СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports

http://semr.math.nsc.ru

QUASIVARIETIES GENERATED BY SMALL SUBORDER LATTICES. I. EQUATIONAL BASES

O. A. KADYROVA AND M. V. SCHWIDEFSKY

Abstract

For each cardinal $\kappa>0$, the quasivariety generated by the suborder lattice of M_{κ} is a finitely based variety. An equational basis for this variety is found.

Keywords: lattice, quasivariety, variety, poset.

1. Introduction

Suborder lattices were studied by several authors; we refer to D. Bredikhin and B. Schein [3] and to B. Sivák [15] as well as to [12, 13, 2]. Suborder lattices were used as a convenient tool in establishing some deep results for subsemigroup lattices which are presented in the papers of V.B. Repnitskiǐ [10, 11]; see also [14].

For a positive integer n, let $\mathbf{S O}_{n}$ denote the class of lattices embeddable into suborder lattices of partial orders of length at most n. It was established in [13] that $\mathbf{S O}_{n}$ is a finitely based variety and a particular finite equational basis was found for this variety in [13].

There are still some unsolved problems which concern suborder lattices. For example, Question 2 in [13] asks if the quasivariety generated by a finite suborder lattice is a variety. A positive answer to this question was given in [2] for the suborder lattice $\mathrm{O}\left(M_{1}\right)$. Moreover, it was established in [2] that the quasivariety generated by $\mathrm{O}\left(M_{1}\right)$ is a variety and a particular finite equational basis was found for this variety.

In this paper, we extend the results from [2] to a more general case and consider lattices $\mathrm{O}\left(M_{\kappa}\right)$ for an arbitrary cardinal $\kappa>0$, see Figure 1. Specifically, we

[^0]prove that the quasivariety $\mathbf{Q}\left(\mathrm{O}\left(M_{\kappa}\right)\right)$ generated by the suborder lattice $\mathrm{O}\left(M_{\kappa}\right)$ is a finitely based variety and find a finite basis for this variety, see Theorem 10 , Theorem 13, and Corollaries 14 and 15. In a subsequent article, the results of this paper will be used for establishing categorical dualities for the quasivarieties $\mathbf{Q}\left(\mathrm{O}\left(M_{\kappa}\right)\right)$ where $1<\kappa \leqslant \omega$.

2. Basic concepts

For all the notions which are not defined in this section, we refer to A.I. Maltsev [8] and V. A. Gorbunov [6].
2.1. Lattices. Most of the following definitions concerning join covers are in accordance with R. Freese, J. Ježek, and J. B. Nation [5].

Let L be a lattice. For arbitrary two sets $A, B \subseteq L$, we say that A refines B and write $A \ll B$ if for each $a \in A$, there is $b \in B$ such that $a \leq b$. If $x \in L$, then A is a join cover of x if $\bigvee A$ exists and $x \leq \bigvee A$; we also call $x \leq \bigvee A$ a join cover in this case. A join cover $x \leq \bigvee A$ is nontrivial if $x \not \leq a$ for all $a \in A ; x \leq \bigvee A$ is finite if the set A is finite. A join cover $x \leq \bigvee A$ is irredundant if $x \not 又 \bigvee B$ for any proper subset $B \subset A$. A join cover $x \leq \bigvee A$ is minimal if $A \subseteq B$ for each join cover $x \leq \bigvee B$ such that $B \ll A$. The lattice L has the complete minimal join cover refinement property $(\mathrm{CR})_{X}$ for a set $X \subseteq L$ if each nontrivial join cover of each element from X can be refined to a minimal one.

By $\mathrm{J}(L)$, we denote the set of all join-irreducible elements of L and by $\operatorname{CJ}(L)$ the set of all completely join-irreducible elements of L. Similarly, by $\mathrm{P}(L)$, we denote the set of all join-prime elements of L and by $\mathrm{CP}(L)$ - the set of all completely join-prime elements of L.

Definition 1. Let L be a lattice and let $J \subseteq J(L)$. We say that L is a J-lattice if L possesses the following properties:
(i) for each element $a \in L$, there is a subset $J_{a} \subseteq J$ with $a=\bigvee J_{a}$;
(ii) for each element $a \in J$ and each nontrivial join cover $a \leq a_{0} \vee \ldots \vee a_{n}$ with $n<\omega$ and $a_{0}, \ldots, a_{n} \in L$, there is a finite set $F \subseteq J$ such that $a \leq \bigvee F$ is a minimal join cover and $F \ll\left\{a_{0}, \ldots, a_{n}\right\}$.
We say that L is a $C J$-lattice if L possesses the following properties:
(i) for each element $a \in L$, there is a subset $J_{a} \subseteq \mathrm{CJ}(L)$ with $a=\bigvee J_{a}$;
(ii) L has the property $(\mathrm{CR})_{\mathrm{CJ}(L)}$.

It follows from the definition above that each $C J$-lattice is a J-lattice for $J=\mathrm{CJ}(L)$. J-lattices were considered in $[1,4]$, see also [13].

For a J-lattice L and an element $x \in \mathrm{~J}(L)$, let $\mathfrak{M}(x)$ denote the set of all finite minimal join covers of x.

Remark 1. We note that in an upper continuous lattice L, each minimal join cover of an element $x \in \operatorname{CJ}(L)$ belongs to $\mathfrak{M}(x)$.

Proposition 1. [4] Let L be a complete dually algebraic lattice. Then the following statements hold.
(i) If L is n-distributive then L is a J-lattice.
(ii) If L is in addition algebraic then L is a CJ-lattice.

Figure 1. Posets M_{1}, M_{n}, and M_{ω}
2.2. Suborder lattices. Let X be a set and let $R \subseteq X^{2}$ be a strict partial order on X; that is an irreflexive, antisymmetric, and transitive binary relation. In this case, we also say that $\langle X ; R\rangle$ is a partially ordered set or a poset for short. A subset $R^{\prime} \subseteq R$ is a (strict) suborder of R if the structure $\left\langle X ; R^{\prime}\right\rangle$ is also a poset. The set $\mathrm{O}(X, R)$ of all (strict) suborders of a partial order R on X is a partially ordered set with respect to the relation \subseteq of set-theoretic inclusion. Obviously, \varnothing is a least suborder of R. Thus, \varnothing is a least element in $\mathrm{O}(X, R)$. It is also obvious that R is a greatest element in $\mathrm{O}(X, R)$. It is straightforward to check that for an arbitrary family $\left\{R_{i} \mid i \in I\right\} \subseteq \mathrm{O}(X, R)$, the relation $\bigcap_{i \in I} R_{i}$ is also a suborder of R; that is,

$$
\bigwedge_{i \in I} R_{i}=\bigcap_{i \in I} R_{i} \in \mathrm{O}(X, R)
$$

Thus, $\mathrm{O}(X, R)$ forms a complete lattice, where

$$
\bigvee_{i \in I} R_{i}=\left(\bigcup_{i \in I} R_{i}\right)^{t}
$$

here Y^{t} denotes the transitive closure of a binary relation $Y \subseteq X^{2}$. It is clear that

$$
\mathrm{J}(\mathrm{O}(X, R))=\mathrm{CJ}(\mathrm{O}(X, R))=\{\{(a, b)\} \mid(a, b) \in R\}
$$

We consider here strict partial orders instead of ordinary partial orders for the sake of simplicity only; the least element of a suborder lattice is in this case \varnothing and not the set $\{(x, x) \mid x \in X\}$.

In this article, we consider suborder lattices of posets $M_{n}, 0<n \leqslant \omega$, which all have length 2, see Figure 1.

3. An equational basis for $\mathbf{S P}\left(\mathrm{O}\left(M_{n}\right)\right)$

3.1. Identity $\left(\mathrm{D}_{n}\right)$. We consider the identity of n-distributivity, where $0<n<\omega$, which we denote by $\left(\mathrm{D}_{n}\right)$:

$$
x \wedge\left(y_{0} \vee y_{1} \vee \ldots \vee y_{n}\right)=\bigvee_{i \leqslant n}\left[x \wedge \bigvee_{j \neq i} y_{j}\right]
$$

This identity was introduced by A. Huhn in [7] as a generalization of distributivityit is clear that $\left(D_{1}\right)$ is just the identity of distributivity. The following lemma is folklore and straightforward to prove, see for example [9].

Lemma 2. Let L be a lattice, let $J \subseteq J(L)$ be a set such that for each element $a \in L$, there is a subset $J_{a} \subseteq J$ with $a=\bigvee J_{a}$. The following conditions are equivalent.
(i) $\left(\mathrm{D}_{n}\right)$ holds in L.
(ii) If $a \leq b_{0} \vee b_{1} \vee \ldots \vee b_{n}$ for some $a \in J$ and some $b_{0}, b_{1}, \ldots, b_{n} \in L$, then there is $i \leqslant n$ such that $a \leq \bigvee_{j \neq i} b_{j}$.
Corollary 3. Let L be a J-lattice for some set $J \subseteq J(L)$. The following conditions are equivalent.
(i) $\left(\mathrm{D}_{n}\right)$ holds in L.
(ii) If $a \leq b_{0} \vee \ldots \vee b_{m}$ is a minimal nontrivial join cover for some elements a and $b_{0}, \ldots, b_{m} \in J$ then $0<m<n$.
3.2. Identity (P). We denote the following identity by (P) :
$x \wedge\left[\left(y_{0} \wedge\left(z_{0} \vee z_{1}\right)\right) \vee y_{1}\right]=\left[x \wedge y_{0} \wedge\left(z_{0} \vee z_{1}\right)\right] \vee\left[x \wedge y_{1}\right] \vee \bigvee_{i<2}\left[x \wedge\left(\left(y_{0} \wedge z_{i}\right) \vee y_{1}\right)\right]$.
This identity was introduced in [4] under the name $\left(\mathrm{N}_{5}^{1}\right)$. It was used in [4] as one of four identities which constitute an equational basis for the [quasi] variety $\mathbf{S P}\left(N_{5}\right)$. It was also used in [2] as one of three identities which form an equational basis of the [quasi]variety $\mathbf{S P}\left(\mathrm{O}\left(M_{1}\right)\right)$, also under the name $\left(\mathrm{N}_{5}^{1}\right)$. For the next two statements, we refer to [4], see also [2, Lemma 6, Corollary 7].
Lemma 4. [4] Let L be a lattice, let $J \subseteq \mathrm{~J}(L)$ be a set such that for each element $a \in L$, there is a subset $J_{a} \subseteq J$ with $a=\bigvee J_{a}$. The following conditions are equivalent.
(i) (P) holds in L.
(ii) If $a \leq a_{0} \vee a_{1}$ is a nontrivial join cover and $a_{0} \leq b_{0} \vee b_{1}$ for some $a \in J$ and some $a_{0}, a_{1}, b_{0}, b_{1} \in L$, then $a \leq\left(a_{0} \wedge b_{i}\right) \vee a_{1}$ for some $i<2$.

Corollary 5. [4] Let L be a 2-distributive J-lattice for some set $J \subseteq J(L)$. The following conditions are equivalent.
(i) (P) holds in L.
(ii) If $a \leq a_{0} \vee a_{1}$ is a minimal join cover for some $a, a_{0}, a_{1} \in J$, then a_{0} and a_{1} are join-prime elements.
3.3. Identity $\left(\mathrm{C}_{n}\right)$. We denote the following identity by $\left(\mathrm{C}_{n}\right)$:

$$
\begin{aligned}
& x \wedge \bigwedge_{i \leqslant n}\left(y_{i} \vee z_{i}\right)=\bigvee_{i \leqslant n}\left[x \wedge y_{i} \wedge \bigwedge_{j \neq i}\left(y_{j} \vee z_{j}\right)\right] \vee \bigvee_{i \leqslant n}\left[x \wedge z_{i} \wedge \bigwedge_{j \neq i}\left(y_{j} \vee z_{j}\right)\right] \vee \\
& \vee \bigvee_{i<j \leqslant n}\left[x \wedge\left(\left(y_{i} \wedge y_{j}\right) \vee\left(z_{i} \wedge z_{j}\right)\right) \wedge \bigwedge_{k \notin\{i, j\}}\left(y_{k} \vee z_{k}\right)\right] \vee \\
& \vee \bigvee_{i<j \leqslant n}\left[x \wedge\left(\left(y_{i} \wedge z_{j}\right) \vee\left(y_{j} \wedge z_{i}\right)\right) \wedge \bigwedge_{k \notin\{i, j\}}\left(y_{k} \vee z_{k}\right)\right]
\end{aligned}
$$

The identity $\left(\mathrm{C}_{1}\right)$ was introduced in [4] and used there, under the name (C), as a member of an equational basis of the [quasi]variety $\mathbf{S P}\left(N_{5}\right)$. It was also used in [2] as one of three identities which form an equational basis of the [quasi]variety $\mathbf{S P}\left(\mathrm{O}\left(M_{1}\right)\right)$, also under the name (C). For the next two statements, we refer to [4], see also [2, Lemma 4, Corollary 5].

Lemma 6. Let L be a lattice, let $J \subseteq J(L)$ be a set such that for each element $a \in L$, there is a subset $J_{a} \subseteq J$ with $a=\bigvee J_{a}$. The following conditions are equivalent.
(i) $\left(\mathrm{C}_{n}\right)$ holds in L.
(ii) If $a \leq a_{0} \vee b_{0}, \ldots, a \leq a_{n} \vee b_{n}$ are nontrivial join covers for some $a \in J$ and some $a_{0}, \ldots, a_{n}, b_{0}, \ldots, b_{n} \in L$, then there are $c, d \in L$ such that $a \leq c \vee d$ and $\{c, d\} \ll\left\{a_{i}, b_{i}\right\},\{c, d\} \ll\left\{a_{j}, b_{j}\right\}$ for some $i<j \leqslant n$.

Proof. We prove first that (i) implies (ii). Indeed, let the assumptions of (ii) hold. Since $\left(\mathrm{C}_{n}\right)$ holds in L, we have

$$
\begin{aligned}
a=a \wedge & \bigwedge_{i \leqslant n}\left(a_{i} \vee b_{i}\right)=\bigvee_{i \leqslant n}\left[a \wedge a_{i} \wedge \bigwedge_{j \neq i}\left(a_{j} \vee b_{j}\right)\right] \vee \bigvee_{i \leqslant n}\left[a \wedge b_{i} \wedge \bigwedge_{j \neq i}\left(a_{j} \vee b_{j}\right)\right] \vee \\
& \vee \bigvee_{i<j \leqslant n}\left[a \wedge\left(\left(a_{i} \wedge a_{j}\right) \vee\left(b_{i} \wedge b_{j}\right)\right) \wedge \bigwedge_{k \notin\{i, j\}}\left(a_{k} \vee b_{k}\right)\right] \vee \\
& \vee \bigvee_{i<j \leqslant n}\left[a \wedge\left(\left(a_{i} \wedge b_{j}\right) \vee\left(a_{j} \wedge b_{i}\right)\right) \wedge \bigwedge_{k \notin\{i, j\}}\left(a_{k} \vee b_{k}\right)\right] .
\end{aligned}
$$

As a is a join-irreducible element, a equals one of the joinands on the right-hand side of the equality above. Therefore, the following cases are possible.
Case 1: $a=a \wedge a_{i} \wedge \bigwedge_{j \neq i}\left(a_{j} \vee b_{j}\right)$. In this case, $a \leq a_{i}$ which contradicts the assumption that $a \leq a_{i} \vee b_{i}$ is a nontrivial join cover. Therefore, this case is impossible.

Case 2: $a=a \wedge b_{i} \wedge \bigwedge_{j \neq i}\left(a_{j} \vee b_{j}\right)$. In this case, $a \leq b_{i}$ which again contradicts the assumption that $a \leq a_{i} \vee b_{i}$ is a nontrivial join cover. Therefore, this case is also impossible.
Case 3: there are $i<j \leqslant n$ such that $a=a \wedge\left(\left(a_{i} \wedge a_{j}\right) \vee\left(b_{i} \wedge b_{j}\right)\right) \wedge \bigwedge_{k \notin\{i, j\}}\left(a_{k} \vee b_{k}\right)$. In this case, $a \leq c \vee d$, where $c=a_{i} \wedge a_{j}$ and $d=b_{i} \wedge b_{j}$. Moreover, $\{c, d\} \ll\left\{a_{i}, b_{i}\right\}$ and $\{c, d\} \ll\left\{a_{j}, b_{j}\right\}$ whence we get the desired conclusion.
Case 4: there are $i<j \leqslant n$ such that $a=a \wedge\left(\left(a_{i} \wedge b_{j}\right) \vee\left(a_{j} \wedge b_{i}\right)\right) \wedge \bigwedge_{k \notin\{i, j\}}\left(a_{k} \vee b_{k}\right)$. In this case, we put $c=a_{i} \wedge b_{j}$ and $d=b_{i} \wedge a_{j}$ and obtain the desired conclusion as above in Case 3.

We prove now that (ii) implies (i). Let u denote the value of the left-hand side and v denote the value of the right-hand side of the identity $\left(\mathrm{C}_{n}\right)$ under interpretation γ, where

$$
\gamma(x)=a, \quad \gamma\left(y_{i}\right)=a_{i}, \quad \gamma\left(z_{i}\right)=b_{i}, \quad i \leqslant n .
$$

As inequality $v \leq u$ holds in each lattice, in order to prove that $\left(\mathrm{C}_{n}\right)$ holds in L, we have to prove that $u \leq v$. According to our assumption about L, it suffices to show that for each element $a^{\prime} \in J$, the inequality $a^{\prime} \leq u$ implies that $a^{\prime} \leq v$. Indeed, $a^{\prime} \leq u$ means that $a^{\prime} \leq a$ and $a^{\prime} \leq a_{i} \vee b_{i}$ for all $i \leqslant n$. If $a^{\prime} \leq a_{i}$ for some $i \leqslant n$ then $a^{\prime} \leq u \wedge a_{i} \leq v$. If $a^{\prime} \leq b_{i}$ for some $i \leqslant n$ then $a^{\prime} \leq u \wedge b_{i} \leq v$. Assume therefore that $a^{\prime} \leq a_{i} \vee b_{i}$ is a nontrivial join cover for all $i \leqslant n$. Applying (ii), we obtain that there are elements $c, d \in L$ such that $a^{\prime} \leq c \vee d$ and $\{c, d\} \ll\left\{a_{i}, b_{i}\right\}$, $\{c, d\} \ll\left\{a_{j}, b_{j}\right\}$ for some $i<j \leqslant n$. As $a^{\prime} \leq a_{i} \vee b_{i}$ and $a^{\prime} \leq a_{j} \vee b_{j}$ are nontrivial join covers, we conclude that $a^{\prime} \leq c \vee d$ is also a nontrivial join cover. Therefore, the following cases are possible.
Case 1: $c \leq a_{i} \wedge a_{j}$ and $d \leq b_{i} \wedge b_{j}$ or $d \leq a_{i} \wedge a_{j}$ and $c \leq b_{i} \wedge b_{j}$. In this case, $a^{\prime} \leq u \wedge\left(\left(a_{i} \wedge a_{j}\right) \vee\left(b_{i} \wedge b_{j}\right)\right) \leq v$.
Case 2: $c \leq a_{i} \wedge q$ and $d \leq a_{i} \wedge p$ for some $p, q \in\left\{a_{j}, b_{j}\right\}$. In this case, $a^{\prime} \leq c \vee d \leq a_{i}$ which is impossible by our assumption as the join cover $a^{\prime} \leq a_{i} \vee b_{i}$ is nontrivial.

Case 3: $c \leq a_{j} \wedge q$ and $d \leq a_{j} \wedge p$ for some $p, q \in\left\{a_{i}, b_{i}\right\}$. In this case, $a^{\prime} \leq c \vee d \leq a_{j}$ which is impossible as the join cover $a^{\prime} \leq a_{j} \vee b_{j}$ is nontrivial.
Case 4: $c \leq a_{i} \wedge b_{j}$ and $d \leq b_{i} \wedge a_{j}$ or $d \leq a_{i} \wedge b_{j}$ and $c \leq b_{i} \wedge a_{j}$. In this case, $a^{\prime} \leq u \wedge\left(\left(a_{i} \wedge b_{j}\right) \vee\left(a_{j} \wedge b_{i}\right)\right) \leq v$.
Case 5: $c \leq b_{i} \wedge q$ and $d \leq b_{i} \wedge p$ for some $p, q \in\left\{a_{j}, b_{j}\right\}$. In this case, $a^{\prime} \leq c \vee d \leq b_{i}$ which is impossible by our assumption as the join cover $a^{\prime} \leq a_{i} \vee b_{i}$ is nontrivial.
Case 6: $c \leq b_{j} \wedge q$ and $d \leq b_{j} \wedge p$ for some $p, q \in\left\{a_{i}, b_{i}\right\}$. In this case, $a^{\prime} \leq c \vee d \leq b_{j}$ which is impossible as the join cover $a^{\prime} \leq a_{j} \vee b_{j}$ is nontrivial.

Therefore, $a^{\prime} \leq v$ in any case and the desired conclusion follows.
Corollary 7. Let L be a 2-distributive J-lattice for some set $J \subseteq J(L)$. The following conditions are equivalent.
(i) $\left(\mathrm{C}_{n}\right)$ holds in L.
(ii) If $a \leq a_{0} \vee b_{0}, \ldots, a \leq a_{m} \vee b_{m}$ are distinct minimal join covers for some $a, a_{0}, \ldots, a_{m}, b_{0}, \ldots, b_{m} \in J$, then $m<n$.
Proof. We prove that (i) implies (ii). Indeed, suppose that $m \geqslant n$. Then, applying Lemma 6, we obtain that there are $i<j \leqslant n$ and elements $c, d \in L$ such that $\{c, d\} \ll\left\{a_{i}, b_{i}\right\},\{c, d\} \ll\left\{a_{j}, b_{j}\right\}$. As $a \leq a_{i} \vee b_{i}$ and $a \leq a_{j} \vee b_{j}$ are minimal join covers, we conclude that $a \leq c \vee d$ is a nontrivial join cover and $\left\{a_{i}, b_{i}\right\}=\{c, d\}=$ $\left\{a_{j}, b_{j}\right\}$ which contradicts our assumptions. Therefore, $m<n$.

To prove that (ii) implies (i), we show that statement (ii) of Lemma 6 holds. So let $a \leq a_{0} \vee b_{0}, \ldots, a \leq a_{n} \vee b_{n}$ be nontrivial join covers for some $a \in J$ and some $a_{0}, \ldots, a_{n}, b_{0}, \ldots, b_{n} \in L$. As L is a J-lattice for some set $J \subseteq J(L)$, there are finite minimal join covers $a \leq \bigvee F_{0}, \ldots, a \leq \bigvee F_{n}$ such that $F_{i} \ll\left\{a_{i}, b_{i}\right\}$ for all $i \leqslant n$. As L is 2-distributive, we apply Lemma 2 and obtain that $\left|F_{i}\right|=2$ for all $i \leqslant n$. Applying our assumption (ii) to finite minimal join covers $a \leq \bigvee F_{0}, \ldots$, $a \leq \bigvee F_{n}$, we obtain that $F_{i}=F_{j}=\{c, d\}$ for some $i<j \leqslant n$ and some $c, d \in L$. This means that $a \leq c \vee d$ and $\{c, d\} \ll\left\{a_{i}, b_{i}\right\},\{c, d\} \ll\left\{a_{j}, b_{j}\right\}$ which is our desired conclusion.
3.4. An equational basis. For $0<n<\omega$, we put $\Sigma_{n}=\left\{\left(\mathrm{C}_{n}\right),\left(\mathrm{D}_{2}\right),(\mathrm{P})\right\}$ and $\mathbf{S}_{n}=\operatorname{Mod} \Sigma_{n}$.
Proposition 8. Let L be a dually algebraic lattice such that $L \models \Sigma_{n}$, where $0<$ $n<\omega$. Then for all elements $x \in \mathrm{~J}(L)$, each element of the set $\mathfrak{M}(x)$ is of the form $\{a, b\}$, where $\{a, b\} \subseteq \mathrm{P}(L)$ is an antichain. Moreover, $|\mathfrak{M}(x)| \leqslant n$.

In particular, $L \in \mathbf{S P}\left(\mathrm{O}\left(M_{n}\right)\right)$.
Proof. It follows from Proposition 1(i) that L is a J-lattice. Corollary 3 implies that each minimal nontrivial join cover of an element $x \in \mathrm{~J}(L)$ contains exactly two elements. Corollary 5 implies that each minimal nontrivial join cover of x consists of join-prime elements. Moreover, $|\mathfrak{M}(x)| \leqslant n$ by Corollary 7 . Thus, the first statement follows.

To prove the second statement, we use the method developed in [12, 13]. We fix an element $x \in \mathrm{~J}(L) \backslash \mathrm{P}(L)$. According to the first statement,

$$
\mathfrak{M}(x)=\left\{\left\{b_{1}(x), c_{1}(x)\right\}, \ldots,\left\{b_{n(x)}(x), c_{n(x)}(x)\right\}\right\}
$$

for some natural number $n(x)$ such that $0<n(x) \leqslant n$ and some join-prime elements $b_{1}(x), \ldots, b_{n(x)}, c_{1}(x), \ldots, c_{n(x)}$. We denote by P_{x} an isomorphic copy of $M_{n(x)}$. We denote the elements of P_{x} by $0(x), a_{1}(x), \ldots, a_{n(x)}(x), 1(x)$ respectively, see Figure

1. As $n(x) \leqslant n, P_{x}$ is a subposet of M_{n}. We define a mapping $\psi_{x}: \mathrm{J}(L) \rightarrow \mathrm{O}\left(P_{x}\right)$ as follows:

$$
\begin{aligned}
& \psi_{x}: x \mapsto\{(0(x), 1(x))\} ; \\
& \psi_{x}: y \mapsto\left\{\left(0(x), a_{i}(x)\right) \mid y=b_{i}(x) \text { for some } i \in\{1, \ldots, n\}\right\} \cup \\
& \cup\left\{\left(a_{i}(x), 1(x)\right) \mid y=c_{i}(x) \text { for some } i \in\{1, \ldots, n\}\right\}, \quad \text { for all } y \in \bigcup \mathfrak{M}(x) ; \\
& \psi_{x}: y \mapsto \varnothing \text { for all } y \notin\{x\} \cup \bigcup \mathfrak{M}(x) .
\end{aligned}
$$

Let $\mathrm{P}^{\prime}(L)$ denote the set of all join-prime elements of L which do not belong to any minimal nontrivial join cover of any element $x \in \mathrm{~J}(L) \backslash \mathrm{P}(L)$. For each element $x \in \mathrm{P}^{\prime}(L)$, we put $P_{x}=\{0(x), 1(x)\}$, where $0(x)<1(x)$ and consider the mapping

$$
\begin{aligned}
& \psi_{x}: \mathrm{J}(L) \rightarrow \mathrm{O}\left(P_{x}\right) \\
& \psi_{x}: x \mapsto\{(0(x), 1(x))\} \\
& \psi_{x}: y \mapsto \varnothing \text { for all } y \neq x
\end{aligned}
$$

Finally, let $I=(\mathrm{J}(L) \backslash \mathrm{P}(L)) \cup \mathrm{P}^{\prime}(L)$. We consider the following mapping:

$$
\begin{aligned}
& \psi: L \rightarrow \prod_{x \in I} \mathrm{O}\left(P_{x}\right) \\
& \pi_{x} \psi(a)=\bigcup\left\{\psi_{x}(y) \mid y \in \mathrm{~J}(L), y \leq a\right\} \quad \text { for all } a \in L \text { and all } x \in I
\end{aligned}
$$

Claim 1. ψ is well-defined.
Proof of Claim. We have to prove that $\pi_{x} \psi(a)$ is a suborder in P_{x} for all $x \in I$ and all $a \in L$. As $P_{x} \cong M_{n(x)}$, it suffices to show that if $\left(0(x), a_{i}(x)\right),\left(a_{i}(x), 1(x)\right) \in$ $\pi_{x} \psi(a)$ for some $i \in\{1, \ldots, n\}$ then $(0(x), 1(x)) \in \pi_{x} \psi(a)$. Indeed, suppose that $\left(0(x), a_{i}(x)\right),\left(a_{i}(x), 1(x)\right) \in \pi_{x} \psi(a)$ for some $i \in\{1, \ldots, n\}$. In other words, $\psi_{x}\left(b_{i}\right) \cup$ $\psi_{x}\left(c_{i}\right) \subseteq \pi_{x} \psi(a)$ where $x \leq b_{i} \vee c_{i}$ is a minimal nontrivial join cover. This means that $b_{i}, c_{i} \leq a$ whence $x \leq b_{i} \vee c_{i} \leq a$. By our definition of ψ_{x} this implies that $\{(0(x), 1(x))\}=\psi_{x}(x) \subseteq \bar{\pi}_{x} \psi(a)$ which is our desired conclusion.
Claim 2. ψ is a $(0,1)$-lattice homomorphism.
Proof of Claim. In order to prove the desired claim, it suffices to show that $\pi_{x} \psi$ is a $(0,1)$-lattice homomorphism for each $x \in I$. Indeed, we fix an element $x \in I$ and elements $u, v \in L$. If u is a least element of L then $y \leq u$ for no element $y \in \mathrm{~J}(L)$. Therefore, $\pi_{x} \psi(u)=\varnothing$. If u is a greatest element of L then $y \leq u$ for each element $y \in \mathrm{~J}(L)$. Therefore, $\pi_{x} \psi(u)$ is obviously the greatest element of $\mathrm{O}\left(P_{x}\right)$. Therefore, $\pi_{x} \psi$ preserves the bounds.

If $u \leq v$ then $y \leq u$ implies $y \leq v$ for all $y \in \mathrm{~J}(L)$. Therefore, $\pi_{x} \psi$ is monotone. We prove that $\pi_{x} \psi$ preserves meets and joins.

Since $\pi_{x} \psi$ is monotone, $\pi_{x} \psi(u) \vee \pi_{x} \psi(v) \subseteq \pi_{x} \psi(u \vee v)$. We have to establish that $\pi_{x} \psi(u \vee v) \subseteq \pi_{x} \psi(u) \vee \pi_{x} \psi(v)$. So suppose that $\left(z_{0}, z_{1}\right) \in \pi_{x} \psi(u \vee v)$. This means that $\left(z_{0}, z_{1}\right) \in \psi_{x}(y) \neq \varnothing$ for some $y \in \mathrm{~J}(L)$ such that $y \leq u \vee v$. If $y \leq u$ or $y \leq v$ then $\left(z_{0}, z_{1}\right) \in \pi_{x} \psi(u) \cup \pi_{x} \psi(v)$. Otherwise, $y \leq u \vee v$ is a nontrivial join cover. As L is a J-lattice, we can refine this join cover to a minimal one. This implies that $y \in \mathrm{~J}(L) \backslash \mathrm{P}(L)$. As $\psi_{x}(y) \neq \varnothing$, we conclude by the definition of ψ_{x} that $y=x$. Moreover, there is i such that $1 \leqslant i \leqslant n(x)$ and $y=x \leq b_{i} \vee c_{i}$ is a minimal nontrivial join cover with $\left\{b_{i}, c_{i}\right\} \ll\{u, v\}$. Inclusion $\left(z_{0}, z_{1}\right) \in \psi_{x}(y)=\psi_{x}(x)$ implies that
$z_{0}=0(x)$ and $z_{1}=1(x)$. Furthermore, $\left(0(x), a_{i}(x)\right) \in \psi_{x}\left(b_{i}\right) \subseteq \pi_{x} \psi(u) \cup \pi_{x} \psi(v)$ and $\left(a_{i}(x), 1(x)\right) \in \psi_{x}\left(c_{i}\right) \subseteq \pi_{x} \psi(u) \cup \pi_{x} \psi(v)$ as $\left\{b_{i}, c_{i}\right\} \ll\{u, v\}$. Hence, $\left(z_{0}, z_{1}\right) \in$ $\psi_{x}\left(b_{i}\right) \vee \psi_{x}\left(c_{i}\right) \subseteq \pi_{x} \psi(u) \cup \pi_{x} \psi(v)$. This proves that $\pi_{x} \psi$ preserves joins.

Since $\pi_{x} \psi$ is monotone, $\pi_{x} \psi(u \wedge v) \subseteq \pi_{x} \psi(u) \cap \pi_{x} \psi(v)$. We have to establish that $\pi_{x} \psi(u) \cap \pi_{x} \psi(v) \subseteq \pi_{x} \psi(u \wedge v)$. Indeed, let $\left(z_{0}, z_{1}\right) \in \pi_{x} \psi(u) \cap \pi_{x} \psi(v)$. This means that $\left(z_{0}, z_{1}\right) \in \psi_{x}(y) \cap \psi_{x}\left(y^{\prime}\right) \neq \varnothing$ for some $y, y^{\prime} \in \mathrm{J}(L)$ such that $y \leq u$ and $y^{\prime} \leq v$. If $y \neq y^{\prime}$ then $\psi_{x}(y) \cap \psi_{x}\left(y^{\prime}\right)=\varnothing$ by the definition of ψ_{x}, a contradiction. Therefore, $y=y^{\prime} \leq u \wedge v$ and $\left(z_{0}, z_{1}\right) \in \psi_{x}(y) \subseteq \pi_{x} \psi(u \wedge v)$. This proves that $\pi_{x} \psi$ preserves meets.

Claim 3. ψ is an embedding.
Proof of Claim. Suppose that $u \not \leq v$ in L. As L is a J-lattice, there is $y \in J(L)$ such that $y \leq u$ and $y \not \leq v$. By our definition, there is $x \in I$ such that $\psi_{x}(y) \neq \varnothing$. But then $\varnothing \neq \psi_{x}(y) \subseteq \pi_{x} \psi(u)$ and $\psi_{x}(y) \cap \pi_{x} \psi(v)=\varnothing$. This implies that $\pi_{x} \psi(u) \nsubseteq$ $\pi_{x} \psi(v)$ whence $\psi(u) \not \approx \psi(v)$.

It follows from the claims above that

$$
L \in \mathbf{S P}\left(\mathrm{O}\left(P_{x}\right) \mid x \in I\right) \subseteq \mathbf{S P S}\left(\mathrm{O}\left(M_{n}\right)\right) \subseteq \mathbf{S P}\left(\mathrm{O}\left(M_{n}\right)\right)
$$

The proof of Proposition 8 is complete.
Proposition 9. Let L be a bi-algebraic lattice such that $L \models \Sigma_{n}$, where $0<n<\omega$. Then for all elements $x \in \operatorname{CJ}(L)$, each element of the set $\mathfrak{M}(x)$ is of the form $\{a, b\}$, where $\{a, b\} \subseteq \mathrm{P}(L)$ is an antichain. Moreover, $|\mathfrak{M}(x)| \leqslant n$.

In particular, $L \in \mathbf{S P}\left(\mathrm{O}\left(M_{n}\right)\right)$.
Proof. The argument is similar to the one in the proof of Proposition 8 and uses Proposition 1(ii).

Theorem 10. Σ_{n} forms an equational basis for $\mathbf{S P}\left(\mathrm{O}\left(M_{n}\right)\right)$. In particular, the class $\mathbf{S P}\left(\mathrm{O}\left(M_{n}\right)\right)=\mathbf{S}_{n}$ is a lattice variety.
Proof. Let $L \models \Sigma_{n}$ and let F be the dual filter lattice of L. It is well-known that F is dually algebraic and it follows that $F \models \Sigma_{n}$. By Proposition $1, F$ is a J-lattice. By Proposition $8, F \in \mathbf{S P}\left(\mathrm{O}\left(M_{n}\right)\right)$ whence $L \in \mathbf{S P}\left(\mathrm{O}\left(M_{n}\right)\right)$ as L embeds into F. On the other hand, the lattice $\mathrm{O}\left(M_{n}\right)$ has the only minimal join covers:

$$
\begin{aligned}
& A \leq A_{i} \vee B_{i}, \quad 1 \leqslant i \leqslant n, \text { where } \\
& A=\{(0,1)\}, \quad A_{i}=\left\{\left(0, a_{i}\right)\right\}, B_{i}=\left\{\left(a_{i}, 1\right)\right\}, \quad 1 \leqslant i \leqslant n
\end{aligned}
$$

see Figure 1. Thus, $\mathrm{O}\left(M_{n}\right)$ is 2-distributive by Corollary 3. Moreover, $\mathrm{O}\left(M_{n}\right)$ satisfies the condition (ii) of Corollaries 7 and 5 . This implies that $\mathrm{O}\left(M_{n}\right) \vDash \Sigma_{n}$.
Let \mathbf{L}_{01} denote the variety of (0,1)-lattices and let $\mathbf{S}_{n}^{01}=\mathbf{L}_{01} \cap \operatorname{Mod} \Sigma_{n}$.
Theorem 11. The set Σ_{n} forms an equational basis for $\mathbf{S P}\left(\mathrm{O}\left(M_{n}\right)\right)$ within the variety \mathbf{L}_{01}. In particular, $\mathbf{S P}\left(\mathrm{O}\left(M_{n}\right)\right)=\mathbf{S}_{n}^{01}$ is a variety of $(0,1)$-lattices.

Proof. If L is a $(0,1)$-lattice then taking in the proof of Theorem 10 the dual lattice of nonempty filters as F, we obtain that L is a $(0,1)$-sublattice of F and $F \in \mathbf{S P}\left(\mathrm{O}\left(M_{n}\right)\right)$ by Proposition 8 . Therefore, L belongs in this case to the variety of $(0,1)$-lattices generated by $\mathrm{O}\left(M_{n}\right)$.
4. An equational basis for $\mathbf{Q}\left(\mathrm{O}\left(M_{\omega}\right)\right)$

We put $\Sigma=\left\{\left(\mathrm{D}_{2}\right),(\mathrm{P})\right\}$.
Proposition 12. Let L be a dually algebraic lattice such that $L \models \Sigma$. The following statements hold.
(i) For all $x \in \mathrm{~J}(L)$, each element of the set $\mathfrak{M}(x)$ is of the form $\{a, b\}$, where $\{a, b\} \subseteq \mathrm{P}(L)$ is an antichain.
(ii) If L is bi-algebraic then for all $x \in \operatorname{CJ}(L)$, each element of the set $\mathfrak{M}(x)$ is of the form $\{a, b\}$, where $\{a, b\} \subseteq \mathrm{P}(L)$ is an antichain.
In particular, $L \in \mathbf{S P}\left(\mathrm{O}\left(M_{\kappa}\right)\right) \subseteq \mathbf{Q}\left(\mathrm{O}\left(M_{\omega}\right)\right)$ for some cardinal κ.
Proof. Applying the same argument as in the proof of Proposition 8, we obtain that $L \in \mathbf{S P}\left(\mathrm{O}\left(M_{\kappa}\right)\right)$ for some infinite cardinal $\kappa \geqslant|L|$. As M_{κ} embeds into an ultrapower of M_{ω}, we conclude that $\mathrm{O}\left(M_{\kappa}\right) \in \mathbf{S P}_{u}\left(\mathrm{O}\left(M_{\omega}\right)\right)$ and

$$
\mathbf{S P}\left(\mathrm{O}\left(M_{\kappa}\right)\right) \subseteq \mathbf{S P P}_{u}\left(\mathrm{O}\left(M_{\omega}\right)\right)=\mathbf{Q}\left(\mathrm{O}\left(M_{\omega}\right)\right)
$$

which is our desired conclusion.
Theorem 13. The following statements hold.
(i) The quasivariety $\mathbf{Q}\left(\mathrm{O}\left(M_{\omega}\right)\right)$ is a lattice variety and Σ forms an equational basis for this variety.
(ii) The class $\mathbf{Q}\left(\mathrm{O}\left(M_{\omega}\right)\right)$ of $(0,1)$-lattices is a variety of $(0,1)$-lattices and Σ forms an equational basis for this variety.
Proof. (i) If $L \models \Sigma$, then $L \in \mathbf{Q}\left(\mathrm{O}\left(M_{\omega}\right)\right)$ by Proposition 12. Hence, $\operatorname{Mod} \Sigma \subseteq$ $\mathbf{Q}\left(\mathrm{O}\left(M_{\omega}\right)\right)$. Conversely, the lattice $\mathrm{O}\left(M_{\omega}\right)$ has the only minimal join covers:

$$
\begin{aligned}
& A \leq A_{i} \vee B_{i}, \quad 1 \leqslant i<\omega, \text { where } \\
& A=\{(0,1)\}, \quad A_{i}=\left\{\left(0, a_{i}\right)\right\}, \quad B_{i}=\left\{\left(a_{i}, 1\right)\right\}, \quad 1 \leqslant i<\omega
\end{aligned}
$$

see Figure 1. Thus, $\mathrm{O}\left(M_{n}\right)$ is 2-distributive by Corollary 3. Moreover, $\mathrm{O}\left(M_{n}\right)$ satisfies the condition (ii) of Corollary 5. Therefore, $\mathrm{O}\left(M_{\omega}\right) \models \Sigma$ and

$$
\mathbf{Q}\left(\mathrm{O}\left(M_{\omega}\right)\right)=\mathbf{S P P}_{u}\left(\mathrm{O}\left(M_{\omega}\right)\right) \models \Sigma
$$

as identities are stable with respect to the operators \mathbf{S}, \mathbf{P}, and \mathbf{P}_{u}. It follows that $\operatorname{Mod} \Sigma=\mathbf{Q}\left(\mathrm{O}\left(M_{\omega}\right)\right)$.

The proof of (ii) is similar.
Corollary 14. The following equalities hold for an arbitrary infinite cardinal κ :

$$
\mathbf{S O}_{2}=\mathbf{Q}\left(\mathrm{O}\left(M_{n}\right) \mid 0<n<\omega\right)=\mathbf{S P}\left(\mathrm{O}\left(M_{\kappa}\right)\right)
$$

Proof. By [13, Theorem 4.8], Σ forms an equational basis for $\mathbf{S O}_{2}$. Taking into account Theorem 13, we conclude that $\mathbf{S O}_{2}=\mathbf{S P}\left(\mathrm{O}\left(M_{\omega}\right)\right)$. Furthermore, each algebraic structure embeds into an ultraproduct of its finitely generated substructures, see for example [6, Theorem 1.2.8]. Therefore, $M_{\kappa} \in \mathbf{S P}_{u}\left(M_{n} \mid 0<n<\omega\right)$ for each infinite cardinal kappa whence $\mathrm{O}\left(M_{\kappa}\right) \in \mathbf{S P}_{u}\left(\mathrm{O}\left(M_{n}\right) \mid 0<n<\omega\right)$ and

$$
\begin{aligned}
\mathbf{S O}_{2} & =\mathbf{S P}\left(\mathrm{O}\left(M_{\omega}\right)\right)=\mathbf{S P}\left(\mathrm{O}\left(M_{\kappa}\right)\right) \subseteq \mathbf{S P P}_{u}\left(\mathrm{O}\left(M_{n}\right) \mid 0<n<\omega\right)= \\
& =\mathbf{Q}\left(\mathrm{O}\left(M_{n}\right) \mid 0<n<\omega\right) \subseteq \mathbf{S O}_{2} .
\end{aligned}
$$

The desired conclusion follows.
The following problem was raised in [13].

Problem 1. [13, Question 2] If $\langle P ; \leq\rangle$ is a finite poset, is it true that the quasivariety $\mathbf{S P}(\mathrm{O}(P ; \leq))$ is a variety?
The next statement solves Problem 1 in the positive for finite posets of length at most two.

Corollary 15. If $\langle P ; \leq\rangle$ is a finite poset of length at most two then $\mathbf{S P}(\mathrm{O}(P ; \leq))$ is a finitely based variety.
Proof. It follows from Corollary 14 and the fact that the poset $\langle P ; \leq\rangle$ is finite that $\mathbf{S P}(\mathrm{O}(P ; \leq))=\mathbf{S P}\left(\mathrm{O}\left(M_{n}\right)\right)$ or $\mathbf{S P}(\mathrm{O}(P ; \leq))$ is the variety of distributive lattices. In the first case, $\mathbf{S P}(\mathrm{O}(P ; \leq))$ is a finitely based variety by Theorem 10.

References

[1] M.E. Adams, W. Dziobiak, A.V. Kravchenko, M.V. Schwidefsky, Remarks about complete lattice homomorphic images of algebraic lattices, manuscript, 2022.
[2] A.O. Basheyeva, K.D. Sultankulov, M.V. Schwidefsky, The quasivariety SP(L6). I. An equational basis, Sib. Èlectron. Mat. Izv., 19:2 (2022), 902-911.
[3] D. Bredikhin, B. Schein, Representation of ordered semigroups and lattices by binary relations, Colloq. Math., 39 (1978), 1-12. Zbl 0389.06013
[4] W. Dziobiak, M.V. Schwidefsky, Categorical dualities for some two categories of lattices: An extended abstract, Bull. Sec. Logic, $51: 3$ (2022), 329-344.
[5] R. Freese, J. Ježek, J.B. Nation, Free lattices, Mathematical Surveys and Monographs, 42, American Mathematical Society, Providence, 1995. Zbl 0839.06005
[6] V.A. Gorbunov, Algebraic theory of quasivarieties, Siberian School of Algebra and Logic, Consultants Bureau, New York, 1998. Zbl 0986.08001
[7] A.P. Huhn, Schwach distributive Verbände. I, Acta Sci. Math., 33 (1972), 297-305. Zbl 0269.06006
[8] A.I. Maltsev, Algebraic systems, Springer-Verlag, Berlin etc., 1973. Zbl 0266.08001
[9] J.B. Nation, An approach to lattice varieties of finite height, Algebra Univers., 27:4 (1990), 521-543. Zbl 0721.08004
[10] V.B. Repnitskiĭ, On finite lattices which are embeddable in subsemigroup lattices, Semigroup Forum, 46:3 (1993), 388-397. Zbl 0797.20052
[11] V.B. Repnitskiĭ, On representation of lattices by lattices of semigroups, Russ. Math., 40:1 (1996), 55-64. Zbl 0870.06005
[12] M.V. Semenova, Lattices of suborders, Sib. Math. J., 40:3 (1999), 577-584. Zbl 0924.06009
[13] M.V. Semenova, Lattices that are embeddable into suborder lattices, Algebra Logic, 44:4 (2005), 270-285. Zbl 1101.06005
[14] M.V. Semenova, On lattices embeddable into subsemigroup lattices. III. Nilpotent semigroups, Sib. Math. J., 48:1 (2007), 156-164. Zbl 1154.20047
[15] B. Sivák, Representation of finite lattices by orders on finite sets, Math. Slovaca, 28:2 (1978), 203-215. Zbl 0395.06002

Olga Aleksandrovna Kadyrova
Novosibirsk State University,
Pirogova str., 1 ,
630090 Novosibirsk, Russia
Email address: o.kadyrova@g.nsu.ru
Marina Vladimirovna Schwidefsky
Novosibirsk State University,
Pirogova str., 1 ,
630090, Novosibirsk, Russia
Email address: m.schwidefsky@g.nsu.ru

[^0]: Kadyrova, O. A., Schwidefsky, M. V., Quasivarieties generated by small suborder lattices. I. Equational bases.
 (C) 2022 Kadyrova, O. A., Schwidefsky, M. V..

 The research was carried out under the support of the Russian Science Foundation, project no. 22-21-00104.

 Received August, 17, 2022, published February, 7, 2023.

