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ABSTRACT. The identification problem of an inclusion is considered
in the paper. The inclusion is unknown subdomain of a given physical
region. The available information on the inclusion is governed by measure-
ments on the boundary of this region. In particular, the single measure-
ment problem of impedance electrotomography and similar inverse prob-
lems are included in our approach. The shape identification problem
can be solved by the minimization of an objective function taking into
account the measurement data. The best choice of such objective function
is the Kohn-Vogelius energy functional. The standard regularization of
the Kohn-Vogelius functional include the perimeter and Willmore curva-
ture functional evaluated for an admissible inclusion boundary. In the
two-dimensional case, a nonlocal existence theorem of strong solutions
is proved for the gradient flow dynamical system generated for such a
regularization of the Kohn-Vogelius functional. Bibliography: 24 titles.

Keywords. Shape optimization, inverse problems, Willmore flow,
Euler elastica.
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1. INTRODUCTION

This paper is devoted to applications of the theory of geometric flows to shape optimiza-
tion problems. The beginning of the modern mathematical theory of shape optimization
was laid in monographs [21], and [7]. In the monographs, it was first singled out as an
independent scientific discipline. At present, the theory of shape optimization includes a
large number of various applied problems.

In this paper we deal with basic 2D shape optimization problem which admits the
following formulation. Fix an arbitrary bounded simply connected domain Q C R2. It
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is supposed to contain the inclusion €; such that Q; C €. The shape of the inclusion
is unknown and must be determined together with the solution of the boundary value
problem. Let a Jordan curve I' be the boundary of ;. In this setting the interface I' split
€ into the inclusion Q; and the curvilinear annulus Q. = Q\ ;. Finally, fix an arbitrary
constant agp > 0 and set

(1.1) a(x)=ao in Q;, a=1in Q..

As a basic example, we consider the single measurement identification problem arising
in the electrical impedance tomography, [3]. Electrical impedance tomography is used
in medical imaging to reconstruct the electric conductivity of a part of the body from
measurements of currents and voltages at the surface. The problem can be formulated as
follows:

For given g, h : 0 — R satisfying the condition

(1.2) g e L*(0Q), heW'*?(00), / gds =0
o0

it is necessary to find I" and an electric potential u : Q — R satisfying the equations
div (aVu) =0 in Q, aVu-v=g, u=h on 99,

where v is the outward normal vector to 0€2. More generally, the problem of identification
is to determine the shape of an inclusion by the additional boundary condition. This
inverse problem is ill-posed and in general case has no solution. Its approximate solution
can be found by using the shape optimization approach. Thus we come to the following
variational problem. Denote by v, w : 2 — R the solutions to boundary value problems

3) div (aVv) =0 div (aVw) =0 in ,
4) aVv-v=g w=nh on 09,

(1.5) /mvdx:o.

Next, define a positive objective function that vanishes if and only if v = w =: u. The
most successful choice of the objective functional is the Kohn-Vogelius energy functional,
which is given by the formula, [10],

1.
(1.

(1.6) J(T) :/QCLV(Ufw)‘V(U*w) dzx.

Note that for fixed h and g, it depends only on I'.

Unfortunately, shape optimization problems as stated with no additional geometric
constrains are ill-posed, see [17], [22] for examples. The reason is that microstructures
tend to form, which are associated with a weak convergence of the characteristic functions
along a minimizing sequence ", m > 1. Indeed, in the absence of strong compactness
of the minimizing sequences of designs, the optimal state should be attained by a fine
mixture of different phases.

The widely used method to cope with these difficulties is to penalize the shape perimeter
by adding a regularizing term to the objective functional:

(1.7) e L+ J.

Here L is the perimeter of Q;, €, > 0 is the regularization parameter. If I' = 99, is a
regular curve, then £ is the length of I'. This penalization was proposed in [5] by analogy
with the Mumford-Shah functional, [15], in the theory of image segmentation processes.
The stronger regularization may be obtained if we impose constrains on the curvatures
of I'. This approach also was motivated by the theory of image processing, [16]. The only
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possible geometrically invariant penalization functional depending on curvatures is the
1-dimensional Willmore functional (Euler elastica) defined by the equality

(1.8) £.(I) = %/F\kfds,

where k is the curvature vector of I'. Therefore, we can define the strong regularization of
an objective function as follows

(1.9) E+J, where £ =€+ € L.

Here €;, 7 = e,p, are some positive constants. Note that the penalization term can be
interpreted as the cost of structure manufacturing. Hence €;, j = e, p, are not supposed
to be small. Without loss of generality we will assume that ¢; = 1, which leads to the
following expression for £

(1.10) 5:/(%|k\2+1) ds=E. + L.
N

The most important question of the theory is the construction of a robust algorithm
for the numerical study of shape optimization problems. The standard approach is to
use the steepest descent method based on the shape calculus developed by Sokolowski
and Zolesio (1992), [21]. See also Delfour and Zolesio (2001), [7], and references therein.
The shape calculus works for inclusions 2; with the regular boundary I' = 0€;. In this
setting, the objective function J is considered as a functional defined on the totality of
smooth curves I'. This assumption is natural from the practical point of view. Without
loss of generality we may restrict our considerations by the class of twice differentiable
immersions (parametrized curves) f : S' — R? with T' = f(S') diffreomorphic to the circle
S*. In this framework, we will use the denotation J(f) along with the denotation J(T).
The main goal of the shape calculus is to develop the method of differentiation of objective
functions with respect to shapes of geometrical objects.

The shape derivative of an objective function is defined as follows. Choose an arbitrary
vector field X : S' — R? and consider the immersion

i) = f(0) +tx(@©), te(-1,1), Hes".

The curves ' = f*(S"), t € (—1,1), determine 1-parametric family of perturbations of T
The shape derivative J of J in the direction X is defined by the equality

d

(1.11) JO)[X] = = JTY| .
dt t=0
If it admits the Hadamard representation
(1.12) JO)[X] = /¢n~de, ¢ € L'(D),
r

where n is the inward normal to I' = 9€2;, then the vector field
(1.13) dJ(0) == ¢(0)n(0), 6€S',

is said to be the gradient of J at the point f.
For the transmission single measurement identification problem, the gradient dJ of the
Kohn-Vogelius objective function (1.6) is defined by the equality, see [3],

(1.14) dJ = Q(aanv [anv] — adhw [anw] n — [aVU -Vv —aVw - Vw]n,

where v, w are solutions to problem (1.4), [ -] denotes the jump across I'.

The similar definition holds for the geometric energy functional £ (see Lemma 3.3 in
Section 3). Note that that the shape gradient can be regarded as a normal vector field on
I.

If f is sufficiently smooth, for example f € C*, then the mapping f — 6 d(€ + J) (f)
defines an immersion of S into R? for all sufficiently small § > 0. In the steepest descent
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method, the optimal immersion f and the corresponding shape I' = f(S') are determined
as a limit of the sequence of immersions

(1.15) Fuir = fu =8 (dE(fa) +dI(f)), n >0,

and the corresponding sequence of curves T, = f,,(S*). Here the energy & is defined by
(1.10), 0 is a fixed positive number, usually small, fo is an arbitrary admissible initial
shape. Relation (1.15) can be considered as the time discretization of the Cauchy problem

(1.16) Ouf(t) = —(dE(f (1) +dI(f(1)), f(0)= fo.

Note that here t is an artificial quasi-time related to the steepest descent method.
Since E(f(t)) + J(f(t)) is a decreasing function of ¢, a solution to problem (1.16) can
be considered as an approximate solution to the penalized variational problem

min (5 + J).

Hence the existence of a solution to Cauchy problem (1.16) guarantees the well-posedness
of the steepest descent method. In its turn, the existence of the limit zlim f(t) guarantees
— 00

the convergence of the method. Hence the task is to investigate the well posedness of
Cauchy problem (1.16). The main goal of this paper is the proof of the existence of global
smooth solution to the Cauchy problem (1.16) for an arbitrary smooth initial data, see
Section 3. The paper is organized as follows.

In Section 2, we give basic definitions and characterize the elementary properties of curves
with finite elastic energy. We also collect the basic facts from the theory of Sobolev spaces,
which will be used throughout the paper.

In Section 3, we formulate the main result on existence of global solution to Cauchy
problem (1.16). We give the outline of the proof and formulate the main a priori estimates
of solutions. Furthermore, we consider in details the dependence of smoothness of the
gradient dJ on the curvature of the interface I'. In Section 5, we give the proof of main
estimates for the gradient of Kohn-Vogelius functional. In Sections 6 and 7, we give the
proof of a priori estimates for the gradient flow of penalized Kohn-Vogelius functional. In
Sections 8-12, we collect auxiliary results which are used throughout of the paper.

2. PRELIMINARIES

In this section we collect the basic facts on the theory of planar curves and the theory
of Sobolev spaces on the real axis.

2.1. Geometric lemmata. Further we will consider special class of immersions f : S' —
R? satisfying the conditions

(2.1) /F(%|k\2+1)ds§E0, = f(sh.

Our considerations are based on the following elementary lemmas on the properties of
such immersions. The first gives the double-side estimates for the length £ in terms of the
energy bound Ej.

Lemma 2.1. The estimate

2
2.2 — < L<E
(22) 2 <L<h

holds true for every curve I satisfying condition (2.1).
Proof. The proof is given in Section 8. (]

The second lemma provides the local graph representation of planar curves with square
integrable curvature. Let us consider the following construction.
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Choose an arbitrary immersion satisfying condition (2.1). Let z = f(f,) € T be an
arbitrary point. Fix arc-length coordinate s such that

s(z) =0 and —L/2<s<L/2.
For every 0 < k < L£/2, denote by I',; the arc
z=f(s), —k<s<k.

Next, introduce the Cartesian coordinates (x1,z2) with origin at z such that the axis of
abscissa is directed along the tangent vector 7(6.) and the axis of ordinate is directed along
the normal vector n(6.). The consequent results are independent of choice of z. Now, our
task is to show that the curve T is locally represented as a graph of C'** function in a
neighborhood of the origin z.

Lemma 2.2. Under the above assumptions, there exist positive numbers k, o, 8, and c,
depending only on the constant Eo in (2.1), and the function n € C*(—a,B), n(0) = 0,
with the following properties

0<c'<k,a,B<c< o0,

(2.3) , .
' le—a8y <1/6, 0" lL2(—a,p) < cllkllL2r,,.)-

Here 0/ (z1) = 8x,n(x1). Moreover, the mapping x1 — (x1,7m(x1)) defines C*-parametriza-
tion of the arc I's, and takes diffeomorphically the interval (—a, B) onto this arc.

Proof. The proof is given in Section 8. O

Lemma 2.2 gives the simple criterium on the absence of self intersections of curves I'
satisfying the energy condition (2.1).

Corollary 2.3. Let an immersion f : S' — R? meets all requirements of Lemma 2.2.
Furthermore assume that there s v > 0 with the property

(2.4) dist (0'\ Tsx, Tax) > v.

Then I has no self-intersections. Conversely, if T’ has no self-intersections, then inequality
(2.4) holds for some v > 0.

Proof. The corollary is an obvious consequence of Lemma 2.2. O

The second corollary extends the previous results to the case of families of immersions
with finite elastic energy. Let us consider a family of immersions f(t,-) : S' — R?,t € [0, 7).
Every immersion f(t,-), satisfying condition (2.1), defines £(¢)- periodic function of the
arc-length variable s,

f(t,s) = f(t,0(5)).

Note that the periods £(¢) are uniformly bounded from below and above by the constants
2/Ep and Ey. Moreover, the functions Bff(f, t) are uniformly bounded in L?(—L£(t)/2, L(t)/2).
It follows that the set of the mappings f(¢t,-), t € [0,T], satisfying (2.1), is relatively
compact in C*(R).

Assume that a family of immersions f(t), t € [0,T], satisfies the following conditions

G.1 The curves T'(t) = f(t,S') have no self-intersections.

G.2 The immersions f(t) satisfy energy condition (2.1) with the constant Ey indepen-

dent of t.

G.3 The set of the mappings f(t,-), t € [0, 7] is compact in the space C(S', R?).

It follows from Lemma 2.2 that for every f(¢,0), ¢ € (0,T), there is x € (0,2/Fo) which
meets all requirements of this lemma and is independent of ¢.



GRADIENT FLOW FOR KOHN-VOGELIUS FUNCTIONAL 529

Corollary 2.4. Let a family of immersions f(t,-) : S* — R? satisfies conditions G.1-
G.3. Then there is v > 0 such that

(2.5) dist (D(£) \ Tsn(t), Tan(t)) > v

for allt € [0,T] and for all arcs T's.(t) given by Lemma 2.2.
Proof. The proof is given in Section 8. O

2.2. Function spaces.
Sobolev spaces of periodic functions. For every integer r > 0, denote by Hy, the Sobolev
space of all £ -periodic mappings with the finite norm

2 £ 2 2
(2.6) I = [ Q7 + 1oz %) as.

For real r > 0, the space Hy is defined by the interpolation. Note that the equivalent norm
in H; may be defined by the equality

111y = D @+ ) | fml?,
meZL

where the Fourier coefficients

S = %ﬁc/@ﬁe*%m” f(s) ds.

If I' is a rectifiable Jordan curve of the length £, then the curvature of I, the gradient of
Kohn-Vogelius functional, tangent and normal vectors of I' can be regarded as L-periodic
functions of the arc-length variable s. By this reason, we will use the parallel denotations
for H;':

#

(2.7) Hf =W,* = H"(I) = W"*(I).

Remark 2.5. In Sections 3, 6, and 7, we will consider one-parameter families of curves
(), t € (0,T), with the lengths uniformly bounded from above and uniformly separated
from 0. In this case the Sobolev spaces of periodic functions depend on the temporal variable
t and should be denoted by Hy (t). By abuse of notation, further we omit the symbol t and
will write Hy instead of Hy (t).

Inequalities. Further, we will use the simplest one-dimensional versions of the Sobolev,
interpolation, and Gagliardo-Nirenberg inequalities. The first is the embedding inequality

(2.8) 1 fllzoe(0,2) < CHfHHg’ for all o > 1/2;

the second is the standard interpolation inequality
1—2 2
(2.9) 1l < € 1 aco o Il forall 0< o<

and the third is the Gagliardo-Nirenberg inequality, [18],

1—2

e
(2.10) 102411 2 e lfloe Il forall 0<o<r,

L (0,0)
We also will use the Moser inequality
(2.11) luvllay < cllulleo.c) Iy + cllvllee . llullay, 0<r < oo

Here the constant ¢ depends only on £ and the exponents o, o, 7.
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Sobolev spaces on real line. For every integer r > 0, denote by H"(R), the Sobolev space
of mappings f : R — R with the finite norm

(2.12) Iw%®=AWVH%NM&

For real r > 0, the norm in H"(R) may be defined by the equality

I90ercer = [ (14 11O de,
R

where the Fourier transform

_ L e ¢ f(s)ds
fl) = o= [ rs)as

‘We also will use the denotation

H"(R) = W™(R).

3. REsuLTS

3.1. Estimates of Kohn-Vogelius functional. The existence of smooth solutions to
the gradient flows equations for shape optimization problems guarantees that the steepest
descent method is well defined and gives the robust algorithm for numeric calculations of
an optimal shape. In this section we give outline of main ideas of the proofs of existence
and smoothness results for the gradient flows in the shape optimization theory. In order to
be clear, we restrict our considerations to the single measurement identification problem
for the Kohn-Vogelius functional. Recall the formulation of this problem given in Section
1. Let us consider a simply connected bounded hold all domain Q C R? with an inclusion
Q; C Q bounded by a Jordan curve I'. The interface I" splits €2 into the simply connected
inclusion ; and two-connected curvilinear annulus Q. = Q \ ;. Define the conductivity
coefficient a by the relations

(3.1) a=11in Qe¢, a=ao=const. >0 in Q.
Finally, choose arbitrary functions g, h : 02 — R satisfying the conditions
(3.2) heWY22(0Q), ge L*(Q), / gds = 0.
o0

The Kohn-Vogelius energy functional is defined as follows, [10],
(3.3) J(Q) = / aV(v—w)-V(v—w)dz.

Q
Here v, w : Q@ — R satisfy the equations and boundary conditions
(3.4) div aVu =0 div aVw =0 in Q,
(3.5) aVv-n=g w=h on 99,

(3.6) /89 vdx = 0.

Under the above assumptions, boundary value problems (3.4)-(3.5) admit the only weak
solutions v, w € W2(Q) satisfying the orthogonality condition (3.6), such that
(3.7) lvllwiz) < cllglliezoa),  wlwiz@) < cllhllwizzpo)-

Here ¢ depends only on €2 and the constant aop in the definition (3.1) of a. Hence the
Kohn-Vogelius functional is well defined as a function of €2; or equivalently of T'.
Assume, in addition, that the data have additional smoothness properties

(3.8) oNT e C*™™, heC®™™090), geC'™(6Q)), ac(0,1).

Denote by v~,w™~ the restrictions of v, w on €. and by v, w" the restrictions of v,
w on €2;. It follows from the Schauder estimates for solutions to elliptic equations that
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v,wT € C*T*(Q.) and v, wt € C?*T*(Q;). For every function ® with ®~ and &7
continuous in 2. and €2;, the denotation [<I>]7 stands for the jump of ® across T,

[®](z) = lim & (y)— lim ®T(y) forallz €T,

Qedy—z Q;dy—x
For strong solutions to transmission problem (3.5) we have
(3.9) [adnv] = [aVv] -n =0, [adow] = [aVw]|-n=0, [v]=|w]=0.

With this notation the gradient dJ of the Kohn-Vogelius objective function (1.6) is defined
as follows, see [3],

(3.10) dJ = 2(adnv [8nv] — adnw [Onw])n — [aVv - Vo — aVw - Vw] n,

3.1.1. Estimates of dJ. In this section we consider in details the gradient dJ of the Kohn-
Vogelius functional. Our goal is to derive the estimates of dJ in the Sobolev spaces Hy in
terms of the geometric characteristics of the interface I'. By virtue of representation (3.10),
the normal vector field dJ : I' — R? is the quadratic form of the derivatives of solutions
v, w to boundary value problems (3.4)-(3.6). First we derive the estimates for a general
transmission problem. Assume that the interface I" satisfies the following conditions

H.1 The Jordan curve I' C 2 satisfies the energy condition
1/k2ds+cg Ey.
2 Jr

H.2 There is v > 0 with the property
dist (F \ F3K7 FQN) Z v,

for every arc I's, with x, defined by Lemma 2.2.
H.3 There is ¢ > 0 such that dist (T, Q) > .

By virtue of Corollary 2.4, every curve I satisfying Conditions H.1- H.3 is a Jordan curve
of the class C'T*, 0 < o < 1/2. Tt splits the domain Q into two parts. The first Q; € Q
(inclusion) is a simply connected domain with boundary I'. The second is the curvilinear
annulus Q. = Q \ ©; bounded by I' and 9. For simplicity, we will assume that 99 is a
Jordan curve of the class C°°. We adopt the convention that I" has the positive orientation.
This means that the point z(s) moves along I" in the counter-clockwise direction while s
increases. In its turn, the tangent vector 7 and the normal vector n form the moving
orthonormal frame with the positive orientation. This means that n is inward normal
vector to 0Q); =1T.

Next, introduce the piece-wise constant function a : Q2 — RT (conductivity) defined by
the equalities (3.1).
Model transmission problem. Let w € W?(Q) be a weak solution to the equation

div (aVw) =0 in Q.

We do not impose boundary conditions on w. Denote by w™ and w™ the restrictions of w
onto subdomains Q. and €2,

w =w in Qe, wri=w in Q.

+

If T is sufficiently smooth, then w is continuous on I'. In other words, w~ = w™ on I

However, the normal derivative of w has a jump across I'. Next set
ohw~ =Vw -n, OwT =Vw"-n on T.

Our task is to estimate d,w® via the curvature of T. The following theorem on the
estimates of d,w™ is the first main result of this section. Recall definition (2.7) of the
Sobolev spaces Hi = H"(T') of periodic functions.
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Theorem 3.1. Under the above assumptions, the estimate

(3.11) 100w || 1z < € (14 108Kl L2y ) lwllwr2 )
Hy

holds for every integer m > 0. Here ¢ depends only on m and on the constants Eo, v, p
in Conditions H.1-H.3.

Proof. The proof is given in Section 4. [J
Estimates of dJ. Note that the solutions v, w to problems (3.4)-(3.6) meet al requirements
of Theorem 3.1 and admit the estimates

[vllwr2) + lwllwr2@) < clg; h).
This result along with representation (3.10) and the multiplicative estimates in Sobolev
spaces leads to the following theorem, which is the second main result of this section.

Theorem 3.2. Assume that a curve I' satisfies conditions H.1-H.3 and k € Hy, for
some integer v > 1. Then for every B € [0,1/2), there is a constant c, depending on r,
B, and constants Eo, v, p in conditions H.1-H.3, such that the gradient dJ(s) of the
Kohn-Vogelius functional admits the estimate

(3.12) [ g < (1 + 1kl )-
In particular, we have
(3.13) [0sd Tl Laco,c) < (L + [|Kl &y ).

for every q € [1,00). In this case the constant ¢ depends in addition on q.
3.2. Gradient flow. Existence theory.

3.2.1. Problem formulation. The standard formulation of the geometric flow equations
deals with immersions (parametrized curves). Further we will assume that the interface T’
admits the representation I' = f(S'), where the immersion f : S' — R? is unknown and
should be defined along with the solution to the gradient flow problem (1.16). Note that
f is a 2w periodic function of the angle variable 6§ € R/27Z. The element of the length of
I' equals
ds = /g(0)do, g=0f",

where g is the only nontrivial coefficient of the first fundamental form of the curve I". In
this setting, the derivative with respect to the arc-length variable s

1
0s NG 0o

becomes the nonlinear differential operator depending on f.

The tangent vector

7(0) = 0 £(8) == |00 f1 " Do f(6),
and the normal vector
n(9) =77(0) = (—72, 1),

form the positive oriented moving frame on I'. Notice that n is the unit inward normal
vector to 02; = I'. The curvature vector k is defined by the equalities

(3.14) k() = s7(0) = D2 f(6).

Notice that k is orthogonal to 7 and is directed along the normal vector n.
The Euler elastic energy & and the perimeter £ are defined by the equalities

2 27
(3.15) Se:/%ds, c:/ ds= | \/gde.
r r 0

We take the penalization energy in the form

2
(3.16) 5:56+£:/(%+1)ds,
r
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The gradient of £ is given by the following lemma.

Lemma 3.3. Under the above assumptions, we have

(3.17) dEe(f) = V.V k + %W k, dC=—Fk,

(3.18) de(f) :stsk:—s—%\kfk—k.

Here the normal connection Vs for every vector field ® : T' — R?, is defined by the equality
(3.19) Vs® =09, — (0:P-7) 7.

Identities (3.18) are classic (see for instance [8]). They are very particular case of the
3D Willmore variation formula.
We are now in a position to specify the gradient flow equation

Of+dE+dJ =0, £(0)=fo.

for the penalized Kohn-Vogelius functional. Applying Lemma 3.3 we can rewrite this
equation in the form

(3.20) Of + VoVok+ %\kfk—k—i—djz 0for t >0, £(0)=fo.

The gradient dJ is defined by relation (3.10) and can be regarded as nonlinear nonlocal
operator acting on I'. Hence (3.20) is a nonlinear operator equation. It may be considered
as a nonlocal perturbation of the Euler elastic flow.

3.2.2. Emistence theorem. In this subsection we prove the main theorem on the existence of
global smooth solution to problem (3.20). Assume that the initial data satisfy the following
conditions:

I.1 The even integer number m > 10
1.2 The initial curve T'y = fo (Sl) satisfies conditions H.1-H.3 of Theorem 3.1.
1.3 There is a constant E,, such that

(3.21) / |0Lko|> ds < Ep, forall 0 <7 <m.
To

1.4 The length element /g0 = |9s fo| satisfies the condition

(3.22) ||\/90H0m—5(51> < ¢y < 00.

Theorem 3.4. Assume that the initial data satisfy Conditions 1.1-1.4. Then there is a
mazimal T € (0, co] with the following properties. Problem (3.20) has a solution such that

(3.23) feco,T;cm™ S, ouf € €0, T ;™ (S")) for all 0 < T' < T.

Moreover, the Jordan curves T\(t) = f(t,S'), t € [0,T), are separated from 0Q and have no
self-intersections. If T < oo, then there is a sequence f(t;), t; = T as j — 00, such that
dist (T'(t;),09Q) — 0, or (and) f(t;) converge in C*(S') as j — oo to some immersion
foo such that the curve foo (S') has a self-intersection.

The proof is standard and consists of three steps. The first is the proof of the local
solvability of problem (3.20) on the small time intervals. The second most important
step is the proof of the global a priori estimates for smooth solutions to problem (3.20) in
Sobolev and Hoélder classes. These estimates and the extension method entail the existence
of smooth solution which meets all requirements of Theorem 3.4.

A detailed proof of short-time existence is outside of the scope of this paper. Note that
equation (3.20) is a degenerate parabolic equation with added lower order operator dJ. In
our case the local existence result can be obtained by writing the flow as a graph over the
initial date. In particular, the problem can be reduced to a scalar parabolic equation for
the distance function, [6]. See also [8] and [11] for useful arguments.
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Hence out main task is to derive global a priori estimates for solutions to problem
(3.20). This part of the proof is technical and lengthy. Our approach is based on the
estimates for Kohn-Vogelius functional given by Theorem 3.2 and methods developed in
[1], [8], and [12]. The results are given by the following two theorems. The first constitutes
the Sobolev a priori estimates for the curvature k£ as a function of the arc-length variable
s.

Theorem 3.5. Let f : [0,T] xS' — R? be a smooth solution to problem (3.20) with initial
data satisfying condition

(3.24) / 107 ko2 ds < Frm < 00, £(0) < Fo < oo,
r(0)

where m > 6 s an even integer. Furthermore assume that there are two positive constants v
and p with the following properties. For every t € [0,T], the curve I'(t) satisfies Conditions
H.1-H.3 with fized constant v and dist (I'(t),0Q) > o independent of t. Then there is a
constant ¢, depending only on Eo, v, p, T, and m, such that

T
(3.25) sup Hk(t)”?_['m,72<t) +/ ||k(t)||§1m(t) dt < cEm+c(1+T).

te[0,T] 0
Proof. The proof is given in Section 6. O

The second theorem gives the a priori estimates for solutions to problem (3.20) in the
Holder classes.

Theorem 3.6. Let a smooth solution to problem (3.20) meets all requirements of Theorem
8.5 with even integer m > 10. Furthermore assume that the initial data satisfies conditions
1.1-1.4 of Theorem 3.4. Then there is a constant c, depending only on T, v, o, m and the
constants E,, cg in conditions 1.1-1.4, such that

(3.26) Ifllco,mem-s@ty) + 1fllcro,rem-9sty) < c.
Proof. The proof is given in Section 7. ]

In order to complete the proof of Theorem 3.4 we use the extension method. Without
loss of generality we may assume that fo € C°°(S'). Hence the problem has a C'*°- solution
f defined on some small interval (0, 7). By virtue of Theorem 3.6, this solution meets all
requirements of Theorem 3.4 for every even m < oo. Moreover, every immersion f(t),
t € [0,T), satisfies conditions H.1-H.3 of Theorem (3.2) with some constants v(¢) > 0
and p(t) > 0. Let (0,T") be the maximal interval of existence of such a solution. There are
two possibilities

either liminfv(t)p(t) >0 or liminfv(¢)e(t) =0.
t—T t—T

Let us prove that T' = oo in the first case. Assume in contrary to our claim that T < oo.
There is 6 > 0 such that quantities v(¢) and o(t) are uniformly separated from zero on the
interval [T — 0, T), i.e.,

v(t)>vr>0 o(t)>p>0
for some v and p. Hence f(¢) meet all requirements of Theorem 3.6 on the interval [T'—4, T')
with the initial data f(T — ¢). It follows from this theorem that

1F@Ollcm-s) + 9@l om-osr) < e(m) for all t € [T~ A,T].

Recall that here m > 10 is an arbitrary even integer. Hence the immersions f () converges
in every space C™(S') to some immersion fo € C*°(S") which obviously satisfies conditi-
ons I.1-1.4. The local existence theory implies the existence of smooth solution to equation
(3.20) with initial data f(T) = fo on some interval [T,T + §). This contradicts the
maximality of T'.
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It remains to consider the case when T' < co and hence liminf v(t)o(¢t) = 0. Obviously
there exist a sequence ¢; such that

v(tj)p(t;) =0, t; =T as j— oo.

If o(t;) — 0 as t; — T, then dist (I'(¢;),0Q) — 0 as t; — T and the assertion follows. Let
us consider the case

(3.27) v(t;) =0, t; =T as j— oo.

Recall that the immersions z = f(t, s), s € [0, £(t)], are uniformly bounded in C***[0, £(¢)].
Moreover, the bound depends only on the constant Ey. Furthermore, by virtue of Lemma
2.1, the perimeters £(t) are uniformly bounded from above and uniformly separated from
0. After passing to a subsequence we may assume that the sequence L(t¢;) converges to
some positive Loo as t; — T. The sequence of immersions f(t;,s) converges in C' norm
to an immersion fo(s) on every compact subset of [0, Loo). It is clear that the energy
of the correspondent curve I'o, does not exceed Ep. It remains to prove that the limiting
curve ' has a self-intersection. To this end, note that the set of curves {I'(¢;)} UT'co is
compact in the uniform metric. If the limiting curve has no self- intersections, then every
curve from this set has no-self-intersections. From this and Corollary 2.5 we conclude that
v(t;) > v > 0 for some v independent of j, which contradicts to relation (3.27). This
completes the proof of Theorem 3.4.

Since the energy £(¢;) of the curve I'(¢;) is bounded by the constant Ep, it follows from
Lemma 2.2 that the functions f;(s) = f(t;, s) are uniformly bounded in C*** norm for
0 < a < 1/2. Hence after passing to a subsequence we may assume that I'(¢;) convege
uniformly to C* curve I'so. Obviously either I's, has a self-intersection or (and) it touches
9. This completes the proof of Theorem 3.4.

4. MODEL TRANSMISSION PROBLEM

4.1. Transmission problem. Notation. Results. Let us consider the following constru-
ction. Fix an arbitrary positive x an p and introduce the rectangles

(4.1) Qo = (—2k,2k) x (=2p,2p), Q= (—K,K) X (=p,p)

in the plane of variable y = (y1,y2). Next, fix an arbitrary integer r > 1 and introduce
the systems of numbers

nm=n(2f%), pm=p(2*%

)7 1§mST’

and the corresponding domains

(42) Qm = (_fim,l‘im) X (_pm,pm); QT = Q
Choose an arbitrary function ¢ with the properties
(4.3) pelC(Q), 0<p<1 ¢=11in Q/2, 38y,p =0 for y2 =0.

and a system of functions ¢, 1 < m < r, such that
(4.4) . om € C5 (Qm), 0<pm <7 —1,
om=11n Qm41 for 1<m<r—1, ¢, =p.

Next, introduce (2 x 2)-matrix N(y1) with the properties
(4.5) N=N', CR'I<SN<CNIL |Nllwi2(sezs <Cn,
where C'y is some fixed constant. Finally set

a(y2) =1 for y2 <0, a(y2) =ao= const. >0 for y2 > 0.

Let v : Qo — R be a solution to the elliptic equation

(4.6) div (aNVu) =0 in Qo.
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We do not impose boundary conditions for u. Instead of this we assume that it admits
the estimate

(4.7) llull L2(qq) + VUl L2y < Cu < 00

It follows from L°° interior estimates for solutions of divergent elliptic equations that

(4.8) lulle(@m) <ec<oo for m>1,

where the constant ¢ depends only on Cy, Cy, a, and &, p.
Now set

(4.9) v=pu,

where ¢ is defined by (4.3).
The main goal of this subsection is to estimate the one-sided conormal derivatives of v
on the interface {x2 = 0}. To this end we introduce the system of functions

(4.10) Um = @mu, 1<m<r,
where @, are given by (4.4).

Proposition 4.1. Under the above assumptions, the functions vy, = ppu, 1 < m < r,
admit the estimates

(4~11) HaTVUmHL?(Qm) <c ( 1+ ||aimN||L2(72n,2n) )
Here the constant ¢ depends only on r, ¢, and the constants Cn, Cy in (4.5) and (4.7).

The second main result of this section is the following proposition, which provides the
estimates for the conormal derivatives of u on the interface {y2 = 0}. Split the rectangle
Q into two parts

Q™ = (=, k) X (=p,0), Q" =(=k,r) x (0,p),
separated by the interface segment
L= (—k,k) x {0}.

Denote by u* and v* the restrictions of the functions u and v = pu to Q*. We also
denote by Onut and OyvT the conormal derivatives

(4.12) 3]\]ui = (N2181 =+ szag) ui, 8Nvi = (N2181 + Nzgag)’ui on /.

We will consider the conormal derivatives as functions defined on the interval (—x, k).
Since the function ¢ is compactly supported in this interval, we may assume that pdyu®
and dnv* are extended by zero to R. Now recall definition of Sobolev spaces H"(R) in
subsection 2.2.

Proposition 4.2. Assume that all assumptions of Proposition 4.1 are satisfied. Then the
estimate

+
(4.13) leONu™[lyr-1/2.2() < (1 + 01Nl L2(—20,26))
holds true for all integers r > 1.
The rest of the subsection is devoted to the proof of Propositions 4.1 and 4.2.
4.2. Proof of Proposition 4.1. Part I. We proceed with the induction principle estima-

ting step by step the function v,,. Our first step is the derivation of recurrent system of
elliptic equations for these v, and their derivatives.
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4.2.1. Extended system of equations. It is easily seen that the functions v,,, 1 < m < r

satisfy the following recurrent system of differential equations

(4.14) div (aNVvp) = div Bm-1+Cn-1 in Qo, 1<m<r,
which is understood in the sense of distributions. Here vg = u and

(4.15) Br-1=9m-1aNVm, Cm-1=aVpy- - NVu,_i.
Indeed, we have

/ aNVuy, - V(dy = / aNV(pmu) - V{dy =
Qo Qo

/ AN Vm—1Vom - V(dy + / aNomVu-V(dy.
Qo Qo
On the other hand, we have

/ aN(pmVu~VCdy:/ aNVu~V(C4pm)dy—/ aNVu -V, (dy
Qo Qo Qo

:—/ aNVu-npmcjdy:—/ aNVvm—1-Vom(dy.
Qo Qo

Thus we get

/ aNVvn, - V{dy = / aVm—1NVom - V(dy — / a NV Vm—1¢dy,
Qo Qo Qo

which obviously yields (4.14). We are interested in the smoothness properties of solutions

to system (4.14)-(4.15) with respect to the variable y;. To this end, notice that

(4.16) 0"div (aNVup) = div 87" Bm—1+0{"Cm-1 in Qo, 1<m<r,
and

(4.17) 01"div (aNVvy) =div (aNVO"vm) +  div Ap.

Here

(4.18) Am= > AL, AL =CJad|N Vv,

itj=m,j>1
Thus we get
(4.19) div (aNVO"vm) = — div A + div 07"Bim—1 + 07"Cm-1 in Qm

for every 1 < m < r. Now our task is to estimate the quantities A.,, Bm—1, Cm—1, and

Dm—1.-

4.2.2. Basis of induction. Auziliary Lemma. In this subsection we prove the following
lemma, which gives the basis of the induction process. In what follows, we will denote by
¢ various constants depending on the rectangle Qo, and 7, ., as well as the constants

Cn and C, in (4.5) and (4.7).

Lemma 4.3. Under the above assumptions,

(4.20) 101Vv1 |20, < c
Proof. The proof is given in Section 10.

Remark 4.4. Notice that

(4.21) 10181l 22(qy) + [ICallL2(Qp) < e
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Auxiliary lemma. Now we have to organize the induction process. To this end, we have
to derive the recursion system of estimates for the quantities A,,, Bm, and Cn,—1. Notice
that for m = 1 the desired estimates follows from Remark 4.4. Hence it suffices to consider
the case m > 2.

Lemma 4.5. For every integer m € [2,7] and o € (1/2,1), there is a constant ¢ such that
m m A

(4.22) [Amll2(@u) < 1+ 1107 Nl 12(=npynn) + 107" VOmllZ2(q,0))s

where A\=(m—24+0)/(m—1) <1,

[t _lcm—luLQ(Qm) <

(4.23) 1 1
(L4110 N2 rp i) T 107 Vom-illrzg,) )
101" Bm-1llL2(Q,) <
(4.24) " o (@m)
C(l + Hal NHL2(7K/WL1K/77L) + ||61 vvm71||L2(Qm—l)>'
Proof. The proof is given in Section 11 (]

4.3. Proof of Proposition 4.1. Part II. We are now in a position to complete the proof
of Proposition 4.1. Recall the denotations for the rectangles @ and Qo,

Q= (=kK,k) X (=p,p), Qo= (—2k,2k) X (=2p,2p).

Let us consider the sequences of domains Q = Q, C Qr—1... C Qo and functions ¢,
0 < m < r, defined by relations (4.2)-(4.4). Recall that ¢, = ¢. Let us also consider the
sequence of the functions v, = @, u. It is necessary to prove that the estimate

(4.25) 01" VumllL2(@) < e(1+ 01" Nllp2(— )

holds true for all 1 < m < r. Notice that for m = 1, this estimate obviously follows from
estimate in Lemma 4.3. Now we proceed with the induction principle. Assume that the
inequality

(4.26) 107 Vomal12qp 1) < e+ 107 Nl a1 1)

holds for some m > 2. Notice that the function v,, satisfies equation (4.19) that reads
(4.27) div (aNVO"vm) = — div Am + div 07"Bm-1+ 07"Cm—1 in Qm,

where Ay, Bim—1, and Cp—1 are given by (4.15) and (4.18). Recall that the positive matrix
aN is uniformly bounded from below and above. Multiplying both sides of (4.27) by 0" vm,
integrating the result by parts over @),,, and applying the Cauchy inequality we arrive at
the estimate

107" Vomll 2@y < MmllL2(@m) + 107 Bm-1ll22(q..) + ||8T_1Cm71||L2(Qm)~
It follows from estimates in Lemma 4.5 that
107" Vomll 2@, < ¢+ ||C7invvm||22(Qm)+
IO Nl 22 (<) + €07 Vom—1llL2(q,,- 1)
where 0 < A < 1. From this and the induction hypothesis we conclude that
107" VomllL2(@u) < e(1+ 107" N2 (— ki im) )-

This completes the proof of the induction step. Applying the induction principle we obtain
desired estimate (4.11) for all m € [1,7]. This completes the proof of Proposition 4.1.
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4.4. Conormal derivative. Proof of Proposition 4.2. Split the rectangle @ into two
parts

Q_ = (_’{7’/‘:) X (_p7 0)7 Q+ = (_F‘:: K’) X (Ovp)z
separated by the interface segment
L= (—k,k) x {0}.

Denote by u* and v* the restrictions of the functions u and v = @u to Q*. We also
denote by dnyu® and dyvT the conormal derivatives

(4.28) BNui = (N2181 + Ngzag)ui, BN’U:E = (N21(91 + N2282)'Ui on f

We will consider the conormal derivatives as a function defined on the interval (—x, k).
Since the function ¢ vanishes for |z1| > k, we may assume that cpaNui and Onv* are
extended by zero to R. Recall that for every s > 0, the Sobolev space W*2(R) is defined
as the completion of the space C§°(R) with respect to the norm

(4.29) \MmM®:Au+€mmm%a

where @ is the Fourier transform of .
Now, we estimate pOnu~. The proof of inequality (4.13) for pOnu™ is similar. First we
show that such an inequality holds true for Onyv™. It suffices to prove that the estimate

(430) | [ 050no™) Can| < e+ 10T N 2 -2mzm Nl 220

holds for all compactly supported ¢ € W1/2'2(R). Recall that v is extended by zero to
R2. Choose an arbitrary function ¢ € W'/?2(R). By virtue of the extension theorem for
Sobolev functions, the function ¢ can be extended to the strip Qe = R X (—p, 0) such
that the extension ¢* admits the estimate

(4.31) e wrrze@ < N Twrz@un) < cll¢lwi/ze-

Multiplying both the sides of (4.16) by ¢ and integrating the result by parts over Q, we
arrive at the integral identity

(4.32) / 010NV~ Cdy1 =1L + Lo + I3 + 14,
R

where

I :/aI(UrflaNso)Cdyl’
R

I, = A7 (NVw) - V(" dy,
o
(4.33) ’
I3 =— O (vr—1NV) - V(" dy,
Qo
I, =— 3 (Vo - NVu,_1)d1¢" dy.
Qo

Let us estimate step by step the quantities I,. We have
(4.34) L] < elld] ™ (0r—1NVO)llw1/2.2y €]z gy-

Recall that the function 87~ (v,_1 NV ) is compactly supported in Q. From this and the
Poincare inequality we obtain

Haf_l('Ur—lNVLID)HWI/Q’Q(R) < CH@T_I(’Ur—lNVGD)HWIQ(QO) <
VOT ™ (vr— 1 NVQ) | 12(00)-
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Noting that N is independent of y2, we get
r—1
101 (UrleVLP)le/“(]R) <

(4.35) R o

|0 (vr 1 NV £2(q0) + cllo] " (O20r— 1 NVQ) || 12(qq) + 1,
where
(4.36) = 1077 (0,1 NOV) 120

Note that the quantities 0] (vr—1 NV¢) and BI_I(agvrleVgo) are compactly supported
in Q = Q. Since a = 1 in Qg , it follows from formulae (4.15) for B,_1, Cr—1 and estimates
(4.23), (4.24) for B,_1, Cr—1 in Lemma 4.5 that

07 (vr—1 NVQ) I £2(00) + 101" (820, -1 NV) | 12(00)
(4.37) cllOTBr-1llr2(00) + ||a;"—lcr,1||L2(Q0)
C(l + ‘|8IN||L2(—2K,2K) )

IN A

Let us estimate p. We have
07 (v 1NOV ) = > cjap KN 0fv,—1 9] 0:Vep,
where the sum is taken over the set of indexes
50,620, j+a+f=r—1
Since N is uniformly bounded, we have
[0 Nl Los (~2m,20) < (1 + 11077 Nl 2 (21 20) )-

It follows that
j=r—1

n< A+ 10T N2 nwy) D 10F0m1 8702V0l|12(qp)-

=0 atf=r—1—j
Note that all derivatives of ¢ are bounded. Thus we get
S 0 9782V llraiq) < (1 + 107 orallraqy )-
atB=r—1—j
From this and estimate (4.11) in Proposition 4.1 we conclude that
Z 107 vr—1 6f82v90“L2(Q) <c(1+ 107 N 2 (—an,20) )
a+p=r—1—j

which yields
r—1 ) )
12 S Z (1 + ||8{+1N||L2(72K,2n) ) (1 + ||8;_1_JN||L2(72H,2;£) )
=0

Since N is uniformly bounded, we may apply the interpolation inequality to obtain

[un

w<y (1+]6iN]|

Jj=0

i+l r=1—j

E*ZN,QN) ) (1 + ”a{‘NH

L2(;2r€,2n) ) <

C(l + ||8TN||L2<72N,2K) )
Combining this estimate with (4.37) and (4.35) we obtain
105 Wr A NV @) w22 my < €(L+ 0T N 220,20 ) -
From this and expression (4.32) for I, we conclude that
(4.38) I <c (1 + HaIN||L2(72m,2f€) ) ||C||w1/212(R)~
Let us estimate the integral I». Note that
(4.39) 91 (NVv) = NVojv+ A, in Qqp,
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where A, is given by equality (4.18). It follows from estimate (4.14) in Lemma 4.5 and
estimate (4.11) in Proposition 4.1 that

s (s A
A 22q) < e(1+ 107N p2(—n,my ) +cllOT VOl 7200
S C( 1+ ”a{N”L%—m,m))a
where 0 < X < 1. On the other hand, estimate (4.11) in Proposition 4.1 yields
HNV&{U”LQ(Q) S C ( 1 + ||6’1FN||L2(_2K72K) )

(4.40)

Combining this estimate with inequality (4.40) and identity (4.39) we obtain
101 (NV) 20—y <INV 20—y + [Arll 20—y < (14 [1OT N p2(—nm) )-

Recall that the function ¢* is extended by zero from Q™ to the strip Q. It follows from
this and the Cauchy inequality that

| [ OINTeT) V¢ dy | < (110N 2 anmy ) V€ 2200
Qo

< e(1+ 105Nl 2220y ) G2 s
This result along with expression (4.33) for I, implies the desired estimate
(4.41) 2] <c ( 1+ HaINHH(fzn,%) ) HCHW1/2,2(1R)~
In order to estimate the integrals I3 and I4, note that

A7 (vr—1NVp) = 0 Br—1, 07 (V- NVu_1) =98] 'C,1 in Q.
From this, estimates (4.23)-(4.24) and expression (4.33) for I; we obtain

|Ts| 4 14| <
c(101Br-1ll2(q) + 107 Crotllz2()) IV< (I r2(gy <
c(L+ 107Nl 12 (—20,20)) 1IVC I 22(0) <

c (1 + HBINHLZ(f%@,?n) ) ||C||W1/2x2(R)'
Combining this estimate with estimates (4.38) and (4.41) we obtain the estimate
Ll <c(L+ 101Nl L2 (~2m2m) ) IClwrr22@y, i=1,...4.

Finally notice that this estimate along with equality (4.32) obviously yields desired esti-
mate (4.30).

In order to complete the proof of Proposition 4.2, it remains to obtain the estimate,
similar to (4.30), for the function @Onu~. Recall that v = pu, where ¢ is an arbitrary
function of the class C§°(Q). Now we specify ¢. To this end, choose an arbitrary function
¢ € C5°(—k, k) and fix the function ¢(z2), 2 € R, such that

1€ Co°(R), t(z2) =1 for |z2| < p/3, (z2) =0 for |z2]>2p/3.
Now set
¢ = @r = ¢(z1)1(x2).
With this notation we have
ONv™ = @pOnu~ + O19pNoru™ = ¢pOnu~ + N2o101¢pv,_; on 4,
since u coincides with v,_; on the support of V. Note that
N2101pv,_1 =v,—1NVyp -ex on /.

Thus we get
pONu~ = Onv — (Up—10ng) on L.
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In order to prove desired estimate (4.13) in Proposition 4.13 for dnu ™, it suffices to show
that the inequality

(442) ‘ / s (‘PaNU_)CdZJl} < C(l + H8IN||L2<72I€,2N) ) HC”WI/M(R)
R

holds for all compactly supported functions ¢ € W/%2(R). In its turn, estimate (4.42) is
a straightforward consequence of estimates

(4~43) } /8; (aNU_)Cth’ < C(l + ||3;N||L2(72,<,2~) ) ”CHWl/sz(R)v
R

(4.44) | /af (vr—10n¢) Cdyr| < c(L+ 107N |12 (—2s,20) ) Il w1/2.2 2y -
R

It is easy to see that estimate (4.43) coincides with estimate (4.30). On the other hand,
the left hand side of (4.44) obviously equals the quantity |I,| defined by (4.33). Therefore,
estimate (4.44) obviously follows from estimate (4.34) for I;. It remains to note that (4.43)
and (4.44) imply desired estimate (4.42). This completes the proof of Proposition 4.2.

5. KoHN-VOGELIUS FUNCTIONAL. PROOFS OF THEOREMS 3.1 AND 3.2

Recall the formulation of the problem. Our goal is to derive estimates of the gradient
dJ of the Kohn-Vogelius functional J in terms of the geometric characteristics of the
interface I". The results are based on the normal derivatives estimate for solutions to
the transmission problem given in the previous section. These estimates establish the
dependence of the smoothness properties of solutions to a transmission problem with
respect to the smoothness properties of the interface I'. Recall the conditions H.1-H.3
imposed on T'.

H.1 The Jordan curve I' C € satisfies the energy inequality
1
7/ |k*|ds + L < Eo.
2 Jr

H.2 There is v > 0 with the property
dist (F \ Fgﬂ, FQ,.;) Z 14

for every arcI's, with x defined by Lemma 2.2.
H.3 There is p > 0 such that

dist (T, 09) > o.

By virtue of Corollary 2.4, every curve I satisfying conditions H.1-H.3 is a Jordan curve
of the class C'T*, 0 < a < 1/2. T splits the domain € into two parts. The first Q; €
Q (inclusion) is a simply connected domain with boundary I'. The second is the curvilinear
annulus Q. = © \ ©; bounded by I' and 9. For simplicity, we will assume that 99 is a
Jordan curve of the class C*.

Next, recall that the piecewise constant function a : 2 — R™ (conductivity) is defined
by the equalities

a=11in Q., a=ap in ;.
5.1. Proof of Theorem 3.1. Let w € W"2(Q) be a weak solution to the equation
(5.1) div (aVw) =0 in Q.
Denote by w™ and w™ the restrictions of w onto subdomains Q. and Q;,

(5.2) w =w in Qe, wr i =w in Q.
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If T is sufficiently smooth, then w is continuous on TI'. In other words, w~ = w™ on

T". However, the normal derivative of w has a jump across I'. The following remark is
important for the further analysis. Set

(5.3) Ow” =Vw™ -n, duwt=Vwt . n on T.
Our task is to to prove the estimate (3.11):
+ m
[|Onw HHm+1/2(r) <ce(1+ 1057kl L2 ry) lwllwr.2(qy,

where m > 0 is an arbitrary integer, ¢ depends only on m and on the constants Ey, v,
p in Conditions H.1-H.3. We split the proof of estimate (3.11) into three steps. First,
we define a standard neighborhood of an arbitrary point z € I and the special mapping
which takes diffeomorphically the standard neighborhood onto a rectangle. Next we employ
Proposition 4.2 in Section 4 in order to obtain the local version of estimate (3.11). Finally,
we use the local estimate and a partition of unity to complete the proof of (3.11).

5.1.1. Standard neighborhood and standard mapping. Note that the immersion f and the
curve T' = f(S*) satisfy all conditions of Lemma 2.2. Choose an arbitrary z € T' and
consider the subarc I's,; of the arc I's,, defined by Lemma 2.2. It follows from this lemma
that 'z, admits the representation

Pop: z2 =n(z1), =1 € (—7,9)

with positive 7, §, depending only on x. Next, assume that I" has no self intersections and
is compactly embedded into a bounded domain Q C R2. Set

(5.4) 2p = min {v, dist (I,0Q)} > 0,
where v > 0 is given by Condition H.2.

Definition 5.1. Under the above assumptions, the standard neighborhood X2, of the point
z is the curvilinear quadrangle defined in the Cartesian coordinates system associated with
z by the equalities

(5.5) Sow ={z = (z1,22) : =y <21 <68 —2p+n(z1)<z2<2p+n(x1)}

Our next task is to define the special mapping, which takes the standard neighborhood
onto the rectangle. To this end introduce new variables

(5.6) 1 =s(x1), yo =x2 —n(T1).

It is easy to see that the mapping y = y(x) takes diffeomorphically the standard neighbor-
hood X3, onto the rectangle

(5.7) Qo = (=2, 2K) X (=2p,2p).
Introduce the matrices M and N defined by the equalities
2
(5.8) M=y (z) = ( L+ (1) ) N = (det M) M M.
-n
Notice that these matrices depend only on z1 and hence only on s € (—2k, 2x). Introduce
the function © : (—2k,2k) — R defined by the equalities

(5.9) O(s) = arctann’(z1(s)), ©(0) =0,

in the Cartesian coordinates system associated with the origin z. Recall that = 0 and
s = 0 at the chosen point z.

Lemma 5.2. Under the above assumptions, we have

(5.10) 0 € Wh?(=2k,2k), O] < 118

(5.11) 7(s) = (cos©, sin®), n(s)=(—sin®O, cosO), k(s)=0O'(s)n(s).
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Moreover, the matrices M and N admit the representation

1
-0 1 1 —sin®©
12 M = N = . .
(5:12) ( _Cﬁif)@ 1 )’ cos © < —sin® 1 )

Proof. Introduce the function

A(s(z1)) = n(z1), s € (—2k,2k).
We have
N(s)\/1+7/(z1)® =n/(x1) and hence X (s)> =7n'(z1)> = N (s)* 7' (z1)°,

which gives

,
(5.13) W= 71’\_ = 1 +% = ﬁ
In particular, we have
1
(5.14) M= Vi _A,/\/2
i
Next notice that
(5.15) ;= # (1,7) = (V1= N2, N) = (cos ©, sin ©)

with
© = arctann’ = arcsin \'.
We thus get the following formulae for the curvature vector k and the normal n
k=07 =0 (s)n, n=(—sin®,cosO).
Identity (5.15) implies that the matrices M and N admit representation (5.13). It remains
to note that |tan ©| = || < 1/6, which yields the estimate |©] < w/18. O

Corollary 5.3. Under the assumptions of Lemma 5.2, the estimate
(5.16) |‘8:1N||L2(72n,2n) <e(m)(1+ Ha;n_lk”m(ﬂm,%))

holds for every integer m > 1.

Proof. Since |©] < 7/18, it follows from the estimates of composite functions in Sobolev
spaces that

107" Nl p2(—2m,20) < (Cn) (14 105" Oll p2(—20,20) )

where

m

Cn=>»_ sup |95N(O)].

iolel<w/18

It remains to note that ™0 = 97 'k. O
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5.2. Local estimates. In this paragraph we prove the local estimates of the normal
derivative of a weak solution to equation (5.1). The result is given by the following
proposition. Fix an arbitrary point z € I'. Without loss of generality we may assume
that the arc-length variable s equals zero at z. Let x, depending only on the constant Ey
in Condition H.1, be given by Lemma 2.2. Choose an arbitrary function ¢ € C5°(—k, k).
Furthermore, assume that the functions ¢(s) and ¢(s)d,w™ (s) are extended by zero to
the real axis R.

Proposition 5.4. Under the above assumptions, the estimate
+ m
(5.17) ¢ Onw me+1/2,2(R) < C( 1+ |05 kHL2(72n,2n)) Hw”Wl«?(Q)

holds for every integer m > 0. Here c depends only on m and on the constants FEo,v, p in
Conditions H.1-H.3 of Theorem 3.2.

Proof. Notice that estimate (5.17) is invariant with respect to dilatation w. Hence without
loss of generality we may assume that ||w||y1.2(q) = 1. For an arbitrary fixed z € I, denote
by X9 the standard neighborhood determined by Definition 5.1. Split 3, into two disjoint

parts ¥, and 37, defined by the equalities
(5.18) Son ={z=(z1,22) 1 =y <1 <8, nla1) —2p < a2 <n(z1) },
' S, ={z=(z1,22): —y <31 <6, n(21) <z2 <2p+7(71) }.

Here (x1,72) is the local Cartesian coordinates system with the origin at z, defined in
Lemma 2.2. Notice that the ordinate axis x2 is directed inside €2;, which yields

Yo = D2 NQe, I3, =2 NQ, Yo =55, USS, U

In particular, the coefficient a equals 1 in ¥, and equals ag in E;rn. The function w serves
as a solution to equation (5.1) and the integral identity

(5.19) / aVw-V{dzr =0
Dok

holds for all ¢ € W,'?(Z2,). The standard change of variables
y1=s(z1), y2 =x2 —n(21).
takes diffeomorphically the standard neighborhood ¥, onto the rectangle
Qo = (—2k,2K) X (—2p,2p).

In its turn, the standard change of the variables (5.6) takes diffeomorphically curvilinear
quadrangles Ei onto the rectangles

Qo = (—2k,2k) x (—2p,0), Q3. = (—2k,2k) x (0,2p).

‘We have

Qo=Qy UQL UL, where £=(—2k,2k) x {0}.
Now set
(5.20) u(y) = wx(y), v (y)=w(2@y)) =uly)

QF
Recall that w serves as a weak solution to equation (5.1) in the standard neighborhood
Y2,. In particular, it satisfies integral identity (5.19). Notice that

Vew(z(y)) = M Vyu(y), do= (det M) 'dy.

The change of variables x — y in (5.19) leads to the following integral identity for the
function u : Qo — R,

(5.21) / aNVu-V¢dy =0 forall ¢ € W,?(Qo).
Z2m
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Here the matrix N is given by Lemma 5.2. The conormal derivative Oyu~ on the segment
£ is defined by the equality

1
cos ©

(5.22) ONu~ = N210y,u~ + Na20y,u~ = (= Oyu” sin® + Jy,u”),

where ©(s) is given by Lemma 5.2. It is easily seen that N and u meet all requirements
of Proposition 4.2. Now choose an arbitrary ¢ € C§°(—k, x) and assume that the function
@Onu~ (s) extended by 0 to the real axis. Applying estimate (4.13) in Proposition 4.2 and
estimate (5.16) in Corollary 5.3 we conclude that the inequality

(5.23) |pONu™ [lyyr-1/2my < € (L+ 05N r2(—an2n)) <c(1+ H8§71k||L2(—2n,2n) )

holds for every integer r > 1.
Recall that s = y;. Next, formulae (5.11) and (5.12) in Lemma 5.2 along with formula
(5.22) imply

n(s) - Veow™ (z(y)) =n(s)M " - Vo~ =

1
. —— —tan®©
(—sin®,cos0) - | cosO Vu =
(5.24) 08 L
cos@(i sin © Oy, u + Oy, u) = Onu~ on L.

It follows that for every ¢ € C§°(—k, k), we have
d(s)Ohw™ (s) = ¢(s)Onu™ (s) for s € (—2k,2k).

Hence desired estimate (5.17) is the straightforward consequence of (5.23). This completes
the proof of Proposition 5.4. O

5.3. Globalization. Now we employ Proposition 5.4 in order to complete the proof of
Theorem 3.1. To this end, we use the method of partition of unity.

The partition of unity. Let I" satisfies all conditions of Theorem 3.1 and « € (0, £L/2)
be given by Lemma 2.2. Recall that £ and x depends only on the constant Ey in the energy
constraint H.1. Choose a finite collection of points 2z, € I' with the arc-length coordinates
sk such that

(5.25) sk:%ﬁ 0<EkE<N-1,
where N is an arbitrary integer satisfying the condition
1_x
N "4
Now choose an arbitrary function ¥ € C§°(—L/2,£/2) with the properties
(5.26) P(s) >0, Y(s)=0 for [s| >k, P(s)=1 for |s| <k/2.

We will consider 1(s) as a function defined on I'. In other words, it can be regarded as
L-periodic function defined on R. For every integer k € [0, N — 1], define the function

Vi(s) = 1p(s — sk).
The function 9 : I' — R is compactly supported on the arc of the length 2« centered at
2. Moreover, 1, = 1 on the arc of length x centered at z;. These arcs cover the curve
T'. It is easily seen that for every z € I', at least one of the functions ¥ equals 1 in a
neighborhood of z.
Now set

(5.27) b = 2

N-1

E%‘.

Jj=0
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It is clear that every nonnegative function ¢ € C°°(T") is compactly supported in the arc
of length 2k centered at z; and

i

(5.28) o = 1.
0

ol
Il

Introduce the functions wy with the properties

N-1
(5.29) Wk = orOpw™, Ohw = Z W
k=0
It is clear that for every m > 0, we have
N-1
(5.30) 180w | g2y < D llwnll gmerszry-
k=0

See Subsection 2.2 for the definition of spaces H"(I") = Hy.

Global estimates of the normal derivatives. It follows from (5.30) that it suffices
to estimate wy, in the space H™*1/2 (T"). To this end we use the following construction.
Choose an arbitrary compactly supported function F': (—k, k) — R. There are two ways
to extend F' to the real line. The first way is to extend F' by zero to R. We denote this
extension by F,

F(s)=F(s) for |s| <k, F =0 otherwise.

The second way is to extend F' L-periodically to R. We denote this extension by Fj. These
extension are connected by the relation

oo

(5.31) Fy(s) = F(s+kL).

The following lemma establishes estimates of Sobolev norms of F and Fj.
Lemma 5.5. There is the constant c depending only on L and m such that

(5.32) 1Bl ygerre < el Fllsmsssomy for all m 0.

The norms in the spaces Han/Q and H™1/? (R) are defined in Subsection 2.2.
Proof. The proof is given in Subsection 9.2. O

We are now in a position to complete the proof of Theorem 3.1. To this end, it suffices
to prove that every function wy defined by (5.29) admits the estimate

(5.33) Hwk|lH"L+l/2(r‘) <c (1 + |05 k||L2(F)) HwHWL’A‘(Q)-

Fix an arbitrary integer k € [0, N — 1] and the corresponding point zx = f(sk). After the
shift of the coordinate s we may assume that sy = 0. Let the arc 'y centered at zy is
defined by Lemma 2.2 with z replaced by zx. Introduce the function F': I';, — R given by
the equality

(5.34) F = ¢i(s) Onw™ (8), sE(—kK,K).

Notice that ¢ € C5°(—k, x). Let F be the extension by 0 to the real line. It follows from
estimate (5.17) in Lemma 5.5 that

(5.35) ||F||Hm+1/2(R) <c (1 + H@;”kHLz(F)) [wllwrz2q)-
On the other hand, relations (5.29) and (5.31) imply the equality

Fy=wr on T.
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From this, estimate (5.35), and estimate (5.32) in Lemma 5.5 we finally obtain
||WkHHM+1/2(1‘) = ||Fﬁ||Hm+1/2(I‘) < CHFHHmH/?(R) <
c (L4107 kl L2y ) lwllwr e,

which yields desired estimate (5.33). This completes the proof of Theorem 3.1.

5.4. Proof of Theorem 3.2. Recall that the Kohn-Vogelius functional is defined by the
formula

(5.36) J(I) = /QaV(v —w) - V(v —w)dz.
Here v, w : 2 — R satisfy the equations and boundary conditions
div aVv =0 divaVw =0 in
(5.37) aVv-n=g w=h on 09Q.
The gradient dJ is defined by equality (1.14),
(5.38) dJ =2(aVv - n[0,v] — aVw  n[0hw])n — [aVv - Vv — aVw - Vw]n.

Let a curve I' satisfies conditions H.1-H.3 and the curvature k € H"(I') with an integer
r > 0. It is necessary to prove that for every 8 € [0,1/2), the gradient dJ admits the
estimate
(5.39) ld T gr+e 0 < (1 + (|05l L2(ry),
where the constant ¢ depends on r, 8, and constants Eo, v, ¢ in conditions H.1-H.3. Note
that estimate (5.39) with a suitable 8 and the embedding theorems imply the inequality
(5.40) 0sdJ Loy < e(1+ 105kl 2(r)),
which holds for every ¢ € [1,00). In this case the constant ¢ depends in addition on ¢. The
rest of the section is devoted to the proof of estimate (5.39). The key observation is that
this estimate is straightforward consequence of Theorem 3.1. It follows from inequalities
(3.7) that the solutions v and w to problems (5.37) admit the estimate

lvllwrz2) + lwllwiz@) < clg,h).
Hence they meet all requirements of Theorem 3.1. Applying this theorem we conclude
that estimates

+ + m

(5.41) [10nv |‘Hm+1/2(r) + [|Onw ‘|Hm+1/2(r) <c ( L+|0 k||L2(F) )

holds true for all integers m > 0. Next, it follows from (5.38) that dJ is a quadratic form
of the normal derivatives d,vt and d,w*. Hence it suffices to estimates the products
OnvT Opw™ and OnvT OnwT. Let us estimate O,v~ 9w . The proofs of estimates of other
terms are similar. It is necessary to show that

(5.42) 100~ 0t s ey < € (1+ 97 Kll ey )
for all integers m > 1 and for all 8 € [0,1/2). It follows from the Moser inequality that

6. 100 B gzt ey < € 10nv” ey 10 rmss
e l0nw™ |Loe ) 1000 | m+s (ry-
By virtue of the embedding theorem, the estimates
1050 (oo ) < (@) 1020 1240y 10nw lzoor) < e(0) 9w g1 /250 ey

hold for every o > 0. Applying the interpolation inequality to the right hand sides of these
estimates we obtain

100 s/ ey < 00 I gy 10007 ooy
_ 1= s
Ha"w ||H1/2+”(F) S CHa"w ||H1712(F) Hanw ||IT_In7n+1/2(F)
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Inequality (5.41) with m = 0 implies
000 (| g1/2(ry + 100w [ g1/2y < €
Hence for every m > 1, we have

||anv7||L°°(F) <c ”an’UiH;_'?erl/Z(py

(5.44)

10ne ey < €00 | oo -

Next, the interpolation inequality implies

Ll _11_
HanvinHme(p) SCHanUiH"L(z 8) ‘|an1/7||1 w38

H/2(I) Hm™+1/2(T)?
1000 Lsmta ey < e 0w |73 (One™ [0 5 .
It follows that
100 lLsmssry < €l |70 )
[ PP [

Substituting these inequalities along with inequalities (5.44) into (5.43) we obtain

- - - =& -8
(5.45) [[0nv™ Onw HHm‘Fﬁ(I‘) <c [|Onv HH7n+1/2(F) [[Onw HHm+1/22(F)
' 1z R C. )]
+||anw HHerl/Z(F) Han'U ||Hm+1/22(r>'
Now set 1
o
=--8 rA=2.
7 2 A m
‘We have L1 L1
(=B =N 1-——(>-B)=1-A
Ldop=r 1-Ll-p

From this and (5.45) we conclude that

— — — A —1=X
[0nv™ Onw ||H7"+B(F) <c ||Onv ||Hm+1/2(r) [|Onw ||;1m+1/2(1—*)

— A —|11=A
+[|Onw ||Hm+1/2(r) [|Onv HHm+1/2(F)‘
Applying the Young inequality we arrive at the estimate
[|[Onv ™ Opw™ HHm+ﬁ(F) <c||Onv™ ||Hm+1/2(l“) + ¢ ||Onw™ ||Hm+1/2(r) .

It remains to note this inequality along with inequality (5.41) obviously imply desired
estimate (5.42). This completes the proof of Theorem 3.2.

6. A PRIORI ESTIMATES. PROOF OF THEOREM 3.5

In this section we prove Theorem 3.5. To this end, we have to derive the Sobolev a
priori estimates of solutions to the Cauchy problem

2
Of +Vik+ k]

—0 1
6.1) Sk —k+dJ =0 in (0,7)x8,

f(079):f0(6)7 0681

for an immersion f(t,0), t >0, 0 € R/27Z. Here 0 is the angle variable on S*, and f is
2m-periodic function of 6. Recall that s is arc-length variable on the curve T'(t) = f(¢,S")
associated with f. We have
1
a.S = Ta 7 897
(6.2) |06 f|
T=0.f, k=0.f=0.r.

Vs=0;s- _(T : as') T,
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Note that the time derivative 0; is evaluated for fixed angle variable §. With this notation
0Js and V; become nonlinear differential operators.
Furthermore, we denote by £(¢) the length

(6.3) L(t) = /I"(t) ds ::/O ! Vy(t,0)do, /g=|0sf|,

of T'(t) = f(t,Sh).

Now fix an arbitrary even integer m > 6. Throughout of the section we assume that
all conditions of Theorem 3.5 are satisfied. In particular, there are two positive constants
FEo and FE,, such that the initial curvature kg = a_ffg (s) satisfies the inequalities

(6.4) / ikol? + 1)ds < Fo, / 1072 ko? ds < B
ro) 2

r'(0)
The proof of Theorem 3.5 falls into six steps. Our first task is introduction of notation
and presentation of auxiliary material.

6.1. Commutators and connections.

6.1.1. Commutators. In the proofs of a priori estimates in Theorem 3.5 the multiplication
of both sides of (6.1) by the higher order derivatives of k followed by integration by parts
is performed. This procedure requires the calculation of the commutator of spatial and
time derivatives. In order to do this, we introduce additional notation. Let us consider a
one-parametric family of immersions f : [0,7] x S' — R?. Set

(6.5) V=0of, m=2V-k m = %837@.

Denote by II a projection and by V; a differential operator:

(6.6) Ne=o—(r-®)7r, V:&=110:9,

where @ : [0,7] x S' :— R? is an arbitrary smooth vector field. In particular, we have
Vi =0 — (7-0:P) 7 =119:P, Vi@ =0 — (7-0:D)7 =119:D.

The operator 83 0: takes the following form.

Lemma 6.1. Under the above assumptions, we have

(6.7) 11828, f = Vik — ma k.

Proof. Let ®:[0,T] x S' :— R? be an arbitrary smooth vector field. We have

1 1
- Wﬂag 0, ® — at(ilaefl 89<I>) -
1

1
~0u(15,77) 20 ® = 155 5 (O0F -0 ) 0@ =

(0.0 — 0:0.)®

(Os [ -850 f) 0s® = —(B2f - B f) DD = —%m D P.

Here we use the relation 9sf - 0:f = 7 - 8:f = 0, which follows from equation (6.1). Thus
we get

(6.8) 0s0,® = 9,0, D — %m 0,.
Next, we have

020, ® = 0.(0:0,® — 0,05D) + (9:01(05®) — 0,05 (05 D) + 0,02D.
From this and (6.8) we obtain

020,® = 0,02 — %as(mascp) - %maqu
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Substituting ® = f in this relation and recalling the equalities 7 = 05 f, k = 02 f we arrive
at the identity

028, f = Otk — %83(7@)7 — mok.
Applying to both sides of this identity the projection IT and noting that
10, =V¢, II7=0, Ik=k
we obtain the desired equality (6.7).
O

Now we evaluate the commutator of the differential operators VE and V;. The result
is given by the following lemma.

Lemma 6.2. Let ® : [0,T] x S be a smooth normal field, i.c., ® is orthogonal to the
tangent vector 7. Then we have

(6.9) V2V =V, V0 — mV2d — 1V, P.
Proof. Following Lemma 2.1 in [1], Lemma 2.1 in [8], and Lemma 1 in [12] we have the
identity
(6.10) VIVi® =V V20 — Cy — C1 — Co,
where Co = w2v3q> and
Ci=(k-VsV+Vik-V)V.®@+2((k-V.D)V.V — (VsV - VS<I>)IC),
Co= ((Vsk- @)V, V — (VsV - ®)Vik) + ((k- ®)VIV — (VIV - ®)k).
Note that C; are orthogonal to 7 since V, and k are parallel to n. It is easy to see that
(Vsk - ®)V,V — (V.V - ®)Vik) - = 0.
Note that the multipliers in this equality are parallel to n. Hence, either (Vsk - ®)V,V —
(VsV - ®)V:k = 0 or @ is orthogonal to the normal vector n. In the latter case ® is
orthogonal to n and 7 and hence ® = 0. From this we conclude that
(Vsk - @)V, V — (V. V- @)V .k =0.
Next we have
((k-@)V2V — (V2V - ®)k) - & = 0.
Arguing as before we conclude that either (k-®)VZV — (V2V - ®)k =0 or ® = 0. We thus
get
(k-®)VIV — (VIV - ®)k = 0.
Combining the obtained results we conclude that Co = 0. Now consider the quantity C;.
We have

((k- V@)WV — (V.V-V,®)k) - Vb =0.

Repeating the previous arguments we conclude that either (k-V ®)V,V —(V, V-V D)k =
0 or V@ = 0 is orthogonal to n and 7. Hence

(k-Vs®)V,V —(V,V -V, 2)k =0
and
Cr=(k-VV+Vsk-V)V,.
Since V' and k are orthogonal to 7, we have
E-VV+Vk-V=k-0sV+0:k-V=0sk-V)=m,

which yields the equality C; = 71 Vs®. Combining this result with the equalities Co =
12 V2®, Co = 0, and relation (6.10) we obtain the desired identity (6.9). O
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6.1.2. Relation between Vs and Os. Estimates of m;. The important ingredient of the
theory are estimates Hy - Sobolev’s norm of the curvature k via L2-norm of the connection
Vik. In this section we consider this problem in many details. We begin with the observati-
on that every smooth normal vector field ® : S — R? admits the representation

(6.11) d=pn, = -n.
It is easily seen that for every integer » > 0 we have
(6.12) Vi® =9 pn.
The following lemma is the main result of this section.

Lemma 6.3. Let ® : S' — R? be an arbitrary smooth vector field and o € (1/2,1). Then
for every integer r > 0, there is a constant c, depending only on o, r, and Fo, such that

r r 14122 1122
(6.13) 10:@ = Vi@l o < c(I®llng + rllg) ™ 7 (1®llay + [1Klly)

Proof. The proof is given in Section 12. O

If we assume that L?-norms (H{ -norms) of ® and k are uniformly bounded, then
Lemma 6.3 leads to the efficient estimate of the deviation 0;® — V®. The corresponding
result is given by the following

Lemma 6.4. Let under the assumptions of Lemma 6.3,

[®ll g < Ca, (K]l g < Bo.

Then for every € € (0,1), there is a constant C, depending on Ey, Cs, integer r > 1, and
€, such that

(6.14) (1= lI®fla; —ellkllay — C < NVi®llL20,0) < (1+ )| @lly + ellkllay + C.
Proof. Estimate (6.13) and the conditions of lemma imply the inequality
105® — V2@l e < C(I2lg + [Kllmg)' ™ 7
Since 1/2 < o < 1 it follows from this and the Young inequality that
10:® = Vi@l sy < C + (| @y + []1my)-
We thus get the inequality
0@l o = IVa@llrg | < C + e(l[ @]y + KLy )-
which yields
105 @l g — (@l + 1kl ey) = C < [Va|larg
< 105 g + (I ]lmy + [K]1u7) + C.

Noting that
1@llzzp = Co < [10: @120, < [Pl + Ca,

we arrive at desired estimate (6.14). O

Corollary 6.5. Let ||k|lr2(0,.) < V2Eo and an integer r > 1. Then for every e € (0,1)
there exists a constant C, depending only on Eo, 7, €, such that
(6.15) (1 =20)[|kllrzy — C < [IVskllmo < (1+ 26)[|k[|ry + C.

Proof. It suffices to note that ® = k£ and Cs = +/2Ey meet all requirements of Lemma
6.4. O
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Estimates of ;. In this paragraph we give estimates for the coefficients m; defined by (6.5).
The results are given by the following Lemmas.

Lemma 6.6. Under the assumptions of Theorem 8.5 for every integer r > 0, there is a
constant ¢ depending on r, such that

(6.16) IV Ollay < e+ kO] r+2)-
Proof. Notice that
(6.17) V=0f=-Vk — %|k|2k + &k —dJ.
By virtue of Corollary 6.5
(6.18) IVEEllmy < et el VIRl < e+ cllkll g2
Next, the Moser inequality (2.11) implies the estimate

k2Elzg < cllkll3oe o.c) 16l

Now choose an arbitrary ¢ € (1/2,1). Recall that the embedding HY — L*(0,L) is
continuous. From this, the interpolation inequality, and the estimate ||k ;2¢0,c) < ¢ we
obtain

20 _r_
1k kllmy < e llkllZg Ikllay < c IIkII,’;:;iz &N,

Hg“ =
(6.19) o
c Ikl 772 < e (L [kl yrea)-
# #

Finally, Theorem 3.2 on the estimates of the Kohn-Vogelius functional and estimate (6.15)
in Corollary 6.5 imply

(6.20) HdJHH; < C+CHk||HuT.
Combining estimates (6.18) - (6.20) and recalling relation (6.17) we arrive at desired

estimate (6.16). O

We are now in a position to estimate the quantities 7;. The result is given by the
following lemma.

Lemma 6.7. Assume that all assumptions of Theorem 3.5 are satisfied. Let an integer
r >0 and o € (1/2,1) be given. Then there is c, depending on r, o and the constants v,
o wn Theorem 3.5, such that

1+7-L 1+7-L
(6.21) 72 (®)]ry < (1 + Hk(t)HHgﬁz), ()l ay < e(l+ Hk(t)HHgég)
for allt € (0, 7).
Proof. Since m1 = —0sm2/2, it suffices to estimate m2. To shorten notation, we omit the

symbol t. Notice that m2 = k- V. From this, the Moser inequality, and continuity of the
embedding Hf < L*(0, L) we conclude that

(6.22) 72|y < cllkllag IV Iay + 1Ellay IV ||z -

By the interpolation inequality and estimate (6.16) in Lemma 6.6, we have

1—2

Vilse < 1VI1e" VIl < e+ Ikllz)' ™" (1+ el pry+2) ™

Since
1- 7‘3»2 7‘3»2 7‘«?»2
ellerz < W%l o HkHHFz <c ”k”Hg“’

we have
2

Vg <e((+ IIkH;,Eiz)

1—<

P K ge)

a
T

< c(l + HkHHﬁT‘“)u’
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where

From this and the inequality

[Ellzy < CIIkH o Hkll;,tiz < CIIkH;tiQ

we obtain

(6.23) 1Bl zzy IV ey < Cl\kllgﬁz (4 [1Elly+2)" < e+ cllkl]; ,EZ.

Next, the interpolation inequality implies

[Ellzg < ||k|| 0 Hkll;,tL <c|lk] ;ﬁiz,

which along with estimate (6.16) in Lemma 6.6 gives

1Bl zg [V [y < cllE]72e (1+ 15l py+2) < e+ c |k, ,132.

H7 +2

Substituting this estimate and estimate (6.23) into (6.22) we arrive at desired estimate
(6.21). O

6.2. Main integral identity. Now we use formulae (6.7) and (6.9) in order to derive the
main integral identity for solutions to problem (6.1). The result is given by the following
proposition.

Proposition 6.8. The following integral identity holds for every smooth solution f :
[0,T] x S* to problem (6.1), for every to € (0,T), and for every even integer m > 6.

to
1/ |v;"*2k(to)|2ds+// VTR dsdt =
2 Jr(to) o Jre

4
SN+ %/ VT 2k(0))? ds.
1

'(0)

(6.24)

Here the quantity N; are defined by the equalities

m—2
N1—Z/ Iy (t) dt + [m27 NQZZ/ Ipi—1(t
(6.25) Lit)= | VI (mVPk) VT kds,
T'(t)
I 1(t) = VI (VT k) - VI kds,

()

to
N3 :/ VI (k- Vik) k) - VK dsdt,
T(t)
(6.26) " o
Ny = f/ ARl SRR VALY dsdt+/ V& ((k-Y) k) - VI'k dsdt,
(1) r()

where

- %|k|2k ~ kot d.



GRADIENT FLOW FOR KOHN-VOGELIUS FUNCTIONAL 555

Proof. Multiplying both sides of (6.1) by 92V2"~*k and integrating the result with respect
to s and t we arrive at the equality

to
/ / <8tf~8§V§"“4I<:+V§k-8fvim’4k) dsdt+
o Jr

to
/ / (1|k\2k—k+dJ)-8§V§"“4kd5dt:0.
o Jre \2

The rest of the proof falls into a sequence of lemmas.

(6.27)

Lemma 6.9. Under the assumptions of Proposition 6.8, we have

to
/ atf-aﬁvi’"—‘*kds:l/ VT2 k(to)|* ds
(6.28) o Jrw 2 Jrto)
71/ V72 k(0)|% ds — Ny — A,
2 Jrw

Proof. Notice that V] = —9,IT and V7 2k = ITV™~2k. Since m is even, it follows that

Ouf - VI Lk ds :/ (V)™ 2820, f - TIVY 2kds =

r'(t) ()

V920, f - VT 2k ds.
T'(t)

Recall that the integer m is even. From this and identity (6.7) in Lemma 6.1 we obtain
Ouf - O2V2" Y hds = V720, k- VI kds — VI (mo k) - VI 2k ds.
r(t) r(t) r(t)
Recalling the expression for I»;(t) we can rewrite this equality in the equivalent form
(6.29) Of - 92V kds = VI2Vek - VI ?kds — Io(t).
r(t) r(t)

Let us consider the integral in the right hand side of this equality. Using identity (6.9) in
Lemma 6.2 with ® replaced by k we obtain

VI, k- VT 2 kds = VA VI E -V 2k ds—
(1) r()
VI (maV2k) - VI 2kds — VI (m Vs k) - VI 2k ds
T(t) r'(t)
or equivalently
m—2 m—2 _ m—4 2 m—2
VP2V, k- VT 2 kds = VI ANV E-VT 2 kds — In(t) — L(1).

r(t) r(t)
Repeating this process and using again identity (6.9) we finally obtain
m—2

2
/ VIV, k- VI 2 kds = VoVE 2 k- V8 P kds — Y (Ii(t) — Taioa (1))
(1) i=1

(%)
Notice that

ViVE T k- VI Pk =0,V 2 k- VI 2k
since V2 is orthogonal to 7. Thus we get

m—2
2

VI, k- VT 2 kds = VI k- VI P hds = > (Ini(t) — L1 (1)
r(t) r(t)

=1



556 P.I. PLOTNIKOV, J. SOKOLOWSKI

Combining this equality with (6.29) we arrive at the identity
/ Of - 02VI" kds = VI k- VI kds

I(t)
(6.30) mz2 mz2

=D Lilt) = Y L (1)
i=0 i=1
Now consider the integral

to
/ VT2 k- VT %k dsdt.
o Jr()

Our task is to integrate by parts with respect to ¢. The difficulty is that the curve I'(¢)
and ds depend on the time variable. In order to cope with this difficulty we rewrite this
integral in terms of the original independent variable §. The change of variable s — 0
leads to the equality

to to 27
/ VT k. VT 2k dsdt = / / VT k- VI Tk /g dodt,
0 T(t) 0 0

where /g = |0p f|. Integrating by parts gives the equality

to 27
/ BV k- VT 2k /g dOdt =
0 0
2m
0 0
—5/ / VT2 k(t))? 00/ g(t) dodt.
0 0

Next we have

O/a(E) = T3 (B0f - 60 f) = (91 - 0.00) /().
Notice that
Osf 00t f =7-0s0f = —0s7-0f =—k-V = —%772,

which yields

/ V72 k()2 00 /a8 d0_—f/ V72 () /g 0) dB) =
0 0

1

(6.32) )
—7/ VT2 k(t)|> mads = — = Ln_a(t).
2 F(t) 2

Next, we have

%/ VT2 E(to)|” v g( d9—7/ VT2 k(0)]* /g(0) df =
0 0

1/ |v;"—2k(t0)|2ds—1/ V™2 k(0)| ds.
2 Jrto) 2 Jr(o)

Substituting this equality along with equality (6.32) into (6.31) we obtain
27

to to
/ HVT k- VI P kdsdt = / VT Pk VI Tk /g dodt
0 T(t) 0 0

1 _ 1 _ 1 [to
- 5/ VT2 k(to)|* ds — 5/ |V 2 k(0)* ds — 5/ Ln_o(t) dt.
T(to) r(0) 0

Integrating both sides of equality (6.30) and using relation (6.33) we arrive at the desired
equality (6.28).

(6.33)

O
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Lemma 6.10. Under the assumptions of Proposition 6.8 we have
to to

(6.34) / Vik-92V2" Ykds :/ / VT E(t)]? dsdt — N.
0 r(t) 0 T(t)

Proof. Arguing as in the proof of Lemma 6.9 we obtain

Vik-92VIm L ds :/ (VO™ *92V2k - IV kds =

I(t) ()

VIHIO2 V2 k- VTkds = VI V,0, Vik - VT ds.
r(t) r(t)

(6.35)

Note that
OsVik = Vik 4 (1-0:sV2E) 7.
Since V2 is orthogonal to 7, we have
0V =V3k — (k- V2k) 1.
It is easy to check that
Vs((k-Vik)T) = (k- Vik) Vet = (k- Vik)k,

which yields
V0sV2k = Vik — (k- V2k) k.
Substituting this relation into (6.35) we finally obtain

/ Vik- 02Vt ds =
r'(t)

/ |V7k|* ds — VI (k- V2k) k) - VK ds,
T(t) r(t)

which along with the expression for A3 implies desired equality (6.28).

Recall the denotation 1
T= 5|1<|"’k —k +dJ.

Lemma 6.11. Under the assumptions of Proposition 6.8 we have
to
(6.36) / T2V = A,
0
Proof. The proof imitates the proof of Lemma 6.10. We have

/ T-aivim—“k;ds:/ (VD™ 4027 - IV ™k ds

(6.37) r (1) r(t)

:/ VIUYL0, T - VT ds.
I'(t)

Notice that Y is orthogonal to 7. It follows that

0T =VL+(7-0: V)71 =V, T—(k-T)T.
Next we have
Vi((k-1)7)=(k- ") Vsr = (k-T)k,
which yields
V0T = VY — (k- T) k.
Substituting this relation into (6.36) we arrive at the identity

/ Y- 02VEITT kds =
r(t)

VI . VT ds — VI (k- Y) k) - VI'k ds.
r(t) r(t)
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which along with the expression for Ni yields (6.36). O

We are now in a position to complete the proof of Proposition 6.8. To this end, it
suffices to substitute equalities (6.28), (6.34), and (6.36) into integral identity (6.27).
|

6.3. Estimates of reminders M.

6.3.1. Estimates of N1 and N>. Estimates (6.21) for m; lead to the basic estimates for the
reminders N in the integral identity (6.24). The first result in this direction is given by
the following

Lemma 6.12. Assume that all assumptions of Theorem 3.5 are satisfied. Let an even
integer m > 4 and o € (1/2,1) be given. Then, there is ¢, depending on m and o, such
that

2(1—0)

T
(6.38) \M-|§c/ (1+||k(t)||§;gn ™) for i=1,2.
0

Proof. The proof is based on Lemma 6.7 and Corollary 6.5. We give the proof only for the
quantity Ni. The proof for N> is similar. It follows from representation (6.25) for N7 that

m

T2 e .
Ni=>" /0 Loi(t) dt + 5 Im—2(1),
i=0

(6.39)

L(t) = VI (mVik) - VI Pk ds.
I(t)
Hence it suffices to estimate I2;(t). To simplify the notation, we omit the symbol ¢. By
the Cauchy inequality, we have

(6.40) |Lil < V272 (w2 V') g V5Kl g
Recall that for every normal vector field ® = pn, we have
Ve® = 0;p0n.

It follows that . ’
TV = md¥Kn, K=k-n

and ‘ , . .

VI 22 (m V) = 00 22 (m0l K)m.
Thus we get
(6.41) |\vg1*2*2i(7r2v§ik)||,{g < \|ma§"K||H;n7272i,

The Moser inequality and the continuity of the embedding H{ — L°°(0,L) imply the
estimate
||7T28?iK||Hﬁm7272i S C H7T2||Hgn,—2—2i ||831K||Héf +c ||71'2HH§ ||8?iK‘|Hgﬂ*2*2i
(6.42)

< clmallpyema-ai 1K gzeco + lmallng 1K g
It follows from the interpolation inequality and estimate (6.21) in Lemma 6.7 that

1—_o _ _o
lmallizg < limalligg ™ limall 752, <
(6.43) # ;

142 1-_c 1+ 2 ol
(L Il )77 (1 ) 7
Since ||k|| HY is uniformly bounded, the interpolation inequality implies

2
Il < el -
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Substituting this inequality in (6.43) we arrive at the estimate

(6.44) Imallag < (14 llge),
where

2 o o o 2420

(1+ 2)(177_2)+(1+E)m_2 =

Next notice that ||K||H§> = Hk||Ho is uniformly bounded, which yields

I g2 < CHKHH’”

From this and (6.44) we obtain

-2

(6.45) 1mallzzg (1 -2 < e (1 + Hk||Hm) B ||K||H’”
Next, estimate (6.21) in Lemma 6.7 and the interpolation inequality imply
172l g2z | K| r2ive < e (14 k27 ) ||K||H’” <

Hm 2i

L1+

c(1+ ||k||Hgﬁ ) K g
which gives
m—2ito 2ito
(6.46) 172l g2zl | K p2ivo < e(1+ [kl g™ ) 1K g -
Substituting (6.45) and (6.46) into (6.42) and next into (6.41) we arrive at the inequality

m—2—2i i 2420 m=—2
IV 272 (m2 VR ) 20,.2) < e(1+ [[Ellmp) 1K +

(6.47) v [
(1+HkHHm )IIKHHm .

Now out task is to estimate Hy-norm of K by Hy-norm of k. To this end, notice that
the identity VTk = 97K n and boundedness of L?-norm of K = k - n yields the estimates

1Ky < e+ 105Kl = ¢+ el Vikllmg,

which holds for every integer » > 0. Applying estimate (6.15) in Corollary 6.5 we arrive
at the inequality

[1Kley < e+ cllkllag-

Substituting this inequality with » = m into (6.47) leads to the estimates

m—2-2i 2i m=2ito 2ito
Ve (m2V5 k)”HO < c(U+ [kl ) @+ Kl g )
(6.48)

m—2

1+ ||k\|Hm ) (1 [l ) ™

20
< e(1+ [kl )

In order to complete the proof, note that estimate (6.15) and the interpolation inequality
imply the estimate

|vr ZkHHo < c—l—chHHm 2 < c+c\|k|\

Combining this estimate with (6.48) and (6.40) we finally obtain the inequality

2(1—0)

20 _2 _
[Eai (8)] < oL+ ) (1) 5 (L4 k@)~ < eL+ [k(E) )

which along with expression (6.39) yields desired estimate (6.38). O
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6.3.2. Estimates of N3 and Ny. In order to complete the proof of Theorem 3.5 it remains
to estimate the reminders A5 and Ny given by (6.26). The result is given by the following
lemmas.

Lemma 6.13. Assume that all assumptions of Theorem 3.5 are satisfied. Let an integer
m >4 and o € (1/2,1) be given. Then there is ¢, depending on m and o, such that

2(1—0)

(6.49) NG| gc/oo(1+||k(t)||im ",

#

Proof. Recall that
to
N = / VI (k- Vik) k) - VI'k dsdt.
o Jr

Hence out task is to estimate the integrand in the right hand side of this formula. To
simplify the notation we omit the symbol ¢. By the Cauchy inequality, we have

(6.50) | / VI (- VERR) - VK ds| < VT (U V0B Lag 175kl g
r

Notice that k = K n and V2k = 92K n, which yields

(k-Vik)k=K?0?Kn, VI *((k-Vik)k)=0"""*(K*92K)n.
From this we conclude that
(6.51) IV (k- VER)R) | ag < IK*OTK | s
The Moser inequality, and continuity of the embedding Hy — L*(0, £) imply the estimate

IIVE""‘((k-ka)k)IIHg <
(6.52) C||K||i°°(o,n)||K||H§n—2 + CHaszKHLoow,c)||KHL°°<0,£)||KHH§”—4
< CIIKH%gIIKHH‘;n—2 + el K 2o 1K g 1K s -

Since the || K]|| HY is uniformly bounded, the interpolation inequality yields
o 1—2
1Ky < cll Kl g, (1K -2 < el K[yt

240 1—4
1K 2+ < cll Kl s K gm—a < el K-

Substituting this inequalities into (6.52) we obtain

l1—0o

_
(6.53) IV (k- VERR) g < el K e ™

Next, inequality (6.15) in Lemma 6.5 leads to the estimate
[Kllzzg < e+ cl0"Kllgg = ¢+ cllVi'kll g < e+ cllkllmp,
which along with (6.53) yields the estimate

2(1—0)

(6.54) IV (k- VER)K) g < e(1+ [[Kllmp)' ™~

Applying again inequality (6.15) we obtain
Hv?kHHé) < C(+||kHH§").

Substituting this inequality and inequality (6.54) we finally arrive at the estimate

VI (K () - TRR()R(D) - VIR(E) ds| < e (14 k(D) [y )5

‘ r'()
which obviously yields desired estimate (6.49). O
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Now our task is to estimate the reminder
to to
Ni= / VI (k- T) k) - VK dsdt — / / VI7TRY VT dsdt,
o Jrw o Jr@)

where )
T= §|k|2k —k +dJ.

Lemma 6.14. Assume that all assumptions of Theorem 3.5 are satisfied. Let an integer
m >4 and o € (1/2,1) be given. Then there is c depending on m and o, such that

to o 2(1—0)
(6.55) Nl <e [ kOl .
0
Proof. Introduce the functions
1o 1
My = =g VI ([kR) + 5 VI (k[ E),
(6.56) My = =V 2(k) + V™4 (|k|*k),
Mz = V7 72(dJ) + VI (k- dJ)k).
It is easily seen that
3 to
Ni= Z/ M;(t) - V'K dsdt.
= Jo Jre
Estimate (6.15) in Corollary 6.5 implies
IV Kl g < e(1+ [Ikllay)-

From this and the Cauchy inequality we obtain the estimate
3 to
(6.57) Wa| < CZ/ M@l oy (14 IE@) [y eyt ) -
i=170

Now our task is to estimate Hg—norm of M; First we derive estimate for the quantity M;.

We begin with the observation that
659 Pk = K*n, (k- (k) k= K°n,
' VI(K®n) = 8L(K*)n, VI(K°n)=0l(K")n,

where K = k- n is the scalar curvature and r > 0 is an arbitrary integer. It follows from
this and the Moser inequality that

IV (R R o < C\|K3||H;n—2 < CIIKH?{gIIKIIHgn—z-

Since || K || HY is uniformly bounded, we may apply the interpolation inequality to obtain

204+m—2
m

IV 2 (kPR < el K e
Note that estimate (6.15) in Corollary 6.5 and the identity Vi7'k = 7' K n imply the
inequality
[ Kllazg < ¢+ el Ky = ¢ +cllVS'kll g < e+ cl[kllmp-

It follows that

— _2(1-0)
(6.59) IV 2 (kPR g < e(L+ [[Kllmg)'™

Repeating these arguments and using identities (6.58) we obtain

1—

m— 1_40=0)
IV R R p < e (U [kl ™).
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Since o € (1/2,1), we conclude from this and expression (6.56) for M; that

_2(1-0)
(6.60) 1Mo < e(L+ [lk]lmm)' ="
Arguing as before we obtain the estimate

_4(-0)
(6.61) 1Ma]l o < e(1+ [lkllmp)' ™

It remains to estimate H,?—norm of Ms3. Recall that dJ is a normal field and set
dJ =v¢n, ¢ =dJ-n, whichyields (k-dJ)k= K>¢n.
Thus we get
V2] =00 Py, VI (k- dI)k) = 8 (K ) n,
which leads to the inequality
1Mall g < elloll s + Il s
The Moser inequality and the embedding theorem imply the estimate

2
1Ml g < ellll -2 + el B\ ag 191l yrgn—a + el KLz 01z 1Kl prm—a-

Since |9 go = HdJ||H§J and ||k||H§J are uniformly bounded, we may apply the interpolation
inequality to obtain the estimate

20

1—2 1—4 o o 1—4
662 Mallug < bl + 1N G Il + 15 e o 1
Next notice that by virtue of estimate (6.15), we have
1K g < (1 + 1105 Kl zg) = e(L+ IVS kIl zrg) < e(1 + [[kllmp)-

Recall that ||dJ| o and ||k||zo are uniformly bounded. From this and estimate (6.14) in
Lemma 6.4 with r = m and ® = dJ we conclude that

[l < o1+ 107 lag) = L+ V7T g) < (L + [l age + T g ).
By virtue of Theorem 3.2, we have
4T ]| s < e+ |[Kllr), B €10,1/2),
which gives
[llarge < e+ [kl ) -

Substituting the obtained estimates for ||K||H§n and ||1/J||H§n into (6.62) and noting that
o € (1/2,1) we finally obtain

_2
(6.63) 1M1 g < (LlK[lrp) 7 -
Combining estimates (6.58), (6.61) and (6.63) we arrive at the inequality

2(1—0)

3
DM@l 0wy < (L Ikllam)' ™
i=1

Substituting this inequality into (6.57) we obtain desired estimate (6.55). O
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6.4. Proof of Theorem 3.5.

Proof. We are now in a position to complete the proof of Theorem 3.5. We begin with
the observation that the estimates of A; given by Lemmas 6.12, 6.13, and 6.14 imply the
inequality

4

0 _2(=09)
Swil<e [Cas kOl T .

t
i=1 0

Since o € (1/2,1) we may apply the Young inequality to obtain
4

to
(6.64) >IN < cetoJre/O 1k(8) 132y dt,

i=1
where € € (0,1) is an arbitrary number and the constant c. depends on €. Next, estimate
(6.15) in Corollary 6.5 yields the inequalities

(665) 9 kllug = (1= 2 klypa = cer V5Kl > (1 = 20) bl — .

Substituting these inequalities in the main integral identity (6.24) we arrive at the estimate

1-2 fo
k) e + (120 [ IO <

2

1 _
ce(l—l—to)—l—f/ |V k(0| ds.
2 Jr

Setting € = 1/6 we finally obtain

to
It e+ [ IOy e <
0

3 —
c(1+t0)+7/ |VT 2k (0)| ds.
2 Jro

This completes the proof of Theorem 3.5. O

7. Proor oF THEOREM 3.6
Proof. Since k = 92 f, it follows from estimate (3.25) in Theorem 3.5 that
(7.1) sup ()l < (T +1) + En,.
(0,77]
Recall that the length of the curve I'(¢) is uniformly bounded from below and above by the
constants 2/Eo and Eo. Hence the embedding theorems holds in the spaces Hy (t), r > 0,
t € [0,7], with embedding constants independent of ¢. Since the embedding H™(t) —

C™ 10, L(t)) is continuous, it follows from this and (7.1) that f and k as a function of
variables ¢t and s admits the estimate

(7.2) [SOUII% fO)llcm—10,c0) + IE@E)llem—30,206)) < (T +1) + Em.

Notice that s is an auxiliary variable and the basic independent variable is € S'. Hence
our task is to estimate the derivatives of f as a function of the variable 6. To this end,
note that

(7.3) 85((,;0’ 0) = /g(t,0), where /g(t,0) = 100f(t,0)|.

Let us estimate the length element ,/g. It is easily seen that

o g(t)zWlﬂwef-aeatf>=(asf-asatf> o0).

Notice that

agfﬂsatf:rasatf:—asf-atf:—k-vz—%m,
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which yields the ordinary differential equation for |/g:

(7.4) Oi/g = —%772 g or \/‘m:\/gioe_%fotmdt‘
It follows from estimate (6.21) in Lemma 6.7 that

H7T2||H;n*4 <e(l+ ||k‘|H;'L*2)l+ﬁy
which gives

(7.5) sup [|m2(t)llcm—5(0,2()) < €
[0,7]

Next we have for every integer r > 1
Opma —28 T Zcpa (Dos)™* (D5s)*2 ... (Dhs)"r,

where the interior sum is taken over all nonnegative integer vectors a such that
ar+ar+...ar=p, o1+2a24+--+roa.=r,

and c,. are some constants. In particular, we have
8571—2 Z apﬂ-Q Z Cpa al 89 \/>) . (8571\/.5)&7‘ .

Differentiating both sides of equation (7.4) with respect to 6§ we obtain

(76) 005 \/5) =~ 372 (05 /3) + R,

where

RT:fchz_lé‘g (Z@pmzcm ) (Bor/9)™ ... (0 7~ 1\/5)%)7
=0

and
arta+...Qr—c=p, art2a2+-+T0U_6=T—0.

Notice that R, contains only the derivatives ag\/g of order j < r — 1. Moreover by virtue
of (7.5), we have

|0;ma(t,0)] <c forall te[0,7] and r <m —5,
which yields the estimate

r—1
i N

(7.7) IR < (14> 105v/4l)

i=0
where the integer N depends only on r. It follows from this and (7.6) that

is (s — @ N
(7.8) sup |0p+/g| < csup|9p+/go] + ¢ sup (1+Z|89\/§\)
[0,T] xSt st [0,T] xSt i—0

forall1<r<m—>5.
It follows from the conditions of Theorem 3.6 that

sup |95+/go| < ¢ forall r<m-—5.
st
On the other hand, we have
VG = /goe 2™ which yields g < c.
From this, (7.8), and the induction principle we conclude that

(7.9) [sou%)] IvVag®llgm-ss1y < ec.
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This inequality along with the relation
9ps(t,0) = /g(t,0)
leads to the estimate
[s(®)llgm-s@1y < e
Combining this result with (2.11) we arrive at a priori estimate (3.26) for f,
1fllcco,r:cm-s5(s1yy < e

Employing equation (3.20) and repeating the previous arguments we obtain desired esti-
mate (3.26) for 9, f. This complete the proof of Theorem 3.6. O

8. PROOF OF LEMMAS 2.1, 2.2, AND COROLLARY 2.4

Proof of Lemma 2.1. It suffices to estimate £ from below. The estimate from above
obviously follows from (5.11). Since T' is a C'! Jordan curve, the degree of the mapping
7:T — S! equals 1. Hence there exists s* € (0, £) such that 7(s*) = —7(0). We have

2= i) v < [ s < VE( [ was)" < vaveves

which implies the estimate V£ > v/2/Ep. The proof of Lemma 2.1 is completed.

Proof of Lemma 2.2. We will consider the immersion f = (fi, f2) as a function of the
arc-length variable s € [—-L£/2, £/2]. Obviously it can be regarded as L-periodic function
on R. We have 0sf1 = 71, Osfo = T2. In the Cartesian system of coordinates associated
with z, we have 7(0) = (1, 0). Notice that 7 is L-periodic and

1072~ c/2,c/2) = lIkllL2(—2/2,2/2) < V2ED0.
It follows from this and embedding theorem that

(8.1) ITllea(—c/2,c/2) + I fllcrta—c/2,c/2) < e(a, Eo)

for all o € [0,1/2). This means that the curve T' belongs to the class C'™ and its
smoothness properties depends only on a and Fy. In particular, there is a positive &,
depending only on Ey, such that
1 1
|0s f1(s) — 1] < 13’ |0s f2(s)] < 3 for all s € [—3k, 3k]
and
0 < c(Fo)™ ' <k <e(By) < oo
Therefore, the mapping z1 = f(s), s € [—3k, 3] is diffeomorphic. We denote its image by
[, B]. The mapping
n(@1) = fo(fi (1)), @1 € [—a,f]
is well defined and continuously differentiable. Moreover, the identity ' = 9sf2(9sf1) ™"
yields the desired estimate (2.3) for '. Next, we have

" (w1) = (07 f2(0s 1)) (s(21)) — 2(0s f2(0s 1) 7202 f1) (s(21)).
Since the absolute values of the derivatives (asfl)il, Os f2 are bounded by 2 on the segment
[—3k, 3k], it follows that

B 3k
/ In"|? dz1 < c/ |02 f|?ds < cFo.
-« —3kK

This completes the proof of Lemma 2.2.
Proof of Corollary 2.4. By virtue of Corollary 2.3, we have for every t € [0,T],
v(t) = inf dist (I'(¢) \ T3k (t), T2x(t)) > 0.
zel'(t)

Here I's.(t) and T'2.(t)) are the arcs centered at z and defined by Lemma 2.2 with T’
replaced by I'(¢).
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It is necessary to prove that inf; v(¢) > 0. Suppose, in contrary to the our claim, that

there are sequences t,, and z, € I'(¢,,) with the properties

dist (T'(tn) \ ['5x(tn), [ (tn)) = 0 as n — oo.
Here T's, (tn) and '3, (t,) are the arcs centered at z, and defined by Lemma 2.2 with T’
replaced by I'(t,).

After passing to a subsequence we may assume that ¢, — te € [0,T] and 2z, — 2* € R?
as n — oo. It follows that there are sequences z;, € I'(t,) \ Tsx(tn) and z;, € T'ax(ty) such
that |z;, — 2| — 0 as n — oo. Choose the arc-length coordinates on I'(¢,) such that the
corresponding arc-length coordinates equal zero at z*. It follows that

Z:L:f(tn75{n)7 Z'Z:f(tnvsz),
where
sn € (=L(tn)/2,L(tn)/2) \ (=3K,3k), s € (—2k,2K).
Passing to subsequences we may assume that
S = Soo € (—L(teo)/2, L(tec)/2) \ (—3K,3K), sn — 5" 0 € (—2k,2K).
It follows from condition H.3 that
Zn = f(tn, sn) = [too,s0) and z, = f(tn,s7) = f(too, 00)-
Hence
(8.2) Ftoo, 5m0) = fltoo, 5m) and sn 7 Smo.
On the other hand, Condition H.2 implies that the curve I'(ts) has no self-intersections.
This contradicts to relations (8.2).

9. SOBOLEV SPACES

9.1. Anisotropic spaces. In the proof of basic results in Section 4, the analysis of
function classes with specific smoothness properties with respect to specific space variables
is required. In this subsection we collect the basis facts about such spaces. The results will
be used in Sections 10 and 11.
Let
Qm = (_K’mv“im) X (_qupm)7 me [17T]

be a rectangle defined by (3.1). Fix an arbitrary smooth function ¢ : Q. — R compactly
supported in the interval y1 € (—Km,km) for every yo € (—pm, pm). Assume that ¢ is
extended by 0 to the strip R X (—pm, pm). Introduce the norm
ll¢llxee = sup ([G(y1; L2 (= ppm,pm)s
(9.1) yIeR _

19135 = 161Z2(q,.) + 101011 Z2(q,0)-
Since ¢(+,y2) is smooth and compactly supported in R, we can rewrite this definition in
terms of the Fourier transform. The Fourier transform ¢(&,y2), (&, 42) € R X (—pm, pm),
is defined by the equalities

] 1 —igy1 1 / i€y
) = = € ) d ) ’ = = € ! ’ dg.
s = o= [ o, o) = o= [ @i ) de
With this notation definition (9.1) for Y7-norm can be written in the equivalent form
Pm A
92) 91y = [ ([ @+ €7 1606 1) de) de.
—Pm R
Using (9.2) we can define Y?-norm for any 3 € R:

93) 6t3s = [ ( [+ 1ot )P de) e

Pm
Notice two elementary inequalities for the introduced norms.
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Lemma 9.1. Let ¢ be a smooth function compactly supported in Q. Assume that ¢ is
extended by 0 to R X (—pm, pm). Then

(9.4) [6llx> < c(0) l|gllye for every o >1/2,

1-2

(9.5) [6lly> < e(@) 119l 2, |67+ for every o >0 and 0 <~y <o.

Proof. In order to prove the first estimate (9.4) in Lemma 9.1, note that

sup |61, 2)| < —— / 1B(E,y2)] de.

y1ER

Thus we get

Pm
|6l%- = sup /
Y1€ERJ —pp,

2
d(y1,y2)|° dy2 </ sup |<Z>(y17y2)|} dyz <

—pm ~Y1€ER

/ {4|&<£,y2>|d§}2dy2.

Since ¢ > 1/2, the Cauchy inequality implies the estimate

{ [1o€mide}” < [areymae [a+e) 1oem) ae
e [+ 1ot e

(9.6)

Substituting this estimate into (9.6) we finally arrive at the inequality

o= < [ [+ € 106 )P de e
Pm
which along with (9.3) yields the desired estimate (9.4).

It remains to prove the interpolation inequality (9.5). We begin with the observation
that

(1+€)"16(6 v2)” = (196, 32))" ™7 (A +E)10(& 1)), 9 =/o-
From this and the Hoélder inequality we conclude that

[aeriaemacs ([ ioemra) " ([a+erioemia)”

Combining this inequality with (9.2) and applying the Holder inequality we finally arrive

at the estimate
1611~ = /_m {/R(l+£2)”\$(€,yz)\2d£}2dy2 <
LA Lo wmrae) ™ (farerisemita) yae <
()7 [ocmiasan) " ([ [a+eyioe i)’ -

1155~ 611> -
Recalling that ¥ = v/o and

Pm R Pm
18l1%0 = [ /IR 13(, o) 2 dedys = [ /R 16() 2 dyndye = 1622,

we obtain the desired interpolation inequality (9.5). O
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9.2. Proof of Lemma 5.5. Without loss of generality we may assume that £ = 27. For
the sake of simplicity, introduce the temporary notation:

(9.7) F=u F=v= Z u(s + 2km).
k=—oc0

It is necessary to prove that

(9:8) ||U||Hén+1/2 < ullgmrr2 -

Step 1. New norm in H™/2(R). It is convenient to introduce the equivalent norm on
the space H™1/2(R). Recall that

(9.9) 21208y = / (1+ Je[)™ 72 ()| de.

Introduce the pseudodifferential operators S and T defined in terms of the Fourier transf-
orm by the equalities

_ 1 . _ .
(9.10) Su(§) = (FGEREE a(€), Tu(§) =T a),
where
(i)™

(9.11) T = RENEREE a(é).
It is clear that
(9.12) T = (9,)""" S.
Introduce the Hilbert norm defined by
(9.13) 21728y = N2 ey + I T 0l 2 e,
or equivalently
(9.14) ey = [ 1+ TP i) de.
Since

A+ ED™ME <A T O < e(1+ (g™ 2,
the norms || - || m+1/2(z) and | - |gm+1/2(z) are equivalent, i.e.,
(9.15) c_1|\u||Hm+1/2(R) < |U|Hm+1/2(R> < C||uHHm+l/2<R).

Finally introduce the function

(9.16) Q) =T uE), ek
It is clear that

2 12 2
(9.17) [ulgmr1/2@my = @lz2®) + 1122 R)-
Step 2. New morm in H;n+1/2. It is convenient to introduce the equivalent norm on

the space Hﬂmﬂ/g. Recall that

oo

(9.18) H’vlli,nmwz = > W)™ o)

k=—oc0

where the Fourier coeflicients are defined by

1 7 —iks
Vg = — e v(s) ds.
e (s)
Introduce the operators Sy and Ty defined in the Fourier basis by the equalities
1

(9.19) (Sﬁ U)k = Tﬂ ’U)k = T(k’) Vk,

DR
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where 7T is defined by (9.11). It is clear that

(9.20) Ty = (95)™ 1" Sy
Introduce the Hilbert norm defined by
2 2 2, |2
(9.21) [l gmeare = ;lvﬂ +Xk:|T(/€)| vk |
Arguing as before we conclude that the norms || - || ;m+1/24 and |- | ,m+1/2 are equivalent,
¢
ie.,
(9.22) 671HU||Hgn+1/2 < |v|H;n+1/2 < C||UHH;71+1/2-

Finally introduce the sequence

(9.23) Dy (k) =T (k)ve, —oo<k<oo.

It is clear that

(9.24) ol gernra = 3 el + 3 @b
k k

Hence we can rewrite inequality (9.8) in the form

\U|H;n+1/2 < clulgm+1/2(r)-
From this and representations (9.17), (9.24) for the norms in the spaces H?H/Q and
HT”“/Q(R) we conclude that this equality is equivalent to the following

(9.25) Dol D0 1@ (k) < elllalZe ey + 1RNZ2y)-
k k

Step 3. Relation between ® and ®y. Let a compactly supported function u and a periodic
function v are connected by relation (9.7),

oo

v = Z u(s + 2km).

k=—o00

Furthermore assume that ® and ®; are defined by (9.16) and (9.23). Then we have the
identity

(9.26) Dy(k) = ©(k), —o0 <k < oo.

Indeed, we have

&, (k) = T(k) v = T(k)\/% /0 " ek (s) ds =

oo T(k) /271- ke ‘ oo T(k’) /271'(j+1) ks
— e u(s + 27j) ds= — e u(s)ds
3T T man 3 T [ ()

- T(k)\/% /]R e~ *5u(s) ds = B(k).

Similarly we have

(9.27) v = a(k), —oo <k < oo.
Substituting (9.26) and (9.27) into (9.25) we conclude that it suffices to prove the inequality
(9.28) D (la®) + |@(k)) < C/R(lﬁ(é“)l2 +12(6)1%) de.

k
Step 4. The proof of inequality (9.28) is based on the following lemma

Lemma 9.2. Under the above assumptions we have

(9.29) 1@y < cllillpzw + cll @2y,  Nlla @) < clldflp2m)-
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Proof. Recall that
Tu=0""Su, Su=(1+¢*) " a

The operator S is the Bessel potential of order 1/2. It admits the integral representation

(9.30) Su(s) = /Rb(s —t)u(t) dt,

where the Bessel kernel b has the following properties, see [2], Ch. 1. On the interval
(—k, k) it has the representation

(9.31) b(s) = C(E +o(s), 0€C™[—k, ]

Outside of this interval the kernel b(s) admits the estimate

(9.32) |00b(s)| < c(r)e P! for all |s| >k, r>0.

Here (3 is some positive exponent. Choose an arbitrary function ¢ € C§°(R) such that
C(s) =1 for |s| <2k, ((s)=0 for |s|> 3k.

We have
Tu=(Tu+ (1 —{)Tu

Obviously we have
(9.33) / |s ¢ Tul® ds < 6112/ |Tul’ ds.
R R

Recall that u is compactly supported in the interval (—x, ). From this and estimate (9.32)
we conclude that the inequalities

ITu(s)| = ‘/Ra;"“b(s—t)u(t) dt| <

c/ e Pty t) dt < ce PI®! / lu| dt < ce”PI°! [l L2 Ry
R R

hold for every s with |s| > 2k.
Since (1 — ¢) Tu equals zero in the segment [—2x, 2k], it follows from this that

[0 =0Tu@P s <e [ 5 as fulag
< CHUH2L2(]R<)'
Combining this estimate with (9.33) we obtain
(9.34) [ 1l s < el + I Tula) ).

Next notice that
STu = Lo, Tu = ;a@, Tu = .
I

From this, (9.34), and the Plancherel theorem we obtain
[ 10cl? e < el e, + 191 20s) ).

which gives the desired estimate (9.29) for ®. Repeating these arguments with essential
simplifications we finally obtain estimate (9.29) for @, and the lemma follows. O

We are now in a position to complete the proof of Lemma 5.5. To this end, it suffices
to prove inequality (9.28). Notice that

|[D(k)[* < 219()[* +219(€) — (k)|
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Next we have
k+1 1/2
a©) -~ ol < ([ o) for €€ kb1l
k
It follows that
k+1
@ <20 +2 [ (0Bl d for €€ [k ko+ 1]
k
Integrating both sides of these inequality over the segment [k,k + 1] we arrive at the
inequality
k+1
212 [ (PO + oo de.

Summation this inequality with respect to k gives

i | (k)[* < 2/R(\<I>(€)I2 +10c®[%) dE = || |7 (z)-
From this and Lemma 9.2 we conclude that
(035 SO < (il + 1912
Repeating these arguments gives
(936) i la(k)[* < @72 -

Combining (9.35) and (9.36) we obtain desired inequality (9.28). This completes the proof
of Lemma 5.5.

10. PROOF OF LEMMA 4.3

We begin with the observation that the function w satisfies the divergent elliptic
equation
div (aNVu) =0 in Qo
with the matrix aN bounded from below and above by the constants, depending on Cx
and ao. It follows from this, inequality

llull 2@y + VUl L2(gq) < Cu < 00

and di-Giorgi-Nash-Moser estimate for the Hdlder norm of solutions to the divergent
elliptic equations that the estimate

lul|ca@y < c(Q') for some « € [0,1),
holds for every compact set Q" € Qo. We thus get the estimate
(10.1) [ville@n < cllulle@n < e
For m = 1, equation (4.19) reads
div (aNVO1v1) = — div (ad1 NVu1)+
div (81u aNV 1 + uad; (Nchl)) + 0 (aVepr - NVu) in Q.

Now we estimate every term in the right hand side of this equation. Since a is bounded
and N is independent of y2, we have

||(181NV’U1 HLQ(Ql) S C |‘81NV’U1 HL2(Q1)
O N2~

(10.2)

IN

k) sup  IVuillzzpy o)) =
y1€(—K1,K1

cllO1N L2~y ,mp) VULl X0 < €| Vi xo0.
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Here we use estimate (4.5) for 01 N. From this and inequalities (4.4)-(4.5) with ¢ = Vo
we conclude that for every fixed o € (0, 1),

a0t NV 1|12,y < cl[Vuilxe < ¢ Vorllye

(10.3) - . .
< Vol ialoy IVerl§r < e[ Tur5.

Let us estimate the second term in the right hand side of (10.2). Recall that L*-norm of
Vu and 01 N are uniformly bounded by the constants Cn and C,. In its turn, L° norms
of u and N are bounded by Cx and the constant in inequality (10.1). It follows from this
that

ladiu NVp1 +uadi(NVe1)|r2g,) <
c||Vullp2(q,) +cllOr(NVer)llL2q,) < e
It remains to estimate the third term in the right hand side of (10.2). We have
(10.5) aVr - NVullp2q,) < clVullLzg,) < e

(10.4)

Multiplying both sides of (10.2) by d1v1 and integrating the result by parts we arrive at
the equality

/ aNVOiv1 - V&lvldy = —/ a01 NV - VOiv1 dy+
Q1 Q1

/ (01u a NVyp1 +uadi(NVe1)) - Vorvr dy —|—/ (aVp1 - NVu) 71 dy.
Q1 Q1

Applying the Cauchy inequality in the right hand side and employing estimates (10.3)-
(10.5) we obtain

(106) / CLNval’Ul . V81v1dy S C(HVU1H37/1 -+ 1) HV@lleLz(Ql).
Q1

Recall that the matrix a/NV is bounded from below by the constant depending only on Cx
and ao, which gives

/Q1 aNVoivy - Vorurdy > cil||V81v1||2L2(Ql).

Obviously we have

(Vuill$: < e([[Vivillzg,) + 101 Vivillz20,))°

< 1+ Vi l2q,)7 < ¢+ el TuillF2 ).
Substituting the obtained estimates into (10.6) we arrive at the inequality
[VO1villL2(q,) < c(IVOui||T2(g, +¢, o€ (0,1),
which obviously yields the desired estimate (4.20)
[01Vvi|lL2(q,) < c

11. ProoF oF LEMMA 4.5

11.1. Proof of estimate (4.22) for A,,. Introduce the temporary notation
H:@lN, w:81va.
Since ¢1 = 1 on the support of v, it follows from the definition (4.10) of v, and estimate
(4.20) in Lemma 4.3 that
(11.1) IH 22—k mm) + 0l 220, < e
We have o
Apm = > ad HO\V'w + ad]" NV,

itj=m—2,i,j>0
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which yields

(11.2) [Amll 220,y < > Fy 408 NVumlt2q,.),
i+j=m—2,i,j>0

where ‘ ‘
Fij = [|0{H 01 wl|2(q,,)-

Let us estimate Fj;. We have

Fh= [ lo{HP 0wl dy <

pm
{[ " 1oimran}{ [ ot ave).
—Km y1€E( Hm wm) J—pm
Choose an arbitrary o € (1/2,1). Recalling the definition (9.1) of norms X, Y7 and
inequality (9.4) we obtain
(11.3) Fij < cllHllws2(— g ) 1010l x50 < CllHllws2( 0,y [1010]v-

Next, we employ the interpolation inequality in Sobolev space and the special interpolation
inequality (9.5) to obtain

HHHW7 2(—Km,km) < CHH”L2( Ko o) ||H| Wm 12(C ko im) = CHH‘ Wm L2(— g, rm)

and

< CHanL 1

. 1_L
[O1wllye < llwllyi+o < cllw]l 2" Hw| yom—1-

le

Substituting these inequalities in (11. 3) we arrive at the estimate

ito
Fy < lHIT o Tl
Notice that ] ] o 5
J_ o ito _jFivo mz2to g
m—1 m-1 m—1 m—1
Thus we get
A
Fij S C( HH”‘O/(VW*LQ(fn,,L,NV,,L) ”w”gm—l ) )
where 1 ) -
J i+o
= — =1.
at+p )\(m -1 m- 1)
Applying the Young inequality we obtain
A A
(11.4) Fuy < e 1H sy + 103 ).

It remains to estimate the last term in inequality (11.2). By virtue of estimate (4.20) in
Lemma 4.3, we have

107" NVUmllL2(@) < € 107 Nl L2(— k) VOl x00
S O Nl L2(—npim) 1VOmllyr < cll07 NllLz(— i mm)-
Substituting this estimate and estimate (11.4) into (11.2) we arrive at the inequality
(115) [ Amllez(@m) < clH W m—12(npyinm) +ClwlFmas + el N2y -
Since

w=Voy and [Jw|lym-1 < c(|wlr2q,,) + 107 w2,

it follows from estimate (4.20) in Lemma 4.3 that

(11.6) lwllym-1 < (14 107" Vomll 2@, )-
On the other hand, the equality H = 01 N implies the estimate
(117) ||H||Ym—1 S C(1+ ||aInNHL2(7,;m’K‘m)).
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Substituting (11.6) and (11.7) into (11.5) and noting that 0 < A < 1 we obtain desired
inequality (4.22).

11.2. The proof of estimate (4.23) for C,,—1. Recall that
Cm—-1=aVpmy, - NVup_1,
which yields

m—1

-1
107" Cm—-1llL2(@,.) <€ Z 107 (NVm—1)llL2(Q.m)

p=0
<c+ )07 (NVUm-1)ll22(0,.)-

(11.8)

Notice that for m = 1 estimate (4.23) is obviously true. Next, it follows from (11.8) that
101C1][22(@y) < ¢+ cllOr(NVv)|r2(q,,) <
c+ c|\N(91Vv1||L2(Q1) -+ ||81NV’U1 HLQ(Q1)'
From this, estimate (4.20) in Lemma 4.3, and inequality (4.5) we conclude that
101C1]l L2 (qy) < ¢+ cl|O1(NVv1)| 20, <
¢+ [ON 22 (= m) VUL x50 < €4 €[ V]| xoe.
Employing estimates (9.4) and (4.20) we finally obtain
[01C1llL2(q,) < ¢+ el Vuillyr < e+ [[01VurllL2(q,,) < e

Hence estimate (4.23) holds true for m = 1,2. Let us consider the case m > 3. By virtue
of (11.8), we have

107" Con—1ll2(@u) < €+ €llOF T (NVUm-1)llL2(0,,) <
ct o Vomallzn + D |0{ N 91 Vum—1ll12(q,.)-

i+j=m—1,;j2>1

(11.9)

Arguing as before we obtain
103N 0Vl 2@y < AN w2y 105 T0m -1
Fix an arbitrary o € (1/2,1). Estimate (9.4) implies
101 Vom-1][xo < cl|0i Vm-1llye < c||[Vom-1|yito.
Thus we get
(1L10) [N 3 Vomll 20 < N s Vool
It follows from (4.5) and the interpolation inequality that

m—1—j
(AL11) IVl < DNl o IN IR

wi, 2( Ko s wm 12( K sKm)
j—1
< | Nl

Wm=12(—fm,km)

On the other hand, interpolation inequality (9.5) and estimate (4.20) imply
[Vom-illyis < cllVom- s ™ (Vo |7 <

(11.12)

c[[Vom- 1||§/"m L < e+ 1077 Vom—il12(gu)) T2

Substituting (11.11)-(11.12) into (11.10) and noting that

m—1
||N||Wm—1»2(*limyl€m> S C(HNHLQ(_"@maNm) + ||61 N”Lz(—"‘@mu“im))
< (14107 N 2 (i)
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we arrive at the estimate
||8{N8iv1}m71”L2(Qm) S

j—1

)72 (L4107 Vo1l L2(g,) 72

c(1+ (|07 N| 2

(=Km,km)
Since
ji—1 i _itg—1 1
m—2 m—2 m—2 ’
we can apply the Young inequality to obtain

HaiNaivv’m*l”L?(Qm) <
(L+ 1107 NllL2(— ) + 107 Vom-ill12(0,0) )-
Substituting this inequality into (11.9) we finally obtain desired estimate (4.23)

11.3. The proof of estimate (4.24) for B,,_1. Since a and N are independent of y1, it
follows from the expression (4.15) for By that

(1113) 07 Bon-1l2(11) < €l Om-1V0m)l 220y
+c Z 10N 05 (vm—1Vml L2(qpn) -
itj=m,i<m—1
We have
107" (wm-1Vem)lL2@umy S ¢ D 0% @n-1Vom)lL2(Qp_1)

0<p<m
which along with the Poincare inequality yields the estimate
(11.14) 01" (vm-1Vom)ll2(Q,,) < (1 + Hlainvm—llle@m,l))
<c(I+ 10" Vum-1llr2(q,, 1))
For nonnegative integers 1, j, satisfying relations ¢ + j =m, 0 < i < m — 1, we have
”a{Nai(vmflvsommL?(Qm) <
cllO N1l 22 (= ) 101 (V=1 Vo) || 2 -

Recall definitions (9.1) and (9.3) of the Banach spaces X*° and Y°. Now choose an
arbitrary o € (1/2,1). By the embedding inequality (9.5), we have

(11.15)

101 (vm-1Vom) [ x < cllvm—1Vemllyita,
which along with (11.15) yields
(AL16)  [OIN 0 (0n1Vem)ll2@my < N 2oy ome1Vpmllyeso
Next notice that by virtue of estimates (4.5) and (4.20), we have
HNHWI’Q(—nm,nm) + vaflvwnuyl S C.
From this and the interpolation inequality we obtain
j—1 ito—1

1OIN 122k < NI s ome1 Vomllyine < cllvmr Veomllyi ™ .

Since _ ) 1 1
J— +z+07 -1 —0o

= <1
m—1 m—1 m—1—

it follows from (11.16) and the Young inequality that
1IN 81 (V-1 V)l 12 (@) <
L+ INllwm 2= ) + [0m-1Vomlym).

)

(11.17)

Notice that
INIlwmo2 (= ey < (1 + (|07 N[ 2

(*Kma'im))'
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Arguing as in the proof of (11.14) we obtain

lvm-1Vemllym < c(1+ 107" (vm-1Vem) 120

< (14107 Vom-illr2(g, 1) )-
Substituting these inequalities into (11.17) we arrive at the estimate
18] N 81 (Vm—-1VPm)ll 2@y < L+ 10T Nl 12—y n) + 107" Vom-illr2(@,_y))-
Combining this estimate with estimates (11.14) and (11.13) we arrive at the desired
estimate (4.24) for Bp,—1.
12. ProoF oF LEMMA 6.3

Introduce the denotations

(12.1) d=pn, k=Kn, ¢=®-n, K=k-n,
where K is the scalar curvature. We have
r—1 ] )
0:® —Vi® =0;(pn) —dspn = Z ciOp 07 "n.
i=0

Note that
On =87 =k*, kT = (—ko, k1) = —KrT.
It follows that

r—1
(12.2) O —VIe=> ci0ipdi k.
i=0

Let us estimate L?-norm of every term in the right hand side. First we consider the case
when
i>1, j=r—1—i¢>1.

The Holder inequality implies the estimate

i o P . 20-1) = Lo2(r—1) i
|05p0iky = [ 1ekeloibl®as < ( [ 10kl T as) T ( [ 100 as) T,
# r r r
which can be written in the equivalent form

llaiwﬁiklng <ozl 2¢-1) 02K 2—1,
L (0,£) L

7 s R

From this and the the Gagliardo-Nirenberg inequality (2.10) we obtain

(123)  1Biediklie < cllell o k1Tl (el k).
It follows from the embedding inequality (2.8) that for o € (1/2,1), we have
lellzee(o.c) < cllllag -
Next, the interpolation inequality gives
lellg < el el ol < el el
which yields

11—t =T . :
ol ooy 1ol e < el el

where

(124)  ai=(1-2)1-
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Repeating these arguments we obtain

J

1-5iy = el
1%l Los't0. 2 ||/€||;;-11 < CHkH(;}’? 1&ll -

The quantities a; and §; are given by the formulae (12.4) with ¢ replaced by j. From this
and (12.3) we conclude that

S . : ; 8;
(12.5) 103 kllmg < e(llpllzgy I1Flo) (ellziy Iellsy)-
Since 1 + j = r — 1 we have

1- 1—-
a; +aj; =1+ TJ, Bi+pBj=1- g

In other words, we have

1_0* 1_0* 1_0'* 1—0
Joi, g = (1+ ——=)aj, Bi=(-——)8 B =(1-

047;:(1+
T T T T

)Bj

where o] + o =1 and 3 + 8] = 1. From this and the Young inequality we obtain

. — 0
G

=% 141
lellyio 16z < Cllellreo, + [kl o) L
. B 1—1=0c
l5iy Il < (hellary + Illag) =7
Combining these estimates with (12.5) we conclude that the inequality

(126) [0 Olkllg < cllelg + Ibll) "

1-o 1_1l=c

= (el + 1#llp) =

holds for every 1 <i <r—2and j =r — 1 —i. It remains to consider the cases i = 0 and
i =71 — 1. We have for o € (1/2,1),

r—1 r—1
ll 05 klly + 1105 Kll g < ellellg Ikl yr—1, + cllkllmg llell -

Next, the interpolation inequality implies

g 2 Lo
pllery < ellellyo™ llell iy, Mellzry—1 < ellello el
The similar estimates holds true for k. Thus we get

o 05kl o + 1105 ¢ Kl go <
§ 8

L ot
clkll o™ el o) Rl el aam™)+

1—2o

1 o 1—1
C(IIsDHHgT Hkl\}}g) (el e 11-ll Erem)-
It follows that
lle 8§_1k||H§’ +0: e k”H;’ <

 (Flg” 10l g + Nellg™ Kl ) (1K™ Nl + ellig Ikl ™).
Using the simple inequality
b + a'bt < 200 F 2N a b\ >0,
we finally obtain the estimate

llo 03 kllag + 102" Kll g <

l1—0o

1— —o _ _1l-c
¢ (ke ™ =) (kg ™ + el ™)

It follows from this estimate and estimate (12.6) that the inequality

o 1+1
+ el

o _l-0o
= (Nl + 1Kl )7

i aj 1+
1050 02kl g < e(llellag + IFlLp )
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holds for every 0 < i <r—1and j = r — 1 —4. Combining this result with identity (12.2)
we obtain desired estimate (6.13).

(1]
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