S@MR

ISSN 1813-3304

СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports http://semr.math.nsc.ru

Том 20, №1, стр. 62-71 (2022) DOI 10.33048/semi.2023.20.006 УДК 515.56 MSC 06B20, 08B05, 08C15

QUASIVARIETIES GENERATED BY SMALL SUBORDER LATTICES. I. EQUATIONAL BASES

O. A. KADYROVA AND M. V. SCHWIDEFSKY

ABSTRACT. For each cardinal $\kappa > 0$, the quasivariety generated by the suborder lattice of M_{κ} is a finitely based variety. An equational basis for this variety is found.

Keywords: lattice, quasivariety, variety, poset.

1. INTRODUCTION

Suborder lattices were studied by several authors; we refer to D. Bredikhin and B. Schein [3] and to B. Sivák [15] as well as to [12, 13, 2]. Suborder lattices were used as a convenient tool in establishing some deep results for subsemigroup lattices which are presented in the papers of V. B. Repnitskiĭ [10, 11]; see also [14].

For a positive integer n, let \mathbf{SO}_n denote the class of lattices embeddable into suborder lattices of partial orders of length at most n. It was established in [13] that \mathbf{SO}_n is a finitely based variety and a particular finite equational basis was found for this variety in [13].

There are still some unsolved problems which concern suborder lattices. For example, Question 2 in [13] asks if the quasivariety generated by a finite suborder lattice is a variety. A positive answer to this question was given in [2] for the suborder lattice $O(M_1)$. Moreover, it was established in [2] that the quasivariety generated by $O(M_1)$ is a variety and a particular finite equational basis was found for this variety.

In this paper, we extend the results from [2] to a more general case and consider lattices $O(M_{\kappa})$ for an arbitrary cardinal $\kappa > 0$, see Figure 1. Specifically, we

Kadyrova, O. A., Schwidefsky, M. V., Quasivarieties generated by small suborder lattices. I. Equational bases.

^{© 2022} Kadyrova, O. A., Schwidefsky, M. V..

The research was carried out under the support of the Russian Science Foundation, project no. 22-21-00104.

Received August, 17, 2022, published February, 7, 2023.

prove that the quasivariety $\mathbf{Q}(\mathcal{O}(M_{\kappa}))$ generated by the suborder lattice $\mathcal{O}(M_{\kappa})$ is a finitely based variety and find a finite basis for this variety, see Theorem 10, Theorem 13, and Corollaries 14 and 15. In a subsequent article, the results of this paper will be used for establishing categorical dualities for the quasivarieties $\mathbf{Q}(\mathcal{O}(M_{\kappa}))$ where $1 < \kappa \leq \omega$.

2. BASIC CONCEPTS

For all the notions which are not defined in this section, we refer to A. I. Maltsev [8] and V. A. Gorbunov [6].

2.1. Lattices. Most of the following definitions concerning join covers are in accordance with R. Freese, J. Ježek, and J. B. Nation [5].

Let L be a lattice. For arbitrary two sets $A, B \subseteq L$, we say that A refines B and write $A \ll B$ if for each $a \in A$, there is $b \in B$ such that $a \leq b$. If $x \in L$, then Ais a join cover of x if $\bigvee A$ exists and $x \leq \bigvee A$; we also call $x \leq \bigvee A$ a join cover in this case. A join cover $x \leq \bigvee A$ is nontrivial if $x \nleq a$ for all $a \in A$; $x \leq \bigvee A$ is finite if the set A is finite. A join cover $x \leq \bigvee A$ is irredundant if $x \nleq \bigvee B$ for any proper subset $B \subset A$. A join cover $x \leq \bigvee A$ is minimal if $A \subseteq B$ for each join cover $x \leq \bigvee B$ such that $B \ll A$. The lattice L has the complete minimal join cover refinement property (CR)_X for a set $X \subseteq L$ if each nontrivial join cover of each element from X can be refined to a minimal one.

By J(L), we denote the set of all join-irreducible elements of L and by CJ(L) the set of all completely join-irreducible elements of L. Similarly, by P(L), we denote the set of all join-prime elements of L and by CP(L) — the set of all completely join-prime elements of L.

Definition 1. Let L be a lattice and let $J \subseteq J(L)$. We say that L is a J-lattice if L possesses the following properties:

- (i) for each element $a \in L$, there is a subset $J_a \subseteq J$ with $a = \bigvee J_a$;
- (ii) for each element $a \in J$ and each nontrivial join cover $a \leq a_0 \lor \ldots \lor a_n$ with $n < \omega$ and $a_0, \ldots, a_n \in L$, there is a finite set $F \subseteq J$ such that $a \leq \bigvee F$ is a minimal join cover and $F \ll \{a_0, \ldots, a_n\}$.

We say that L is a CJ-lattice if L possesses the following properties:

- (i) for each element $a \in L$, there is a subset $J_a \subseteq CJ(L)$ with $a = \bigvee J_a$;
- (ii) L has the property $(CR)_{CJ(L)}$.

It follows from the definition above that each CJ-lattice is a J-lattice for J = CJ(L). J-lattices were considered in [1, 4], see also [13].

For a *J*-lattice *L* and an element $x \in J(L)$, let $\mathfrak{M}(x)$ denote the set of all finite minimal join covers of *x*.

Remark 1. We note that in an upper continuous lattice L, each minimal join cover of an element $x \in CJ(L)$ belongs to $\mathfrak{M}(x)$.

Proposition 1. [4] Let L be a complete dually algebraic lattice. Then the following statements hold.

- (i) If L is n-distributive then L is a J-lattice.
- (ii) If L is in addition algebraic then L is a CJ-lattice.

FIGURE 1. Posets M_1 , M_n , and M_{ω}

2.2. Suborder lattices. Let X be a set and let $R \subseteq X^2$ be a strict partial order on X; that is an irreflexive, antisymmetric, and transitive binary relation. In this case, we also say that $\langle X; R \rangle$ is a partially ordered set or a poset for short. A subset $R' \subseteq R$ is a (strict) suborder of R if the structure $\langle X; R' \rangle$ is also a poset. The set O(X, R) of all (strict) suborders of a partial order R on X is a partially ordered set with respect to the relation \subseteq of set-theoretic inclusion. Obviously, \emptyset is a least suborder of R. Thus, \emptyset is a least element in O(X, R). It is also obvious that R is a greatest element in O(X, R). It is straightforward to check that for an arbitrary family $\{R_i \mid i \in I\} \subseteq O(X, R)$, the relation $\bigcap_{i \in I} R_i$ is also a suborder of R; that is,

$$\bigwedge_{i \in I} R_i = \bigcap_{i \in I} R_i \in \mathcal{O}(X, R).$$

Thus, O(X, R) forms a complete lattice, where

$$\bigvee_{i\in I} R_i = \left(\bigcup_{i\in I} R_i\right)^t;$$

here Y^t denotes the transitive closure of a binary relation $Y \subseteq X^2$. It is clear that

$$\mathcal{J}\big(\mathcal{O}(X,R)\big) = \mathcal{C}\mathcal{J}\big(\mathcal{O}(X,R)\big) = \Big\{\big\{(a,b)\big\} \mid (a,b) \in R\Big\}$$

We consider here strict partial orders instead of ordinary partial orders for the sake of simplicity only; the least element of a suborder lattice is in this case \emptyset and not the set $\{(x, x) \mid x \in X\}$.

In this article, we consider suborder lattices of posets M_n , $0 < n \leq \omega$, which all have length 2, see Figure 1.

3. An equational basis for $\mathbf{SP}(O(M_n))$

3.1. Identity (D_n) . We consider the identity of *n*-distributivity, where $0 < n < \omega$, which we denote by (D_n) :

$$x \wedge (y_0 \vee y_1 \vee \ldots \vee y_n) = \bigvee_{i \leqslant n} [x \wedge \bigvee_{j \neq i} y_j].$$

This identity was introduced by A. Huhn in [7] as a generalization of distributivity it is clear that (D_1) is just the identity of distributivity. The following lemma is folklore and straightforward to prove, see for example [9].

Lemma 2. Let L be a lattice, let $J \subseteq J(L)$ be a set such that for each element $a \in L$, there is a subset $J_a \subseteq J$ with $a = \bigvee J_a$. The following conditions are equivalent.

(ii) If $a \leq b_0 \lor b_1 \lor \ldots \lor b_n$ for some $a \in J$ and some $b_0, b_1, \ldots, b_n \in L$, then there is $i \leq n$ such that $a \leq \bigvee_{i \neq i} b_j$.

Corollary 3. Let L be a J-lattice for some set $J \subseteq J(L)$. The following conditions are equivalent.

- (i) (D_n) holds in L.
- (ii) If a ≤ b₀ ∨ ... ∨ b_m is a minimal nontrivial join cover for some elements a and b₀,..., b_m ∈ J then 0 < m < n.

3.2. Identity (P). We denote the following identity by (P):

$$x \wedge \left[\left(y_0 \wedge (z_0 \vee z_1) \right) \vee y_1 \right] = \left[x \wedge y_0 \wedge (z_0 \vee z_1) \right] \vee \left[x \wedge y_1 \right] \vee \bigvee_{i < 2} \left[x \wedge \left((y_0 \wedge z_i) \vee y_1 \right) \right].$$

This identity was introduced in [4] under the name (N_5^1) . It was used in [4] as one of four identities which constitute an equational basis for the [quasi]variety $\mathbf{SP}(N_5)$. It was also used in [2] as one of three identities which form an equational basis of the [quasi]variety $\mathbf{SP}(O(M_1))$, also under the name (N_5^1) . For the next two statements, we refer to [4], see also [2, Lemma 6, Corollary 7].

Lemma 4. [4] Let L be a lattice, let $J \subseteq J(L)$ be a set such that for each element $a \in L$, there is a subset $J_a \subseteq J$ with $a = \bigvee J_a$. The following conditions are equivalent.

- (i) (P) holds in L.
- (ii) If $a \leq a_0 \lor a_1$ is a nontrivial join cover and $a_0 \leq b_0 \lor b_1$ for some $a \in J$ and some $a_0, a_1, b_0, b_1 \in L$, then $a \leq (a_0 \land b_i) \lor a_1$ for some i < 2.

Corollary 5. [4] Let L be a 2-distributive J-lattice for some set $J \subseteq J(L)$. The following conditions are equivalent.

- (i) (P) holds in L.
- (ii) If a ≤ a₀ ∨ a₁ is a minimal join cover for some a, a₀, a₁ ∈ J, then a₀ and a₁ are join-prime elements.

3.3. Identity (C_n) . We denote the following identity by (C_n) :

$$\begin{aligned} x \wedge \bigwedge_{i \leq n} (y_i \vee z_i) &= \bigvee_{i \leq n} \left[x \wedge y_i \wedge \bigwedge_{j \neq i} (y_j \vee z_j) \right] \vee \bigvee_{i \leq n} \left[x \wedge z_i \wedge \bigwedge_{j \neq i} (y_j \vee z_j) \right] \vee \\ &\vee \bigvee_{i < j \leq n} \left[x \wedge \left((y_i \wedge y_j) \vee (z_i \wedge z_j) \right) \wedge \bigwedge_{k \notin \{i, j\}} (y_k \vee z_k) \right] \vee \\ &\vee \bigvee_{i < j \leq n} \left[x \wedge \left((y_i \wedge z_j) \vee (y_j \wedge z_i) \right) \wedge \bigwedge_{k \notin \{i, j\}} (y_k \vee z_k) \right]. \end{aligned}$$

The identity (C_1) was introduced in [4] and used there, under the name (C), as a member of an equational basis of the [quasi]variety $\mathbf{SP}(N_5)$. It was also used in [2] as one of three identities which form an equational basis of the [quasi]variety $\mathbf{SP}(O(M_1))$, also under the name (C). For the next two statements, we refer to [4], see also [2, Lemma 4, Corollary 5].

Lemma 6. Let L be a lattice, let $J \subseteq J(L)$ be a set such that for each element $a \in L$, there is a subset $J_a \subseteq J$ with $a = \bigvee J_a$. The following conditions are equivalent.

(ii) If a ≤ a₀∨b₀,..., a ≤ a_n∨b_n are nontrivial join covers for some a ∈ J and some a₀,..., a_n, b₀,..., b_n ∈ L, then there are c, d ∈ L such that a ≤ c ∨ d and {c, d} ≪ {a_i, b_i}, {c, d} ≪ {a_j, b_j} for some i < j ≤ n.

Proof. We prove first that (i) implies (ii). Indeed, let the assumptions of (ii) hold. Since (C_n) holds in L, we have

$$a = a \wedge \bigwedge_{i \leqslant n} (a_i \vee b_i) = \bigvee_{i \leqslant n} \left[a \wedge a_i \wedge \bigwedge_{j \neq i} (a_j \vee b_j) \right] \vee \bigvee_{i \leqslant n} \left[a \wedge b_i \wedge \bigwedge_{j \neq i} (a_j \vee b_j) \right] \vee \\ \vee \bigvee_{i < j \leqslant n} \left[a \wedge \left((a_i \wedge a_j) \vee (b_i \wedge b_j) \right) \wedge \bigwedge_{k \notin \{i,j\}} (a_k \vee b_k) \right] \vee \\ \vee \bigvee_{i < j \leqslant n} \left[a \wedge \left((a_i \wedge b_j) \vee (a_j \wedge b_i) \right) \wedge \bigwedge_{k \notin \{i,j\}} (a_k \vee b_k) \right].$$

As a is a join-irreducible element, a equals one of the joinands on the right-hand side of the equality above. Therefore, the following cases are possible.

Case 1: $a = a \wedge a_i \wedge \bigwedge_{j \neq i} (a_j \vee b_j)$. In this case, $a \leq a_i$ which contradicts the assumption that $a \leq a_i \vee b_i$ is a nontrivial join cover. Therefore, this case is impossible.

Case 2: $a = a \wedge b_i \wedge \bigwedge_{j \neq i} (a_j \vee b_j)$. In this case, $a \leq b_i$ which again contradicts the assumption that $a \leq a_i \vee b_i$ is a nontrivial join cover. Therefore, this case is also impossible.

Case 3: there are $i < j \leq n$ such that $a = a \land ((a_i \land a_j) \lor (b_i \land b_j)) \land \bigwedge_{k \notin \{i,j\}} (a_k \lor b_k)$. In this case, $a \leq c \lor d$, where $c = a_i \land a_j$ and $d = b_i \land b_j$. Moreover, $\{c, d\} \ll \{a_i, b_i\}$ and $\{c, d\} \ll \{a_j, b_j\}$ whence we get the desired conclusion.

Case 4: there are $i < j \leq n$ such that $a = a \land ((a_i \land b_j) \lor (a_j \land b_i)) \land \bigwedge_{k \notin \{i,j\}} (a_k \lor b_k)$. In this case, we put $c = a_i \land b_j$ and $d = b_i \land a_j$ and obtain the desired conclusion as above in *Case 3*.

We prove now that (ii) implies (i). Let u denote the value of the left-hand side and v denote the value of the right-hand side of the identity (C_n) under interpretation γ , where

$$\gamma(x) = a, \quad \gamma(y_i) = a_i, \quad \gamma(z_i) = b_i, \quad i \leq n.$$

As inequality $v \leq u$ holds in each lattice, in order to prove that (C_n) holds in L, we have to prove that $u \leq v$. According to our assumption about L, it suffices to show that for each element $a' \in J$, the inequality $a' \leq u$ implies that $a' \leq v$. Indeed, $a' \leq u$ means that $a' \leq a$ and $a' \leq a_i \lor b_i$ for all $i \leq n$. If $a' \leq a_i$ for some $i \leq n$ then $a' \leq u \land a_i \leq v$. If $a' \leq b_i$ for some $i \leq n$ then $a' \leq u \land b_i \leq v$. Assume therefore that $a' \leq a_i \lor b_i$ is a nontrivial join cover for all $i \leq n$. Applying (ii), we obtain that there are elements $c, d \in L$ such that $a' \leq a_j \lor b_j$ are nontrivial join covers, we conclude that $a' \leq c \lor d$ is also a nontrivial join cover. Therefore, the following cases are possible.

Case 1: $c \leq a_i \wedge a_j$ and $d \leq b_i \wedge b_j$ or $d \leq a_i \wedge a_j$ and $c \leq b_i \wedge b_j$. In this case, $a' \leq u \wedge ((a_i \wedge a_j) \vee (b_i \wedge b_j)) \leq v$.

Case 2: $c \leq a_i \wedge q$ and $d \leq a_i \wedge p$ for some $p, q \in \{a_j, b_j\}$. In this case, $a' \leq c \lor d \leq a_i$ which is impossible by our assumption as the join cover $a' \leq a_i \lor b_i$ is nontrivial.

Case 3: $c \leq a_j \wedge q$ and $d \leq a_j \wedge p$ for some $p, q \in \{a_i, b_i\}$. In this case, $a' \leq c \lor d \leq a_j$ which is impossible as the join cover $a' \leq a_j \lor b_j$ is nontrivial.

Case 4: $c \leq a_i \wedge b_j$ and $d \leq b_i \wedge a_j$ or $d \leq a_i \wedge b_j$ and $c \leq b_i \wedge a_j$. In this case, $a' \leq u \wedge ((a_i \wedge b_j) \vee (a_j \wedge b_i)) \leq v$.

Case 5: $c \leq b_i \wedge q$ and $d \leq b_i \wedge p$ for some $p, q \in \{a_j, b_j\}$. In this case, $a' \leq c \vee d \leq b_i$ which is impossible by our assumption as the join cover $a' \leq a_i \vee b_i$ is nontrivial.

Case $b: c \leq b_j \wedge q$ and $d \leq b_j \wedge p$ for some $p, q \in \{a_i, b_i\}$. In this case, $a' \leq c \lor d \leq b_j$ which is impossible as the join cover $a' \leq a_j \lor b_j$ is nontrivial.

Therefore, $a' \leq v$ in any case and the desired conclusion follows.

Corollary 7. Let L be a 2-distributive J-lattice for some set $J \subseteq J(L)$. The following conditions are equivalent.

- (i) (C_n) holds in L.
- (ii) If $a \le a_0 \lor b_0, \ldots, a \le a_m \lor b_m$ are distinct minimal join covers for some $a, a_0, \ldots, a_m, b_0, \ldots, b_m \in J$, then m < n.

Proof. We prove that (i) implies (ii). Indeed, suppose that $m \ge n$. Then, applying Lemma 6, we obtain that there are $i < j \le n$ and elements $c, d \in L$ such that $\{c, d\} \ll \{a_i, b_i\}, \{c, d\} \ll \{a_j, b_j\}$. As $a \le a_i \lor b_i$ and $a \le a_j \lor b_j$ are minimal join covers, we conclude that $a \le c \lor d$ is a nontrivial join cover and $\{a_i, b_i\} = \{c, d\} = \{a_j, b_j\}$ which contradicts our assumptions. Therefore, m < n.

To prove that (ii) implies (i), we show that statement (ii) of Lemma 6 holds. So let $a \leq a_0 \lor b_0, \ldots, a \leq a_n \lor b_n$ be nontrivial join covers for some $a \in J$ and some $a_0, \ldots, a_n, b_0, \ldots, b_n \in L$. As L is a J-lattice for some set $J \subseteq J(L)$, there are finite minimal join covers $a \leq \bigvee F_0, \ldots, a \leq \bigvee F_n$ such that $F_i \ll \{a_i, b_i\}$ for all $i \leq n$. As L is 2-distributive, we apply Lemma 2 and obtain that $|F_i| = 2$ for all $i \leq n$. Applying our assumption (ii) to finite minimal join covers $a \leq \bigvee F_0, \ldots,$ $a \leq \bigvee F_n$, we obtain that $F_i = F_j = \{c, d\}$ for some $i < j \leq n$ and some $c, d \in L$. This means that $a \leq c \lor d$ and $\{c, d\} \ll \{a_i, b_i\}, \{c, d\} \ll \{a_j, b_j\}$ which is our desired conclusion.

3.4. An equational basis. For $0 < n < \omega$, we put $\Sigma_n = \{(C_n), (D_2), (P)\}$ and $S_n = \operatorname{Mod} \Sigma_n$.

Proposition 8. Let L be a dually algebraic lattice such that $L \models \Sigma_n$, where $0 < n < \omega$. Then for all elements $x \in J(L)$, each element of the set $\mathfrak{M}(x)$ is of the form $\{a, b\}$, where $\{a, b\} \subseteq P(L)$ is an antichain. Moreover, $|\mathfrak{M}(x)| \leq n$. In particular, $L \in \mathbf{SP}(O(M_n))$.

Proof. It follows from Proposition 1(i) that L is a J-lattice. Corollary 3 implies that each minimal nontrivial join cover of an element $x \in J(L)$ contains exactly two elements. Corollary 5 implies that each minimal nontrivial join cover of x consists of join-prime elements. Moreover, $|\mathfrak{M}(x)| \leq n$ by Corollary 7. Thus, the first statement follows.

To prove the second statement, we use the method developed in [12, 13]. We fix an element $x \in J(L) \setminus P(L)$. According to the first statement,

 $\mathfrak{M}(x) = \left\{ \{b_1(x), c_1(x)\}, \dots, \{b_{n(x)}(x), c_{n(x)}(x)\} \right\}$

for some natural number n(x) such that $0 < n(x) \leq n$ and some join-prime elements $b_1(x), \ldots, b_{n(x)}, c_1(x), \ldots, c_{n(x)}$. We denote by P_x an isomorphic copy of $M_{n(x)}$. We denote the elements of P_x by $0(x), a_1(x), \ldots, a_{n(x)}(x), 1(x)$ respectively, see Figure

1. As $n(x) \leq n$, P_x is a subposet of M_n . We define a mapping $\psi_x \colon J(L) \to O(P_x)$ as follows:

$$\begin{aligned} \psi_x \colon x \mapsto \left\{ \left(0(x), 1(x) \right) \right\}; \\ \psi_x \colon y \mapsto \left\{ \left(0(x), a_i(x) \right) \mid y = b_i(x) \text{ for some } i \in \{1, \dots, n\} \right\} \cup \\ \cup \left\{ \left(a_i(x), 1(x) \right) \mid y = c_i(x) \text{ for some } i \in \{1, \dots, n\} \right\}, & \text{ for all } y \in \bigcup \mathfrak{M}(x); \end{aligned}$$

 $\psi_x : y \mapsto \varnothing$ for all $y \notin \{x\} \cup \bigcup \mathfrak{M}(x)$.

Let P'(L) denote the set of all join-prime elements of L which do not belong to any minimal nontrivial join cover of any element $x \in J(L) \setminus P(L)$. For each element $x \in P'(L)$, we put $P_x = \{0(x), 1(x)\}$, where 0(x) < 1(x) and consider the mapping

$$\psi_x \colon \mathcal{J}(L) \to \mathcal{O}(P_x);$$

$$\psi_x \colon x \mapsto \left\{ (0(x), 1(x)) \right\};$$

$$\psi_x \colon y \mapsto \emptyset \quad \text{for all } y \neq x$$

Finally, let $I = (J(L) \setminus P(L)) \cup P'(L)$. We consider the following mapping:

- (-)

$$\begin{split} \psi \colon L &\to \prod_{x \in I} \mathcal{O}(P_x); \\ \pi_x \psi(a) &= \bigcup \big\{ \psi_x(y) \mid y \in \mathcal{J}(L), \ y \leq a \big\} \quad \text{for all } a \in L \text{ and all } x \in I. \end{split}$$

Claim 1. ψ is well-defined.

Proof of Claim. We have to prove that $\pi_x \psi(a)$ is a suborder in P_x for all $x \in I$ and all $a \in L$. As $P_x \cong M_{n(x)}$, it suffices to show that if $(0(x), a_i(x)), (a_i(x), 1(x)) \in \pi_x \psi(a)$ for some $i \in \{1, \ldots, n\}$ then $(0(x), 1(x)) \in \pi_x \psi(a)$. Indeed, suppose that $(0(x), a_i(x)), (a_i(x), 1(x)) \in \pi_x \psi(a)$ for some $i \in \{1, \ldots, n\}$. In other words, $\psi_x(b_i) \cup \psi_x(c_i) \subseteq \pi_x \psi(a)$ where $x \leq b_i \lor c_i$ is a minimal nontrivial join cover. This means that $b_i, c_i \leq a$ whence $x \leq b_i \lor c_i \leq a$. By our definition of ψ_x this implies that $\{(0(x), 1(x))\} = \psi_x(x) \subseteq \pi_x \psi(a)$ which is our desired conclusion. \Box

Claim 2. ψ is a (0,1)-lattice homomorphism.

Proof of Claim. In order to prove the desired claim, it suffices to show that $\pi_x \psi$ is a (0, 1)-lattice homomorphism for each $x \in I$. Indeed, we fix an element $x \in I$ and elements $u, v \in L$. If u is a least element of L then $y \leq u$ for no element $y \in J(L)$. Therefore, $\pi_x \psi(u) = \emptyset$. If u is a greatest element of L then $y \leq u$ for each element $y \in J(L)$. Therefore, $\pi_x \psi(u)$ is obviously the greatest element of $O(P_x)$. Therefore, $\pi_x \psi$ preserves the bounds.

If $u \leq v$ then $y \leq u$ implies $y \leq v$ for all $y \in J(L)$. Therefore, $\pi_x \psi$ is monotone. We prove that $\pi_x \psi$ preserves meets and joins.

Since $\pi_x \psi$ is monotone, $\pi_x \psi(u) \lor \pi_x \psi(v) \subseteq \pi_x \psi(u \lor v)$. We have to establish that $\pi_x \psi(u \lor v) \subseteq \pi_x \psi(u) \lor \pi_x \psi(v)$. So suppose that $(z_0, z_1) \in \pi_x \psi(u \lor v)$. This means that $(z_0, z_1) \in \psi_x(y) \neq \emptyset$ for some $y \in J(L)$ such that $y \leq u \lor v$. If $y \leq u$ or $y \leq v$ then $(z_0, z_1) \in \pi_x \psi(u) \cup \pi_x \psi(v)$. Otherwise, $y \leq u \lor v$ is a nontrivial join cover. As L is a J-lattice, we can refine this join cover to a minimal one. This implies that $y \in J(L) \backslash P(L)$. As $\psi_x(y) \neq \emptyset$, we conclude by the definition of ψ_x that y = x. Moreover, there is i such that $1 \leq i \leq n(x)$ and $y = x \leq b_i \lor c_i$ is a minimal nontrivial join cover with $\{b_i, c_i\} \ll \{u, v\}$. Inclusion $(z_0, z_1) \in \psi_x(y) = \psi_x(x)$ implies that

 $z_0 = 0(x)$ and $z_1 = 1(x)$. Furthermore, $(0(x), a_i(x)) \in \psi_x(b_i) \subseteq \pi_x \psi(u) \cup \pi_x \psi(v)$ and $(a_i(x), 1(x)) \in \psi_x(c_i) \subseteq \pi_x \psi(u) \cup \pi_x \psi(v)$ as $\{b_i, c_i\} \ll \{u, v\}$. Hence, $(z_0, z_1) \in \psi_x(b_i) \lor \psi_x(c_i) \subseteq \pi_x \psi(u) \cup \pi_x \psi(v)$. This proves that $\pi_x \psi$ preserves joins.

Since $\pi_x \psi$ is monotone, $\pi_x \psi(u \wedge v) \subseteq \pi_x \psi(u) \cap \pi_x \psi(v)$. We have to establish that $\pi_x \psi(u) \cap \pi_x \psi(v) \subseteq \pi_x \psi(u \wedge v)$. Indeed, let $(z_0, z_1) \in \pi_x \psi(u) \cap \pi_x \psi(v)$. This means that $(z_0, z_1) \in \psi_x(y) \cap \psi_x(y') \neq \emptyset$ for some $y, y' \in \mathcal{J}(L)$ such that $y \leq u$ and $y' \leq v$. If $y \neq y'$ then $\psi_x(y) \cap \psi_x(y') = \emptyset$ by the definition of ψ_x , a contradiction. Therefore, $y = y' \leq u \wedge v$ and $(z_0, z_1) \in \psi_x(y) \subseteq \pi_x \psi(u \wedge v)$. This proves that $\pi_x \psi$ preserves meets.

Claim 3. ψ is an embedding.

Proof of Claim. Suppose that $u \not\leq v$ in L. As L is a J-lattice, there is $y \in J(L)$ such that $y \leq u$ and $y \not\leq v$. By our definition, there is $x \in I$ such that $\psi_x(y) \neq \emptyset$. But then $\emptyset \neq \psi_x(y) \subseteq \pi_x \psi(u)$ and $\psi_x(y) \cap \pi_x \psi(v) = \emptyset$. This implies that $\pi_x \psi(u) \not\subseteq \pi_x \psi(v)$ whence $\psi(u) \not\leq \psi(v)$.

It follows from the claims above that

$$L \in \mathbf{SP}(\mathcal{O}(P_x) \mid x \in I) \subseteq \mathbf{SPS}(\mathcal{O}(M_n)) \subseteq \mathbf{SP}(\mathcal{O}(M_n)).$$

The proof of Proposition 8 is complete.

Proposition 9. Let L be a bi-algebraic lattice such that $L \models \Sigma_n$, where $0 < n < \omega$. Then for all elements $x \in CJ(L)$, each element of the set $\mathfrak{M}(x)$ is of the form $\{a, b\}$, where $\{a, b\} \subseteq P(L)$ is an antichain. Moreover, $|\mathfrak{M}(x)| \leq n$. In particular, $L \in \mathbf{SP}(O(M_n))$.

Proof. The argument is similar to the one in the proof of Proposition 8 and uses Proposition 1(ii).

Theorem 10. Σ_n forms an equational basis for $\mathbf{SP}(O(M_n))$. In particular, the class $\mathbf{SP}(O(M_n)) = \mathbf{S}_n$ is a lattice variety.

Proof. Let $L \models \Sigma_n$ and let F be the dual filter lattice of L. It is well-known that F is dually algebraic and it follows that $F \models \Sigma_n$. By Proposition 1, F is a J-lattice. By Proposition 8, $F \in \mathbf{SP}(O(M_n))$ whence $L \in \mathbf{SP}(O(M_n))$ as L embeds into F. On the other hand, the lattice $O(M_n)$ has the only minimal join covers:

$$A \le A_i \lor B_i, \quad 1 \le i \le n, \text{ where} \\ A = \{(0,1)\}, \ A_i = \{(0,a_i)\}, \ B_i = \{(a_i,1)\}, \quad 1 \le i \le n,$$

see Figure 1. Thus, $O(M_n)$ is 2-distributive by Corollary 3. Moreover, $O(M_n)$ satisfies the condition (ii) of Corollaries 7 and 5. This implies that $O(M_n) \models \Sigma_n$. \Box

Let \mathbf{L}_{01} denote the variety of (0, 1)-lattices and let $\mathbf{S}_n^{01} = \mathbf{L}_{01} \cap \operatorname{Mod} \Sigma_n$.

Theorem 11. The set Σ_n forms an equational basis for $\mathbf{SP}(O(M_n))$ within the variety \mathbf{L}_{01} . In particular, $\mathbf{SP}(O(M_n)) = \mathbf{S}_n^{01}$ is a variety of (0, 1)-lattices.

Proof. If L is a (0, 1)-lattice then taking in the proof of Theorem 10 the dual lattice of nonempty filters as F, we obtain that L is a (0, 1)-sublattice of F and $F \in \mathbf{SP}(\mathcal{O}(M_n))$ by Proposition 8. Therefore, L belongs in this case to the variety of (0, 1)-lattices generated by $\mathcal{O}(M_n)$.

4. An equational basis for $\mathbf{Q}(\mathcal{O}(M_{\omega}))$

We put $\Sigma = \{(D_2), (P)\}.$

Proposition 12. Let L be a dually algebraic lattice such that $L \models \Sigma$. The following statements hold.

- (i) For all $x \in J(L)$, each element of the set $\mathfrak{M}(x)$ is of the form $\{a, b\}$, where $\{a, b\} \subseteq P(L)$ is an antichain.
- (ii) If L is bi-algebraic then for all x ∈ CJ(L), each element of the set M(x) is of the form {a, b}, where {a, b} ⊆ P(L) is an antichain.

In particular, $L \in \mathbf{SP}(O(M_{\kappa})) \subseteq \mathbf{Q}(O(M_{\omega}))$ for some cardinal κ .

Proof. Applying the same argument as in the proof of Proposition 8, we obtain that $L \in \mathbf{SP}(\mathcal{O}(M_{\kappa}))$ for some infinite cardinal $\kappa \ge |L|$. As M_{κ} embeds into an ultrapower of M_{ω} , we conclude that $\mathcal{O}(M_{\kappa}) \in \mathbf{SP}_u(\mathcal{O}(M_{\omega}))$ and

$$\mathbf{SP}\big(\mathcal{O}(M_{\kappa})\big) \subseteq \mathbf{SPP}_u\big(\mathcal{O}(M_{\omega})\big) = \mathbf{Q}\big(\mathcal{O}(M_{\omega})\big),$$

which is our desired conclusion.

Theorem 13. The following statements hold.

- (i) The quasivariety Q(O(M_ω)) is a lattice variety and Σ forms an equational basis for this variety.
- (ii) The class Q(O(M_ω)) of (0,1)-lattices is a variety of (0,1)-lattices and Σ forms an equational basis for this variety.

Proof. (i) If $L \models \Sigma$, then $L \in \mathbf{Q}(\mathcal{O}(M_{\omega}))$ by Proposition 12. Hence, $\operatorname{Mod}\Sigma \subseteq \mathbf{Q}(\mathcal{O}(M_{\omega}))$. Conversely, the lattice $\mathcal{O}(M_{\omega})$ has the only minimal join covers:

 $A \leq A_i \lor B_i, \quad 1 \leq i < \omega, \text{ where }$

$$A = \{(0,1)\}, \ A_i = \{(0,a_i)\}, \ B_i = \{(a_i,1)\}, \ 1 \le i < \omega,$$

see Figure 1. Thus, $O(M_n)$ is 2-distributive by Corollary 3. Moreover, $O(M_n)$ satisfies the condition (ii) of Corollary 5. Therefore, $O(M_{\omega}) \models \Sigma$ and

$$\mathbf{Q}(\mathbf{O}(M_{\omega})) = \mathbf{SPP}_u(\mathbf{O}(M_{\omega})) \models \Sigma$$

as identities are stable with respect to the operators **S**, **P**, and **P**_u. It follows that $\operatorname{Mod} \Sigma = \mathbf{Q}(O(M_{\omega}))$.

The proof of (ii) is similar.

Corollary 14. The following equalities hold for an arbitrary infinite cardinal κ :

$$\mathbf{SO}_2 = \mathbf{Q}\big(\mathcal{O}(M_n) \mid 0 < n < \omega\big) = \mathbf{SP}\big(\mathcal{O}(M_\kappa)\big).$$

Proof. By [13, Theorem 4.8], Σ forms an equational basis for \mathbf{SO}_2 . Taking into account Theorem 13, we conclude that $\mathbf{SO}_2 = \mathbf{SP}(\mathcal{O}(M_{\omega}))$. Furthermore, each algebraic structure embeds into an ultraproduct of its finitely generated substructures, see for example [6, Theorem 1.2.8]. Therefore, $M_{\kappa} \in \mathbf{SP}_u(M_n \mid 0 < n < \omega)$ for each infinite cardinal kappa whence $\mathcal{O}(M_{\kappa}) \in \mathbf{SP}_u(\mathcal{O}(M_n) \mid 0 < n < \omega)$ and

$$\mathbf{SO}_2 = \mathbf{SP}(\mathcal{O}(M_{\omega})) = \mathbf{SP}(\mathcal{O}(M_{\kappa})) \subseteq \mathbf{SPP}_u(\mathcal{O}(M_n) \mid 0 < n < \omega) =$$
$$= \mathbf{Q}(\mathcal{O}(M_n) \mid 0 < n < \omega) \subseteq \mathbf{SO}_2.$$

The desired conclusion follows.

The following problem was raised in [13].

Problem 1. [13, Question 2] If $\langle P; \leq \rangle$ is a finite poset, is it true that the quasivariety **SP**(O(P; \leq)) is a variety?

The next statement solves Problem 1 in the positive for finite posets of length at most two.

Corollary 15. If $\langle P; \leq \rangle$ is a finite poset of length at most two then $SP(O(P; \leq))$ is a finitely based variety.

Proof. It follows from Corollary 14 and the fact that the poset $\langle P; \leq \rangle$ is finite that $\mathbf{SP}(\mathcal{O}(P; \leq)) = \mathbf{SP}(\mathcal{O}(M_n))$ or $\mathbf{SP}(\mathcal{O}(P; \leq))$ is the variety of distributive lattices. In the first case, $\mathbf{SP}(\mathcal{O}(P; \leq))$ is a finitely based variety by Theorem 10.

References

- [1] M.E. Adams, W. Dziobiak, A.V. Kravchenko, M.V. Schwidefsky, Remarks about complete lattice homomorphic images of algebraic lattices, manuscript, 2022.
- [2] A.O. Basheyeva, K.D. Sultankulov, M.V. Schwidefsky, The quasivariety SP(L₆). I. An equational basis, Sib. Electron. Mat. Izv., 19:2 (2022), 902–911.
- [3] D. Bredikhin, B. Schein, Representation of ordered semigroups and lattices by binary relations, Colloq. Math., 39 (1978), 1-12. Zbl 0389.06013
- [4] W. Dziobiak, M.V. Schwidefsky, Categorical dualities for some two categories of lattices: An extended abstract, Bull. Sec. Logic, 51:3 (2022), 329-344.
- [5] R. Freese, J. Ježek, J.B. Nation, *Free lattices*, Mathematical Surveys and Monographs, 42, American Mathematical Society, Providence, 1995. Zbl 0839.06005
- [6] V.A. Gorbunov, Algebraic theory of quasivarieties, Siberian School of Algebra and Logic, Consultants Bureau, New York, 1998. Zbl 0986.08001
- [7] A.P. Huhn, Schwach distributive Verbände. I, Acta Sci. Math., 33 (1972), 297-305. Zbl 0269.06006
- [8] A.I. Maltsev, Algebraic systems, Springer-Verlag, Berlin etc., 1973. Zbl 0266.08001
- [9] J.B. Nation, An approach to lattice varieties of finite height, Algebra Univers., 27:4 (1990), 521-543. Zbl 0721.08004
- [10] V.B. Repnitskiĭ, On finite lattices which are embeddable in subsemigroup lattices, Semigroup Forum, 46:3 (1993), 388-397. Zbl 0797.20052
- [11] V.B. Repnitskii, On representation of lattices by lattices of semigroups, Russ. Math., 40:1 (1996), 55-64. Zbl 0870.06005
- [12] M.V. Semenova, Lattices of suborders, Sib. Math. J., 40:3 (1999), 577-584. Zbl 0924.06009
- M.V. Semenova, Lattices that are embeddable into suborder lattices, Algebra Logic, 44:4 (2005), 270-285. Zbl 1101.06005
- M.V. Semenova, On lattices embeddable into subsemigroup lattices. III. Nilpotent semigroups, Sib. Math. J., 48:1 (2007), 156-164. Zbl 1154.20047
- B. Sivák, Representation of finite lattices by orders on finite sets, Math. Slovaca, 28:2 (1978), 203-215. Zbl 0395.06002

Olga Aleksandrovna Kadyrova Novosibirsk State University, Pirogova str., 1, 630090 Novosibirsk, Russia *Email address*: 0.kadyrova@g.nsu.ru

MARINA VLADIMIROVNA SCHWIDEFSKY Novosibirsk State University, Pirogova str., 1, 630090, Novosibirsk, Russia Email address: m.schwidefsky@g.nsu.ru