СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports

http://semr.math.nsc.ru

ON THE DISSYMMETRIZATION THEOREM

V.N. DUBININ

Abstract

A new property of the previously proposed dissymmetrization of functions is established. The conjecture about the capacity of condensers in a circular ring with plates in the form of circles or radial cuts is discussed. The connection of this conjecture with the well-known Gonchar-Baernstein problem of a harmonic measure is shown.

Keywords: dissymmetrization, harmonic measure, Dirichlet integral, condenser capacity.

1. Introduction and statement of result

Let $n \geq 2$ be a natural number and let

$$
L_{j}^{*}=\{z: \arg z=2 \pi j / n\}, \quad j=1, \ldots, n .
$$

Denote by Φ the group of symmetries of $\overline{\mathbb{C}}$ formed by the composites of the reflections in the rays $L_{j}^{*}, j=1, \ldots, n$, and in the bisectors of the angles formed by these rays. Throughout this paper symmetry means Φ-invariance. We say that a set $A \subset \overline{\mathbb{C}}$ is symmetric if $\varphi(A)=A$ for any isometry $\varphi \in \Phi$. A real function v on a symmetric set Ω is said to be symmetric if $v(z) \equiv v(\varphi(z))$ for any $\varphi \in \Phi$. We call a system of closed sectors with vertices at origin a decomposition of the sphere $\overline{\mathbb{C}}$ if no two sectors have common interior points and their union is $\overline{\mathbb{C}}$. It has been shown in [1] (see also [2], [3, Sec. 4.4]) that for any different rays $L_{j}, j=1, \ldots, n$, starting from the origin there exists a decomposition $\left\{P_{j}\right\}_{j=1}^{j_{0}}, j_{0} \geq n$, of the plane $\overline{\mathbb{C}}$ and a set of rotations $\left\{\lambda_{j}\right\}_{j=1}^{j_{0}}$ of the form $\lambda_{j}(z)=e^{i \theta_{j}} z, j=1, \ldots, j_{0}$ (dissymmetrization)

[^0]such that the set $\left\{\lambda_{j}\left(P_{j}\right)\right\}_{j=1}^{j_{0}}$ is also a decomposition $\overline{\mathbb{C}}, \operatorname{Dis} L_{j}^{*}=L_{j}, j=1, \ldots, n$, and for any the symmetric function $v, z \in \Omega$, the function Dis v is well defined:
$$
\operatorname{Dis} v(z):=v\left(\lambda_{j}^{-1}(z)\right), z \in \lambda_{j}\left(P_{j}\right) \cap \operatorname{Dis} \Omega, \quad j=1, \ldots, j_{0}
$$

Here Dis A means $\bigcup_{j=1}^{j_{0}} \lambda_{j}\left(A \cap P_{j}\right)$. Conceived as a method for solving the Gonchar problem on harmonic measure [1], dissymmetrization has found application in other questions of function theory (see, for example, [3]-[8]). In this paper, we consider a new property of this transformation. Let us introduce the notation

$$
\begin{gathered}
B(s, t)=\{z: s<|z|<t\}, \quad 0<s<t<\infty \\
T(r)=\{z:|z|=r\}, \quad T=T(1)
\end{gathered}
$$

The following theorem is true.
Theorem 1. Let E^{*} be a symmetric compact set on $\bigcup_{j=1}^{n} L_{j}^{*} \cap B(s, 1)$ and let f^{*} be a symmetric continuous function on $\overline{B(s, 1)}$, constant on T, harmonic in $B(s, 1) \backslash E^{*}$, and f is a continuous function on $\overline{B(s, 1)}$, coinciding with the function $\operatorname{Dis} f^{*}$ on $\partial\left(B(s, 1) \backslash \operatorname{Dis} E^{*}\right)$ and harmonic in $B(s, 1) \backslash$ Dis E^{*}. Then

$$
\begin{equation*}
\int_{T}\left[\left(\frac{\partial f}{\partial n}\right)^{2}-\left(\frac{\partial f^{*}}{\partial n}\right)^{2}\right] d s \geq \frac{1}{\pi} \int_{T} \frac{\partial f^{*}}{\partial n} d s \int_{T}\left(\frac{\partial f}{\partial n}-\frac{\partial f^{*}}{\partial n}\right) d s \tag{1}
\end{equation*}
$$

where $\partial / \partial n$ denotes differentiation along the inward normal.
It is known that the Dirichlet integral does not increase under the dissymmetrization [3, Sec. 4.4]. Inequality [1] gives information about the behavior of the variation of the Dirichlet integral under dissymmetrization (see Lemma 1). In particular, when the right-hand side of (1) is equal to zero, the variation of the Dirichlet integral of a symmetric function does not exceed the variation of such an integral of a function that does not have such symmetry (cf. [8]) This statement, together with [8], leads to a new conjecture about the behavior of the capacities of some condensers during dissymmetrization which is closely related to the well-known Gonchar-Baernstein problem on the harmonic measure of radial cuts [9]. The next section is auxiliary.

2. Variation of the Dirichlet integral

Everywhere below, the notation

$$
I(f, B):=\iint_{B}|\nabla f|^{2} d x d y
$$

is adopted. In the unit disk $|z|<1$, consider a finitely connected domain B whose boundary consists of analytic Jordan curves, including the circle T. Let f be a function twice continuously differentiable in \bar{B}, harmonic in B and equal to zero on T, and let f_{t} be a function harmonic in $B_{t}:=B \cap\{z:|z|<t\}, t<1$, twice continuously differentiable in \bar{B}_{t}, taking boundary values f on $(\partial B) \backslash T$ and equal to zero on $T(t)$.
Lemma 1. The following asymptotic formula holds:

$$
I\left(f_{t}, B_{t}\right)=I(f, B)+(1-t) \int_{T}\left(\frac{\partial f}{\partial n}\right)^{2} d s+O\left((1-t)^{2}\right), \quad t \rightarrow 1
$$

Proof. On the circle $T(t)$ the uniform estimate

$$
f(z)=f(z)-f_{t}(z)=(1-t) \frac{\partial f}{\partial n}(z / t)+O\left((1-t)^{2}\right)
$$

is satisfied. Applying Green's formula, we obtain the equality

$$
I\left(f-f_{t}, B_{t}\right)=-\int_{\partial B_{t}}\left(f-f_{t}\right) \frac{\partial\left(f-f_{t}\right)}{\partial n} d s=-\int_{T(t)}\left(f-f_{t}\right) \frac{\partial\left(f-f_{t}\right)}{\partial n} d s=O\left((1-t)^{2}\right)
$$

On the other hand, again by Green's formula

$$
\begin{gathered}
I\left(f-f_{t}, B_{t}\right)=I\left(f, B_{t}\right)+I\left(f_{t}, B_{t}\right)+2 \int_{T(t)}\left(f_{t}-f+f\right) \frac{\partial f}{\partial n} d s \\
=I\left(f_{t}, B_{t}\right)-I\left(f, B_{t}\right)+2 \int_{T(t)}\left(f_{t}-f\right) \frac{\partial f}{\partial n} d s=I\left(f_{t}, B_{t}\right)-I(f, B)-\int_{T(t)} f \frac{\partial f}{\partial n} d s
\end{gathered}
$$

Therefore,

$$
I\left(f_{t}, B_{t}\right)-I(f, B)-\int_{T(t)} f \frac{\partial f}{\partial n} d s=O\left((1-t)^{2}\right)
$$

which completes the proof of Lemma 1.
We note that in the case when the function f takes constant values on the connected components of the boundary of the domain B, our formula follows from the classical variational formula [10, (A3.12)].

3. Proof of the theorem 1

It suffices to establish inequality (1) in the new formulation of the problem. Namely, to replace the set E^{*} in the hypothesis of Theorem 1 by a symmetric set \mathcal{E}^{*} located sufficiently close to it, bounded by a finite number of analytic Jordan curves, and the function f^{*} to be assumed to be three times continuously differentiable on $\partial\left(B(s, 1) \backslash \mathcal{E}^{*}\right)$ and equal to zero on T. We fix t such that $0<t<1, \sup \{|z|: z \in$ $\left.\mathcal{E}^{*}\right\}<1-2 \Delta t(\Delta t=1-t)$ and consider functions

$$
b(z):=\log |z|, \quad u^{*}=b+\varepsilon f^{*}
$$

where $\varepsilon>0$ is sufficiently small. It is easy to see that the Hausdorff distance between the curve

$$
\gamma_{t}^{*}: u^{*}=b(t)
$$

and the circle $T(t)$ is the quantity ${ }^{1} O^{\prime}(\varepsilon \Delta t), \varepsilon \rightarrow 0$. Further, the notation (γ, Γ) means a doubly connected domain on the plane \mathbb{C}, bounded by closed curves γ, Γ, and $\bmod (\gamma, \Gamma)$ is the module of the domain (γ, Γ). Let the quantities $t(\varepsilon)$ and $R(\varepsilon)$ be defined by the relations:

$$
\begin{gathered}
\bmod \left(\gamma_{\tau}^{*}, \gamma_{t}^{*}\right)=\bmod \left(\gamma_{\tau}^{*}, T(t(\varepsilon))\right), \quad \tau=1-2 \Delta t \\
\bmod \left(\gamma_{t}^{*}, T\right)=\bmod (T(t(\varepsilon)), T(R(\varepsilon)))
\end{gathered}
$$

Following the arguments in [8] from formula (3.1) to (3.5), where it is necessary to set the $-1 / \log r=\varepsilon$, we see that

$$
\begin{equation*}
R(\varepsilon) \geq 1 \text { and } R(\varepsilon)-1=O^{\prime}\left((\varepsilon \Delta t)^{2}\right) \tag{2}
\end{equation*}
$$

[^1]By definition,

$$
\bmod \left(\gamma_{t}^{*}, T\right)=\frac{1}{2 \pi} \log \frac{R(\varepsilon)}{t(\varepsilon)}=\frac{1}{2 \pi} \log \frac{1}{t(\varepsilon)}+O^{\prime}\left((\varepsilon \Delta t)^{2}\right)
$$

On the other hand, the Hadamard formula [10 (A3.11)], [8, (2.2)] gives

$$
\bmod \left(\gamma_{t}^{*}, T\right)=\frac{1}{2 \pi} \log \frac{1}{t}-\left(\frac{1}{2 \pi} \log \frac{1}{t}\right)^{2} \int_{T(t)}\left(\frac{\partial \omega}{\partial n}\right)^{2}\left[-\varepsilon t f^{*}\left(t e^{i \theta}\right)\right] d s+O^{\prime}\left((\varepsilon \Delta t)^{2}\right)
$$

where $\omega(z)=(\log |z|) / \log t$. Hence

$$
\begin{equation*}
\log \frac{t}{t(\varepsilon)}=\frac{\varepsilon}{2 \pi} \int_{0}^{2 \pi} f^{*}\left(t e^{i \theta}\right) d \theta+O^{\prime}\left((\varepsilon \Delta t)^{2}\right) \tag{3}
\end{equation*}
$$

Let F^{-}be some conformal mapping of the domain $(T(t(\varepsilon)), T(R(\varepsilon)))$ onto $\left(\gamma_{t}^{*}, T\right)$ and let F^{+}be a conformal mapping of $\left(\gamma_{\tau}^{*}, T(t(\varepsilon))\right)$ onto $\left(\gamma_{\tau}^{*}, \gamma_{t}^{*}\right)$ in such a way that $F^{-}(T(t(\varepsilon)))=F^{+}(T(t(\varepsilon)))=\gamma_{t}^{*}$. Following the proof of Theorem $1[8]$, we set

$$
v^{*}(z)= \begin{cases}u^{*}\left(F^{-}(z)\right), & z \in \overline{(T(t(\varepsilon)), T(R(\varepsilon)))}, \\ u^{*}\left(F^{+}(z)\right), & z \in \overline{\left(\gamma_{\tau}^{*}, T(t(\varepsilon))\right)}, \\ u^{*}(z), & z \in \overline{\left(T(s), \gamma_{\tau}^{*}\right) \backslash \mathcal{E}^{*}}\end{cases}
$$

Note that in the ring $(T(t(\varepsilon)), T(R(\varepsilon)))$

$$
v^{*}(z)=\frac{\log |z / R(\varepsilon)|}{\log |t(\varepsilon) / R(\varepsilon)|} \log t
$$

is fulfilled.
The conformal invariance of the Dirichlet integral and the Dirichlet principle implies

$$
\begin{gathered}
I\left(u^{*},(T(s), T) \backslash \mathcal{E}^{*}\right)=I\left(v^{*},(T(s), T(R(\varepsilon))) \backslash \mathcal{E}^{*}\right) \\
\geq I\left(h^{*},(T(s), T(t(\varepsilon))) \backslash \mathcal{E}^{*}\right)+I\left(v^{*},(T(t(\varepsilon))), T(R(\varepsilon))\right) .
\end{gathered}
$$

Here h^{*} is a harmonic function on the set $(T(s), T(t(\varepsilon))) \backslash \mathcal{E}^{*}$, continuous in the closure of this set and taking the following boundary values:

$$
h^{*}(z)= \begin{cases}b(t), & z \in T(t(\varepsilon)) \\ b(z)+\varepsilon f^{*}(z), & z \in T(s) \cup \partial \mathcal{E}^{*}\end{cases}
$$

Note the symmetry of the function h^{*} and the fact that the circles $T(s), T(t(\varepsilon))$ do not change under dissymmetrization Dis (Sec.1). Using the Dirichlet principle again, we obtain

$$
\begin{gathered}
I\left(h^{*},(T(s), T(t(\varepsilon))) \backslash \mathcal{E}^{*}\right)=I\left(\operatorname{Dis} h^{*},(T(s), T(t(\varepsilon))) \backslash \operatorname{Dis} \mathcal{E}^{*}\right) \\
\geq I\left(h,(T(s), T(t(\varepsilon))) \backslash \operatorname{Dis} \mathcal{E}^{*}\right)
\end{gathered}
$$

where h is a harmonic function on the set $(T(s), T(t(\varepsilon))) \backslash$ Dis \mathcal{E}^{*}, continuous in the closure of this set and taking boundary values:

$$
h(z)= \begin{cases}b(t), & z \in(T(t(\varepsilon)), \\ b(z)+\varepsilon \operatorname{Dis} f^{*}(z), & z \in T(s) \cup \partial \operatorname{Dis} \mathcal{E}^{*}\end{cases}
$$

Again, the Dirichlet principle gives

$$
I\left(h,(T(s), T(t(\varepsilon))) \backslash \operatorname{Dis} \mathcal{E}^{*}\right)+I\left(\tilde{v}^{*},(T(t(\varepsilon)), T)\right) \geq I\left(u,(T(s), T) \backslash \operatorname{Dis} \mathcal{E}^{*}\right)
$$

for

$$
\tilde{v}^{*}(z)=\frac{\log |z|}{\log t(\varepsilon)} \log t
$$

and the function u, harmonic in $(T(s), T) \backslash$ Dis \mathcal{E}^{*} continuous in the closure of this set and taking boundary values:

$$
u(z)= \begin{cases}0, & z \in T \\ b(z)+\varepsilon \operatorname{Dis} f^{*}(z), & z \in T(s) \cup \partial \operatorname{Dis} \mathcal{E}^{*}\end{cases}
$$

The main inequality in the proof of Theorem 1 follows from the inequalities written above:

$$
I\left(u^{*},(T(s), T) \backslash \mathcal{E}^{*}\right)-I\left(u,(T(s), T) \backslash \operatorname{Dis} \mathcal{E}^{*}\right) \geq I\left(h^{*},(T(s), T(t(\varepsilon))) \backslash \mathcal{E}^{*}\right)
$$

(4) $-I\left(h,(T(s), T(t(\varepsilon))) \backslash \operatorname{Dis} \mathcal{E}^{*}\right)+I\left(v^{*},(T(t(\varepsilon)), T(R(\varepsilon)))\right)-I\left(\tilde{v}^{*},(T(t(s)), T)\right)$.

Let us now turn to estimates of the integrals in (4). According to Green's formula, the first integral on the left in (4) is

$$
\begin{align*}
I\left(u^{*},(T(s), T) \backslash \mathcal{E}^{*}\right)= & I\left(b,(T(s), T) \backslash \mathcal{E}^{*}\right)+\varepsilon^{2} I\left(f^{*},(T(s), T) \backslash \mathcal{E}^{*}\right) \\
& -2 \varepsilon \int_{T(s) \cup \partial \mathcal{E}^{*}} f^{*} \frac{\partial b}{\partial n} d s \tag{5}
\end{align*}
$$

By the uniqueness theorem for harmonic functions in $(T(s), T) \backslash$ Dis \mathcal{E}^{*}, the equality

$$
u=b+\varepsilon f
$$

is true. Therefore,

$$
\begin{align*}
& I\left(u,(T(s), T) \backslash \operatorname{Dis} \mathcal{E}^{*}\right)=I\left(b,(T(s), T) \backslash \operatorname{Dis} \mathcal{E}^{*}\right) \\
&+\varepsilon^{2} I\left(f,(T(s), T) \backslash \operatorname{Dis} \mathcal{E}^{*}\right)-2 \varepsilon \int_{T(s) \cup \partial \operatorname{Dis} \mathcal{E}^{*}} f \frac{\partial b}{\partial n} d s . \tag{6}
\end{align*}
$$

To calculate the first integral of the right-hand side of (4), we represent the function h^{*} in the form

$$
h^{*}=b+\varepsilon f_{t(\varepsilon)}^{*}+\sigma^{*}
$$

where the functions $f_{t(\varepsilon)}^{*}$, σ^{*} are harmonic on the set $(T(s), T(t(\varepsilon))) \backslash \mathcal{E}^{*}$, continuous in the closure of this set and take boundary values

$$
f_{t(\varepsilon)}^{*}(z)=\left\{\begin{array}{ll}
0, & z \in T(t(\varepsilon)), \\
f^{*}(z), & z \in T(s) \cup \partial \mathcal{E}^{*},
\end{array} \quad \sigma^{*}(z)= \begin{cases}\log (t / t(\varepsilon)), & z \in T(t(\varepsilon)) \\
0, & z \in T(s) \cup \partial \mathcal{E}^{*}\end{cases}\right.
$$

By successively applying Green's formula, we obtain
$I\left(h^{*},(T(s), T(t(\varepsilon))) \backslash \mathcal{E}^{*}\right)=I\left(b,(T(s), T(t(\varepsilon))) \backslash \mathcal{E}^{*}\right)+\varepsilon^{2} I\left(f_{t(\varepsilon)}^{*},(T(s), T(t(\varepsilon))) \backslash \mathcal{E}^{*}\right)$

$$
\begin{align*}
& +I\left(\sigma^{*},(T(s), T(t(\varepsilon))) \backslash \mathcal{E}^{*}\right)-2 \varepsilon \int_{T(s) \cup \partial \mathcal{E}^{*}} f^{*} \frac{\partial b}{\partial n} d s \\
& -2 \log \frac{t}{t(\varepsilon)} \int_{T(t(\varepsilon))} \frac{\partial b}{\partial n} d s-2 \varepsilon \log \frac{t}{t(\varepsilon)} \int_{T(t(\varepsilon))} \frac{\partial f_{t(\varepsilon)}^{*}}{\partial n} d s \tag{7}
\end{align*}
$$

Similar to (7)

$$
h=b+\varepsilon f_{t(\varepsilon)}+\sigma
$$

where the functions $f_{t(\varepsilon)}$, σ are harmonic in $(T(s), T(t(\varepsilon))) \backslash \operatorname{Dis} \mathcal{E}^{*}$, continuous in the closure of this set, and take the boundary values

$$
\begin{aligned}
& h_{t(\varepsilon)}(z)=\left\{\begin{array}{ll}
0, & z \in T(t(\varepsilon)), \\
\operatorname{Dis} f^{*}, & z \in T(s) \cup \partial \operatorname{Dis} \mathcal{E}^{*},
\end{array} \quad \sigma(z)= \begin{cases}\log (t / t(\varepsilon)), & z \in T(t(\varepsilon)), \\
0, & z \in T(s) \cup \partial \operatorname{Dis} \mathcal{E}^{*},\end{cases} \right. \\
& I\left(h,(T(s), T(t(\varepsilon))) \backslash \operatorname{Dis} \mathcal{E}^{*}\right)=I\left(b,(T(s), T(t(\varepsilon))) \backslash \operatorname{Dis} \mathcal{E}^{*}\right) \\
& +\varepsilon^{2} I\left(f_{t(\varepsilon)},(T(s), T(t(\varepsilon))) \backslash \operatorname{Dis} \mathcal{E}^{*}\right)+I\left(\sigma,(T(s), T(t(\varepsilon))) \backslash \operatorname{Dis} \mathcal{E}^{*}\right) \\
& \text { (8) }-2 \varepsilon \int_{T(s) \cup \partial \operatorname{Dis} \mathcal{E}^{*}} f \frac{\partial b}{\partial n} d s-2 \log \frac{t}{t(\varepsilon)} \int_{T(t(\varepsilon))} \frac{\partial b}{\partial n} d s-2 \varepsilon \log \frac{t}{t(\varepsilon)} \int_{T(t(\varepsilon))} \frac{\partial f_{t(\varepsilon)}}{\partial n} d s \text {. }
\end{aligned}
$$

Finally, taking into account (2) and (3), we have

$$
\begin{align*}
& I\left(v^{*},(T(t(\varepsilon)), T(R(\varepsilon)))\right)-I\left(\tilde{v}^{*},(T(t(\varepsilon)), T)\right)=\frac{2 \pi(\log t)^{2}}{\log \frac{R(\varepsilon)}{t(\varepsilon)}}-\frac{2 \pi(\log t)^{2}}{\log \frac{1}{t(\varepsilon)}} \\
& \quad=2 \pi(\log t)^{2}\left[\frac{1}{O^{\prime}\left((\varepsilon \Delta t)^{2}\right)-\log t(\varepsilon)}-\frac{1}{-\log t(\varepsilon)}\right]=O^{\prime}\left((\varepsilon \Delta t)^{2}\right) \tag{9}
\end{align*}
$$

Substituting (5) - (9) into inequality (4), after obvious reductions and $\varepsilon \rightarrow 0$ we arrive at the relation:

$$
I\left(f^{*},(T(s), T) \backslash \mathcal{E}^{*}\right)-I\left(f,(T(s), T) \backslash \operatorname{Dis} \mathcal{E}^{*}\right) \geq I\left(f_{t}^{*},(T(s), T(t)) \backslash \mathcal{E}^{*}\right)
$$

$$
\begin{equation*}
-I\left(f_{t},(T(s), T(t)) \backslash \operatorname{Dis} \mathcal{E}^{*}\right)-\frac{\Delta t}{\pi} \int_{0}^{2 \pi} \frac{\partial f^{*}}{\partial n}\left(e^{i \theta}\right) d \theta \int_{T(t)}\left(\frac{\partial f_{t}^{*}}{\partial n}-\frac{\partial f_{t}}{\partial n}\right) d s+O\left((\Delta t)^{2}\right) \tag{10}
\end{equation*}
$$

Here the function f_{t}^{*} is harmonic in $(T(s), T(t)) \backslash \mathcal{E}^{*}$, continuous in the closure of this set and

$$
f_{t}^{*}(z)= \begin{cases}0, & z \in T(t) \\ f^{*}(z), & z \in T(s) \cup \partial \mathcal{E}^{*}\end{cases}
$$

The function f_{t} is harmonic in $(T(s), T(t)) \backslash$ Dis \mathcal{E}^{*}, continuous in the closure of this set and

$$
f_{t}(z)= \begin{cases}0, & z \in T(t) \\ f(z), & z \in T(s) \cup \partial \operatorname{Dis} \mathcal{E}^{*}\end{cases}
$$

According to Kellogg's theorem, the functions f_{t}^{*} and f_{t} are twice continuously differentiable in the closure of the corresponding domains. By virtue of Lemma 1, inequality (10) can be rewritten in the form of

$$
\Delta t \int_{T}\left(\frac{\partial f}{\partial n}\right)^{2} d s-\Delta t \int_{T}\left(\frac{\partial f^{*}}{\partial n}\right)^{2} d s \geq \frac{\Delta t}{\pi} \int_{T} \frac{\partial f^{*}}{\partial n} d s \int_{T}\left(\frac{\partial f_{t}}{\partial n}-\frac{\partial f_{t}^{*}}{\partial n}\right) d s+O\left((\Delta t)^{2}\right) .
$$

It remains to divide both parts of the last inequality by Δt and pass to the limit at $\Delta t \rightarrow 0$ Theorem 1 is proved.

4. Another look at the Gonchar-Baernstein conjecture

Let $a=\left(a_{1}, \ldots, a_{n}\right)$ be a set of arbitrary distinct points on the circle T, and $a^{*}=\left(a_{1}^{*}, \ldots, a_{n}^{*}\right)$ be a set of symmetric points $a_{j}^{*}=\exp (i 2 \pi j / n), j=1, \ldots, n$. Let K be an arbitrary fixed compact set on the half-interval $(0,1]$. Denote by $\omega(z)$ the harmonic measure of the circle T with respect to the domain of $D(a, K)=\{z$: $|z|<1\} \backslash \bigcup_{j=1}^{n}\left\{z=t a_{j}: t \in K\right\}$, and let $\omega^{*}(z)$ be the harmonic measure of T with respect to $D\left(a^{*}, K\right)$. Gonchar suggested that the inequality

$$
\begin{equation*}
\omega(0) \geq \omega^{*}(0) \tag{11}
\end{equation*}
$$

holds for $K=[t, 1], 0<t<1$ (see, for example, [11, Problem 7.45]). The solution of the Gonchar problem is given in paper [1]. This solution is implicitly related to numerous unsolved problems of function theory, where the assumed extremal configuration has n-fold symmetry [3] - [5]. In 1987, Baernstein published a statement of the generalized problem of the validity of inequality (11) for any compact $K \subset(0,1][9]$. Such a natural generalization caused serious difficulties for experts. Solynin [12] achieved the greatest result by proving (11) in the case of $K=\left[t_{1}, t_{2}\right], \quad 0<t_{1}<t_{2} \leq 1$. Theorem 1 in [8] and the proof of Theorem 1 in this article lead us to the following conjecture about the condenser capacity. Let $C=\left(E_{0}, E_{1}\right)$ be the simplest condenser considered as a pair of non-empty non-intersecting closed sets E_{0} and E_{1} of the plane $\mathbb{C}[3$, Sec. 1.2]. The capacity cap C of the condenser C is defined as the greatest lower bound of the integrals $I\left(v, \mathbb{C} \backslash\left(E_{0} \cup E_{1}\right)\right)$ over all functions v, continuous in $\overline{\mathbb{C}}$, satisfying the Lipschitz condition locally in $\mathbb{C} \backslash\left(E_{0} \cup E_{1}\right)$, equal to zero on E_{0} and to unity on E_{1}. Under the condition of the existence of a potential function u of the condenser C, continuous in $\overline{\mathbb{C}}$, harmonic in $\mathbb{C} \backslash\left(E_{0} \cup E_{1}\right)$, equal to zero on E_{0} and unity on E_{1}, the equality

$$
\operatorname{cap} C=I\left(u, \mathbb{C} \backslash\left(E_{0} \cup E_{1}\right)\right)
$$

is fulfilled. Let K be an arbitrary compact set on $(0,1)$, and let s be an arbitrary number, $0<s<\inf K$. In the notation adopted above, we put

$$
\begin{aligned}
& C(s)=\left(T(s) \cup \bigcup_{j=1}^{n}\left\{z=t a_{j}: t \in K\right\}, T\right) \\
& C^{*}(s)=\left(T(s) \cup \bigcup_{j=1}^{n}\left\{z=t a_{j}^{*}: t \in K\right\}, T\right)
\end{aligned}
$$

Conjecture. For any $s_{1}, s_{2}, 0 \leq s_{1}<s_{2}<\inf K$ the inequality

$$
\begin{equation*}
\operatorname{cap} C^{*}\left(s_{1}\right)-\operatorname{cap} C\left(s_{1}\right) \geq \operatorname{cap} C^{*}\left(s_{2}\right)-\operatorname{cap} C\left(s_{2}\right) \tag{12}
\end{equation*}
$$

is valid.

Since the capacity of the condenser does not increase with dissymmetrization [3, Sec. 4.4], then both differences in (12) are non-negative, and our Conjecture (just like Theorem 1 [8]) defines a new level of complexity in this matter. The Hadamard formula [10,(A3.11)] (see also Lemma 1) implies the "differential" form of Conjecture (12):

$$
\int_{T(s)}\left(\frac{\partial u}{\partial n}\right)^{2} d s \geq \int_{T(s)}\left(\frac{\partial u^{*}}{\partial n}\right)^{2} d s
$$

where $0<s<\inf K$ and u, u^{*} are the potential functions of the condensers $C(s)$, and $C^{*}(c)$ respectively.
Theorem 2. If Conjecture (12) is true, then Conjecture (11) is also true.
Proof. Consider the functions $u=\omega-g$ and

$$
g(z)=-\frac{w(0)}{\log r}\left(1+\frac{\log r(D(a, K), 0)}{\log r}\right) g_{D(a, K)}(z, 0)
$$

where $g_{D(a, K)}(z, 0)$ is the Green's function of the domain $D(a, K)$, and $r(D(a, K), 0)$ is the inner radius of this domain with respect to the origin, and the parameter $r>0$ is sufficiently small (cf. [3, proof of Theorem 2.1]). The set $E(r)=\{z:|z|<$ $\sqrt{r}, u(z) \leq 0 \mid\}$ is an "almost disk" centered at the origin and radius r. Let $\varphi(s)$ be an infinitesimal quantity at $s \rightarrow 0$ such that the set $E(r), r=s(1+\varphi(s))$ contains the disk $|z| \leq s$. In view of the monotonicity of the capacity [3, Theorem 1.15],

$$
\operatorname{cap} C(s) \leq \operatorname{cap}(\{z: u(z)=0\},\{z: u(z)=1\})
$$

The capacity of the last condenser is

$$
\begin{gathered}
I(u, D(a, K) \backslash E(r))=I(\omega, D(a, K) \backslash E(r))+I(g, D(a, K) \backslash E(r))+2 \int_{\partial E(r)} g \frac{\partial \omega}{\partial n} d s \\
=I(\omega, D(a, K) \backslash E(r))-\frac{2 \pi \omega^{2}(0)}{\log (s(1+\varphi(s)))}+O\left(\left(\frac{1}{\log s}\right)^{2}\right) \\
=I(\omega, D(a, K))-\frac{2 \pi \omega^{2}(0)}{\log s}+O\left(\left(\frac{1}{\log s}\right)^{2}\right), \quad s \rightarrow 0 .
\end{gathered}
$$

We have used the formula [3, (2.12)]. Therefore, the inequality

$$
\begin{equation*}
\operatorname{cap} C(s) \leq I(\omega, D(a, K))-\frac{2 \pi \omega^{2}(0)}{\log s}+O\left(\left(\frac{1}{\log s}\right)^{2}\right), \quad s \rightarrow 0 \tag{13}
\end{equation*}
$$

holds. Similarly, inequality is shown in the other direction. Thus, in (13) there is an equal sign. Writing this equality for the capacities

$$
\operatorname{cap} C^{*}\left(s^{2}\right), \operatorname{cap} C\left(s^{2}\right), \operatorname{cap} C^{*}(s) \text { and } \operatorname{cap} C(s)
$$

and substituting these asymptotics into inequality (12), we obtain (11). Theorem 2 is proved.

References

[1] V.N. Dubinin, On the change in harmonic measure under symmetrization, Math. USSR, Sb., 52:1 (1985), 267-273. Zbl 0571.30025
[2] Albert II Baernstein, Dubinin's symmetrization theorem, Lect. Notes Math., 1275 (1987), 23-30. Zbl 0625.30033
[3] V.N. Dubinin, Condenser capacities and symmetrization in geometric function theory, Birkhäuser/ Springer, Basel, 2014. Zbl 1305.30002
[4] A.Yu. Solynin, Isoperimetric inequalities for polygons, and dissymetrization, St. Petersbg. Math. J., 4:2 (1993), 377-369. Zbl 0791.30017
[5] Albert II Baernstein, An extremal property of meromorphic functions with n-fold symmetry, Complex Variables, Theory Appl., 21:3-4 (1993), 137-148. Zbl 0793.30021
[6] V. Dimitrov, A proof of the Schinzel-Zassenhaus conjecture on polynomials, arXiv: 1912.12545.
[7] V.N. Dubinin, Upper bound for the least critical values of finite Blaschke products, Sb. Math., 213:6 (2022), 744-751. MR4461452
[8] V. N. Dubinin, On the Green energy of a discrete charge on concentric circles, Izv. RAN. Ser. Mat., 87:2 (2023), 69-88.
[9] Albert II Baernstein, On the harmonic measure of slit domains, Complex Variables, Theory Appl., 9:1-3 (1987), 131-142. Zbl 0606.30027
[10] M. Schiffer, Some recent developments in the theory of conformal mapping, Appendix to: R. Courant, Dirichlet's principle, conformal mapping, and minimal surfaces, Interscience Publishers, New York, 1950, 249-323.
[11] D.M. Campbell, J.G. Clunie, W.K. Hayman, Research problems in complex analysis, in: Aspects of contemporary complex analysis, Academic Press, London- New York, 1980, 527572. Zbl 0497.30001
[12] A.Yu. Solynin, Harmonic measure of radial line segments and symmetrization, Sb. Math., 189:11 (1998), 1701-1718. Zbl 0968.31001

Dubinin Vladimir Nikolaevich
Institute for Applied Mathematics, FEBRAS,
Radio str., 7,
690041, Vladivostok, Russia
Email address: dubinin@iam.dvo.ru

[^0]: Dubinin, V.N., On the dissymmetrization theorem.
 (C) 2023 Dubinin V.N..

 This work was supported by the Russian Science Foundation under grant № 23-21-00056, https://rscf.ru/project/23-21-00056/.

 Received April, 18, 2023, published June, 27, 2023.

[^1]: ${ }^{1}$ Here and below, the prime at the symbol O - large means that the corresponding quantity admits a uniform estimate for all sufficiently small Δt at $\varepsilon \rightarrow 0$.

