lexico-graphic order has been introduced for them. We denote by∣∣S∣∣ the cardinality (number of elements) of an arbitrary �nite set S.
Two kinds of particles Ai,j and Bi,j , (i, j) ∈ S0, can be located at the vertex Ni

of the graph Γ for j = i or on arcs Ni,j for (i, j) ∈ S. In our conditions on the graph
Γ we have 2n+ 2

∣∣S∣∣ types of particles. Obviously, 4n ≤ 2n+ 2
∣∣S∣∣ ≤ (n+ 1)n.

From the moment of birth, the evolution of any particle and its o�spring does
not depend on the further behavior of the particles and their o�spring that were
present at the moment.

De�ne the model M. The evolution of Ai,i and Bi,i in verteces Ni, i = 1, · · · , n
are de�ned through traditional two-dimensional Crump-Mode-Jagers branching
process and are kept as Ai,j and Bi,j in the arcs Ni,j , 1 ≤ i, j ≤ n. The main
property in M for verteces Ni is that sometime the death of the particle is interpre-
ted as emigration to one of arcs. Set the probabilities of emigration for Ai,i and
Bi,i are equal to p(Ai,i) > 0 and p(Bi,i) > 0, correspondingly. The transition of
the particles Ai,i and Bi,i to the arcs Ni,j , (i, j) ∈ S, occurs with probabilities gi,j .
It means that the particle Ai,i (or Bi,i) at the death time generates exactly one
particle of type Ai,j (or Bi,j) with probability gi,jp(Ai,i) (or gi,jp(Bi,i)).

In a number of applied publications the evolution of particles Ai,j (or Bi,j),
(i, j) ∈ S, located on arcs Ni,j depends on their type and the birth times of these
particles. We suppose that our process is homogeneous and the evolution of particles
Ai,j and Bi,j is independent of their birth times. In the model of HIV-1 infection
the arcs Ni,j correspond to lymphatic vessels of various lengths with lymphatic
�uid moving along them. The initial particle Ai,j (or Bi,j) that appears in Ni,j

from Ni and all of its descendants simultaneously leave the vessel. In this case,
we cannot control the o�spring on Ni,j within the branching process on all graph.
The problem of particles evolution on arcs Ni,j will be investigated separately. As
a result we de�ne that all particles Ai,j and Bi,j are kept on the arcs Ni,j (do not
produced o�spring and no die) and only at the moment of moving of the particles
Ai,j and Bi,j to Nj they die and, depending on age, spawn a random number of
o�spring Aj,j and Bj,j . This determines the evolution of Ai,j and Bi,j on the arcs
Ni,j in terms of the Crump-Mode-Jagers processes in the model M.

Denote M�CMJ branching process by Z(t). Counting processes describing the
evolution of particles of the type Ai,j specify a representation for ξ(Ai,j) � the total
number of its o�spring

ξ(Ai,j) =
∑

(s,k)∈S

(
ξ(Ai,j , As,k) + ξ(Ai,j , Bs,k)

)
,

where ξ(Ai,j , As,k) is the random number of o�spring of the As,k type generated
by the Ai,j type particle. Denote the mean of o�spring of the As,k type number
generated by the Ai,j type particle through m(Ai,j ;As,k) = Eξ(Ai,j , As,k) and the
same for Bs,k through m(Ai,j ;Bs,k) = Eξ(Ai,j , Bs,k).
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Similar representations are true when replacing the particle type of the parent
Ai,j with the type Bi,j . In this case, we denote m(Bi,j ;As,k) = Eξ(Bi,j , As,k) and
m(Bi,j ;Bs,k) = Eξ(Bi,j , Bs,k).

De�ne the o�spring mean matrices of the average number of o�spring As,k and
Bs,k from the particles Ai,j throughout their life in the �rst row and from the
particles Bi,j throughout their life in the second line through N(i,j)(s,k). In the
general case, we will use the notation

N(i,j)(s,k) =

(
m(Ai,j ;As,k) m(Ai,j ;Bs,k)
m(Bi,j ;As,k) m(Bi,j ;Bs,k)

)
.

But many of these matrices can be written explicitly for the model M.
Write the o�spring mean matrix A for M�CMJ process in terms of block

matrices N(i,j)(s,k) of dimension 2× 2

(1) A =
(
N(i,j)(s,k)

)
(i,j),(s,k)∈S0

.

The previously introduced de�nitions and conditions lead to the relations

N(i,i)(i,i) =

(
m(Ai,i;Ai,i) m(Ai,i;Bi,i)
m(Bi,i;Ai,i) m(Bi,i;Bi,i)

)
,(2)

N(i,i)(i,j) = gi,j

(
p(Ai,i) 0

0 p(Bi,i)

)
, for (i, j) ∈ S,(3)

N(i,j)(j,j) =

(
m(Ai,j ;Aj,j) m(Ai,j ;Bj,j)
m(Bi,j ;Aj,j) m(Bi,j ;Bj,j)

)
, for (i, j) ∈ S,(4)

N(i,j)(s,k) =

(
0 0
0 0

)
,∀ (i, j), (s, k) ∈ S, or {(i, j), (s, k) ∈ S0}&{j ̸= s}.(5)

Suppose that the following conditions are true

(6)
m(Ai,i;Ai,i)m(Bi,i;Bi,i) > 0, m(Ai,i;Bi,i) +m(Bi,i;Ai,i) > 0

m(Ai,j ;Aj,j)m(Bi,j ;Bj,j) > 0

Note that in a lot of applications, the Ai,j and Bi,j types of particles can
only perish on the arcs Ni,j or traverse the entire arc Ni,j . In such a case the
evolution of particles is described in terms of Crump-Mode-Jagers process and we
are dealing with real moments of particles Ai,j and Bi,j death. For such a model, the
transformations of the matrices of means used by us are preserved after replacing
the matrices N(i,j)(j,j) from (4) with diagonal ones with the probabilities of passing
the corresponding arcs on the diagonal.

De�ne accompanying mean matrix A1 = (Ni,j)
n
i,j=1 of dimension 2n × 2n in

block form, where

(7) Ni,i =

(
m(Ai,i;Ai,i) m(Ai,i;Bi,i)
m(Bi,i;Ai,i) m(Bi,i;Bi,i)

)
= N(i,i)(i,i)

and Ni,j = N(i,i)(i,j)N(i,j)(j,j), for i ̸= j, or

(8) Ni,j = gi,j

(
p(Ai,i)m(Ai,j ;Aj,j) p(Ai,i)m(Ai,j ;Bj,j)
p(Bi,i)m(Bi,j ;Aj,j) p(Bi,i)m(Bi,j ;Bj,j)

)
.

The selection of these matrices will be explained when proving the main result.
De�ne positive 2

∣∣S0

∣∣ � dimensional left and right eigenvectors v and u for the
matrix A

(9) vA = v, Au⊤ = u⊤.
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where
v =

(
v(i,j)

)
(i,j)∈S0

, u =
(
u(i,j)

)
(i,j)∈S0

,

and v(i,j) =
(
v(i,j),1, v(i,j),2

)
, u(i,j) =

(
u(i,j),1, u(i,j),2

)
.

Hereinafter symbol ⊤ means transposing of a matrix (vector).
In the same way de�ne positive 2n � dimensional left and right eigenvectors v1

and u1 for the matrix A1

(10) v1A1 = v1, A1u
⊤
1 = u⊤

1 .

where
v1 = (vi)1≤i≤n , u1 = (ui)1≤i≤n ,

and vi = (vi,1, vi,2), ui = (ui,1, ui,2).
An essential condition for applying of asymptotic results for critical branching

processes of all types is that the o�spring mean matrix A is indecomposable. This
means the simultaneous positiveness of all elements of An0 for some n0 ∈ N.

Theorem 1. Fix M�CMJ branching process Z(t) with the o�spring mean matrix
A, de�ned in (1) and (2)�(5). Let lifetime distribution in terms of point processes
with �nite second moments for this branching process, be also �xed.

Then, under the conditions (6) the matrix A and the accompanying matrix A1,
de�ned in (7) and (8) are indecomposable and have equal Perron roots and in critical
case the eigenvectors of the matrices A and A1 are linked by formulas

(11) v(i,i) = vi, v(i,k) = viN(i,i)(i,k), 1 ≤ i, k ≤ n,

(12) u(i,i) = ui, u(i,j) = ujN
⊤
(i,j)(j,j), 1 ≤ i, j ≤ n.

3. Branching process models and an accompanying Galton-Watson

process

Let us give brief de�nitions of abstract models of branching processes with N
types of particles. All processes Z(t) ∈ NN

0 will be interpreted as a number of
particles of all types at time t, where N0 = N∪{0}. In all cases will be de�ned Z(0)
and stochastic evolution of each of the particles. From the moment of particle birth
its evolution does not depend on the behavior of the other particles (branching
condition).

In the Galton-Watson processes Z(t) (see [11]) the lifetime of all particles is equal
to 1. Particles of the i-th type at death produce a random number of o�spring with
the generating function F (i)(s), where s = (s1, · · · , sN ) ∈ [0, 1]N .

In the Bellman-Harris processes Z(t) (see [11]) the lifetime of particles of the
i-th type have the distribution Gi(t) and at time of death (upon death) it produces
a random number of o�spring with the generating function F (i)(s), where s =
(s1, · · · , sN ) ∈ [0, 1]N .

The asymptotic properties of critical Bellman-Harris processes under the additi-
onal condition of indecomposability of the matrix of means are described in terms
of Za(t) � critical Galton-Watson processes (we call it the accompanying Galton-
Watson process for Z(t)), with generating functions for the number of o�spring
F (i)(s) for the particles of the i-th type and some coe�cients expressed in terms of
moments for Gi(t). Formally, the accompanying Galton-Watson process is obtained
by replacing all particles lifetimes with a single one without changing the number
of o�spring. See Theorem 1 [14, Ch. V, sec. 5] for exact asymptotic formulas.
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The o�spring mean matrix for the Bellman-Harris process and the same for the
accompanying Galton-Watson process (in general form without reference to the
original problem) is written as

A =
(
ai,j

)N
i,j=1

=

(
∂F (i)(s)

∂sj

∣∣∣∣
s=1

)N

i,j=1

.

Sevast'yanov processes Z(t) with N types of particles (see [12, Ch. VIII]) di�er
from Bellman-Harris processes in that the number of o�spring of a particle may
depend on the age of its death. In other words, the generating function F (i)(s, u)
of the number of o�spring of a particle of the i-th type that perishes at the age of
u has the �rst moments

ai,j(u) =
∂F (i)(s, u)

∂sj

∣∣∣∣
s=1

.

Consequently the accompanying Galton-Watson process Za(t) for Z(t) is given
by the generating functions

F (i)(s) =

∫ ∞

0

F (i)(s, u)dGi(u)

and the o�spring mean matrix A consists of elements

ai,j =

∫ ∞

0

ai,j(u)dGi(u).

The Crump-Mode-Jagers processes Z(t) are a generalization of Sevast'yanov
processes and di�er from them in that particles can repeatedly generate random
numbers of o�spring throughout their life, while the number of groups of o�spring,
the moments of their generation and the lifetime of the particles themselves may
depend on each other. Formally, the o�spring generation process is speci�ed using a
multidimensional counting process. We will not go into details, but the asymptotic
properties of such processes are described in terms of the o�spring mean matrix
A for Z(t) (or Za(t) � its the accompanying Galton-Watson) and some functionals
such as moments from counting processes (from the evolution of particles), see [10]
and [13].

The asymptotic properties of multidimensional critical Galton-Watson processes
are described in [12, Ch.VI, � 3]. In [12], the criticality condition are expressed in
terms of the properties of the o�spring mean matrixA. Its Perron root will be equal
1. Exact asymptotic formulas for the nonextinction probability of the process and
conditional distributions for the normalized number of particles are related to the
second moments (provided that they are �nite) and the right and left eigenvectors
u > 0 and v > 0 are de�ned by the relations Au⊤ = u⊤, vA = v, (u, v) = 1.

4. M�CMJ process and its accompanying process

For multitype Crump-Mode-Jagers model in [13] are presented integral equations
for the �rst two moments in an explicit form and asymptotic representations and
conditional Yaglom type limit Theorems for the number of particles of all types.
The generating vector-functions for the number of o�spring produced by particle of
the type i throughout their life was denoted by F (i)(s). These generating functions
de�ne multitype accompanying Galton-Watson process Za(t). The critical type for
both processes is the same.
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In our M�CMJ process we have 2n+2
∣∣S∣∣ particle types Ai,j and Bi,j , (i, j) ∈ S0

with o�spring mean matrix A de�ned in (1) and (2)�(5). If any of the means
m(Ai,j ;As,k), m(Ai,j ;Bs,k), m(Bi,j ;As,k), m(Bi,j ;Bs,k) is equal to zero, then the
particles of the �rst type from the argument do not produce particles of the second
type. In Za(t) the particle of the Ai,i (or Bi,i) type produce a random number of
o�spring Ai,i and Bi,i and in some step with probability gi,jp(Ai,i) (or gi,jp(Bi,i))
gives rise to exactly one o�spring of the Ai,j (or Bi,j) type. After that, at the next
step, the Ai,j (or Bi,j) type particle produces a random number of o�spring of the

types Aj,j and Bj,j with the generating function F
(i)
A (s1, s2) (or F

(i)
B (s1, s2)).

Let us construct a new process Z1(t) on the probabilistic space of the Galton-
Watson process Za(t). We divide all one-step transformations of Ai,j and Bi,j in
Za(t) from one state to other states into three groups: inside the vertices, from the
vertices to the arcs, and from the arcs to the vertices. In the �rst group, o�spring
particles can stay at the same vertex for several steps in a row, while in the rest
they leave the groups in one step. In terms of process Za(t) implementations, the
transformations of the �rst type are preserved for the new process Z1(t), and the
transformations of the second and third types are combined into one of duration
2. Instead of two transitions from Ai,i (or Bi,i) to Ai,j (or Bi,j) and to Nj with

generating function F
(i)
A (s1, s2) (or F

(i)
B (s1, s2)) for number of o�spring, we de�ne

that in two units of time Ai,i (or Bi,i) generates a random number of o�spring Aj,j

and Bj,j with the same generating function F
(i)
A (s1, s2) (or F

(i)
B (s1, s2)).

New process Z1(t) is the Sevast'yanov process with 2n particles of the types Ai,i

and Bi,i, 1 ≤ i ≤ n, with lifetime 1 or 2, with the lifetime dependent of o�spring
number and with o�spring mean matrix A1 are de�ned in (7) and (8).

Recall that the condition of subcriticality, criticality and supercriticality branch-
ing processes corresponds to exponential decay, convergence to some positive const-
ant or exponential growth of the average number of all components simultaneously
with unlimited growth of the time parameter see [11], [12]). So Za(t) and Z1(t) have
one and the same critical class. Denote by Z1a(t) the accompanying Galton-Watson
process for the Z1(t). These two processes share the common o�spring mean matrix
A1.

5. Proof of Theorem 1

For our analysis, the initial distributions of M�CMJ process Z(t) and its accom-
panying of the second order Galton-Watson process Z1a(t) are not important. We
assume that the distributions of the number of o�spring and the lifetime of particles
for Z(t) are given, i.e. the process Z(t) is formally de�ned. The critical type of
accompanying Galton-Watson process Z1a(t) coincides with the critical type of the
original M�CMJ process Z(t). This means that the o�spring mean matrices A and
A1 have the same Perron roots.

First, let us prove that the o�spring mean matricesA andA1 are indecomposable.
Let us construct an auxiliary Markov chain M(n) for the M�CMJ process with

the states Ai,j , Bi,j , (i, j) ∈ S0, with a matrix of transition probabilities

Ã =
(
p(i,j)(s,k)

)
(i,j),(s,k)∈S0

,

where the elements of matrices

p(i,j)(s,k) =

(
p(Ai,j ;As,k) p(Ai,j ;Bs,k)
p(Bi,j ;As,k) p(Bi,j ;Bs,k)

)
,



MULTITYPE BRANCHING PROCESSES ON A GRAPH 473

are satisfying the conditions p(∗; ⋆) > 0 if and only if m(∗; ⋆) > 0 with the same
arguments.

By virtue of the matrix G properties and conditions (6), the Markov chain has
�nite number of communicating states and it is not periodic. Therefore, there exists
n0 such that all elements of Ãn0 are positive (see Lemma 2 [12, Ch.IV, �5]).

By de�nition there exists some constant c > 0 such that for all combinations of
arguments the inequalities

m(∗; ⋆) ≥ cp(∗; ⋆)
are true. In matrix form, the last inequalities are written as

A ≥ cÃ.

This implies that all elements of the matrix An0 are positive.
We proved that the o�spring mean matrix A is indecomposable. By analogy, the

same can be proved for the o�spring mean matrix A1.
We are interested in a critical case. This means that the maximal root of the

equation

det(A1 − λI2n) = 0

is equal to 1. In this case, there are positive 2n-dimensional left and right eigenvec-
tors v1 and u1 satisfying the conditions (10).

Rewrite the relations (10) in block form

(13)

n∑
i=1

viNi,j = vj ,

n∑
j=1

Ni,ju
⊤
j = u⊤

i .

For 2
∣∣S0

∣∣ - dimensional o�spring mean matrix A left and right eigenvectors v
and u are de�ned in (9).

After rewriting the relations (9) in block form, one obtains the relations∑
(i,j)∈S0

v(i,j)N(i,j)(s,k) = v(s,k),

or in view of (5)

(14) v(s,k) =
∑

(i,j)∈S0, j=s

v(i,j)N(i,j)(s,k) =
∑

{i:(i,s)∈S0}

v(i,s)N(i,s)(s,k).

In the case s = k (14) implies
∑

{i:(i,k)∈S0} v(i,k)N(i,k)(k,k) = v(k,k) or taking into

account (7)

(15) v(k,k)Nk,k +
∑

{i:(i,k)∈S}

v(i,k)N(i,k)(k,k) = v(k,k).

If k ̸= s, then s = i and for (i, k) ∈ S

(16) v(i,i)N(i,i)(i,k) = v(i,k).

From (3) and (4) it follows

(17) N(i,i)(i,k)N(i,k)(k,k) = Ni,k,

therefore (15) and (16) imply

(18) v(k,k)Nk,k +
∑

{i:(i,k)∈S}

v(i,i)Ni,k =

n∑
i=1

v(i,i)Ni,k = v(k,k).
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From (16)�(18) it follows that the left eigenvector (without normalization by
unity) can be chosen in the form

v(i,i) = vi, v(i,k) = v(i,i)N(i,i)(i,k)

where vk is an eigenvector from (13). The representation (11) is proved.
Similar calculations can be performed for the right eigenvector, namely:

(19)
∑

(s,k)∈S0

N(i,j)(s,k)u
⊤
(s,k) = u⊤

(i,j).

Considering the property (5), we rewrite (19) in the form

(20) u⊤
(i,j) =

∑
{k:(j,k)∈S0}

N(i,j)(j,k)u
⊤
(j,k)

In case i = j (20) implies
∑

{k:(i,k)∈S0} N(i,i)(i,k)u
⊤
(i,k) = u⊤

(i,i) or taking into

account (2) and (3) we have

(21) Ni,iu
⊤
(i,i) +

∑
{k:(i,k)∈S}

N(i,i)(i,k)u
⊤
(i,k) = u⊤

(i,i).

In case i ̸= j (20) implies

N(i,j)(j,j)u
⊤
(j,j) = u⊤

(i,j).

or taking into account (17)

(22)
∑

{k:(i,k)∈S0}

Ni,ku
⊤
(k,k) =

n∑
k=1

Ni,ku
⊤
(k,k) = u⊤

(i,i).

The representations (21) and (22) imply that as the right eigenvector (without
normalization to unity) can take the form

u(i,i) = ui, u(i,j) = ujN
⊤
(i,j)(j,j).

where uk is an eigenvector from (13). The representation (12) is proved.

6. Comments on applications and generalization

The problem under consideration in a general case is traditionally solved by
methods of statistical simulation. To test the operation of programs, it is convenient
to use analytical results. The latter are also useful for creating simulation algorithms.
Particular cases of the proposed model were investigated in [7] � [9]. A number of
speci�c models and some results of numerical experiments are presented there. The
behavior of the process on arcs in real problems excludes its description in terms of
processes simpler than the Sevast'yanov branching processes. Here we used a more
general the Crump-Mode-Jagers model.

The value of the Perron root for the the o�spring mean matrix signi�cantly
a�ects the global behavior of processes. Supercritical and subcritical processes are
well studied and quite simply arranged. With critical processes and processes close
to them in terms of the value of the Perron root, there is a special interest. They
are boundary when epidemics appear and have nontrivial properties for various
parameters. When simulating complex processes, random experiments are repeated
many times and conclusions are drawn based on statistical estimates. In the study
of critical processes, experimenters encountered strange behavior on a number of
trajectories: with a traditionally small number of virions, sharp surges in their
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numbers occurred. This e�ect is easily explained by Yaglom's type limit Theorem
for critical branching process (large deviation Theorem). If process beginning from
one particle of any �xed type and up to time t it is not degenerate (this happens
with probability of the order 1/t), then the vector of particles number multiplied
to t−1 convergence to some random vector, as t → ∞. The precise formula of the
limiting random vector distribution essentially depends from the eigenvectors for
the initial model. It means that the number of particles at this moment is random,
but this number has the order t. This phenomenon must be taken into account in
practice for repetitive diseases.

The main results of this article are naturally generalized to a more general model.
Instead of two global types of particles A and B, one can take any �nite number of
types A(l), 1 ≤ l ≤ k, 1 ≤ i ≤ k. At the vertex of the graph, their transformations

can be speci�ed by some common branching process for particles A
(l)
i,i , 1 ≤ l ≤ k,

with the possibility of particle escape A
(l)
i,i from vertex Ni to arc Ni,j , (i, j) ∈ S,

(transformation of A
(l)
i,i into A

(l)
i,j ) with the probabilities gi,j de�ned above, where

without dying they pass the entire arc and at the moment of moving to Nj they die

and spawn a random number of o�spring A
(l)
j,j , 1 ≤ l ≤ k, as in the Crump-Mode-

Jagers process. Further, the matrices A and A1 are de�ned by relations similar to
(1)�(8) in terms of new matrices of the size k × k. The statement of the theorem
should be written in terms of these matrices of the size k × k like (11) and (12).
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