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QUASIVARIETIES GENERATED BY SMALL SUBORDER

LATTICES. I. EQUATIONAL BASES

O. A. KADYROVA AND M. V. SCHWIDEFSKY

Abstract. For each cardinal κ > 0, the quasivariety generated by the
suborder lattice of Mκ is a �nitely based variety. An equational basis
for this variety is found.
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1. Introduction

Suborder lattices were studied by several authors; we refer to D. Bredikhin and B.
Schein [3] and to B. Siv�ak [15] as well as to [12, 13, 2]. Suborder lattices were used as
a convenient tool in establishing some deep results for subsemigroup lattices which
are presented in the papers of V.B. Repnitski�� [10, 11]; see also [14].

For a positive integer n, let SOn denote the class of lattices embeddable into
suborder lattices of partial orders of length at most n. It was established in [13]
that SOn is a �nitely based variety and a particular �nite equational basis was
found for this variety in [13].

There are still some unsolved problems which concern suborder lattices. For
example, Question 2 in [13] asks if the quasivariety generated by a �nite suborder
lattice is a variety. A positive answer to this question was given in [2] for the
suborder lattice O(M1). Moreover, it was established in [2] that the quasivariety
generated by O(M1) is a variety and a particular �nite equational basis was found
for this variety.

In this paper, we extend the results from [2] to a more general case and consider
lattices O(Mκ) for an arbitrary cardinal κ > 0, see Figure 1. Speci�cally, we
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prove that the quasivariety Q
(
O(Mκ)

)
generated by the suborder lattice O(Mκ)

is a �nitely based variety and �nd a �nite basis for this variety, see Theorem 10,
Theorem 13, and Corollaries 14 and 15. In a subsequent article, the results of
this paper will be used for establishing categorical dualities for the quasivarieties
Q
(
O(Mκ)

)
where 1 < κ 6 ω.

2. Basic concepts

For all the notions which are not de�ned in this section, we refer to A. I. Maltsev
[8] and V.A. Gorbunov [6].

2.1. Lattices. Most of the following de�nitions concerning join covers are in accor-
dance with R. Freese, J. Je�zek, and J. B. Nation [5].

Let L be a lattice. For arbitrary two sets A,B ⊆ L, we say that A re�nes B and
write A � B if for each a ∈ A, there is b ∈ B such that a ≤ b. If x ∈ L, then A
is a join cover of x if

∨
A exists and x ≤

∨
A; we also call x ≤

∨
A a join cover

in this case. A join cover x ≤
∨
A is nontrivial if x � a for all a ∈ A; x ≤

∨
A

is �nite if the set A is �nite. A join cover x ≤
∨
A is irredundant if x �

∨
B for

any proper subset B ⊂ A. A join cover x ≤
∨
A is minimal if A ⊆ B for each

join cover x ≤
∨
B such that B � A. The lattice L has the complete minimal join

cover re�nement property (CR)X for a set X ⊆ L if each nontrivial join cover of
each element from X can be re�ned to a minimal one.

By J(L), we denote the set of all join-irreducible elements of L and by CJ(L) �
the set of all completely join-irreducible elements of L. Similarly, by P(L), we denote
the set of all join-prime elements of L and by CP(L) � the set of all completely
join-prime elements of L.

De�nition 1. Let L be a lattice and let J ⊆ J(L). We say that L is a J-lattice if
L possesses the following properties:

(i) for each element a ∈ L, there is a subset Ja ⊆ J with a =
∨
Ja;

(ii) for each element a ∈ J and each nontrivial join cover a ≤ a0∨ . . .∨an with
n < ω and a0, . . . , an ∈ L, there is a �nite set F ⊆ J such that a ≤

∨
F is

a minimal join cover and F � {a0, . . . , an}.
We say that L is a CJ-lattice if L possesses the following properties:

(i) for each element a ∈ L, there is a subset Ja ⊆ CJ(L) with a =
∨
Ja;

(ii) L has the property (CR)CJ(L).

It follows from the de�nition above that each CJ-lattice is a J-lattice for J = CJ(L).
J-lattices were considered in [1, 4], see also [13].

For a J-lattice L and an element x ∈ J(L), let M(x) denote the set of all �nite
minimal join covers of x.

Remark 1. We note that in an upper continuous lattice L, each minimal join cover
of an element x ∈ CJ(L) belongs to M(x).

Proposition 1. [4] Let L be a complete dually algebraic lattice. Then the following
statements hold.

(i) If L is n-distributive then L is a J-lattice.
(ii) If L is in addition algebraic then L is a CJ-lattice.
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Figure 1. Posets M1, Mn, and Mω

2.2. Suborder lattices. Let X be a set and let R ⊆ X2 be a strict partial order
on X; that is an irre�exive, antisymmetric, and transitive binary relation. In this
case, we also say that 〈X;R〉 is a partially ordered set or a poset for short. A subset
R′ ⊆ R is a (strict) suborder of R if the structure 〈X;R′〉 is also a poset. The set
O(X,R) of all (strict) suborders of a partial order R on X is a partially ordered
set with respect to the relation ⊆ of set-theoretic inclusion. Obviously, ∅ is a least
suborder of R. Thus, ∅ is a least element in O(X,R). It is also obvious that R is
a greatest element in O(X,R). It is straightforward to check that for an arbitrary
family {Ri | i ∈ I} ⊆ O(X,R), the relation

⋂
i∈I Ri is also a suborder of R; that is,∧

i∈I
Ri =

⋂
i∈I

Ri ∈ O(X,R).

Thus, O(X,R) forms a complete lattice, where∨
i∈I

Ri =
(⋃
i∈I

Ri
)t

;

here Y t denotes the transitive closure of a binary relation Y ⊆ X2. It is clear that

J
(
O(X,R)

)
= CJ

(
O(X,R)

)
=
{{

(a, b)
}
| (a, b) ∈ R

}
.

We consider here strict partial orders instead of ordinary partial orders for the sake
of simplicity only; the least element of a suborder lattice is in this case ∅ and not
the set {(x, x) | x ∈ X}.

In this article, we consider suborder lattices of posets Mn, 0 < n 6 ω, which all
have length 2, see Figure 1.

3. An equational basis for SP
(
O(Mn)

)
3.1. Identity (Dn). We consider the identity of n-distributivity, where 0 < n < ω,
which we denote by (Dn):

x ∧ (y0 ∨ y1 ∨ . . . ∨ yn) =
∨
i6n

[
x ∧

∨
j 6=i

yj
]
.

This identity was introduced by A. Huhn in [7] as a generalization of distributivity�
it is clear that (D1) is just the identity of distributivity. The following lemma is
folklore and straightforward to prove, see for example [9].

Lemma 2. Let L be a lattice, let J ⊆ J(L) be a set such that for each element a ∈ L,
there is a subset Ja ⊆ J with a =

∨
Ja. The following conditions are equivalent.

(i) (Dn) holds in L.
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(ii) If a ≤ b0 ∨ b1 ∨ . . . ∨ bn for some a ∈ J and some b0, b1, . . . , bn ∈ L, then
there is i 6 n such that a ≤

∨
j 6=i bj.

Corollary 3. Let L be a J-lattice for some set J ⊆ J(L). The following conditions
are equivalent.

(i) (Dn) holds in L.
(ii) If a ≤ b0 ∨ . . . ∨ bm is a minimal nontrivial join cover for some elements

a and b0, . . . , bm ∈ J then 0 < m < n.

3.2. Identity (P). We denote the following identity by (P):

x∧
[(
y0 ∧ (z0 ∨ z1)

)
∨ y1

]
=
[
x∧ y0 ∧ (z0 ∨ z1)

]
∨
[
x∧ y1

]
∨
∨
i<2

[
x∧

(
(y0 ∧ zi)∨ y1

)]
.

This identity was introduced in [4] under the name (N1
5). It was used in [4] as one of

four identities which constitute an equational basis for the [quasi]variety SP(N5). It
was also used in [2] as one of three identities which form an equational basis of the
[quasi]variety SP

(
O(M1)

)
, also under the name (N1

5). For the next two statements,
we refer to [4], see also [2, Lemma 6, Corollary 7].

Lemma 4. [4] Let L be a lattice, let J ⊆ J(L) be a set such that for each element
a ∈ L, there is a subset Ja ⊆ J with a =

∨
Ja. The following conditions are

equivalent.

(i) (P) holds in L.
(ii) If a ≤ a0 ∨ a1 is a nontrivial join cover and a0 ≤ b0 ∨ b1 for some a ∈ J

and some a0, a1, b0, b1 ∈ L, then a ≤ (a0 ∧ bi) ∨ a1 for some i < 2.

Corollary 5. [4] Let L be a 2-distributive J-lattice for some set J ⊆ J(L). The
following conditions are equivalent.

(i) (P) holds in L.
(ii) If a ≤ a0 ∨ a1 is a minimal join cover for some a, a0, a1 ∈ J , then a0 and

a1 are join-prime elements.

3.3. Identity (Cn). We denote the following identity by (Cn):

x ∧
∧
i6n

(yi ∨ zi) =
∨
i6n

[
x ∧ yi ∧

∧
j 6=i

(yj ∨ zj)
]
∨
∨
i6n

[
x ∧ zi ∧

∧
j 6=i

(yj ∨ zj)
]
∨

∨
∨

i<j6n

[
x ∧

(
(yi ∧ yj) ∨ (zi ∧ zj)

)
∧

∧
k/∈{i,j}

(yk ∨ zk)
]
∨

∨
∨

i<j6n

[
x ∧

(
(yi ∧ zj) ∨ (yj ∧ zi)

)
∧

∧
k/∈{i,j}

(yk ∨ zk)
]
.

The identity (C1) was introduced in [4] and used there, under the name (C), as
a member of an equational basis of the [quasi]variety SP(N5). It was also used in
[2] as one of three identities which form an equational basis of the [quasi]variety
SP
(
O(M1)

)
, also under the name (C). For the next two statements, we refer to [4],

see also [2, Lemma 4, Corollary 5].

Lemma 6. Let L be a lattice, let J ⊆ J(L) be a set such that for each element a ∈ L,
there is a subset Ja ⊆ J with a =

∨
Ja. The following conditions are equivalent.

(i) (Cn) holds in L.
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(ii) If a ≤ a0∨b0, . . . , a ≤ an∨bn are nontrivial join covers for some a ∈ J and
some a0, . . . , an, b0, . . . , bn ∈ L, then there are c, d ∈ L such that a ≤ c∨ d
and {c, d} � {ai, bi}, {c, d} � {aj , bj} for some i < j 6 n.

Proof. We prove �rst that (i) implies (ii). Indeed, let the assumptions of (ii) hold.
Since (Cn) holds in L, we have

a = a ∧
∧
i6n

(ai ∨ bi) =
∨
i6n

[
a ∧ ai ∧

∧
j 6=i

(aj ∨ bj)
]
∨
∨
i6n

[
a ∧ bi ∧

∧
j 6=i

(aj ∨ bj)
]
∨

∨
∨

i<j6n

[
a ∧

(
(ai ∧ aj) ∨ (bi ∧ bj)

)
∧

∧
k/∈{i,j}

(ak ∨ bk)
]
∨

∨
∨

i<j6n

[
a ∧

(
(ai ∧ bj) ∨ (aj ∧ bi)

)
∧

∧
k/∈{i,j}

(ak ∨ bk)
]
.

As a is a join-irreducible element, a equals one of the joinands on the right-hand
side of the equality above. Therefore, the following cases are possible.

Case 1 : a = a ∧ ai ∧
∧
j 6=i(aj ∨ bj). In this case, a ≤ ai which contradicts the

assumption that a ≤ ai ∨ bi is a nontrivial join cover. Therefore, this case is
impossible.

Case 2 : a = a ∧ bi ∧
∧
j 6=i(aj ∨ bj). In this case, a ≤ bi which again contradicts the

assumption that a ≤ ai ∨ bi is a nontrivial join cover. Therefore, this case is also
impossible.

Case 3 : there are i < j 6 n such that a = a∧
(
(ai∧aj)∨(bi∧bj)

)
∧
∧
k/∈{i,j}(ak∨bk).

In this case, a ≤ c∨d, where c = ai∧aj and d = bi∧ bj . Moreover, {c, d} � {ai, bi}
and {c, d} � {aj , bj} whence we get the desired conclusion.

Case 4 : there are i < j 6 n such that a = a∧
(
(ai∧bj)∨(aj∧bi)

)
∧
∧
k/∈{i,j}(ak∨bk).

In this case, we put c = ai ∧ bj and d = bi ∧ aj and obtain the desired conclusion
as above in Case 3.

We prove now that (ii) implies (i). Let u denote the value of the left-hand side and
v denote the value of the right-hand side of the identity (Cn) under interpretation
γ, where

γ(x) = a, γ(yi) = ai, γ(zi) = bi, i 6 n.

As inequality v ≤ u holds in each lattice, in order to prove that (Cn) holds in L, we
have to prove that u ≤ v. According to our assumption about L, it su�ces to show
that for each element a′ ∈ J , the inequality a′ ≤ u implies that a′ ≤ v. Indeed,
a′ ≤ u means that a′ ≤ a and a′ ≤ ai ∨ bi for all i 6 n. If a′ ≤ ai for some i 6 n
then a′ ≤ u ∧ ai ≤ v. If a′ ≤ bi for some i 6 n then a′ ≤ u ∧ bi ≤ v. Assume
therefore that a′ ≤ ai ∨ bi is a nontrivial join cover for all i 6 n. Applying (ii), we
obtain that there are elements c, d ∈ L such that a′ ≤ c ∨ d and {c, d} � {ai, bi},
{c, d} � {aj , bj} for some i < j 6 n. As a′ ≤ ai ∨ bi and a′ ≤ aj ∨ bj are nontrivial
join covers, we conclude that a′ ≤ c ∨ d is also a nontrivial join cover. Therefore,
the following cases are possible.

Case 1 : c ≤ ai ∧ aj and d ≤ bi ∧ bj or d ≤ ai ∧ aj and c ≤ bi ∧ bj . In this case,
a′ ≤ u ∧

(
(ai ∧ aj) ∨ (bi ∧ bj)

)
≤ v.

Case 2 : c ≤ ai∧q and d ≤ ai∧p for some p, q ∈ {aj , bj}. In this case, a′ ≤ c∨d ≤ ai
which is impossible by our assumption as the join cover a′ ≤ ai ∨ bi is nontrivial.
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Case 3 : c ≤ aj∧q and d ≤ aj∧p for some p, q ∈ {ai, bi}. In this case, a′ ≤ c∨d ≤ aj
which is impossible as the join cover a′ ≤ aj ∨ bj is nontrivial.
Case 4 : c ≤ ai ∧ bj and d ≤ bi ∧ aj or d ≤ ai ∧ bj and c ≤ bi ∧ aj . In this case,
a′ ≤ u ∧

(
(ai ∧ bj) ∨ (aj ∧ bi)

)
≤ v.

Case 5 : c ≤ bi∧q and d ≤ bi∧p for some p, q ∈ {aj , bj}. In this case, a′ ≤ c∨d ≤ bi
which is impossible by our assumption as the join cover a′ ≤ ai ∨ bi is nontrivial.
Case 6 : c ≤ bj ∧q and d ≤ bj ∧p for some p, q ∈ {ai, bi}. In this case, a′ ≤ c∨d ≤ bj
which is impossible as the join cover a′ ≤ aj ∨ bj is nontrivial.

Therefore, a′ ≤ v in any case and the desired conclusion follows. �

Corollary 7. Let L be a 2-distributive J-lattice for some set J ⊆ J(L). The
following conditions are equivalent.

(i) (Cn) holds in L.
(ii) If a ≤ a0 ∨ b0, . . . , a ≤ am ∨ bm are distinct minimal join covers for some

a, a0, . . . , am, b0, . . . , bm ∈ J , then m < n.

Proof. We prove that (i) implies (ii). Indeed, suppose that m > n. Then, applying
Lemma 6, we obtain that there are i < j 6 n and elements c, d ∈ L such that
{c, d} � {ai, bi}, {c, d} � {aj , bj}. As a ≤ ai ∨ bi and a ≤ aj ∨ bj are minimal join
covers, we conclude that a ≤ c ∨ d is a nontrivial join cover and {ai, bi} = {c, d} =
{aj , bj} which contradicts our assumptions. Therefore, m < n.

To prove that (ii) implies (i), we show that statement (ii) of Lemma 6 holds.
So let a ≤ a0 ∨ b0, . . . , a ≤ an ∨ bn be nontrivial join covers for some a ∈ J and
some a0, . . . , an, b0, . . . , bn ∈ L. As L is a J-lattice for some set J ⊆ J(L), there
are �nite minimal join covers a ≤

∨
F0, . . . , a ≤

∨
Fn such that Fi � {ai, bi} for

all i 6 n. As L is 2-distributive, we apply Lemma 2 and obtain that |Fi| = 2 for
all i 6 n. Applying our assumption (ii) to �nite minimal join covers a ≤

∨
F0, . . . ,

a ≤
∨
Fn, we obtain that Fi = Fj = {c, d} for some i < j 6 n and some c, d ∈ L.

This means that a ≤ c ∨ d and {c, d} � {ai, bi}, {c, d} � {aj , bj} which is our
desired conclusion. �

3.4. An equational basis. For 0 < n < ω, we put Σn = {(Cn), (D2), (P)} and
Sn = Mod Σn.

Proposition 8. Let L be a dually algebraic lattice such that L |= Σn, where 0 <
n < ω. Then for all elements x ∈ J(L), each element of the set M(x) is of the form
{a, b}, where {a, b} ⊆ P(L) is an antichain. Moreover, |M(x)| 6 n.

In particular, L ∈ SP
(
O(Mn)

)
.

Proof. It follows from Proposition 1(i) that L is a J-lattice. Corollary 3 implies
that each minimal nontrivial join cover of an element x ∈ J(L) contains exactly two
elements. Corollary 5 implies that each minimal nontrivial join cover of x consists of
join-prime elements. Moreover, |M(x)| 6 n by Corollary 7. Thus, the �rst statement
follows.

To prove the second statement, we use the method developed in [12, 13]. We �x
an element x ∈ J(L)\P(L). According to the �rst statement,

M(x) =
{
{b1(x), c1(x)}, . . . , {bn(x)(x), cn(x)(x)}

}
for some natural number n(x) such that 0 < n(x) 6 n and some join-prime elements
b1(x), . . . , bn(x), c1(x), . . . , cn(x). We denote by Px an isomorphic copy ofMn(x). We
denote the elements of Px by 0(x), a1(x), . . . , an(x)(x), 1(x) respectively, see Figure
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1. As n(x) 6 n, Px is a subposet of Mn. We de�ne a mapping ψx : J(L) → O(Px)
as follows:

ψx : x 7→
{(

0(x), 1(x)
)}

;

ψx : y 7→
{(

0(x), ai(x)
)
| y = bi(x) for some i ∈ {1, . . . , n}

}
∪

∪
{(
ai(x), 1(x)

)
| y = ci(x) for some i ∈ {1, . . . , n}

}
, for all y ∈

⋃
M(x);

ψx : y 7→∅ for all y /∈ {x} ∪
⋃

M(x).

Let P′(L) denote the set of all join-prime elements of L which do not belong to
any minimal nontrivial join cover of any element x ∈ J(L)\P(L). For each element
x ∈ P′(L), we put Px =

{
0(x), 1(x)

}
, where 0(x) < 1(x) and consider the mapping

ψx : J(L)→ O(Px);

ψx : x 7→
{(

0(x), 1(x)
)}

;

ψx : y 7→ ∅ for all y 6= x.

Finally, let I =
(
J(L)\P(L)

)
∪ P′(L). We consider the following mapping:

ψ : L→
∏
x∈I

O(Px);

πxψ(a) =
⋃{

ψx(y) | y ∈ J(L), y ≤ a
}

for all a ∈ L and all x ∈ I.

Claim 1. ψ is well-de�ned.

Proof of Claim. We have to prove that πxψ(a) is a suborder in Px for all x ∈ I and
all a ∈ L. As Px ∼= Mn(x), it su�ces to show that if

(
0(x), ai(x)

)
,
(
ai(x), 1(x)

)
∈

πxψ(a) for some i ∈ {1, . . . , n} then
(
0(x), 1(x)

)
∈ πxψ(a). Indeed, suppose that(

0(x), ai(x)
)
,
(
ai(x), 1(x)

)
∈ πxψ(a) for some i ∈ {1, . . . , n}. In other words, ψx(bi)∪

ψx(ci) ⊆ πxψ(a) where x ≤ bi ∨ ci is a minimal nontrivial join cover. This means
that bi, ci ≤ a whence x ≤ bi ∨ ci ≤ a. By our de�nition of ψx this implies that{(

0(x), 1(x)
)}

= ψx(x) ⊆ πxψ(a) which is our desired conclusion. �

Claim 2. ψ is a (0, 1)-lattice homomorphism.

Proof of Claim. In order to prove the desired claim, it su�ces to show that πxψ is
a (0, 1)-lattice homomorphism for each x ∈ I. Indeed, we �x an element x ∈ I and
elements u, v ∈ L. If u is a least element of L then y ≤ u for no element y ∈ J(L).
Therefore, πxψ(u) = ∅. If u is a greatest element of L then y ≤ u for each element
y ∈ J(L). Therefore, πxψ(u) is obviously the greatest element of O(Px). Therefore,
πxψ preserves the bounds.

If u ≤ v then y ≤ u implies y ≤ v for all y ∈ J(L). Therefore, πxψ is monotone.
We prove that πxψ preserves meets and joins.

Since πxψ is monotone, πxψ(u)∨πxψ(v) ⊆ πxψ(u∨v). We have to establish that
πxψ(u ∨ v) ⊆ πxψ(u) ∨ πxψ(v). So suppose that (z0, z1) ∈ πxψ(u ∨ v). This means
that (z0, z1) ∈ ψx(y) 6= ∅ for some y ∈ J(L) such that y ≤ u ∨ v. If y ≤ u or y ≤ v
then (z0, z1) ∈ πxψ(u)∪ πxψ(v). Otherwise, y ≤ u∨ v is a nontrivial join cover. As
L is a J-lattice, we can re�ne this join cover to a minimal one. This implies that
y ∈ J(L)\P(L). As ψx(y) 6= ∅, we conclude by the de�nition of ψx that y = x.
Moreover, there is i such that 1 6 i 6 n(x) and y = x ≤ bi∨ci is a minimal nontrivial
join cover with {bi, ci} � {u, v}. Inclusion (z0, z1) ∈ ψx(y) = ψx(x) implies that
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z0 = 0(x) and z1 = 1(x). Furthermore,
(
0(x), ai(x)

)
∈ ψx(bi) ⊆ πxψ(u) ∪ πxψ(v)

and
(
ai(x), 1(x)

)
∈ ψx(ci) ⊆ πxψ(u)∪πxψ(v) as {bi, ci} � {u, v}. Hence, (z0, z1) ∈

ψx(bi) ∨ ψx(ci) ⊆ πxψ(u) ∪ πxψ(v). This proves that πxψ preserves joins.
Since πxψ is monotone, πxψ(u ∧ v) ⊆ πxψ(u) ∩ πxψ(v). We have to establish

that πxψ(u) ∩ πxψ(v) ⊆ πxψ(u ∧ v). Indeed, let (z0, z1) ∈ πxψ(u) ∩ πxψ(v). This
means that (z0, z1) ∈ ψx(y)∩ψx(y′) 6= ∅ for some y, y′ ∈ J(L) such that y ≤ u and
y′ ≤ v. If y 6= y′ then ψx(y) ∩ ψx(y′) = ∅ by the de�nition of ψx, a contradiction.
Therefore, y = y′ ≤ u ∧ v and (z0, z1) ∈ ψx(y) ⊆ πxψ(u ∧ v). This proves that πxψ
preserves meets. �

Claim 3. ψ is an embedding.

Proof of Claim. Suppose that u � v in L. As L is a J-lattice, there is y ∈ J(L) such
that y ≤ u and y � v. By our de�nition, there is x ∈ I such that ψx(y) 6= ∅. But
then ∅ 6= ψx(y) ⊆ πxψ(u) and ψx(y) ∩ πxψ(v) = ∅. This implies that πxψ(u) *
πxψ(v) whence ψ(u) � ψ(v). �

It follows from the claims above that

L ∈ SP
(
O(Px) | x ∈ I

)
⊆ SPS

(
O(Mn)

)
⊆ SP

(
O(Mn)

)
.

The proof of Proposition 8 is complete. �

Proposition 9. Let L be a bi-algebraic lattice such that L |= Σn, where 0 < n < ω.
Then for all elements x ∈ CJ(L), each element of the set M(x) is of the form {a, b},
where {a, b} ⊆ P(L) is an antichain. Moreover, |M(x)| 6 n.

In particular, L ∈ SP
(
O(Mn)

)
.

Proof. The argument is similar to the one in the proof of Proposition 8 and uses
Proposition 1(ii). �

Theorem 10. Σn forms an equational basis for SP
(
O(Mn)

)
. In particular, the

class SP
(
O(Mn)

)
= Sn is a lattice variety.

Proof. Let L |= Σn and let F be the dual �lter lattice of L. It is well-known that F
is dually algebraic and it follows that F |= Σn. By Proposition 1, F is a J-lattice.
By Proposition 8, F ∈ SP

(
O(Mn)

)
whence L ∈ SP

(
O(Mn)

)
as L embeds into F .

On the other hand, the lattice O(Mn) has the only minimal join covers:

A ≤ Ai ∨Bi, 1 6 i 6 n, where

A =
{

(0, 1)
}
, Ai =

{
(0, ai)

}
, Bi =

{
(ai, 1)

}
, 1 6 i 6 n,

see Figure 1. Thus, O(Mn) is 2-distributive by Corollary 3. Moreover, O(Mn)
satis�es the condition (ii) of Corollaries 7 and 5. This implies that O(Mn) |= Σn. �

Let L01 denote the variety of (0, 1)-lattices and let S01
n = L01 ∩Mod Σn.

Theorem 11. The set Σn forms an equational basis for SP
(
O(Mn)

)
within the

variety L01. In particular, SP
(
O(Mn)

)
= S01

n is a variety of (0, 1)-lattices.

Proof. If L is a (0, 1)-lattice then taking in the proof of Theorem 10 the dual
lattice of nonempty �lters as F , we obtain that L is a (0, 1)-sublattice of F and
F ∈ SP

(
O(Mn)

)
by Proposition 8. Therefore, L belongs in this case to the variety

of (0, 1)-lattices generated by O(Mn). �
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4. An equational basis for Q
(
O(Mω)

)
We put Σ = {(D2), (P)}.

Proposition 12. Let L be a dually algebraic lattice such that L |= Σ. The following
statements hold.

(i) For all x ∈ J(L), each element of the set M(x) is of the form {a, b}, where
{a, b} ⊆ P(L) is an antichain.

(ii) If L is bi-algebraic then for all x ∈ CJ(L), each element of the set M(x)
is of the form {a, b}, where {a, b} ⊆ P(L) is an antichain.

In particular, L ∈ SP
(
O(Mκ)

)
⊆ Q

(
O(Mω)

)
for some cardinal κ.

Proof. Applying the same argument as in the proof of Proposition 8, we obtain
that L ∈ SP

(
O(Mκ)

)
for some in�nite cardinal κ > |L|. As Mκ embeds into an

ultrapower of Mω, we conclude that O(Mκ) ∈ SPu
(
O(Mω)

)
and

SP
(
O(Mκ)

)
⊆ SPPu

(
O(Mω)

)
= Q

(
O(Mω)

)
,

which is our desired conclusion. �

Theorem 13. The following statements hold.

(i) The quasivariety Q
(
O(Mω)

)
is a lattice variety and Σ forms an equational

basis for this variety.
(ii) The class Q

(
O(Mω)

)
of (0, 1)-lattices is a variety of (0, 1)-lattices and Σ

forms an equational basis for this variety.

Proof. (i) If L |= Σ, then L ∈ Q
(
O(Mω)

)
by Proposition 12. Hence, Mod Σ ⊆

Q
(
O(Mω)

)
. Conversely, the lattice O(Mω) has the only minimal join covers:

A ≤ Ai ∨Bi, 1 6 i < ω, where

A =
{

(0, 1)
}
, Ai =

{
(0, ai)

}
, Bi =

{
(ai, 1)

}
, 1 6 i < ω,

see Figure 1. Thus, O(Mn) is 2-distributive by Corollary 3. Moreover, O(Mn)
satis�es the condition (ii) of Corollary 5. Therefore, O(Mω) |= Σ and

Q
(
O(Mω)

)
= SPPu

(
O(Mω)

)
|= Σ

as identities are stable with respect to the operators S, P, and Pu. It follows that
Mod Σ = Q

(
O(Mω)

)
.

The proof of (ii) is similar. �

Corollary 14. The following equalities hold for an arbitrary in�nite cardinal κ:

SO2 = Q
(
O(Mn) | 0 < n < ω

)
= SP

(
O(Mκ)

)
.

Proof. By [13, Theorem 4.8], Σ forms an equational basis for SO2. Taking into
account Theorem 13, we conclude that SO2 = SP

(
O(Mω)

)
. Furthermore, each

algebraic structure embeds into an ultraproduct of its �nitely generated substructu-
res, see for example [6, Theorem 1.2.8]. Therefore, Mκ ∈ SPu(Mn | 0 < n < ω) for
each in�nite cardinal kappa whence O(Mκ) ∈ SPu

(
O(Mn) | 0 < n < ω

)
and

SO2 =SP
(
O(Mω)

)
= SP

(
O(Mκ)

)
⊆ SPPu

(
O(Mn) | 0 < n < ω

)
=

=Q
(
O(Mn) | 0 < n < ω

)
⊆ SO2.

The desired conclusion follows. �

The following problem was raised in [13].
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Problem 1. [13, Question 2] If 〈P ;≤〉 is a �nite poset, is it true that the quasivarie-
ty SP

(
O(P ;≤)

)
is a variety?

The next statement solves Problem 1 in the positive for �nite posets of length at
most two.

Corollary 15. If 〈P ;≤〉 is a �nite poset of length at most two then SP
(
O(P ;≤)

)
is a �nitely based variety.

Proof. It follows from Corollary 14 and the fact that the poset 〈P ;≤〉 is �nite that
SP
(
O(P ;≤)

)
= SP

(
O(Mn)

)
or SP

(
O(P ;≤)

)
is the variety of distributive lattices.

In the �rst case, SP
(
O(P ;≤)

)
is a �nitely based variety by Theorem 10. �
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