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THE COMPLEXITY OF QUASIVARIETY LATTICES. II
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ABSTRACT. We prove that if a quasivariety K contains a finite B*-
class relative to some subquasivariety and some variety possessing some
additional property, then K contains continuum many @-universal non-
profinite subquasivarieties having an independent quasi-equational basis
as well as continuum many Q-universal non-profinite subquasivarieties
having no such basis.
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1. INTRODUCTION

Under certain sufficient condition, quasivarieties and their subquasivariety lattices
turn out highly complicated structure — from the structural, syntactical,
algorithmic, as well as topological point of view. First condition of this type (which
ensures the existence of a countable subclass possessing certain properties) were
found by M.E. Adams and W. Dziobiak [1]; a bit later, similar conditions were
proposed by V.A. Gorbunov [8]. Relatively recently, A.V. Kravchenko et al. [9]
suggested another sufficient condition, the existence of so-called B-class in
a quasivariety, which implies that the quasivariety has complicated inner structure,
see [9]-[12] and [13, 14]. However, it turned out that this condition was very strong
as very similar complexity results hold for certain concrete quasivarieties of algebraic
structures possessing no B-class, see [15]-[17], [2, 32].

In [30], a weaker sufficient condition, the existence of a B*-class in a quasivariety,
was introduced, see Definition 1. It was established in [30, 31] that quasivarieties
having B*-classes possess many of the properties of quasivarieties with B-classes.
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The present paper continues [28]. We establish here that if a quasivariety K
contains a finite B*-class relative to some subquasivariety and some variety
possessing some additional property which we call (B*), then K contains continuum
many (@-universal non-profinite subquasivarieties having an independent quasi-
equational basis as well as continuum many @-universal non-profinite
subquasivarieties having no such basis, see Theorems 9 and 10. The main results
of [12] and [17] turn out to be corollaries of these two theorems. We note that the
notion of profiniteness was intensively studied for [quasi|varieties by D. M. Clark et
al. in [3]-]7], see also A. M. Nurakunov and M. M. Stronkowski [25] as well as A. V.
Kravchenko et al. [12] and [24].

In Section 4, we present some applications of our main results to concrete
quasivarieties of algebraic structures.

2. MAIN DEFINITIONS AND AUXILIARY RESULTS

This section contains all the necessary definitions and results established earlier
that we use in the present paper. For all the definitions and notation which are
note defined here, we refer to [12, 31].

2.1. B*-classes. Here, we present our central definition, the definition of B*-class,
as it appeared in [30].

We denote by P, (w) the set of finite subsets of the set w of natural numbers.
Let J C w be an infinite set. We may assume that J = {j,, | n < w}, where j,, < jn
if and only if m < n. For a set T C w, we put J(T) = {j, € J |n €T}

Definition 1. Let M C K(o) be a quasivariety of a finite similarity type o and
let V. C K(0) be a nonempty homomorphically closed class. A class A = {Ap |
F € Ppin(w)} € M is called a B*-class with respect to M and V, if A satisfies the
following conditions:

(Bo) for each nonempty F' € Py;n(w), the structure Ap is finitely presented in
M; Ag is a trivial structure;

By) if F=GUH in Pyjp(w) then Ap € Q(Ag, An);

(B3) for each F, G € Pyip(w), if F # @ and Ap € Q(Ag, V) then F = G;

B3) for every F' € Pyin(w) and every i < w, if f € Hom(Ap, Ag;y) then either
f(Ar)€eVoriekF;

(B;) for all F € Py (w), (H(Ap) NM)\V C A.
If Ap is a finite structure for every nonempty set F' € Py, (w), then we call A a
finite B*-class with respect to M and V.

Definition 1 was inspired by M.E. Adams and W. Dziobiak [1] as well as by
A.V. Kravchenko et al. [9, Definition 2.1]. The next statement is a straightforward
corollary of the definition of B-class given in [9].

Corollary 1. If A is a B-class with respect to some quasivariety M then A is a
B*-class with respect to M and the trivial variety T.

2.2. Properties (B§) and (B*). Let M C K(o) be a quasivariety of a finite
similarity type o, let V C K(o) be a nonempty homomorphically closed class, and
let a class A = {Ap | F € Ppin(w)} € M be a B*-class with respect to M and V.
Consider a nonempty set F' € P, (w). According to condition (Bg) from Definition
1, there are a finite set X g of variables and a finite set A of atomic formulas with
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free variables belonging to Xz such that Ap = (X, Ap). Let yp: Xp — Ap
be the corresponding interpretation of the variables from Xp.

Furthermore, let G C F. By Lemma 2(ii) below, there is a homomorphism
from Ap onto Ag. We fix one such homomorphism and denote it by fg . By [9,
Lemma 1.2], there is a finite set Ag of atomic formulas and an interpretation
751 Xp — Ag such that Ag = Fm(Xp, Ag) with respect to 'yg. In this case, we
have also AL Em Ap and fE (vr(z)) = 7& () for all 2 € Xp. We assume that
AL = Ap and vE = v5. We put

0 = (A(©),I'(0),2(0)), where
A©) = {(Xr, Ap,yr) | F € Prin(w)\{2}};
L(©) = {76 | F.G € Prin(w)\{2}, G C F);
Q(8) = {f& | F.G € Prin(w)\{2}, G C F}.
We consider also the following condition on the class A which depends on O:

(Bg) for sets F, G € Psin(w) such that & # G C F, for a structure B € V
and a homomorphism f € Hom(Ap,B), there is a homomorphism g €
Hom(Ag, B) such that g(v&(z)) = f(yr(z)) for all z € Xp.

We also consider the following condition on the class A:

(B*) for sets F, G € Ppin(w) such that @ # G C F, for a structure B € V
and homomorphisms f € Hom(Ap,B) and g € Hom(Ap, Ag), there is a
homomorphism h € Hom(Ag, B) such that f = hg.

Properties (B§) and (B*) were introduced and considered in [30].

2.3. Auxiliary results on B*-classes. We present here some results from [30, 31]
which we need.

Lemma 2. [30, Lemma 1.3] Let M C K(0) be a quasivariety of a finite similarity
type o, let V.C K(o) be a nonempty homomorphically closed class, and let a class
A ={Ap | F € Psin(w)} €M satisfy conditions (By) and (B3) with respect to M
and V. The following statements hold.
(i) If Ap €V for some F € Py (w) then F = @.
(ii) Let A satisfy in addition (B1) and (B}) with respect to M and V. If G C
F € Pin(w) then Ag € H(AF).
(i) Let A be a B*-class with respect to M and V. If f € Hom(Ap, Ag) for
some F, G € Py (w) then either f(Ap) € V or G C F and f(Ar) = Ac.

In the context of Definition 1, let M* = (M\V) U {€}, where € denotes the trivial
structure.

Lemma 3. [30, Lemma 1.4] Let M C K(o) be a quasivariety, let V. C K(o) be a
nonempty homomorphically closed class, let a class A = {Ap | F € Ppin(w)} CM
be a B*-class with respect to M and V, and let i < w. If lag,, has a lower cover in
the poset Conn Ayyy, then Ay is an M*-simple structure.

Remark 1. We notice that Lemma 3 applies when ¢ is a finite similarity type and
the structure Ay;y is finite for all i < w. In particular, if A is a finite B*-class with
respect to M, V C K(o), then A satisfies the following condition:

(Bg) for all i <w, Ay;y is an M*-simple structure.
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Lemma 4. [30, Lemma 2.3] Let M C K(0) be a quasivariety of a finite similarity
type o, let V. C K(o) be a variety, and let a class A = {Ap | F € Ppin(w)} CM
be a B*-class satisfying (BY) with respect to M, V, and some ©. Then condition
(B?) is equivalent to each one of the following five conditions.

(i) For arbitrary sets F,G € Pin(w) such that G C F and for arbitrary
homomorphisms fo, fi € Hom(Ap, Ag), if fo(Ar) ¢ V then there is g €
Hom(fo(Ar), Ac) such that fi = gfo;

(ii) For arbitrary sets F,G,H € Ppin(w) such that F C G C H and for
arbitrary homomorphisms f € Hom(Ag, Ar) and g € Hom(Apy, Ag) such
that g(Ap) ¢ V, there is h € Hom(g(Ag), Ar) such that f = hg.

(iii) For arbitrary sets F,G € Priy(w) such that G C F and for arbitrary
homomorphisms fo, fi € Hom(Ap, Ag) such that fo is an onto
homomorphism and f1(Ar) ¢ V, there is an embedding g € Hom(Ag, Ag)
such that f1 = gfo.

(iv) If F,G € Pyin(w) and G C F then there exists a unique M-congruence 6
on Ap such that Ag = Ap/6.

(v) For an arbitrary set F' € Pyip(w), Conm- Ap = 2F  where 2 denotes a
two-element lattice.

The next statement is a corollary of Lemma 4.

Corollary 5. [30, Corollary 2.4] Let M C K(o) be a quasivariety of a finite
similarity type o, let V. .C K(o) be a variety, and let a class A = {Ar | F €
Prin(w)} € M be a B*-class satisfying (Bf) with respect to M and V. Then the
class A satisfies (B*) if and only if A satisfies (Bg) for some ©.

The next statements follows from the proof of [30, Proposition 2.5].

Proposition 6. Let a quasivariety M C K(o) contain a B*-class A = {Ap | F €
Prin(w)} satisfying (B*) with respect to M and some variety V C K(o). If J Cw
is an infinite set then

By ={Ayr | F€Prn(w)}
is a B*-class with respect to M and V which also satisfies (B*).

Theorem 7. [31, Theorem 2.1] Let a class A = {Ap | F € Pin(w)} of algebraic
structures of a finite similarity type o be a B*-class satisfying (BE) and (B*) with
respect to a quasivariety M C K(o) and a variety V. C K(o). Then there are
continuum many quasivarieties K C M with the following properties:

(i) K has a finitely partitionable w-independent quasi-equational basis relative
to M;

(ii) there are quasivarieties K; C M, I € J, such that K = ;.5 K; and the
quasivariety K; has no finitely partitionable w-independent quasi-equation-
al basis relative to M, but has an w-independent quasi-equational basis
relative to M for all I € 7.

If A is a finite B*-class then K above can be chosen Q-universal.

2.4. Profinite quasivarieties. For a structure A € K(o), we say that A = (A, T)
is a topological structure, if T is a topology on A and all the basic operations of A
are continuous and all the basic relations on A are closed with respect to 7. For
a topological structure A, we denote its algebraic reduct by A and its topology by
T(A). A topology T on aset A is Boolean if the topological space (A, T) is Hausdorff,
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compact and has a base of clopen sets. A topological structure A is Boolean if T(A)
is a Boolean topology.

A structure A € K(o) is profinite if it is isomorphic to an inverse limit of finite
structures. Profinite structures are naturally equipped with Boolean topologies
which are in this case product topologies of discrete topologies on finite spaces.
A prevariety K is profinite if each profinite structure belonging to K is profinite
with respect to K; that is, is isomorphic to an inverse limit of finite structures
belonging to K.

Lemma 8. [6, Lemma 3.2] Let o contain only finitely many relation symbols, let
A = aniE[ A; be a surjective inverse limit of finite structures, let B be a finite

structure, and let ¢: A — B be a [continuous| homomorphism. Then there exist
i € I and a [continuous] homomorphism ¢: A; — B such that p = ;.

3. MAIN RESULTS

In the proof of the following theorem, we use ideas from the proof of [12, Theorem
4] as well as certain statements from the proof of [30, Theorem 5.1].

Theorem 9. Let a class A = {Ap | F € Prin(w)} of structures of a finite
similarity type o be a finite B*-class with respect to a quasivariety M C K(o)
and a variety V. C K(o) which satisfies (B*). Then there are continuum many
Q-universal subquasivarieties in M which are mot profinite and have no finitely
partitionable w-independent quasi-equational basis relative to M.
Proof. By Remark 1 and Corollary 5, A satisfies (Bg,) for some © with

0 = (A(©),I'(0),2(0)), where

A©) = {(Xr,AF,7r) | F € Prin(w)\{2} };

L(©) = {16 | F.G € Prin(w)\{2}, G C F);

Q0) = {f& | F.G € Prin(w)\{2}, G C F}.
Following the proof of [30, Theorem 5.1], we fix one such ©. Moreover, we fix an
infinite set I C w such that w\I # @ and assume that I = {i, | n < w}, where

in <im if and only if n < m for all m,n < w. As in the proof of [12, Theorem 4],
we also fix an element k € w\I and we put

F, = {io,...,in} forall n < w;

A=Auy, An=Ar, and B, =Agyur, foraln <w.
As in the proof of Theorem 5.1 in [30], we consider the following sentence o1 which
is equivalent to a finite set of quasi-identities:

VZ &Ap(T) — &AL (@),
where Ap = Fx(Xr, Ap) with a canonical interpretation g for all F' € P (w).
We put also
;= {pp | F€Psin(w), FNI#2} and K;=Mod®; N M.

By [30, Theorem 5.1], K is Q-universal and has no finitely partitionable w-indepen-
dent quasi-equational basis relative to M. The following statement is the content
of Claim 5.2 from the proof of [30, Theorem 5.1].

Claim 1. For each F' € Py;p(w), Ar € K if and only if F C I.
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We construct an inverse spectrum A = (w, B, m;;) as in the proof of [12, Theorem
4]. By Lemma 2(ii), for each n < w, there is a surjective homomorphism
Tpntl: Bnt1 — By We put for all i <n < w:

_)idsg,, if i =n;
Tin =

T4+l - Tn—1,n, if i <n.
We obtain therefore
Claim 2. A = (w, B;, ;) is a surjective inverse limit.

We put B = lim A. Since B,, is a finite set for all n < w, we conclude that B # &.
Moreover, B € SP(A) C Q(A) C M.

Claim 3. B is an infinite structure and B € Kj.

Proof of Claim. We show first that B € K;. As B € M, it suffices to establish that
B | ®;. We consider therefore an arbitrary sentence ol € ®;; then FNI # @. Let
v: XF — B be an interpretation such that B = Ap[y]. This means that there is a
homomorphism f: Ap — B such that f(yp(z)) = ~(z) for each z € Xp. For each
n < w, let f, = m,f, where 7,,: B — B,, denotes the canonical projection from B
onto B,,. Two cases are possible.

Case 1: f(Ar) € V.
Case 2: f(Ar) ¢ V. In this case, we obtain by Lemma 2(iii) that f,(Ar) 2 Ag <

B,, for some nonempty set G C F. Therefore, (B}) yields the equality G = {k}UF,.
This implies that f,,(Ar) = B,, whence |B,| < |Ar| in this case.

Since A is a finite structure and |B,| < |Bp4+1| for all n < w by Lemma 2(ii),
there is s < w such that |Ap| < |B,| for all n > s. Therefore, f,(Ar) € V for all
n>=s. Let Jy ={n <w|n > s}; we have then

B = @1<Jsa'Bj77rij> Ss H Bn;
neds
FAR) <5 T fa(B) eV,
nedg

This yields that the substructure f(Ap) of B generated by the set {y(z) | z € F'}
belongs to V. Using our assumption that F'N I # @ and applying (Bg), we obtain
that there is a homomorphism g: Apn; — B such that g(vh(z)) = F(7F(2)) =
v(z) for all x € Xp. As Apnr E AL [vE~;], we conclude that B = AL ;[y] and
B = L therefore.

Finally, if | B| < w then by Lemma 8, there is n < w such that |B| < |B,|. Hence,
|B| < |Byn| < |Bm| for all m > n by Lemma 2(ii). As 7, is a homomorphism from
B onto B, we have that |B,,| < |B| < |By,| and |B,,| = |B| for all m > n which is
impossible as |of] < w. O

According to Claim 1, we have A ¢ Ky, A, € K; and B,, ¢ K; for all n < w. By
(B1), B, € Q(A, A). As B, ¢ V and A and A, are finite structures of finite type,
we conclude by (B3) that B,, is a subdirect product of structures isomorphic to A
or to A,. Lemma 4(iv) yields that B,, <, A x A,,. For each n < w, let

ap: B, — A and pS,: B, — A,
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©Yo1 Y12 ©23 Pn—1,n Pn,n+1
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FiGURE 1.

denote the canonical surjective homomorphisms corresponding to these subdirect
decompositions. Since B,, ¢ K; and A,, € K;, we obtain that ker 8, # 0, for
each n < w. This means that, for each n < w, there exists a relation symbol
pn € o U{=} of arity m,, and elements b}, ...,b" € B, such that

Bn bépn(b?,...,b:;n) and A, ):pn(ﬂn(b?)v---vﬂn(bﬁm))-

This yields that A [~ py (an(b]), ..., ay (b2 )). Since o U {=} and A are finite
sets, there is an infinite set J C w and a relation symbol p € o¥ U {=} of arity m
such that p,, = p and m,, = m for all n € J.

According to Lemma 4(ii), for each n < w, there is a surjective homomorphism
Onont1: Ant1 = Ap such that 8,7, nt1 = ©nont1Bn+1. According to Lemma 4(iii),
for each n < w, there is an isomorphism %, p4+1: A — A such that
Wn n+100 Ty nt1 = Qnt1, see Figure 1. We put for all i < n < w:

o {idﬂi, if i =n; o {idﬂ, if i = n;
Pin = Giigl - Pn—1n, Iifi<n. Vin = U1 - Viit1, ifi<n.
The for all 7 < n < w, we have
BiTin = Pinbns  YinQiTin = Qn;

see Figure 1. The proof of the following claim repeats the proof of Claim 4 from
the proof of [12, Theorem 4].

Claim 4. If (by,...,by) € ker 5, (p)\ ker v, (p) for some n < w then
(7Ttn(b1), . ,ﬂ'm(bm)) € ker B¢ (p)\ ker ay(p)
for all t < n.

Since the set J C w is infinite, it follows from Claim 4 that for each n < w, there
are elements b7, ...,b, € B, such that

B [ p (b7 - -5 b1);
An Ep(Ba(07), -, Ba(by,)) and thus, (bF, ..., b},) € ker B, (p);
A F p(an(b}), ..., 0 (b))) and thus, (b7,...,b0%) ¢ ker oy, (p).
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Claim 5. There are elements ci,...,¢, € B such that B [~ p(c1,...,cn) and,
for each homomorphism f: B — D where D € Kj is a finite structure, D =

p(fler),- -, flem))-

Proof of Claim. Exactly as in the proof of Claim 5 from the proof of [12, Theorem
4], we can construct elements ¢y, ..., ¢, € B such that

(Tnlc1), ..., Tnlcm)) € ker Bu(p)\ ker oy, (p)  for all n < w.

As (mn(c1), ..., mn(cm)) & keray(p) for all n < w, we have B = p(cy, ..., cm).

Consider an arbitrary homomorphism f: B — D with D € K; being a finite
structure. By Lemma 8, there is n < w and a homomorphism g: B,, — D such that
f = gm,. Two cases are possible.

Case 1: g(B,) € V. As A satisfies (Bf)), there is a homomorphism h: A, — D

such that h(y}i}UF" (:r)) = f(’y{k}UF" (:c)) for all z € X{xyup,- As the set X(pyup,

generates B,,, we conclude that g = hfgf}UF" = hf3, whence f = gm, = hB,m,.

Case 2: g(B,) ¢ V. By Lemma 2(iii), we conclude that g(B,) =2 Ag < D € K for
some G C {k} U F,. Thus, A¢ € K; whence G C ({k} UF,) NI = F, by Claim
1. By Lemma 4(ii), there is a homomorphism h: A,, — D with g = hf,; therefore,
= hBnmn.

In both cases, f = hB,m, for some homomorphism h: A, — D. This implies,
in particular, that ker 8,7, < ker f. Since (ﬂn(cl),...,ﬁn(cm)) € ker 8,(p), we
conclude that (c1,...,¢n) € ker 8,1, (p) C ker f(p). Therefore,

D}:p(f(cl),...,f(cm)). O

By Claims 3 and 5, the profinite structure B € K; does not embed into a Cartesian
product of finite structures from K;, whence it is not profinite with respect to Kj.
Hence, the quasivariety K; is not profinite.

If I,J C w are such that I ¢ J then there is ¢ € I\ J. According to Claim 1,
A; € K;/\K;, whence K; ¢_ K ;. It remains to recall that there are continuum
many infinite proper subsets I C w. (]

In the proof of the following theorem, we use ideas from the proof of [12, Theorem
5] as well as certain statements from the proof of [31, Theorem 2.1].

Theorem 10. Let a class A = {Ar | F € Ppin(w)} of structures of a finite
similarity type o be a finite B*-class with respect to a quasivariety M C K (o) and a
variety V. C K(o) which satisfies (B*). Then there are continuum many Q-universal
subquasivarieties in M which are not profinite and have a finitely partitionable w-
independent quasi-equational basis relative to M.

Proof. Again, we fix © and an infinite set I C w and assume that I = {i,, | n < w},
where i,, < i,, if and only if n < m for all m,n < w. As in the proof of [12, Theorem
5], we also put

F, ={i1} and B, =Ap, F,={ig,...,in} and 3B, =Ap, foralln<w.

As in the proof of [30, Theorem 2.1], see also Theorem 7, we consider for each
m < w the following sentence which is equivalent to a finite set of quasi-identities:

VT &Ap,,,(T) — &AT(T).
We denote this sentence by &,,.
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We have F| = {ig} C {io,i1} = Fi. By £,, we denote the following sentence
which is also equivalent to a finite set of quasi-identities:

VT &AR(T) — &AL (T).

We put
=7 :{fm |m<w}U{§l} and M; = Mod=; N M.

By Claims 2.5 and 2.7 from the proof of [30, Theorem 2.1], see also Theorem 7, we
obtain the following

Claim 1. M is a Q-universal quasivariety which consists of all structures A € M
with the following property:

if Ap € S(A) for some nonempty F € Py, (w) then FF ¢ 1.

Moreover, =; is a finitely partitionable w-independent quasi-equational basis of M
relative to M.

Let w' = wU{L} where L < n for all n such that 0 < n < w. It is clear that
w’ is an up-directed set with respect to <. We construct an inverse spectrum
A = (W, Bj,m;) as follows. According to Lemma 2(ii), for each n < w, there is

a surjective homomorphism 7, ,41: Bpy1 — By We put for all ¢ <n < w:

idg,, if i = n;
Tim = ep -
Tiit1 - Tn—1,n if i < n.

By Lemma 2(ii), there is a surjective homomorphism 7 1: By — B,. We put
w1 =idg, and w1, =71 1...7Tp_1, for all n such that 0 < n < w:
The next statement follows immediately.

Claim 2. A = (W', B;, ;) is a surjective inverse limit.

We put B = lim A. Since B, is a finite set for all n € ', we conclude that B # &@.
Moreover, B € SP(A) C Q(A) C M.

Claim 3. 3B is an infinite structure and B € M.

Proof of Claim. Exactly as in the proof of Claim 3 from the proof of Theorem 9, one
establishes that B is an infinite structure. We show now that B |= =;. Assume that
m < w and that an interpretation v: Xp, ., — B is such that B = Ap, ,,[7]. This
means that there is a homomorphism f: B, 11 — B such that f(vp,, ., (z)) = v(z)
for each € Xp,, . For each n € ', let f, = m, f where m,: B — B,, is a canonical

projection. Two cases are possible.
Case 1: fu(Bymy1) € V.

Case 2: f,(Byms1) ¢ V. In this case, we have by Lemma 2(iii) that f,,(Bmv1) =
Ag < B, for some nonempty set G C F,,. Therefore, we get by (B}) that G = F,,.
This implies that f,(Bm+1) = B, whence |B,,| < |Bpm+1]| in this case.

Since B,,41 is a finite structure and |B,,| < |Bp41| for all n < w by Lemma 2(ii),
there is s < w such that |By,+1| < |B,| for all n > s. Therefore, f,(Bp41) € V for
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all n > s. Let J; = {n <w | n > s}; we have then

B= @(Jsa‘ijﬂ-ij> <s H Bna
neds

fBrmir) <s [ £2(B) € V.

neds

This yields that the substructure f(B,4+1) of B generated by the set {y(z) | « €
Ft1} belongs to V. As F,,, # @ and F| # &, we apply (B§) and obtain that there
is a homomorphism g: B,, — B such that g(fygm“(z)) = f(vFmr(z) = y(2)

for all z € Xp,,,,, as well as there is a homomgrphism g: B, — B such that

g(vgi(z)) = f(v"(x)) = v(x) for all z € Xp, whenever m = 0. As B, |=
A?::*l[’yg:“] and B, = Agi [7113:1], we conclude that B = Ag::“['y] and B =
Agi [v] whenever m = 0. This implies that B =&, for allm <w and B ¢,. O

Claim 4. 3B is not profinite with respect to Mj.

Proof of Claim. Consider an arbitrary homomorphism f: B — D, where D € M;
is a finite structure. By Lemma 8, there is n € w’ and a homomorphism g: B,, — D
such that f = gm,. We have by Lemma 2(iii) and (Bj) that either g(B,) € V or
g(Bn) 2 Ag <D € M; for some nonempty finite set G such that G C F,, C I. In
the second case, we obtain a contradiction with Claim 1. This contradiction shows
that f(B) = ¢g(B,) € V.

If B were profinite with respect to My then B <, HteT Dy, where Dy € My is a
finite structure for each ¢ € T. According to the above argument D; € V for each
t € T whence B € V. As V is a variety and B,, € H(B) for all n € w’, we conclude
that B,, € V for all n € w’ which contradicts Lemma 2(i). O

By Claims 3 and 4, the profinite structure B € M is not profinite with respect to
M, whence the quasivariety M7 is not profinite.

If I,J C w are such that I ¢ J then there is ¢ € I\J. According to Claim 1,
A; € M;\M/, whence M; € M;. The fact that there are continuum many infinite
proper subsets in w completes the proof. (Il

4. APPLICATIONS

We present in this section some applications of Theorems 9 and 10 in a compact
way. For more details, we refer to [30, 31].

Remark 2. As each B-class is a B*-class, [12, Theorem 4] is a corollary of our
Theorem 9 while [12, Theorem 5] is a corollary of Theorem 10. In particular, all
the statements of [12, Corollary 1] follow from Theorems 9-10 by Corollary 1.

For the definition of relatively full embedding and almost f f-universal quasivariety,
we refer to A. Pultr and V. Trnkova [26] and to V. Koubek and J. Sichler [22, 23].

Corollary 11. If K C K(o) is an almost f f-universal quasivariety of a finite type
o, then there is a quasivariety K' C K which contains continuum many Q-universal
non-profinite quasivarieties M C K’ with one of the following properties:

(i) M has a finitely partitionable w-independent quasi-equational basis relative
to some subquasivariety K';
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(ii) M has no finitely partitionable w-independent quasi-equational basis
relative to some subquasivariety K'.

Proof. By Theorem 6.2 and Corollary 6.11 of [30], K contains a finite B*-class
relative to some subquasivariety K’ C K and some variety which satisfies the
condition (B*). The desired statement follows from Theorems 9-10. 0

The statement of the next corollary was established in [17]. For the definition of the
variety Dm of differential groupoids, we refer to A.B. Romanowska and J.D.H.
Smith [27], see also [15]-[17], [30, Section 4] and [2].

Theorem 12. [31, Theorem 2.2] Let a class A = {Ap | F € Pjin(w)} of structures
of a finite similarity type o be a B*-class satisfying (BE) and (B*) with respect to a
quasivariety M C K(o) and a variety V C K(o). Assume that

(4.1) A?U{n} is equivalent within M to Ap U {¢f'}

where @ is an atomic formula for all finite nonempty sets F € P;n(w) and all
n < w such that n ¢ F. Then there are continuum many quasivarieties K C M
with the following properties:

(i) K has an independent quasi-equational basis relative to M;

(ii) there is a set J and quasivarieties Ky C M, I € J, such that K = ;.5 K7
and the quasivariety K; has no finitely partitionable w-independent quasi-
equational basis relative to M, but has an w-independent quasi-equational
basis relative to M for all I € 7.

If A is a finite B*-class then K above can be chosen Q-universal.

Corollary 13. The variety Dm contains continuum many Q-universal non-profin-
ite subquasivarieties M C Dm with one the following properties:

(i) M has an independent quasi-equational basis relative to Dm;
(ii) M has no independent quasi-equational basis relative to Dm.

Proof. By [30, Proposition 7.1], the variety Dm contains a finite B*-class satisfying
(B*) with respect to Dm and a finitely generated variety V. C Dm for which the
assumptions of Theorem 12 are satisfied; in particular, the condition (4.1) is fulfilled.
The desired statement follows from Theorems 9-10 and Theorem 12. O

Corollary 14. Let K’ be one of the following classes:

(a) the variety of lattices generated by the modular lattice Ms 3;

(b) one of the infinitely many pairwise incomparable lattice varieties generated
by a single finite simple lattice and not containing the lattice Ms; 3
constructed in [18];

(¢) any variety of 0-lattices containing a finite lattice with more than two
elements and no prime ideal.

Then there is a quasivariety M C K’ which contains continuum many Q-universal
non-profinite subquasivarieties K C M with one the following properties:
(i) K has a finitely partitionable w-independent quasi-equational basis relative
to M;
(ii) K has no finitely partitionable w-independent quasi-equational basis relative
to M.
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Proof. As it was established in the papers of V. Koubek and J. Sichler [18]-[21],
in each of the cases (a)—(c), K’ is an almost f f-universal quasivariety. The desired
statement follows from Corollary 11. (]
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