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ON THE DISSYMMETRIZATION THEOREM

V.N. DUBININ

Abstract. A new property of the previously proposed dissymmetrizati-
on of functions is established. The conjecture about the capacity of
condensers in a circular ring with plates in the form of circles or radial
cuts is discussed. The connection of this conjecture with the well-known
Gonchar-Baernstein problem of a harmonic measure is shown.
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condenser capacity.

1. Introduction and statement of result

Let n ≥ 2 be a natural number and let

L∗
j = {z : arg z = 2πj/n}, j = 1, ..., n.

Denote by Φ the group of symmetries of C formed by the composites of the
re�ections in the rays L∗

j , j = 1, ..., n, and in the bisectors of the angles formed by
these rays. Throughout this paper symmetry means Φ-invariance. We say that a
set A ⊂ C is symmetric if φ(A) = A for any isometry φ ∈ Φ. A real function v on a
symmetric set Ω is said to be symmetric if v(z) ≡ v(φ(z)) for any φ ∈ Φ. We call a
system of closed sectors with vertices at origin a decomposition of the sphere C if
no two sectors have common interior points and their union is C. It has been shown
in [1] (see also [2], [3, Sec. 4.4]) that for any di�erent rays Lj , j = 1, ..., n, starting

from the origin there exists a decomposition {Pj}j0j=1, j0 ≥ n, of the plane C and a

set of rotations {λj}j0j=1 of the form λj(z) = eiθjz, j = 1, ..., j0 (dissymmetrization)
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such that the set {λj(Pj)}j0j=1 is also a decomposition C, DisL∗
j = Lj , j = 1, ..., n,

and for any the symmetric function v, z ∈ Ω, the function Dis v is well de�ned:

Dis v(z) := v(λ−1
j (z)), z ∈ λj(Pj) ∩DisΩ, j = 1, ..., j0.

Here DisA means
⋃j0

j=1 λj(A∩Pj). Conceived as a method for solving the Gonchar

problem on harmonic measure [1], dissymmetrization has found application in other
questions of function theory (see, for example, [3]�[8]). In this paper, we consider a
new property of this transformation. Let us introduce the notation

B(s, t) = {z : s < |z| < t}, 0 < s < t < ∞,

T (r) = {z : |z| = r}, T = T (1).

The following theorem is true.

Theorem 1. Let E∗ be a symmetric compact set on
⋃n

j=1 L
∗
j∩B(s, 1) and let f∗ be a

symmetric continuous function on B(s, 1), constant on T , harmonic in B(s, 1)\E∗,

and f is a continuous function on B(s, 1), coinciding with the function Dis f∗ on
∂(B(s, 1) \DisE∗) and harmonic in B(s, 1) \DisE∗. Then

(1)

∫
T

[(
∂f

∂n

)2

−
(
∂f∗

∂n

)2
]
ds ≥ 1

π

∫
T

∂f∗

∂n
ds

∫
T

(
∂f

∂n
− ∂f∗

∂n

)
ds,

where ∂/∂n denotes di�erentiation along the inward normal.

It is known that the Dirichlet integral does not increase under the dissymmetriza-
tion [3, Sec. 4.4]. Inequality [1] gives information about the behavior of the variation
of the Dirichlet integral under dissymmetrization (see Lemma 1). In particular,
when the right-hand side of (1) is equal to zero, the variation of the Dirichlet
integral of a symmetric function does not exceed the variation of such an integral
of a function that does not have such symmetry (cf. [8]) This statement, together
with [8], leads to a new conjecture about the behavior of the capacities of some
condensers during dissymmetrization which is closely related to the well-known
Gonchar-Baernstein problem on the harmonic measure of radial cuts [9]. The next
section is auxiliary.

2. Variation of the Dirichlet integral

Everywhere below, the notation

I(f,B) :=

∫∫
B

|▽f |2dxdy

is adopted. In the unit disk |z| < 1, consider a �nitely connected domain B whose
boundary consists of analytic Jordan curves, including the circle T . Let f be a
function twice continuously di�erentiable in B, harmonic in B and equal to zero
on T , and let ft be a function harmonic in Bt := B ∩ {z : |z| < t}, t < 1, twice
continuously di�erentiable in Bt, taking boundary values f on (∂B) \ T and equal
to zero on T (t).

Lemma 1. The following asymptotic formula holds:

I(ft, Bt) = I(f,B) + (1− t)

∫
T

(
∂f

∂n

)2

ds+O((1− t)2), t → 1.
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Proof. On the circle T (t) the uniform estimate

f(z) = f(z)− ft(z) = (1− t)
∂f

∂n
(z/t) +O((1− t)2)

is satis�ed. Applying Green's formula, we obtain the equality

I(f−ft, Bt) = −
∫

∂Bt

(f−ft)
∂(f − ft)

∂n
ds = −

∫
T (t)

(f−ft)
∂(f − ft)

∂n
ds = O((1− t)2).

On the other hand, again by Green's formula

I(f − ft, Bt) = I(f,Bt) + I(ft, Bt) + 2

∫
T (t)

(ft − f + f)
∂f

∂n
ds

= I(ft, Bt)− I(f,Bt) + 2

∫
T (t)

(ft − f)
∂f

∂n
ds = I(ft, Bt)− I(f,B)−

∫
T (t)

f
∂f

∂n
ds.

Therefore,

I(ft, Bt)− I(f,B)−
∫

T (t)

f
∂f

∂n
ds = O((1− t)2),

which completes the proof of Lemma 1.
We note that in the case when the function f takes constant values on the

connected components of the boundary of the domain B, our formula follows from
the classical variational formula [10, (A3.12)].

3. Proof of the theorem 1

It su�ces to establish inequality (1) in the new formulation of the problem.
Namely, to replace the set E∗ in the hypothesis of Theorem 1 by a symmetric set E∗

located su�ciently close to it, bounded by a �nite number of analytic Jordan curves,
and the function f∗ to be assumed to be three times continuously di�erentiable on
∂(B(s, 1) \ E∗) and equal to zero on T . We �x t such that 0 < t < 1, sup{|z| : z ∈
E∗} < 1− 2∆t (∆t = 1− t) and consider functions

b(z) := log |z|, u∗ = b+ εf∗,

where ε > 0 is su�ciently small. It is easy to see that the Hausdor� distance
between the curve

γ∗
t : u∗ = b(t)

and the circle T (t) is the quantity1 O′(ε∆t), ε → 0. Further, the notation (γ,Γ)
means a doubly connected domain on the plane C, bounded by closed curves γ, Γ,
and mod (γ,Γ) is the module of the domain (γ,Γ). Let the quantities t(ε) and
R(ε) be de�ned by the relations:

mod (γ∗
τ , γ

∗
t ) = mod (γ∗

τ , T (t(ε))), τ = 1− 2∆t,

mod (γ∗
t , T ) = mod (T (t(ε)), T (R(ε))).

Following the arguments in [8] from formula (3.1) to (3.5), where it is necessary to
set the −1/ log r = ε, we see that

(2) R(ε) ≥ 1 and R(ε)− 1 = O′((ε∆t)2).

1Here and below, the prime at the symbol O � large means that the corresponding quantity
admits a uniform estimate for all su�ciently small ∆t at ε → 0.
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By de�nition,

mod (γ∗
t , T ) =

1

2π
log

R(ε)

t(ε)
=

1

2π
log

1

t(ε)
+O′((ε∆t)2).

On the other hand, the Hadamard formula [10 (A3.11)], [8, (2.2)] gives

mod (γ∗
t , T ) =

1

2π
log

1

t
−
(

1

2π
log

1

t

)2 ∫
T (t)

(
∂ω

∂n

)2

[−εtf∗(teiθ)]ds+O′((ε∆t)2),

where ω(z) = (log |z|)/ log t. Hence

(3) log
t

t(ε)
=

ε

2π

2π∫
0

f∗(teiθ)dθ +O′((ε∆t)2).

Let F− be some conformal mapping of the domain (T (t(ε)), T (R(ε))) onto (γ∗
t , T )

and let F+ be a conformal mapping of (γ∗
τ , T (t(ε))) onto (γ∗

τ , γ
∗
t ) in such a way that

F−(T (t(ε))) = F+(T (t(ε))) = γ∗
t . Following the proof of Theorem 1 [8], we set

v∗(z) =


u∗(F−(z)), z ∈ (T (t(ε)), T (R(ε))),

u∗(F+(z)), z ∈ (γ∗
τ , T (t(ε))),

u∗(z), z ∈ (T (s), γ∗
τ ) \ E∗.

Note that in the ring (T (t(ε)), T (R(ε)))

v∗(z) =
log |z/R(ε)|

log |t(ε)/R(ε)|
log t

is ful�lled.
The conformal invariance of the Dirichlet integral and the Dirichlet principle

implies

I(u∗, (T (s), T ) \ E∗) = I(v∗, (T (s), T (R(ε))) \ E∗)

≥ I(h∗, (T (s), T (t(ε))) \ E∗) + I(v∗, (T (t(ε))), T (R(ε))).

Here h∗ is a harmonic function on the set (T (s), T (t(ε))) \ E∗, continuous in the
closure of this set and taking the following boundary values:

h∗(z) =

{
b(t), z ∈ T (t(ε)),

b(z) + εf∗(z), z ∈ T (s) ∪ ∂E∗.

Note the symmetry of the function h∗ and the fact that the circles T (s), T (t(ε))
do not change under dissymmetrization Dis (Sec.1). Using the Dirichlet principle
again, we obtain

I(h∗, (T (s), T (t(ε))) \ E∗) = I(Dish∗, (T (s), T (t(ε))) \Dis E∗)

≥ I(h, (T (s), T (t(ε))) \Dis E∗),

where h is a harmonic function on the set (T (s), T (t(ε)))\Dis E∗, continuous in the
closure of this set and taking boundary values:

h(z) =

{
b(t), z ∈ (T (t(ε)),

b(z) + εDis f∗(z), z ∈ T (s) ∪ ∂Dis E∗.

Again, the Dirichlet principle gives

I(h, (T (s), T (t(ε))) \Dis E∗) + I(ṽ∗, (T (t(ε)), T )) ≥ I(u, (T (s), T ) \Dis E∗)



ON THE DISSYMMETRIZATION THEOREM 481

for

ṽ∗(z) =
log |z|
log t(ε)

log t

and the function u, harmonic in (T (s), T ) \Dis E∗ continuous in the closure of this
set and taking boundary values:

u(z) =

{
0, z ∈ T,

b(z) + εDis f∗(z), z ∈ T (s) ∪ ∂Dis E∗.

The main inequality in the proof of Theorem 1 follows from the inequalities written
above:

I(u∗, (T (s), T ) \ E∗)− I(u, (T (s), T ) \Dis E∗) ≥ I(h∗, (T (s), T (t(ε))) \ E∗)

(4) −I(h, (T (s), T (t(ε))) \Dis E∗)+ I(v∗, (T (t(ε)), T (R(ε))))− I(ṽ∗, (T (t(s)), T )).

Let us now turn to estimates of the integrals in (4). According to Green's formula,
the �rst integral on the left in (4) is

I(u∗, (T (s), T ) \ E∗) = I(b, (T (s), T ) \ E∗) + ε2I(f∗, (T (s), T ) \ E∗)

(5) −2ε

∫
T (s)∪∂E∗

f∗ ∂b

∂n
ds.

By the uniqueness theorem for harmonic functions in (T (s), T )\Dis E∗, the equality

u = b+ εf

is true. Therefore,

I(u, (T (s), T ) \Dis E∗) = I(b, (T (s), T ) \Dis E∗)

(6) +ε2I(f, (T (s), T ) \Dis E∗)− 2ε

∫
T (s)∪∂Dis E∗

f
∂b

∂n
ds.

To calculate the �rst integral of the right-hand side of (4), we represent the function
h∗ in the form

h∗ = b+ εf∗
t(ε) + σ∗,

where the functions f∗
t(ε), σ

∗ are harmonic on the set (T (s), T (t(ε)))\E∗, continuous

in the closure of this set and take boundary values

f∗
t(ε)(z) =

{
0, z ∈ T (t(ε)),

f∗(z), z ∈ T (s) ∪ ∂E∗,
σ∗(z) =

{
log(t/t(ε)), z ∈ T (t(ε)),

0, z ∈ T (s) ∪ ∂E∗.

By successively applying Green's formula, we obtain

I(h∗, (T (s), T (t(ε)))\E∗) = I(b, (T (s), T (t(ε)))\E∗)+ε2I(f∗
t(ε), (T (s), T (t(ε)))\E

∗)

+I(σ∗, (T (s), T (t(ε))) \ E∗)− 2ε

∫
T (s)∪∂E∗

f∗ ∂b

∂n
ds

(7) −2 log
t

t(ε)

∫
T (t(ε))

∂b

∂n
ds− 2ε log

t

t(ε)

∫
T (t(ε))

∂f∗
t(ε)

∂n
ds.

Similar to (7)
h = b+ εft(ε) + σ
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where the functions ft(ε), σ are harmonic in (T (s), T (t(ε))) \Dis E∗, continuous in
the closure of this set, and take the boundary values

ht(ε)(z) =

{
0, z ∈ T (t(ε)),

Dis f∗, z ∈ T (s) ∪ ∂Dis E∗,
σ(z) =

{
log(t/t(ε)), z ∈ T (t(ε)),

0, z ∈ T (s) ∪ ∂Dis E∗,

I(h, (T (s), T (t(ε))) \Dis E∗) = I(b, (T (s), T (t(ε))) \Dis E∗)

+ε2I(ft(ε), (T (s), T (t(ε))) \Dis E∗) + I(σ, (T (s), T (t(ε))) \Dis E∗)

(8) −2ε

∫
T (s)∪∂Dis E∗

f
∂b

∂n
ds− 2 log

t

t(ε)

∫
T (t(ε))

∂b

∂n
ds− 2ε log

t

t(ε)

∫
T (t(ε))

∂ft(ε)

∂n
ds.

Finally, taking into account (2) and (3), we have

I(v∗, (T (t(ε)), T (R(ε))))− I(ṽ∗, (T (t(ε)), T )) =
2π(log t)2

log R(ε)
t(ε)

− 2π(log t)2

log 1
t(ε)

(9) = 2π(log t)2
[

1

O′((ε∆t)2)− log t(ε)
− 1

− log t(ε)

]
= O′((ε∆t)2).

Substituting (5) - (9) into inequality (4), after obvious reductions and ε → 0 we
arrive at the relation:

I(f∗, (T (s), T ) \ E∗)− I(f, (T (s), T ) \Dis E∗) ≥ I(f∗
t , (T (s), T (t)) \ E∗)

(10)

−I(ft, (T (s), T (t)) \Dis E∗)− ∆t

π

2π∫
0

∂f∗

∂n
(eiθ)dθ

∫
T (t)

(
∂f∗

t

∂n
− ∂ft

∂n

)
ds+O((∆t)2).

Here the function f∗
t is harmonic in (T (s), T (t)) \ E∗, continuous in the closure of

this set and

f∗
t (z) =

{
0, z ∈ T (t),

f∗(z), z ∈ T (s) ∪ ∂E∗.

The function ft is harmonic in (T (s), T (t)) \ Dis E∗, continuous in the closure of
this set and

ft(z) =

{
0, z ∈ T (t),

f(z), z ∈ T (s) ∪ ∂Dis E∗.

According to Kellogg's theorem, the functions f∗
t and ft are twice continuously

di�erentiable in the closure of the corresponding domains. By virtue of Lemma 1,
inequality (10) can be rewritten in the form of

∆t

∫
T

(
∂f

∂n

)2

ds−∆t

∫
T

(
∂f∗

∂n

)2

ds ≥ ∆t

π

∫
T

∂f∗

∂n
ds

∫
T

(
∂ft
∂n

− ∂f∗
t

∂n

)
ds+O((∆t)2).

It remains to divide both parts of the last inequality by ∆t and pass to the limit
at ∆t → 0 Theorem 1 is proved.
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4. Another look at the Gonchar-Baernstein conjecture

Let a = (a1, ...., an) be a set of arbitrary distinct points on the circle T , and
a∗ = (a∗1, ...., a

∗
n) be a set of symmetric points a∗j = exp(i2πj/n), j = 1, ..., n. Let

K be an arbitrary �xed compact set on the half-interval (0, 1]. Denote by ω(z) the
harmonic measure of the circle T with respect to the domain of D(a,K) = {z :
|z| < 1}\

⋃n
j=1{z = taj : t ∈ K}, and let ω∗(z) be the harmonic measure of T with

respect to D(a∗,K). Gonchar suggested that the inequality

(11) ω(0) ≥ ω∗(0)

holds for K = [t, 1], 0 < t < 1 (see, for example, [11, Problem 7.45]). The
solution of the Gonchar problem is given in paper [1]. This solution is implicitly
related to numerous unsolved problems of function theory, where the assumed
extremal con�guration has n-fold symmetry [3] � [5]. In 1987, Baernstein published
a statement of the generalized problem of the validity of inequality (11) for any
compact K ⊂ (0, 1] [9]. Such a natural generalization caused serious di�culties
for experts. Solynin [12] achieved the greatest result by proving (11) in the case
of K = [t1, t2], 0 < t1 < t2 ≤ 1. Theorem 1 in [8] and the proof of Theorem
1 in this article lead us to the following conjecture about the condenser capacity.
Let C = (E0, E1) be the simplest condenser considered as a pair of non-empty
non-intersecting closed sets E0 and E1 of the plane C [3, Sec. 1.2]. The capacity
capC of the condenser C is de�ned as the greatest lower bound of the integrals
I(v,C \ (E0 ∪ E1)) over all functions v, continuous in C, satisfying the Lipschitz
condition locally in C\(E0∪E1), equal to zero on E0 and to unity on E1. Under the
condition of the existence of a potential function u of the condenser C, continuous
in C, harmonic in C \ (E0 ∪E1), equal to zero on E0 and unity on E1, the equality

capC = I(u,C \ (E0 ∪ E1))

is ful�lled. Let K be an arbitrary compact set on (0, 1), and let s be an arbitrary
number, 0 < s < infK. In the notation adopted above, we put

C(s) = (T (s) ∪
n⋃

j=1

{z = taj : t ∈ K}, T ),

C∗(s) = (T (s) ∪
n⋃

j=1

{z = ta∗j : t ∈ K}, T ).

Conjecture. For any s1, s2, 0 ≤ s1 < s2 < infK the inequality

(12) capC∗(s1)− capC(s1) ≥ capC∗(s2)− capC(s2)

is valid.

Since the capacity of the condenser does not increase with dissymmetrization [3,
Sec. 4.4], then both di�erences in (12) are non-negative, and our Conjecture (just
like Theorem 1 [8]) de�nes a new level of complexity in this matter. The Hadamard
formula [10,(A3.11)] (see also Lemma 1) implies the �di�erential� form of Conjecture
(12): ∫

T (s)

(
∂u

∂n

)2

ds ≥
∫

T (s)

(
∂u∗

∂n

)2

ds
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where 0 < s < infK and u, u∗ are the potential functions of the condensers C(s),
and C∗(c) respectively.

Theorem 2. If Conjecture (12) is true, then Conjecture (11) is also true.

Proof. Consider the functions u = ω − g and

g(z) = −w(0)

log r

(
1 +

log r(D(a,K), 0)

log r

)
gD(a,K)(z, 0)

where gD(a,K)(z, 0) is the Green's function of the domainD(a,K), and r(D(a,K), 0)
is the inner radius of this domain with respect to the origin, and the parameter
r > 0 is su�ciently small (cf. [3, proof of Theorem 2.1]). The set E(r) = {z : |z| <√
r, u(z) ≤ 0|} is an "almost disk" centered at the origin and radius r. Let φ(s) be

an in�nitesimal quantity at s → 0 such that the set E(r), r = s(1 +φ(s)) contains
the disk |z| ≤ s. In view of the monotonicity of the capacity [3, Theorem 1.15],

capC(s) ≤ cap ({z : u(z) = 0}, {z : u(z) = 1}).
The capacity of the last condenser is

I(u,D(a,K) \E(r)) = I(ω,D(a,K) \E(r)) + I(g,D(a,K) \E(r)) + 2

∫
∂E(r)

g
∂ω

∂n
ds

= I(ω,D(a,K) \ E(r))− 2πω2(0)

log(s(1 + φ(s)))
+O

((
1

log s

)2
)

= I(ω,D(a,K))− 2πω2(0)

log s
+O

((
1

log s

)2
)
, s → 0.

We have used the formula [3, (2.12)]. Therefore, the inequality

(13) capC(s) ≤ I(ω,D(a,K))− 2πω2(0)

log s
+O

((
1

log s

)2
)
, s → 0,

holds. Similarly, inequality is shown in the other direction. Thus, in (13) there is
an equal sign. Writing this equality for the capacities

capC∗(s2), capC(s2), capC∗(s) and capC(s)

and substituting these asymptotics into inequality (12), we obtain (11). Theorem 2
is proved.
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