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ON THE DISSYMMETRIZATION THEOREM

V.N. DUBININ

ABSTRACT. A new property of the previously proposed dissymmetrizati-
on of functions is established. The conjecture about the capacity of
condensers in a circular ring with plates in the form of circles or radial
cuts is discussed. The connection of this conjecture with the well-known
Gonchar-Baernstein problem of a harmonic measure is shown.
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1. INTRODUCTION AND STATEMENT OF RESULT
Let n > 2 be a natural number and let
L ={z: argz =2mj/n}, j=1,.,n

Denote by ® the group of symmetries of C formed by the composites of the
reflections in the rays L7, j =1,...,n, and in the bisectors of the angles formed by
these rays. Throughout this paper symmetry means ®-invariance. We say that a
set A C C is symmetric if ¢(A) = A for any isometry ¢ € ®. A real function v on a
symmetric set 2 is said to be symmetric if v(z) = v(¢(z)) for any ¢ € ®. We call a
system of closed sectors with vertices at origin a decomposition of the sphere C if
no two sectors have common interior points and their union is C. It has been shown
in [1] (see also [2], [3, Sec. 4.4]) that for any different rays L;, j =1, ...,n, starting
from the origin there exists a decomposition {P; }?":1, jo > n, of the plane C and a

set of rotations {\; }?021 of the form \;(z) = ez, j =1,..., jo (dissymmetrization)
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such that the set {\;(F;)}] %0 | is also a decomposition C, DisLy =Lj, j=1,..,n,
and for any the symmetrlc function v, z € O, the function DlS’U is well deﬁned

Disv(z) := U(A;l( ), 2 € X\;j(P;)NDisQ, j=1,..,jo.
Here Dis A means ;:0:1 Aj(ANP;). Conceived as a method for solving the Gonchar
problem on harmonic measure [1], dissymmetrization has found application in other

questions of function theory (see, for example, [3]-[8]). In this paper, we consider a
new property of this transformation. Let us introduce the notation

B(s,t)={z: s<|z| <t}, 0<s<t< o0,
T(ry={z: |z|=r}, T=T().
The following theorem is true.

Theorem 1. Let E* be a symmetric compact set on|J;_, L;NB(s,1) and let f* be a

symmetric continuous function on B(s, 1), constant on T, harmonic in B(s,1)\ E*,

and [ is a continuous function on B(s,1), coinciding with the function Dis f* on
d(B(s,1) \ Dis E*) and harmonic in B(s,1)\ Dis E*. Then

o T e )

where 0/0n denotes differentiation along the inward normal.

It is known that the Dirichlet integral does not increase under the dissymmetriza-
tion [3, Sec. 4.4]. Inequality [1] gives information about the behavior of the variation
of the Dirichlet integral under dissymmetrization (see Lemma 1). In particular,
when the right-hand side of (1) is equal to zero, the variation of the Dirichlet
integral of a symmetric function does not exceed the variation of such an integral
of a function that does not have such symmetry (cf. [8]) This statement, together
with [8], leads to a new conjecture about the behavior of the capacities of some
condensers during dissymmetrization which is closely related to the well-known
Gonchar-Baernstein problem on the harmonic measure of radial cuts [9]. The next
section is auxiliary.

2. VARIATION OF THE DIRICHLET INTEGRAL

= /B/Ivflzdwdy

is adopted. In the unit disk |z| < 1, consider a finitely connected domain B whose
boundary consists of analytic Jordan curves, including the circle T. Let f be a
function twice continuously differentiable in B, harmonic in B and equal to zero
on T, and let f; be a function harmonic in B; := BN{z: |z| < t}, t < 1, twice
continuously differentiable in B, taking boundary values f on (B)\ T and equal
to zero on T'(t).

Everywhere below, the notation

Lemma 1. The following asymptotic formula holds:

2
I(tht):I(f,B)—k(l—t)/<g£> ds+0((1— 1)), t— 1.
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Proof. On the circle T'(t) the uniform estimate

0
£(2) = £(2) = 52 = (L= 2 (1) + 01~ 1)
is satisfied. Applying Green’s formula, we obtain the equality
1780 == [ =i~ - [ (- Tas < o0
9B, T(t)

On the other hand, again by Green’s formula

I(f = fi, Be) = I(f, Bt) + I(fe, Be) +2 /(ft—f-i-f)%ds
T(t)
= 10 B = 1B +2 [ (= D5hds = 104, B1) - /fw
()
Therefore,
I(fe, Be) — /f ds = O((1 —t)?),

which completes the proof of Lemma 1.

We note that in the case when the function f takes constant values on the
connected components of the boundary of the domain B, our formula follows from
the classical variational formula [10, (A3.12)].

3. PROOF OF THE THEOREM 1

It suffices to establish inequality (1) in the new formulation of the problem.
Namely, to replace the set E* in the hypothesis of Theorem 1 by a symmetric set £*
located sufficiently close to it, bounded by a finite number of analytic Jordan curves,
and the function f* to be assumed to be three times continuously differentiable on
O(B(s,1)\ £*) and equal to zero on T. We fix ¢ such that 0 < ¢ < 1, sup{|z|: z €
E*} <1—2At (At =1 —1t) and consider functions

b(z) :=loglz|, u*=b+ef",

where € > 0 is sufficiently small. It is easy to see that the Hausdorff distance
between the curve

v ut = 0(t)
and the circle T'(t) is the quantity! O’(¢At), € — 0. Further, the notation (v,T")
means a doubly connected domain on the plane C, bounded by closed curves ~, T,
and mod (v,T") is the module of the domain (v,T"). Let the quantities t(¢) and
R(e) be defined by the relations:
mod (+7,77) = mod (5, T(e))), 7=1—2At,
mod (v;,T') = mod (T'(t(¢)), T(R(e)))-
Following the arguments in [8] from formula (3.1) to (3.5), where it is necessary to
set the —1/logr = &, we see that

(2) R(e) > 1 and R(e) — 1 = O'((eAt)?).

IHere and below, the prime at the symbol O — large means that the corresponding quantity
admits a uniform estimate for all sufficiently small At at e — 0.
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By definition,
1. R 1 1 , )
5T) = —log——+ = —log— At)?).
mOd (rYt7 ) o og t({‘:) oI og t(f‘:) + O ((E t) )

On the other hand, the Hadamard formula [10 (A3.11)], [8, (2.2)] gives

mod (v;,T) = ilo L ilo 1 ’ / O 2[7 tf* (te'®)]ds + O'((eAt)?)

T )T o 08 o 8% on c c ’
T()

where w(z) = (log|z|)/ logt. Hence

(3) log

2w
t g % i / 2
ol %O/f (te)df + O'(eA1)%).

Let F'~ be some conformal mapping of the domain (T'(¢(¢)), T(R(¢))) onto (v;,T)
and let F'* be a conformal mapping of (¥, T'(t(¢))) onto (7%, ~;) in such a way that
F~(T(t(e))) = FH(T(t(e))) = ;. Following the proof of Theorem 1 [8], we set

u(F7(2), z e (T(te), T(R(e))),
v (z) = U*(F+(z))7 z € (vx,T(t(e))).

u*(2), z € (T(s),72) \ €.
Note that in the ring (T(t(¢)), T(R(¢)))
o (o) = JB/ROL

log [t(¢)/R(e)|
is fulfilled.
The conformal invariance of the Dirichlet integral and the Dirichlet principle
implies
I(w®, (T(s), T)\ &%) = I(v", (T(s), T(R(e))) \ €7)
> I(h", (T(s), T(t(£))) \ €7) + I(v", (T(t(e))), T(R(e)))-
)

()
Here h* is a harmonic function on the set (T'(s),T(t(¢))) \ £*, continuous in the
closure of this set and taking the following boundary values:
);

vy _ Jb(0), z € T(t(e)
(=) = {b(z) Veft(z), zeT(s)UdE™.

Note the symmetry of the function hA* and the fact that the circles T'(s), T(t(¢))
do not change under dissymmetrization Dis (Sec.1). Using the Dirichlet principle
again, we obtain
I(r7, (T (s), T(t(€))) \ €7) = I(Dis h™, (T (s), T(t(¢))) \ Dis £7)
> I(h, (T(s),T(t(e))) \ Dis£7),
T(t(e)))

where h is a harmonic function on the set (T'(s), ))) \ Dis £*, continuous in the
closure of this set and taking boundary values:

h(z) = {bm, 2 € (T(t(e)),

(e

b(z) + eDis f*(z), z € T(s)UIDis&™.
Again, the Dirichlet principle gives

I(h, (T(s), T((e))) \ Dis€*) + I(@", (T(¢(e)), 7)) > I(u, (T(s), T) \ Dis ")
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for
log |2|

k(Y .
(=) logt(e) ©

and the function w, harmonic in (T'(s),T) \ Dis€* continuous in the closure of this

set and taking boundary values:

(2) = 0, zeT,
= b(z) + eDis f*(z), z€ T(s)UODis&*.

The main inequality in the proof of Theorem 1 follows from the inequalities written
above:

1", (T(s), T)\ &%) = I(u, (T(s),T) \ Dis £") > I(h", (T(s), T(t())) \ €7)

(4) —I(h,(T(s),T(t(€))) \Dis £") + I(v", (T(t(c)), T(R(e)))) — I(0", (T (t(s)), T))-
Let us now turn to estimates of the integrals in (4). According to Green’s formula,

the first integral on the left in (4) is
I(u*, (T(s), T)\ &) = I(b,(T(5), T) \ &) + e I(f*, (T(s), T) \ £")

0b
5 -2 *—ds.
(5) = | s
T(s)uoE*
By the uniqueness theorem for harmonic functions in (T'(s),T")\ Dis £*, the equality
u=b+ef
is true. Therefore,
I(u, (T(s),T) \ Dis €*) = I(b, (T(s),T) \ Dis ")
2 o b
(6) +e“I(f,(T(s),T)\Dis&™) — 2¢ fa—nds.
T(s)UODis E*
To calculate the first integral of the right-hand side of (4), we represent the function
h* in the form
h* = b+:—:ft*(6) + 0o,

where the functions f;), ¢* are harmonic on the set (T'(s), T'(¢(¢)))\&", continuous
in the closure of this set and take boundary values

. 0, z € T(t(e)), . log(t/t(e)), =ze€T(t(e)),
fio () =19 . 0 () )
f*(z), zeT(s)UOE", 0, z€T(s)UIE™.
By successively applying Green’s formula, we obtain

I(h*,(T(s), T(H())\E™) = I(b, (T(5), T(t())\E™) +e*I(fy(c), (T(s), T(t(e) )\ E7)

+I(o*, (T(s), T(t()))\ E*) — 2¢ / f*%ds

T(s)UOE™

t b t i)
—2log — —ds — 2¢e1l ds.
@ ©8 t(e) / an° T N8 t(e) / an
T(t(e)) T(t(e))

Similar to (7)
h:b+€ft(a) +o
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where the functions fy(), o are harmonic in (7'(s), T'(t(¢))) \ Dis £*, continuous in
the closure of this set, and take the boundary values

b2 [0 zeTE), oy - [t/ zeToE))
He Dis f*, ze€T(s)U0Dis&*, 0, z € T(s)UODis&*,
I(h, (T(s), T(t(e))) \ Dis £*) = I(b, (T'(s), T(t(¢))) \ Dis£)
+e2I(fue), (T(5), T(8(€))) \ Dis £") + I(0, (T(s), T(t(¢))) \ Dis€”)
(8) —2¢ / f%ds —2log t %ds —2¢elog o / O ds.

on t(e) on t(e) on
T(s)UdDis £* T(i(e)) T(i(e)

Finally, taking into account (2) and (3), we have

I, (T(He), T(R(E))) — 15, (T(t(e)), T)) = 2 0gD”_ 2nllog!)

log }f((;)) log ﬁ
2 1 1 / 2
©  =2r(logt) — O/((eA8)?).

O'((eAt)?) —logt(e) —logt(e)

Substituting (5) - (9) into inequality (4), after obvious reductions and € — 0 we
arrive at the relation:

I, (D), T\ £°) — I(£,(T(5), ) \Dis ") > I(f7, (T(s), T(1)) \ £°)

(10

I, (T(s), T0)) \ Dis€") - /W* “a [ (G5 - G) as - o(a0?),
T(t)

Here the function f; is harmonic in (7'(s),T(¢)) \ £*, continuous in the closure of

this set and
< J0, z € T(t),
Ji(2) = {f*(z), 2 € T(s) U DE™.

The function f; is harmonic in (7'(s),T(t)) \ Dis&*, continuous in the closure of

this set and
)0, z € T(t),
flz) = {f(z), z € T(s) UODis&*.

According to Kellogg’s theorem, the functions f; and f; are twice continuously
differentiable in the closure of the corresponding domains. By virtue of Lemma 1,
inequality (10) can be rewritten in the form of

At/(gi)stAt/(%JZ) ds > = af* /(aft aft)derO((At)Q).

It remains to divide both parts of the last inequality by At and pass to the limit
at At — 0 Theorem 1 is proved.




ON THE DISSYMMETRIZATION THEOREM 483

4. ANOTHER LOOK AT THE GONCHAR-BAERNSTEIN CONJECTURE

Let a = (a1,....,a,) be a set of arbitrary distinct points on the circle T', and
a* = (aj,....,a;) be a set of symmetric points a} = exp(i27j/n), j = 1,...,n. Let
K be an arbitrary fixed compact set on the half-interval (0, 1]. Denote by w(z) the
harmonic measure of the circle 7' with respect to the domain of D(a,K) = {z :
|z| < 1}\U?:1{z =ta;: t € K}, and let w*(z) be the harmonic measure of T' with

respect to D(a*, K). Gonchar suggested that the inequality
(11) w(0) > w*(0)

holds for K = [t,1], 0 < ¢t < 1 (see, for example, [11, Problem 7.45]). The
solution of the Gonchar problem is given in paper [1]. This solution is implicitly
related to numerous unsolved problems of function theory, where the assumed
extremal configuration has n-fold symmetry [3] — [5]. In 1987, Baernstein published
a statement of the generalized problem of the validity of inequality (11) for any
compact K C (0,1] |9]. Such a natural generalization caused serious difficulties
for experts. Solynin [12] achieved the greatest result by proving (11) in the case
of K = [t1,t2], 0 < t; < t2 < 1. Theorem 1 in [8] and the proof of Theorem
1 in this article lead us to the following conjecture about the condenser capacity.
Let C = (Ey, E1) be the simplest condenser considered as a pair of non-empty
non-intersecting closed sets Ey and E; of the plane C [3, Sec. 1.2]. The capacity
cap C of the condenser C is defined as the greatest lower bound of the integrals
I(v,C\ (Eo U Ey)) over all functions v, continuous in C, satisfying the Lipschitz
condition locally in C\ (EqgUE}), equal to zero on Ey and to unity on E;. Under the
condition of the existence of a potential function u of the condenser C, continuous
in C, harmonic in C\ (Ey U E}), equal to zero on Ey and unity on Ej, the equality

capC = I(u,C\ (Ey U E1))

is fulfilled. Let K be an arbitrary compact set on (0,1), and let s be an arbitrary
number, 0 < s < inf K. In the notation adopted above, we put

C(s) = (T(s)U | J{z =ta; : te K},T),
j=1

n

C*(s) = (T(s)U U{z =ta;: te K}, T).

j=1
Conjecture. For any s1, s9, 0 < 51 < s9 < inf K the inequality
(12) cap C*(s1) — cap C(s1) > cap C*(s2) — cap C(s2)

is valid.

Since the capacity of the condenser does not increase with dissymmetrization [3,
Sec. 4.4], then both differences in (12) are non-negative, and our Conjecture (just
like Theorem 1 [8]) defines a new level of complexity in this matter. The Hadamard
formula [10,(A3.11)] (see also Lemma 1) implies the “differential” form of Conjecture

(12): 2 2
[ () o= [ (G2)

T(s) T(s)
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where 0 < s < inf K and u, u* are the potential functions of the condensers C(s),
and C*(c) respectively.

Theorem 2. If Conjecture (12) is true, then Congecture (11) is also true.

Proof. Consider the functions u = w — g and

w(0 logr(D(a, K),0

o) = o) (14 2B ) g .0

where gp(q,k)(2,0) is the Green’s function of the domain D(a, K), and r(D(a, K),0)
is the inner radius of this domain with respect to the origin, and the parameter
r > 0 is sufficiently small (cf. [3, proof of Theorem 2.1]). The set E(r) = {z: |2| <
V7, u(z) <0} is an "almost disk" centered at the origin and radius r. Let ¢(s) be
an infinitesimal quantity at s — 0 such that the set E(r), » = s(1 4 ¢(s)) contains
the disk |z| < s. In view of the monotonicity of the capacity [3, Theorem 1.15],

capC(s) < cap({z: u(z) =0}, {z: u(z) =1}).
The capacity of the last condenser is

I(u,D(a, K)\ E(r)) = I(w,D(a, K)\ E(r)) + I(9,D(a,K)\ E(r)) + 2 / gg%ds

OE(r)

7rw2 ’
= I(w,D(a,K)\ E(r)) — bg(i(l% +0 <(10155> )

:I(w,D(a,K))—MQ(O)+O<( ! )2> s — 0.

log s log s

We have used the formula [3, (2.12)]. Therefore, the inequality

7'('(/.)2 2
(13)  capC(s) < I(w, D(a, K)) — 210;50) +0 ((@) ) . 50,

holds. Similarly, inequality is shown in the other direction. Thus, in (13) there is
an equal sign. Writing this equality for the capacities

cap C*(s%), cap C(s?), cap C*(s) and cap C(s)

and substituting these asymptotics into inequality (12), we obtain (11). Theorem 2
is proved.
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