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QUASIVARIETIES GENERATED BY SMALL SUBORDER
LATTICES. I. EQUATIONAL BASES

0. A. KADYROVA AND M. V. SCHWIDEFSKY

ABsTRACT. For each cardinal x > 0, the quasivariety generated by the
suborder lattice of M, is a finitely based variety. An equational basis
for this variety is found.
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1. INTRODUCTION

Suborder lattices were studied by several authors; we refer to D. Bredikhin and B.
Schein [3] and to B. Sivék [15] as well as to [12, 13, 2]|. Suborder lattices were used as
a convenient tool in establishing some deep results for subsemigroup lattices which
are presented in the papers of V.B. Repnitskii [10, 11]; see also [14].

For a positive integer n, let SO,, denote the class of lattices embeddable into
suborder lattices of partial orders of length at most n. It was established in [13]
that SO, is a finitely based variety and a particular finite equational basis was
found for this variety in [13].

There are still some unsolved problems which concern suborder lattices. For
example, Question 2 in [13] asks if the quasivariety generated by a finite suborder
lattice is a variety. A positive answer to this question was given in [2] for the
suborder lattice O(My). Moreover, it was established in [2] that the quasivariety
generated by O(M;) is a variety and a particular finite equational basis was found
for this variety.

In this paper, we extend the results from [2] to a more general case and consider
lattices O(M,;) for an arbitrary cardinal x > 0, see Figure 1. Specifically, we
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prove that the quasivariety Q(O(M,)) generated by the suborder lattice O(M,,)
is a finitely based variety and find a finite basis for this variety, see Theorem 10,
Theorem 13, and Corollaries 14 and 15. In a subsequent article, the results of
this paper will be used for establishing categorical dualities for the quasivarieties
Q(O(M,)) where 1 < k < w.

2. BASIC CONCEPTS

For all the notions which are not defined in this section, we refer to A.I. Maltsev
[8] and V. A. Gorbunov [6].

2.1. Lattices. Most of the following definitions concerning join covers are in accor-
dance with R. Freese, J. Jezek, and J. B. Nation [5].

Let L be a lattice. For arbitrary two sets A, B C L, we say that A refines B and
write A < B if for each a € A, there is b € B such that a < b. If x € L, then A
is a join cover of x if \/ A exists and « < \/ A; we also call z < \/ A a join cover
in this case. A join cover x < \/ A is nontrivial if x ﬁ aforallae A; 2 <\ A
is finite if the set A is finite. A join cover z < \/ A is irredundant if = £ \/ B for
any proper subset B C A. A join cover z < \/ A is minimal if A C B for each
join cover x <'\/ B such that B < A. The lattice L has the complete minimal join
cover refinement property (CR)x for a set X C L if each nontrivial join cover of
each element from X can be refined to a minimal one.

By J(L), we denote the set of all join-irreducible elements of L and by CJ(L) —
the set of all completely join-irreducible elements of L. Similarly, by P(L), we denote
the set of all join-prime elements of L and by CP(L) — the set of all completely
join-prime elements of L.

Definition 1. Let L be a lattice and let J C J(L). We say that L is a J-lattice if
L possesses the following properties:
(i) for each element a € L, there is a subset J, C J with a =/ Jg;
(ii) for each element a € J and each nontrivial join cover a < agV...Va, with
n < w and aog,...,a, € L, there is a finite set F' C J such that a < \/ F' is
a minimal join cover and F < {ag,...,an}.

We say that L is a C'J-lattice if L possesses the following properties:

(i) for each element a € L, there is a subset J, C CJ(L) with a =/ J,;
(ii) L has the property (CR)cy(z)-

It follows from the definition above that each C'J-lattice is a J-lattice for J = CJ(L).
J-lattices were considered in [1, 4], see also [13].

For a J-lattice L and an element z € J(L), let M(z) denote the set of all finite
minimal join covers of z.

Remark 1. We note that in an upper continuous lattice L, each minimal join cover
of an element x € CJ(L) belongs to Mi(x).

Proposition 1. [4] Let L be a complete dually algebraic lattice. Then the following
statements hold.

(i) If L is n-distributive then L is a J-lattice.
(ii) If L is in addition algebraic then L is a CJ-lattice.
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FIGURE 1. Posets My, M,,, and M,

2.2. Suborder lattices. Let X be a set and let R C X2 be a strict partial order
on X; that is an irreflexive, antisymmetric, and transitive binary relation. In this
case, we also say that (X; R) is a partially ordered set or a poset for short. A subset
R’ C R is a (strict) suborder of R if the structure (X; R’) is also a poset. The set
O(X, R) of all (strict) suborders of a partial order R on X is a partially ordered
set with respect to the relation C of set-theoretic inclusion. Obviously, & is a least
suborder of R. Thus, & is a least element in O(X, R). It is also obvious that R is
a greatest element in O(X, R). It is straightforward to check that for an arbitrary
family {R; | i € I} C O(X, R), the relation [,.; R; is also a suborder of R; that is,
/\ Ri=[)Ri € O(X,R).
iel iel
Thus, O(X, R) forms a complete lattice, where
t
\/ R; = (U R;);
iel iel
here Y denotes the transitive closure of a binary relation Y C X2, It is clear that

J(O(X, R)) = CJ(O(X, R)) = {{(a,b)} | (a,b) € R}.

We consider here strict partial orders instead of ordinary partial orders for the sake
of simplicity only; the least element of a suborder lattice is in this case @ and not
the set {(z,z) |z € X}.

In this article, we consider suborder lattices of posets M,,, 0 < n < w, which all
have length 2, see Figure 1.

3. AN EQUATIONAL BASIS FOR SP(O(M,,))

3.1. Identity (D,,). We consider the identity of n-distributivity, where 0 < n < w,
which we denote by (D,,):

A (Yo VYL V... Vyy) = \/[x/\\/yj]
i<n i
This identity was introduced by A. Huhn in [7] as a generalization of distributivity—
it is clear that (D;) is just the identity of distributivity. The following lemma is
folklore and straightforward to prove, see for example [9].

Lemma 2. Let L be a lattice, let J C J(L) be a set such that for each element a € L,
there is a subset J, C J with a =\/ J,. The following conditions are equivalent.

(i) (D,,) holds in L.
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(ii) If a < bg Vb1 V...V b, for some a € J and some by, by,...,b, € L, then
there is i < n such that a < \/#i b;.

Corollary 3. Let L be a J-lattice for some set J C J(L). The following conditions
are equivalent.
(i) (D) holds in L.
(ii) If a < by V...V by, is a minimal nontrivial join cover for some elements
a and by, ..., by, € J then 0 <m < n.

3.2. Identity (P). We denote the following identity by (P):

T A [(yo /\(zo\/zl)) \/yl] = [mAyo/\ (zOVzl)] Vv [x/\yl] vV \/ [w/\ ((yo/\zi) \/yl)}.
i<2

This identity was introduced in [4] under the name (N}). It was used in [4] as one of

four identities which constitute an equational basis for the [quasi|variety SP(N5). It

was also used in [2] as one of three identities which form an equational basis of the

[quasi|variety SP(O(M)), also under the name (N}). For the next two statements,

we refer to [4], see also [2, Lemma 6, Corollary 7].

Lemma 4. [4] Let L be a lattice, let J C J(L) be a set such that for each element
a € L, there is a subset J, C J with a = \/ J,. The following conditions are
equivalent.
(i) (P) holds in L.
(ii) If a < ap V a1 is a nontrivial join cover and ay < by V by for some a € J
and some ag,a1,bp,b1 € L, then a < (ag A b;) V ay for some i < 2.

Corollary 5. [4] Let L be a 2-distributive J-lattice for some set J C J(L). The
following conditions are equivalent.
(i) (P) holds in L.
(ii) If a < ap V ay is a minimal join cover for some a,ap,a1 € J, then ag and
ay are join-prime elements.

3.3. Identity (C,,). We denote the following identity by (C,,):

x A /\(yi\/zl-) = \/ {x/\yi/\ /\(yj\/zj)} Y \/ [x/\zi/\ /\(yj\/zj)} Y
i<n i<n VED) i<n VED)
v/ {x/\ (i ny) vV (zinzg) A N (yk\/zk)] Vv
1<j<n kg{i,g}
vV {I/\ (inz) Vi nz)) A N\ (yk\/Zk)]
i<j<n k¢ {i,j}
The identity (C;) was introduced in [4] and used there, under the name (C), as
a member of an equational basis of the [quasi|variety SP(N5). It was also used in
[2] as one of three identities which form an equational basis of the [quasi]variety

SP(O(My)), also under the name (C). For the next two statements, we refer to [4],
see also [2, Lemma 4, Corollary 5].

Lemma 6. Let L be a lattice, let J C J(L) be a set such that for each elementa € L,
there is a subset J, C J with a =\/ J,. The following conditions are equivalent.

(i) (Cy) holds in L.
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(ii) Ifa < agVbo, .., a < ay, Vb, are nontrivial join covers for some a € J and
some aq, . ..,G0n, by, ...,b, € L, then there are c,d € L such that a < cVd
and {c,d} < {a;,b;}, {c,d} < {a;,b;} for somei < j < n.

Proof. We prove first that (i) implies (ii). Indeed, let the assumptions of (ii) hold.
Since (C,,) holds in L, we have

a=aAl /\(ai\/bi): \/[a/\ai/\/\(aj\/bj)] v \/[a/\bi/\/\(aj\/bj)} v

i<n i<n i i<n i
vV [a/\((ai/\aj)v(biAbj))A A (ak\/bk)] Vv
i<j<n ke {5}

vV [a/\((ai/\bj)\/(aj/\bi))/\ A (ak\/bk)].

i<j<n ké{i,j}

As a is a join-irreducible element, a equals one of the joinands on the right-hand
side of the equality above. Therefore, the following cases are possible.

Case 1: a = a A a; A N\j4(a; V bj). In this case, a < a; which contradicts the
assumption that a < a; V b; is a nontrivial join cover. Therefore, this case is
impossible.

Case 2: a=aAb; A\, 4;(a; vV b;). In this case, a < b; which again contradicts the
assumption that a < a; V b; is a nontrivial join cover. Therefore, this case is also
impossible.

Case 8: there are i < j < nsuch that @ = aA((aiAay)V (b Abj)) AN gg iy (@ V).
In this case, a < ¢V d, where ¢ = a; Aaj and d = b; Abj. Moreover, {c,d} < {a;,b;}
and {c,d} < {a;,b;} whence we get the desired conclusion.

Case 4 there are i < j < nsuch that @ = aA ((aiAby)V (a; Ab)) A Njggi 5y (@ Vo).
In this case, we put ¢ = a; A b; and d = b; A a; and obtain the desired conclusion
as above in Case 3.

We prove now that (ii) implies (i). Let u denote the value of the left-hand side and
v denote the value of the right-hand side of the identity (C,,) under interpretation
v, where

(@) =a, y(i)=a;, (z)=0b;, i<n

As inequality v < w holds in each lattice, in order to prove that (C,,) holds in L, we
have to prove that u < v. According to our assumption about L, it suffices to show
that for each element o’ € J, the inequality @’ < w implies that o’ < v. Indeed,
a’ < u means that a’ < a and o’ < a; Vb; for all i < n. If ' < a; for some i < n
then ¢/ < uAa; <v.Ifad < for some ¢ < n then o/ < uAb; < v. Assume
therefore that a’ < a; V b; is a nontrivial join cover for all i < n. Applying (ii), we
obtain that there are elements c¢,d € L such that o’ < ¢V d and {c,d} < {a;,b;},
{¢,d} < {a;,b;} for some i < j <n. Asa’ <a; Vb, and a’ < a; Vb; are nontrivial
join covers, we conclude that a’ < ¢V d is also a nontrivial join cover. Therefore,
the following cases are possible.

Case 1: ¢ < a; Naj and d < b; Abj or d < a; Aaj and ¢ < b; A b;. In this case,
a <uA ((a; Aaj) V(b Abj)) <.

Case 2: ¢ < a;Ag and d < a; Ap for some p, q € {a;,b;}. In this case, a’ <cVd < a;
which is impossible by our assumption as the join cover a’ < a; V b; is nontrivial.
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Case 8: ¢ < ajAqand d < a; Ap for some p,q € {a;,b;}. In this case, a’ < cVd < a;
which is impossible as the join cover a’ < a; V b; is nontrivial.
Case 4: ¢ < a; ANbjand d < b; Aaj or d < a; Ab; and ¢ < b; A aj;. In this case,
a <uA ((a; Abj)V(a; Ab;)) <.
Case 5: ¢ < b;ANq and d < b; Ap for some p,q € {a;,b;}. In this case, '’ < cVvd <;
which is impossible by our assumption as the join cover a’ < a; V b; is nontrivial.
Case 6: ¢ <bjAgand d < bj Ap for some p,q € {a;,b;}. In this case, '’ < cVd <b;
which is impossible as the join cover a’ < a; V b; is nontrivial.

Therefore, a’ < v in any case and the desired conclusion follows. O

Corollary 7. Let L be a 2-distributive J-lattice for some set J C J(L). The
following conditions are equivalent.
(i) (C,) holds in L.
(ii) Ifa<agVbg, ..., a < apV by are distinct minimal join covers for some
Qy QQy -y Am, bo,..., by € J, then m < n.

Proof. We prove that (i) implies (ii). Indeed, suppose that m > n. Then, applying
Lemma 6, we obtain that there are i < 7 < n and elements c¢,d € L such that
{¢,d} < {ai, b}, {c,d} < {a;,b;}. Asa < a; Vb, and a < a; V b; are minimal join
covers, we conclude that a < ¢V d is a nontrivial join cover and {a;,b;} = {c,d} =
{a;,b;} which contradicts our assumptions. Therefore, m < n.

To prove that (ii) implies (i), we show that statement (ii) of Lemma 6 holds.

Solet a < agVbgy, ..., a <a,Vb, be nontrivial join covers for some a € J and
some aog, - ..,an, bo,...,b, € L. As L is a J-lattice for some set J C J(L), there
are finite minimal join covers a < \/ Fy, ..., a < \/ F,, such that F; < {a;,b;} for

all i < n. As L is 2-distributive, we apply Lemma 2 and obtain that |F;| = 2 for
all ¢ < n. Applying our assumption (ii) to finite minimal join covers a <\/ Fp, ...,
a < \/ F,,, we obtain that F; = F; = {c,d} for some ¢ < j < n and some ¢,d € L.
This means that a < ¢V d and {¢,d} < {a;,b;}, {¢,d} < {a;,b;} which is our
desired conclusion. O

3.4. An equational basis. For 0 < n < w, we put X, = {(C,,), (D2),(P)} and
S, = Mod %,,.

Proposition 8. Let L be a dually algebraic lattice such that L |E X,,, where 0 <
n < w. Then for all elements x € J(L), each element of the set M(x) is of the form
{a,b}, where {a,b} C P(L) is an antichain. Moreover, |9M(z)| < n.

In particular, L € SP (O(Mn))

Proof. Tt follows from Proposition 1(i) that L is a J-lattice. Corollary 3 implies
that each minimal nontrivial join cover of an element x € J(L) contains exactly two
elements. Corollary 5 implies that each minimal nontrivial join cover of  consists of
join-prime elements. Moreover, |9t(z)| < n by Corollary 7. Thus, the first statement
follows.

To prove the second statement, we use the method developed in [12, 13]. We fix
an element x € J(L)\P(L). According to the first statement,

M(z) = {{b1(2), c1(2)}, - - {bn(a) (2), Cnia ()} }
for some natural number n(x) such that 0 < n(z) < n and some join-prime elements
bi(z),...,bn(m), c1(x), ..., Cniz). We denote by P, an isomorphic copy of M, ;). We
denote the elements of P, by 0(z),ay(z),...,an)(x), 1(z) respectively, see Figure
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1. As n(z) < n, P, is a subposet of M,,. We define a mapping ¢, : J(L) — O(P,)
as follows:

Yot @ —={(0(z), 1(2)) };
Uy y —{(0(x),ai(x)) | y = b;(x) for some i € {1,...,n}}U
U{(ai(),1(z)) | y = ci(z) for some i € {1,...,n}}, forallye UDJ?(&L‘)

Yy y—@ forally ¢ {z}U Uim(x)

Let P’(L) denote the set of all join-prime elements of L which do not belong to
any minimal nontrivial join cover of any element x € J(L)\P(L). For each element
z € P'(L), we put P, = {0(z),1(z)}, where 0(z) < 1(z) and consider the mapping

Yy J(L) — O(Px)§
Yp: T > {(O(z),l(x))},

Y y— @ forall y # x.
Finally, let I = (J(L)\P(L)) UP’(L). We consider the following mapping:

v: L— JJow

xel
T (a U{’(/Jw Jly€e (L), y<a} forallac Landallzel.

Claim 1. 9 is well-defined.

Proof of Claim. We have to prove that 7, (a) is a suborder in P, for all € I and
all a € L. As P, = M,,), it suffices to show that if (0(z),a;(z)), (a;(z), 1(z)) €
moth(a) for some i € {1,...,n} then (0(z),1(z)) € myt)(a). Indeed, suppose that
(0(2), a;(x)), (ai(z),1(z)) € mpb(a) for some i € {1,...,n}. In other words, 1, (b;)U
Yz (c;) C mpp(a) where z < b; V ¢; is a minimal nontrivial join cover. This means
that b“(:z < a whence x < b; V ¢; < a. By our definition of v, this implies that
{(0(z),1(z)) } = ¢4(z) C 7,9 (a) which is our desired conclusion. O

Claim 2. ® is a (0, 1)-lattice homomorphism.

Proof of Claim. In order to prove the desired claim, it suffices to show that 7,1 is
a (0, 1)-lattice homomorphism for each = € I. Indeed, we fix an element « € I and
elements u,v € L. If u is a least element of L then y < u for no element y € J(L).
Therefore, m,¢(u) = @. If u is a greatest element of L then y < u for each element
y € J(L). Therefore, w1 (u) is obviously the greatest element of O(P,). Therefore,
w1 preserves the bounds.

If w <wv then y < w implies y < v for all y € J(L). Therefore, 7,1 is monotone.
We prove that m,1 preserves meets and joins.

Since 7,1 is monotone, m ¥ (u) VY (v) C mp1p(uVv). We have to establish that
T (u V) C mph(u) V m(v). So suppose that (29, 21) € 90 (u V v). This means
that (zg,21) € ¥, (y) # @ for some y € J(L) such that y <uVov. fy<wory<w
then (zo, 21) € w0 (u) Umgtp(v). Otherwise, y < u V v is a nontrivial join cover. As
L is a J-lattice, we can refine this join cover to a minimal one. This implies that
y € J(L)\P(L). As ¢, (y) # @, we conclude by the definition of v, that y = =.
Moreover, there is i such that 1 < i < n(z) and y = x < b;V¢; is a minimal nontrivial
join cover with {b;,¢;} < {u,v}. Inclusion (zp,21) € ¥.(y) = ¥, (x) implies that
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zo = 0(z) and z; = 1(z). Furthermore, (0(z),a;(x)) € ¥(b;) € mpb(u) Umtp(v)
and (a;(z),1(z)) € ¥a(c;) C metp(w) Umph(v) as {b;, ¢;} < {u,v}. Hence, (20,21) €
P (b:) V ¥z (c;) C mptp(u) U mptp(v). This proves that m,1) preserves joins.

Since w1 is monotone, Ty (u A v) C mpp(u) N mep(v). We have to establish
that w9 (u) N meh(v) C meo(u A v). Indeed, let (zg,21) € metp(u) N wee(v). This
means that (zg,21) € ¥, (y) N, (y') # @ for some y,y’ € J(L) such that y < u and
y <w. Ify £y then ¢¥,(y) N, (y') = & by the definition of ¥,, a contradiction.
Therefore, y =y’ < u Av and (z0,21) € V. (y) C w0 (u A v). This proves that 7,9
preserves meets. ([

Claim 3. 1 is an embedding.

Proof of Claim. Suppose that w £ v in L. As L is a J-lattice, there is y € J(L) such
that y < uw and y £ v. By our definition, there is 2 € I such that ¢, (y) # @. But

then @ # 9, (y) C mp(u) and ¢, (y) N 71 (v) = @. This implies that 7,¢(u) €
7 (v) whence ¥(u) £ (v). O

It follows from the claims above that

L e SP(O(P,) |z elI)CSPS(O(M,)) CSP(O(M,)).
The proof of Proposition 8 is complete. (]
Proposition 9. Let L be a bi-algebraic lattice such that L = %, where 0 < n < w.
Then for all elements x € CI(L), each element of the set M(x) is of the form {a,b},

where {a,b} C P(L) is an antichain. Moreover, |M(z)| < n.
In particular, L € SP(O(M,)).

Proof. The argument is similar to the one in the proof of Proposition 8 and uses
Proposition 1(ii). O

Theorem 10. X, forms an equational basis for SP(O(Mn)). In particular, the
class SP(O(M,)) = S, is a lattice variety.

Proof. Let L |= 3, and let F' be the dual filter lattice of L. It is well-known that F'
is dually algebraic and it follows that F' = X,,. By Proposition 1, F is a J-lattice.
By Proposition 8, F' € SP(O(M,)) whence L € SP(O(M,)) as L embeds into F'.
On the other hand, the lattice O(M,,) has the only minimal join covers:

A<A;VB;, 1<i<n, where

A={(0,1)}, A4 ={(0,a:)}, Bi={(a;,1)}, 1<i<n,
see Figure 1. Thus, O(M,) is 2-distributive by Corollary 3. Moreover, O(M,)
satisfies the condition (ii) of Corollaries 7 and 5. This implies that O(M,,) = %,,. O
Let Lg; denote the variety of (0, 1)-lattices and let SO = Lg; N Mod X,,.
Theorem 11. The set ¥, forms an equational basis for SP(O(M,)) within the
variety Lo1. In particular, SP(O(M,,)) = S is a variety of (0,1)-lattices.

Proof. If L is a (0,1)-lattice then taking in the proof of Theorem 10 the dual
lattice of nonempty filters as F, we obtain that L is a (0, 1)-sublattice of F and
F €SP (O(Mn)) by Proposition 8. Therefore, L belongs in this case to the variety
of (0, 1)-lattices generated by O(M,,). O
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4. AN EQUATIONAL BASIS FOR Q(O(M,,))
We put ¥ = {(D2), (P)}.

Proposition 12. Let L be a dually algebraic lattice such that L = 3. The following
statements hold.

(i) For all x € J(L), each element of the set M(x) is of the form {a,b}, where
{a,b} CP(L) is an antichain.
(i) If L is bi-algebraic then for all x € CJ(L), each element of the set M(x)
is of the form {a,b}, where {a,b} C P(L) is an antichain.
In particular, L € SP(O(M,)) C Q(O(M.,,)) for some cardinal k.
Proof. Applying the same argument as in the proof of Proposition 8, we obtain
that L € SP(O(M,)) for some infinite cardinal x > |L|. As M, embeds into an
ultrapower of M,,, we conclude that O(M,) € SP, (O(M,)) and
SP(O(M,)) C SPP,,(0(M,)) = Q(O(M,)),
which is our desired conclusion. g

Theorem 13. The following statements hold.

(i) The quasivariety Q(O(M.)) is a lattice variety and X forms an equational
basis for this variety.

(ii) The class Q(O(M,)) of (0,1)-lattices is a variety of (0,1)-lattices and
forms an equational basis for this variety.

Proof. (i) If L |= %, then L € Q(O(M,,)) by Proposition 12. Hence, Mod ¥ C
Q(O(M.,,)). Conversely, the lattice O(M,,) has the only minimal join covers:

A< A;VB;, 1<i<w, where

A={0,1}, A, ={(0,a:)}, Bi ={(a;,1)}, 1<i<w,

see Figure 1. Thus, O(M,) is 2-distributive by Corollary 3. Moreover, O(M,)
satisfies the condition (ii) of Corollary 5. Therefore, O(M,,) = ¥ and

Q(O(M,,)) = SPP,(O(M,)) EX

as identities are stable with respect to the operators S, P, and P,,. It follows that
Mod X = Q(O(Mw)).
The proof of (ii) is similar. O

Corollary 14. The following equalities hold for an arbitrary infinite cardinal k:
S0, = Q(O(M,) | 0 < n < w) = SP(O(M,)).

Proof. By [13, Theorem 4.8], ¥ forms an equational basis for SO2. Taking into
account Theorem 13, we conclude that SO, = SP (O(Mw)) Furthermore, each
algebraic structure embeds into an ultraproduct of its finitely generated substructu-
res, see for example [6, Theorem 1.2.8]. Therefore, M, € SP, (M, |0 < n < w) for
each infinite cardinal kappa whence O(M,;) € SP,(O(M,) | 0 <n < w) and

SO, =SP(O(M,,)) = SP(O(M,)) € SPP,(O(M,) |0 <n <w) =
=Q(O(M,) | 0 <n <w) C SOs.
The desired conclusion follows. O

The following problem was raised in [13].
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Problem 1. [13, Question 2] If (P; <) is a finite poset, is it true that the quasivarie-
ty SP(O(P; g)) is a variety?

The next statement solves Problem 1 in the positive for finite posets of length at
most two.

Corollary 15. If (P;<) is a finite poset of length at most two then SP(O(P; <))
is a finitely based variety.

Proof. Tt follows from Corollary 14 and the fact that the poset (P; <) is finite that
SP(O(P;<)) = SP(O(M,)) or SP(O(P; <)) is the variety of distributive lattices.
In the first case, SP(O(P; <)) is a finitely based variety by Theorem 10. O
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