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THE COMPLEXITY OF QUASIVARIETY LATTICES. II

M. V. SCHWIDEFSKY

Abstract. We prove that if a quasivariety K contains a �nite B∗-
class relative to some subquasivariety and some variety possessing some
additional property, thenK contains continuum manyQ-universal non-
pro�nite subquasivarieties having an independent quasi-equational basis
as well as continuum many Q-universal non-pro�nite subquasivarieties
having no such basis.

Keywords: inverse limit, quasi-equational basis, quasivariety, pro�nite
structure, pro�nite quasivariety.

1. Introduction

Under certain su�cient condition, quasivarieties and their subquasivariety lattices
turn out highly complicated structure � from the structural, syntactical,
algorithmic, as well as topological point of view. First condition of this type (which
ensures the existence of a countable subclass possessing certain properties) were
found by M.E. Adams and W. Dziobiak [1]; a bit later, similar conditions were
proposed by V.A. Gorbunov [8]. Relatively recently, A.V. Kravchenko et al. [9]
suggested another su�cient condition, the existence of so-called B-class in
a quasivariety, which implies that the quasivariety has complicated inner structure,
see [9]�[12] and [13, 14]. However, it turned out that this condition was very strong
as very similar complexity results hold for certain concrete quasivarieties of algebraic
structures possessing no B-class, see [15]�[17], [2, 32].

In [30], a weaker su�cient condition, the existence of a B∗-class in a quasivariety,
was introduced, see De�nition 1. It was established in [30, 31] that quasivarieties
having B∗-classes possess many of the properties of quasivarieties with B-classes.
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The present paper continues [28]. We establish here that if a quasivariety K
contains a �nite B∗-class relative to some subquasivariety and some variety
possessing some additional property which we call (B∗), thenK contains continuum
many Q-universal non-pro�nite subquasivarieties having an independent quasi-
equational basis as well as continuum many Q-universal non-pro�nite
subquasivarieties having no such basis, see Theorems 9 and 10. The main results
of [12] and [17] turn out to be corollaries of these two theorems. We note that the
notion of pro�niteness was intensively studied for [quasi]varieties by D.M. Clark et
al. in [3]�[7], see also A.M. Nurakunov and M.M. Stronkowski [25] as well as A.V.
Kravchenko et al. [12] and [24].

In Section 4, we present some applications of our main results to concrete
quasivarieties of algebraic structures.

2. Main definitions and auxiliary results

This section contains all the necessary de�nitions and results established earlier
that we use in the present paper. For all the de�nitions and notation which are
note de�ned here, we refer to [12, 31].

2.1. B∗-classes. Here, we present our central de�nition, the de�nition of B∗-class,
as it appeared in [30].

We denote by Pfin(ω) the set of �nite subsets of the set ω of natural numbers.
Let J ⊆ ω be an in�nite set. We may assume that J = {jn | n < ω}, where jm < jn
if and only if m < n. For a set T ⊆ ω, we put J(T ) = {jn ∈ J | n ∈ T}.

De�nition 1. Let M ⊆ K(σ) be a quasivariety of a �nite similarity type σ and
let V ⊆ K(σ) be a nonempty homomorphically closed class. A class A = {AF |
F ∈ Pfin(ω)} ⊆M is called a B∗-class with respect to M and V, if A satis�es the
following conditions:

(B0) for each nonempty F ∈ Pfin(ω), the structure AF is �nitely presented in
M; A∅ is a trivial structure;

(B1) if F = G ∪H in Pfin(ω) then AF ∈ Q(AG,AH);
(B∗

2) for each F , G ∈ Pfin(ω), if F ̸= ∅ and AF ∈ Q(AG,V) then F = G;
(B∗

3) for every F ∈ Pfin(ω) and every i < ω, if f ∈ Hom(AF ,A{i}) then either
f(AF ) ∈ V or i ∈ F ;

(B∗
4) for all F ∈ Pfin(ω),

(
H(AF ) ∩M

)
\V ⊆ A.

If AF is a �nite structure for every nonempty set F ∈ Pfin(ω), then we call A a
�nite B∗-class with respect to M and V.

De�nition 1 was inspired by M.E. Adams and W. Dziobiak [1] as well as by
A.V. Kravchenko et al. [9, De�nition 2.1]. The next statement is a straightforward
corollary of the de�nition of B-class given in [9].

Corollary 1. If A is a B-class with respect to some quasivariety M then A is a
B∗-class with respect to M and the trivial variety T.

2.2. Properties (B∗
Θ) and (B∗). Let M ⊆ K(σ) be a quasivariety of a �nite

similarity type σ, let V ⊆ K(σ) be a nonempty homomorphically closed class, and
let a class A = {AF | F ∈ Pfin(ω)} ⊆M be a B∗-class with respect to M and V.
Consider a nonempty set F ∈ Pfin(ω). According to condition (B0) from De�nition
1, there are a �nite set XF of variables and a �nite set ∆F of atomic formulas with
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free variables belonging to XF such that AF
∼= FM(XF ,∆F ). Let γF : XF → AF

be the corresponding interpretation of the variables from XF .
Furthermore, let G ⊆ F . By Lemma 2(ii) below, there is a homomorphism

from AF onto AG. We �x one such homomorphism and denote it by fFG . By [9,
Lemma 1.2], there is a �nite set ∆F

G of atomic formulas and an interpretation
γFG : XF → AG such that AG

∼= FM(XF ,∆
F
G) with respect to γFG . In this case, we

have also ∆F
G |=M ∆F and fFG

(
γF (x)

)
= γFG(x) for all x ∈ XF . We assume that

∆F
F = ∆F and γFF = γF . We put

Θ =
(
∆(Θ),Γ(Θ),Ω(Θ)

)
, where

∆(Θ) =
{
(XF ,∆F , γF ) | F ∈ Pfin(ω)\{∅}

}
;

Γ(Θ) = {γFG | F,G ∈ Pfin(ω)\{∅}, G ⊆ F};
Ω(Θ) = {fFG | F,G ∈ Pfin(ω)\{∅}, G ⊆ F}.

We consider also the following condition on the class A which depends on Θ:

(B∗
Θ) for sets F , G ∈ Pfin(ω) such that ∅ ̸= G ⊆ F , for a structure B ∈ V

and a homomorphism f ∈ Hom(AF ,B), there is a homomorphism g ∈
Hom(AG,B) such that g

(
γFG(x)

)
= f

(
γF (x)

)
for all x ∈ XF .

We also consider the following condition on the class A:

(B∗) for sets F , G ∈ Pfin(ω) such that ∅ ̸= G ⊆ F , for a structure B ∈ V
and homomorphisms f ∈ Hom(AF ,B) and g ∈ Hom(AF ,AG), there is a
homomorphism h ∈ Hom(AG,B) such that f = hg.

Properties (B∗
Θ) and (B∗) were introduced and considered in [30].

2.3. Auxiliary results on B∗-classes. We present here some results from [30, 31]
which we need.

Lemma 2. [30, Lemma 1.3] Let M ⊆ K(σ) be a quasivariety of a �nite similarity
type σ, let V ⊆ K(σ) be a nonempty homomorphically closed class, and let a class
A = {AF | F ∈ Pfin(ω)} ⊆M satisfy conditions (B0) and (B∗

2) with respect to M
and V. The following statements hold.

(i) If AF ∈ V for some F ∈ Pfin(ω) then F = ∅.
(ii) Let A satisfy in addition (B1) and (B∗

4) with respect to M and V. If G ⊆
F ∈ Pfin(ω) then AG ∈ H(AF ).

(iii) Let A be a B∗-class with respect to M and V. If f ∈ Hom(AF ,AG) for
some F , G ∈ Pfin(ω) then either f(AF ) ∈ V or G ⊆ F and f(AF ) ∼= AG.

In the context of De�nition 1, let M∗ = (M\V) ∪ {E}, where E denotes the trivial
structure.

Lemma 3. [30, Lemma 1.4] Let M ⊆ K(σ) be a quasivariety, let V ⊆ K(σ) be a
nonempty homomorphically closed class, let a class A = {AF | F ∈ Pfin(ω)} ⊆M
be a B∗-class with respect to M and V, and let i < ω. If 1A{i} has a lower cover in
the poset ConM∗ A{i}, then A{i} is an M∗-simple structure.

Remark 1. We notice that Lemma 3 applies when σ is a �nite similarity type and
the structure A{i} is �nite for all i < ω. In particular, if A is a �nite B∗-class with
respect to M, V ⊆ K(σ), then A satis�es the following condition:

(B∗
5) for all i < ω, A{i} is an M∗-simple structure.



504 M. V. SCHWIDEFSKY

Lemma 4. [30, Lemma 2.3] Let M ⊆ K(σ) be a quasivariety of a �nite similarity
type σ, let V ⊆ K(σ) be a variety, and let a class A = {AF | F ∈ Pfin(ω)} ⊆M
be a B∗-class satisfying (B∗

Θ) with respect to M, V, and some Θ. Then condition
(B∗

5) is equivalent to each one of the following �ve conditions.

(i) For arbitrary sets F,G ∈ Pfin(ω) such that G ⊆ F and for arbitrary
homomorphisms f0, f1 ∈ Hom(AF ,AG), if f0(AF ) /∈ V then there is g ∈
Hom

(
f0(AF ),AG

)
such that f1 = gf0;

(ii) For arbitrary sets F,G,H ∈ Pfin(ω) such that F ⊆ G ⊆ H and for
arbitrary homomorphisms f ∈ Hom(AH ,AF ) and g ∈ Hom(AH ,AG) such
that g(AH) /∈ V, there is h ∈ Hom

(
g(AH),AF

)
such that f = hg.

(iii) For arbitrary sets F,G ∈ Pfin(ω) such that G ⊆ F and for arbitrary
homomorphisms f0, f1 ∈ Hom(AF ,AG) such that f0 is an onto
homomorphism and f1(AF ) /∈ V, there is an embedding g ∈ Hom(AG,AG)
such that f1 = gf0.

(iv) If F,G ∈ Pfin(ω) and G ⊆ F then there exists a unique M-congruence θ
on AF such that AG

∼= AF /θ.
(v) For an arbitrary set F ∈ Pfin(ω), ConM∗ AF

∼= 2F , where 2 denotes a
two-element lattice.

The next statement is a corollary of Lemma 4.

Corollary 5. [30, Corollary 2.4] Let M ⊆ K(σ) be a quasivariety of a �nite
similarity type σ, let V ⊆ K(σ) be a variety, and let a class A = {AF | F ∈
Pfin(ω)} ⊆ M be a B∗-class satisfying (B∗

5) with respect to M and V. Then the
class A satis�es (B∗) if and only if A satis�es (B∗

Θ) for some Θ.

The next statements follows from the proof of [30, Proposition 2.5].

Proposition 6. Let a quasivariety M ⊆ K(σ) contain a B∗-class A =
{
AF | F ∈

Pfin(ω)
}
satisfying (B∗) with respect to M and some variety V ⊆ K(σ). If J ⊆ ω

is an in�nite set then
BJ =

{
AJ(F ) | F ∈ Pfin(ω)

}
is a B∗-class with respect to M and V which also satis�es (B∗).

Theorem 7. [31, Theorem 2.1] Let a class A = {AF | F ∈ Pfin(ω)} of algebraic
structures of a �nite similarity type σ be a B∗-class satisfying (B∗

5) and (B∗) with
respect to a quasivariety M ⊆ K(σ) and a variety V ⊆ K(σ). Then there are
continuum many quasivarieties K ⊆M with the following properties:

(i) K has a �nitely partitionable ω-independent quasi-equational basis relative
to M;

(ii) there are quasivarieties KI ⊆M, I ∈ I, such that K =
⋂

I∈I KI and the
quasivariety KI has no �nitely partitionable ω-independent quasi-equation-
al basis relative to M, but has an ω-independent quasi-equational basis
relative to M for all I ∈ I.

If A is a �nite B∗-class then K above can be chosen Q-universal.

2.4. Pro�nite quasivarieties. For a structure A ∈ K(σ), we say that A = ⟨A,T⟩
is a topological structure, if T is a topology on A and all the basic operations of A
are continuous and all the basic relations on A are closed with respect to T. For
a topological structure A, we denote its algebraic reduct by A and its topology by
T(A). A topology T on a set A is Boolean if the topological space ⟨A,T⟩ is Hausdor�,
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compact and has a base of clopen sets. A topological structure A is Boolean if T(A)
is a Boolean topology.

A structure A ∈ K(σ) is pro�nite if it is isomorphic to an inverse limit of �nite
structures. Pro�nite structures are naturally equipped with Boolean topologies
which are in this case product topologies of discrete topologies on �nite spaces.
A prevariety K is pro�nite if each pro�nite structure belonging to K is pro�nite
with respect to K; that is, is isomorphic to an inverse limit of �nite structures
belonging to K.

Lemma 8. [6, Lemma 3.2] Let σ contain only �nitely many relation symbols, let
A = lim←−i∈I

Ai be a surjective inverse limit of �nite structures, let B be a �nite

structure, and let φ : A → B be a [continuous] homomorphism. Then there exist
i ∈ I and a [continuous] homomorphism ψ : Ai → B such that φ = ψπi.

3. Main results

In the proof of the following theorem, we use ideas from the proof of [12, Theorem
4] as well as certain statements from the proof of [30, Theorem 5.1].

Theorem 9. Let a class A = {AF | F ∈ Pfin(ω)} of structures of a �nite
similarity type σ be a �nite B∗-class with respect to a quasivariety M ⊆ K(σ)
and a variety V ⊆ K(σ) which satis�es (B∗). Then there are continuum many
Q-universal subquasivarieties in M which are not pro�nite and have no �nitely
partitionable ω-independent quasi-equational basis relative to M.

Proof. By Remark 1 and Corollary 5, A satis�es (B∗
Θ) for some Θ with

Θ =
(
∆(Θ),Γ(Θ),Ω(Θ)

)
, where

∆(Θ) =
{
(XF ,∆F , γF ) | F ∈ Pfin(ω)\{∅}

}
;

Γ(Θ) = {γFG | F,G ∈ Pfin(ω)\{∅}, G ⊆ F};
Ω(Θ) = {fFG | F,G ∈ Pfin(ω)\{∅}, G ⊆ F}.

Following the proof of [30, Theorem 5.1], we �x one such Θ. Moreover, we �x an
in�nite set I ⊆ ω such that ω\I ̸= ∅ and assume that I = {in | n < ω}, where
in ⩽ im if and only if n ⩽ m for all m,n < ω. As in the proof of [12, Theorem 4],
we also �x an element k ∈ ω\I and we put

Fn = {i0, . . . , in} for all n < ω;

A = A{k}, An = AFn and Bn = A{k}∪Fn
for all n < ω.

As in the proof of Theorem 5.1 in [30], we consider the following sentence φI
F which

is equivalent to a �nite set of quasi-identities:

∀x &∆F (x) −→ &∆F
F∩I(x),

where AF
∼= FK(XF ,∆F ) with a canonical interpretation γF for all F ∈ Pfin(ω).

We put also

ΦI =
{
φI
F | F ∈ Pfin(ω), F ∩ I ̸= ∅

}
and KI = ModΦI ∩M.

By [30, Theorem 5.1],KI is Q-universal and has no �nitely partitionable ω-indepen-
dent quasi-equational basis relative to M. The following statement is the content
of Claim 5.2 from the proof of [30, Theorem 5.1].

Claim 1. For each F ∈ Pfin(ω), AF ∈ KI if and only if F ⊆ I.
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We construct an inverse spectrum Λ = ⟨ω,Bj , πij⟩ as in the proof of [12, Theorem
4]. By Lemma 2(ii), for each n < ω, there is a surjective homomorphism
πn,n+1 : Bn+1 → Bn. We put for all i ⩽ n < ω:

πin =

{
idBi , if i = n;

πi,i+1 . . . πn−1,n, if i < n.

We obtain therefore

Claim 2. Λ = ⟨ω,Bj , πij⟩ is a surjective inverse limit.

We put B = lim←−Λ. Since Bn is a �nite set for all n < ω, we conclude that B ̸= ∅.
Moreover, B ∈ SP(A) ⊆ Q(A) ⊆M.

Claim 3. B is an in�nite structure and B ∈ KI .

Proof of Claim. We show �rst that B ∈ KI . As B ∈M, it su�ces to establish that
B |= ΦI . We consider therefore an arbitrary sentence φI

F ∈ ΦI ; then F ∩I ̸= ∅. Let
γ : XF → B be an interpretation such that B |= ∆F [γ]. This means that there is a
homomorphism f : AF → B such that f

(
γF (x)

)
= γ(x) for each x ∈ XF . For each

n < ω, let fn = πnf , where πn : B → Bn denotes the canonical projection from B

onto Bn. Two cases are possible.

Case 1 : f(AF ) ∈ V.

Case 2 : f(AF ) /∈ V. In this case, we obtain by Lemma 2(iii) that fn(AF ) ∼= AG ≤
Bn for some nonempty set G ⊆ F . Therefore, (B∗

2) yields the equality G = {k}∪Fn.
This implies that fn(AF ) ∼= Bn whence |Bn| ⩽ |AF | in this case.

Since AF is a �nite structure and |Bn| < |Bn+1| for all n < ω by Lemma 2(ii),
there is s < ω such that |AF | < |Bn| for all n ⩾ s. Therefore, fn(AF ) ∈ V for all
n ⩾ s. Let Js = {n < ω | n ⩾ s}; we have then

B ∼= lim←−⟨Js,Bj , πij⟩ ≤s

∏
n∈Js

Bn;

f(AF ) ≤s

∏
n∈Js

fn(B) ∈ V.

This yields that the substructure f(AF ) of B generated by the set {γ(x) | x ∈ F}
belongs to V. Using our assumption that F ∩ I ̸= ∅ and applying (B∗

Θ), we obtain
that there is a homomorphism g : AF∩I → B such that g

(
γFF∩I(x)

)
= f

(
γF (x)

)
=

γ(x) for all x ∈ XF . As AF∩I |= ∆F
F∩I [γ

F
F∩I ], we conclude that B |= ∆F

F∩I [γ] and
B |= φI

F therefore.
Finally, if |B| < ω then by Lemma 8, there is n < ω such that |B| ⩽ |Bn|. Hence,

|B| ⩽ |Bn| ⩽ |Bm| for all m ⩾ n by Lemma 2(ii). As πn is a homomorphism from
B onto B, we have that |Bm| ⩽ |B| ⩽ |Bm| and |Bm| = |B| for all m ⩾ n which is
impossible as |σP | < ω. □

According to Claim 1, we have A /∈ KI , An ∈ KI and Bn /∈ KI for all n < ω. By
(B1), Bn ∈ Q(A,An). As Bn /∈ V and A and An are �nite structures of �nite type,
we conclude by (B∗

2) that Bn is a subdirect product of structures isomorphic to A

or to An. Lemma 4(iv) yields that Bn ≤s A×An. For each n < ω, let

αn : Bn → A and βn : Bn → An
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denote the canonical surjective homomorphisms corresponding to these subdirect
decompositions. Since Bn /∈ KI and An ∈ KI , we obtain that kerβn ̸= 0Bn

for
each n < ω. This means that, for each n < ω, there exists a relation symbol
pn ∈ σP ∪ {=} of arity mn and elements bn1 , . . . , b

n
mn
∈ Bn such that

Bn ̸|= pn(b
n
1 , . . . , b

n
mn

) and An |= pn
(
βn(b

n
1 ), . . . , βn(b

n
mn

)
)
.

This yields that A ̸|= pn
(
αn(b

n
1 ), . . . , αn(b

n
mn

)
)
. Since σP ∪ {=} and A are �nite

sets, there is an in�nite set J ⊆ ω and a relation symbol p ∈ σP ∪ {=} of arity m
such that pn = p and mn = m for all n ∈ J .

According to Lemma 4(ii), for each n < ω, there is a surjective homomorphism
φn,n+1 : An+1 → An such that βnπn,n+1 = φn,n+1βn+1. According to Lemma 4(iii),
for each n < ω, there is an isomorphism ψn,n+1 : A→ A such that
ψn,n+1αnπn,n+1 = αn+1, see Figure 1. We put for all i ⩽ n < ω:

φin =

{
idAi

, if i = n;

φi,i+1 . . . φn−1,n, if i < n.
ψin =

{
idA, if i = n;

ψn−1,n . . . ψi,i+1, if i < n.

The for all i ⩽ n < ω, we have

βiπin = φinβn, ψinαiπin = αn;

see Figure 1. The proof of the following claim repeats the proof of Claim 4 from
the proof of [12, Theorem 4].

Claim 4. If (b1, . . . , bm) ∈ kerβn(p)\ kerαn(p) for some n < ω then(
πtn(b1), . . . , πtn(bm)

)
∈ kerβt(p)\ kerαt(p)

for all t ⩽ n.

Since the set J ⊆ ω is in�nite, it follows from Claim 4 that for each n < ω, there
are elements bn1 , . . . , b

n
m ∈ Bn such that

Bn ̸|= p(bn1 , . . . , b
n
m);

An |= p
(
βn(b

n
1 ), . . . , βn(b

n
m)

)
and thus, (bn1 , . . . , b

n
m) ∈ kerβn(p);

A ̸|= p
(
αn(b

n
1 ), . . . , αn(b

n
m)

)
and thus, (bn1 , . . . , b

n
m) /∈ kerαn(p).
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Claim 5. There are elements c1, . . . , cm ∈ B such that B ̸|= p(c1, . . . , cm) and,
for each homomorphism f : B → D where D ∈ KI is a �nite structure, D |=
p
(
f(c1), . . . , f(cm)

)
.

Proof of Claim. Exactly as in the proof of Claim 5 from the proof of [12, Theorem
4], we can construct elements c1, . . . , cm ∈ B such that(

πn(c1), . . . , πn(cm)
)
∈ kerβn(p)\ kerαn(p) for all n < ω.

As
(
πn(c1), . . . , πn(cm)

)
/∈ kerαn(p) for all n < ω, we have B ̸|= p(c1, . . . , cm).

Consider an arbitrary homomorphism f : B → D with D ∈ KI being a �nite
structure. By Lemma 8, there is n < ω and a homomorphism g : Bn → D such that
f = gπn. Two cases are possible.

Case 1 : g(Bn) ∈ V. As A satis�es (B∗
Θ), there is a homomorphism h : An → D

such that h
(
γ
{k}∪Fn

Fn
(x)

)
= f

(
γ{k}∪Fn(x)

)
for all x ∈ X{k}∪Fn

. As the set X{k}∪Fn

generates Bn, we conclude that g = hf
{k}∪Fn

Fn
= hβn whence f = gπn = hβnπn.

Case 2 : g(Bn) /∈ V. By Lemma 2(iii), we conclude that g(Bn) ∼= AG ≤ D ∈ KI for
some G ⊆ {k} ∪ Fn. Thus, AG ∈ KI whence G ⊆ ({k} ∪ Fn) ∩ I = Fn by Claim
1. By Lemma 4(ii), there is a homomorphism h : An → D with g = hβn; therefore,
f = hβnπn.

In both cases, f = hβnπn for some homomorphism h : An → D. This implies,
in particular, that kerβnπn ≤ ker f . Since

(
πn(c1), . . . , πn(cm)

)
∈ kerβn(p), we

conclude that (c1, . . . , cm) ∈ kerβnπn(p) ⊆ ker f(p). Therefore,
D |= p

(
f(c1), . . . , f(cm)

)
. □

By Claims 3 and 5, the pro�nite structure B ∈ KI does not embed into a Cartesian
product of �nite structures from KI , whence it is not pro�nite with respect to KI .
Hence, the quasivariety KI is not pro�nite.

If I, J ⊆ ω are such that I ⊈ J then there is i ∈ I\J . According to Claim 1,
Ai ∈ KI\KJ , whence KI ⊈ KJ . It remains to recall that there are continuum
many in�nite proper subsets I ⊂ ω. □

In the proof of the following theorem, we use ideas from the proof of [12, Theorem
5] as well as certain statements from the proof of [31, Theorem 2.1].

Theorem 10. Let a class A = {AF | F ∈ Pfin(ω)} of structures of a �nite
similarity type σ be a �nite B∗-class with respect to a quasivariety M ⊆ K(σ) and a
variety V ⊆ K(σ) which satis�es (B∗). Then there are continuum many Q-universal
subquasivarieties in M which are not pro�nite and have a �nitely partitionable ω-
independent quasi-equational basis relative to M.

Proof. Again, we �x Θ and an in�nite set I ⊆ ω and assume that I = {in | n < ω},
where in ⩽ im if and only if n ⩽ m for all m,n < ω. As in the proof of [12, Theorem
5], we also put

F⊥ = {i1} and B⊥ = AF⊥ Fn = {i0, . . . , in} and Bn = AFn
for all n < ω.

As in the proof of [30, Theorem 2.1], see also Theorem 7, we consider for each
m < ω the following sentence which is equivalent to a �nite set of quasi-identities:

∀x &∆Fm+1
(x) −→ &∆

Fm+1

Fm
(x).

We denote this sentence by ξm.
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We have F⊥ = {i0} ⊆ {i0, i1} = F1. By ξ⊥, we denote the following sentence
which is also equivalent to a �nite set of quasi-identities:

∀x &∆F1(x) −→ &∆F1

F⊥
(x).

We put

ΞI = {ξm | m < ω} ∪ {ξ⊥} and MI = ModΞI ∩M.

By Claims 2.5 and 2.7 from the proof of [30, Theorem 2.1], see also Theorem 7, we
obtain the following

Claim 1. MI is a Q-universal quasivariety which consists of all structures A ∈M
with the following property:

if AF ∈ S(A) for some nonempty F ∈ Pfin(ω) then F ⊈ I.

Moreover, ΞI is a �nitely partitionable ω-independent quasi-equational basis of MI

relative to M.

Let ω′ = ω ∪ {⊥} where ⊥ ⩽ n for all n such that 0 < n < ω. It is clear that
ω′ is an up-directed set with respect to ⩽. We construct an inverse spectrum
Λ = ⟨ω′,Bj , πij⟩ as follows. According to Lemma 2(ii), for each n < ω, there is
a surjective homomorphism πn,n+1 : Bn+1 → Bn. We put for all i ⩽ n < ω:

πin =

{
idBi

, if i = n;

πi,i+1 . . . πn−1,n, if i < n.

By Lemma 2(ii), there is a surjective homomorphism π⊥,1 : B1 → B⊥. We put
π⊥⊥ = idB⊥ and π⊥n = π⊥,1 . . . πn−1,n for all n such that 0 < n < ω:

The next statement follows immediately.

Claim 2. Λ = ⟨ω′,Bj , πij⟩ is a surjective inverse limit.

We put B = lim←−Λ. Since Bn is a �nite set for all n ∈ ω′, we conclude that B ̸= ∅.
Moreover, B ∈ SP(A) ⊆ Q(A) ⊆M.

Claim 3. B is an in�nite structure and B ∈MI .

Proof of Claim. Exactly as in the proof of Claim 3 from the proof of Theorem 9, one
establishes that B is an in�nite structure. We show now that B |= ΞI . Assume that
m < ω and that an interpretation γ : XFm+1

→ B is such that B |= ∆Fm+1
[γ]. This

means that there is a homomorphism f : Bm+1 → B such that f
(
γFm+1(x)

)
= γ(x)

for each x ∈ XFm+1 . For each n ∈ ω′, let fn = πnf where πn : B→ Bn is a canonical
projection. Two cases are possible.

Case 1 : fn(Bm+1) ∈ V.

Case 2 : fn(Bm+1) /∈ V. In this case, we have by Lemma 2(iii) that fn(Bm+1) ∼=
AG ≤ Bn for some nonempty set G ⊆ Fm. Therefore, we get by (B∗

2) that G = Fn.
This implies that fn(Bm+1) ∼= Bn whence |Bn| ⩽ |Bm+1| in this case.

Since Bm+1 is a �nite structure and |Bn| < |Bn+1| for all n < ω by Lemma 2(ii),
there is s < ω such that |Bm+1| < |Bn| for all n ⩾ s. Therefore, fn(Bm+1) ∈ V for
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all n ⩾ s. Let Js = {n < ω | n ⩾ s}; we have then

B ∼= lim←−⟨Js,Bj , πij⟩ ≤s

∏
n∈Js

Bn;

f(Bm+1) ≤s

∏
n∈Js

fn(B) ∈ V.

This yields that the substructure f(Bm+1) of B generated by the set {γ(x) | x ∈
Fm+1} belongs toV. As Fm ̸= ∅ and F⊥ ̸= ∅, we apply (B∗

Θ) and obtain that there

is a homomorphism g : Bm → B such that g
(
γ
Fm+1

Fm
(x)

)
= f

(
γFm+1(x)

)
= γ(x)

for all x ∈ XFm+1
, as well as there is a homomorphism g : B⊥ → B such that

g
(
γF1

F⊥
(x)

)
= f

(
γF1(x)

)
= γ(x) for all x ∈ XF1

whenever m = 0. As Bm |=
∆

Fm+1

Fm
[γ

Fm+1

Fm
] and B⊥ |= ∆F1

F⊥
[γF1

F⊥
], we conclude that B |= ∆

Fm+1

Fm
[γ] and B |=

∆F1

F⊥
[γ] whenever m = 0. This implies that B |= ξm for all m < ω and B |= ξ⊥. □

Claim 4. B is not pro�nite with respect to MI .

Proof of Claim. Consider an arbitrary homomorphism f : B → D, where D ∈MI

is a �nite structure. By Lemma 8, there is n ∈ ω′ and a homomorphism g : Bn → D

such that f = gπn. We have by Lemma 2(iii) and (B∗
2) that either g(Bn) ∈ V or

g(Bn) ∼= AG ≤ D ∈MI for some nonempty �nite set G such that G ⊆ Fn ⊆ I. In
the second case, we obtain a contradiction with Claim 1. This contradiction shows
that f(B) ∼= g(Bn) ∈ V.

If B were pro�nite with respect to MI then B ≤s

∏
t∈T Dt, where Dt ∈MI is a

�nite structure for each t ∈ T . According to the above argument Dt ∈ V for each
t ∈ T whence B ∈ V. As V is a variety and Bn ∈ H(B) for all n ∈ ω′, we conclude
that Bn ∈ V for all n ∈ ω′ which contradicts Lemma 2(i). □

By Claims 3 and 4, the pro�nite structure B ∈MI is not pro�nite with respect to
MI , whence the quasivariety MI is not pro�nite.

If I, J ⊆ ω are such that I ⊈ J then there is i ∈ I\J . According to Claim 1,
Ai ∈MJ\MI , whence MJ ⊈ MI . The fact that there are continuum many in�nite
proper subsets in ω completes the proof. □

4. Applications

We present in this section some applications of Theorems 9 and 10 in a compact
way. For more details, we refer to [30, 31].

Remark 2. As each B-class is a B∗-class, [12, Theorem 4] is a corollary of our
Theorem 9 while [12, Theorem 5] is a corollary of Theorem 10. In particular, all
the statements of [12, Corollary 1] follow from Theorems 9�10 by Corollary 1.

For the de�nition of relatively full embedding and almost ff -universal quasivariety,
we refer to A. Pultr and V. Trnkov�a [26] and to V. Koubek and J. Sichler [22, 23].

Corollary 11. If K ⊆ K(σ) is an almost ff-universal quasivariety of a �nite type
σ, then there is a quasivariety K′ ⊆ K which contains continuum many Q-universal
non-pro�nite quasivarieties M ⊆ K′ with one of the following properties:

(i) M has a �nitely partitionable ω-independent quasi-equational basis relative
to some subquasivariety K′;
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(ii) M has no �nitely partitionable ω-independent quasi-equational basis
relative to some subquasivariety K′.

Proof. By Theorem 6.2 and Corollary 6.11 of [30], K contains a �nite B∗-class
relative to some subquasivariety K′ ⊆ K and some variety which satis�es the
condition (B∗). The desired statement follows from Theorems 9�10. □

The statement of the next corollary was established in [17]. For the de�nition of the
variety Dm of di�erential groupoids, we refer to A.B. Romanowska and J.D.H.
Smith [27], see also [15]�[17], [30, Section 4] and [2].

Theorem 12. [31, Theorem 2.2] Let a class A = {AF | F ∈ Pfin(ω)} of structures
of a �nite similarity type σ be a B∗-class satisfying (B∗

5) and (B∗) with respect to a
quasivariety M ⊆ K(σ) and a variety V ⊆ K(σ). Assume that

(4.1) ∆
F∪{n}
F is equivalent within M to ∆F ∪ {φF

n }

where φF
n is an atomic formula for all �nite nonempty sets F ∈ Pfin(ω) and all

n < ω such that n /∈ F . Then there are continuum many quasivarieties K ⊆ M
with the following properties:

(i) K has an independent quasi-equational basis relative to M;
(ii) there is a set I and quasivarieties KI ⊆M, I ∈ I, such that K =

⋂
I∈I KI

and the quasivariety KI has no �nitely partitionable ω-independent quasi-
equational basis relative to M, but has an ω-independent quasi-equational
basis relative to M for all I ∈ I.

If A is a �nite B∗-class then K above can be chosen Q-universal.

Corollary 13. The variety Dm contains continuum many Q-universal non-pro�n-
ite subquasivarieties M ⊆ Dm with one the following properties:

(i) M has an independent quasi-equational basis relative to Dm;
(ii) M has no independent quasi-equational basis relative to Dm.

Proof. By [30, Proposition 7.1], the variety Dm contains a �nite B∗-class satisfying
(B∗) with respect to Dm and a �nitely generated variety V ⊆ Dm for which the
assumptions of Theorem 12 are satis�ed; in particular, the condition (4.1) is ful�lled.
The desired statement follows from Theorems 9�10 and Theorem 12. □

Corollary 14. Let K′ be one of the following classes:

(a) the variety of lattices generated by the modular lattice M3,3;
(b) one of the in�nitely many pairwise incomparable lattice varieties generated

by a single �nite simple lattice and not containing the lattice M3,3

constructed in [18];
(c) any variety of 0-lattices containing a �nite lattice with more than two

elements and no prime ideal.

Then there is a quasivariety M ⊆ K′ which contains continuum many Q-universal
non-pro�nite subquasivarieties K ⊆M with one the following properties:

(i) K has a �nitely partitionable ω-independent quasi-equational basis relative
to M;

(ii) K has no �nitely partitionable ω-independent quasi-equational basis relative
to M.
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Proof. As it was established in the papers of V. Koubek and J. Sichler [18]�[21],
in each of the cases (a)�(c), K′ is an almost ff -universal quasivariety. The desired
statement follows from Corollary 11. □

References

[1] M.E. Adams, W. Dziobiak, Q-universal quasivarieties of algebras, Proc. Amer. Math. Soc.
120, no. 4 (1994), 1053�1059.

[2] A. Basheyeva, A. Nurakunov, M. Schwidefsky, and A. Zamojska-Dzienio, Lattices of

subclasses. III, Siberian Electronic Mathematical Reports 14 (2017), 252�263;
available at http://semr.math.nsc.ru/v14/p252-263.pdf.

[3] D.M. Clark, B.A. Davey, Natural Dualities for the Working Algebraist, Cambridge University
Press, Cambridge, 1998.

[4] D.M. Clark, B.A. Davey, R. S. Freese, and M. Jackson, Standard topological algebras:

syntactic and principal congruences and pro�niteness, Algebra Universalis 52, no. 2-3 (2005),
343�376.

[5] D.M. Clark, B.A. Davey, M. Haviar, J.G. Pitkethly, and M.R. Talukder, Standard topological
quasi-varieties, Houston J. Math. 29, no. 4 (2003), 859�887.

[6] D.M. Clark, B.A. Davey, M.G. Jackson, and J.G. Pitkethly, The axiomatizability of

topological prevarieties, Adv. Math. 218, no. 5 (2008), 1604�1653.
[7] B.A. Davey, M. Jackson, M. Maroti, R.N. McKenzie, Principal and syntactic congruences

in congruence-distributive and congruence-permutable varieties, J. Austral. Math. Soc. 85,
no. 1 (2008), 59�74.

[8] V.A. Gorbunov, Algebraic Theory of Quasivarieties, Plenum, New York, 1998.
[9] A.V. Kravchenko, A.M. Nurakunov, M.V. Schwidefsky, Structure of quasivariety lattices. I.

Independent axiomatizability, Algebra and Logic 57, no. 6 (2018), 445�462.
[10] A.V. Kravchenko, A.M. Nurakunov, M.V. Schwidefsky, Structure of quasivariety lattices. II.

Undecidable problems, Algebra and Logic 58, no. 2 (2019), 123�136.
[11] A.V. Kravchenko, A.M. Nurakunov, M.V. Schwidefsky, Structure of quasivariety lattices.

III. Finitely partitionable bases, Algebra and Logic 59, no. 3 (2020), 222�229.
[12] A.V. Kravchenko, A.M. Nurakunov, M.V. Schwidefsky, Structure of quasivariety lattices.

IV. Nonstandard quasivarieties, Siberian Math. J. 62, no. 5 (2021), 850�858.
[13] A.V. Kravchenko, A.M. Nurakunov, M.V. Schwidefsky, On representation of �nite lattices,

Algebra Universalis 80, no. 1 (2019), paper no. 15.
[14] A.V. Kravchenko, A.M. Nurakunov, M.V. Schwidefsky, On the complexity of the lattices of

subvarieties and congruences, Internat. J. Algebra Comput. 30, no. 8 (2020), 1609�1624.
[15] A.V. Kravchenko, A.M. Nurakunov, M.V. Schwidefsky, Quasi-equational bases of di�erential

groupoids and unary algebras, Siberian Electronic Mathematical Reports 14 (2017), 1330�
1337; available at http://semr.math.nsc.ru/v14/p1330-1337.pdf.

[16] A.V. Kravchenko, M.V. Schwidefsky, On the complexity of variety lattices and congruence

lattices. II. Di�erential groupoids and unary algebras, Siberian Electronic Mathematical
Reports 17 (2020), 753�768;
available at http://semr.math.nsc.ru/v17/p753-768.pdf

[17] A.V. Kravchenko, M.V. Schwidefsky, On non-standard quasivarieties of di�erential group-

oids and unary algebras, Siberian Electronic Mathematical Reports 19, no. 2 (2022), 768�783;
available at http://semr.math.nsc.ru/v19/n2/p768-783.pdf.

[18] V. Koubek, J. Sichler, Universality of small lattice varieties, Proc. Amer. Math. Soc. 91, no.
1 (1984), 19�24.

[19] V. Koubek, J. Sichler, On almost universal varieties of modular lattices, Algebra Universalis
45, no. 2�3 (2001), 191�210.

[20] V. Koubek, J. Sichler, Almost ff -universal and Q-universal varieties of modular 0-lattices,
College Math. J. 101, no. 2 (2004), 161�182.

[21] V. Koubek, J. Sichler, Finitely generated almost universal varieties of 0-lattices, Comment.
Math. Univ. Carolin. 46, no. 2 (2005), 304�325.

[22] V. Koubek, J. Sichler, On synchronized relatively full embeddings and Q-universality, Cahiers
de Topologie et G�eom�etrie Di��erentielle Cat�egoriques XLIX, no. 4 (2008), 289�306.

[23] V. Koubek, J. Sichler, Almost ff -universality implies Q-universality, Appl. Categor. Struct.
17, no. 5 (2009), 419�434.



THE COMPLEXITY OF QUASIVARIETY LATTICES. II 513

[24] A.M. Nurakunov, M.V. Schwidefsky, Pro�nite locally �nite quasivarieties, submitted for
publication in 2022.

[25] A.M. Nurakunov, M.M. Stronkowski, Pro�niteness in �nitely generated varieties is

undecidable, J. Symb. Logic 83, no. 4 (2018), 1566�1578.
[26] A. Pultr and V. Trnkov�a, Combinatorial, Algebraic and Topological Representations of

Groups, Semigroups and Categories, North Holland, Amsterdam, 1980.
[27] A.B. Romanowska, J.D.H. Smith, Modes, World Scienti�c, Singapore, 2002.
[28] M.V. Schwidefsky, On complexity of quasivariety lattices, Algebra and Logic 54, no. 3 (2015),

245�257.
[29] M.V. Schwidefsky, On su�cient conditions for Q-universality, Siberian Electronic

Mathematical Reports 17 (2020), 1043�1051;
available at http://semr.math.nsc.ru/v17/p1043-1051.pdf.

[30] M.V. Schwidefsky, Existence of independent quasi-equational bases, Algebra and Logic 58,
no. 6 (2020), 514�537.

[31] M.V. Schwidefsky, On the existence of independent quasi-equational bases. II, to appear in
Algebra and Logic.

[32] M.V. Schwidefsky, A. Zamojska-Dzienio Lattices of subclasses. II, Internat. J. Algebra
Comput. 24, no. 8 (2014), 1099�1126.

Marina Vladimirovna Schwidefsky

Novosibirsk State University,

Pirogova str. 1,

630090, Novosibirsk, Russia

Email address: m.schwidefsky@g.nsu.ru


