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Abstract:We study nowhere-zero integer eigenvectors of the block
graphs of Steiner triple systems and the Johnson graphs. For the
�rst eigenvalue we obtain the minimums of the L∞ norm for several
in�nite series of Johnson graphs, including J(n, 3) for all n ≥ 63,
as well as general upper and lower bounds. The minimization
of the L∞ norm for nowhere-zero integer eigenvectors with the
second eigenvalue of the block graph of a Steiner triple system S
is equivalent to �nding the minimum nowhere-zero �ow for Steiner
triple system S. For the all Assmuss-Mattson Steiner triple systems
of the orders greater or equal to 99 we prove that the minimum
�ow is bounded above by 5.

Keywords: Steiner triple system, �ow, strongly regular graph,
Johnson graph, Grassmann graph, eigenvalue.

1 Introduction

A vector is called nowhere-zero integer (shortly NZI vector) if all of its
elements are nonzero integers. The in�nity norm ∥v∥∞ of a vector v is de�ned
as the maximum of the absolute values of its elements.
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Let WS be the point-block incidence matrix of a Steiner triple system S.
A nowhere-zero integer vector u such that WSu = 0 is called a nowhere-zero
(∥u∥∞ +1)-�ow for the Steiner triple system S [1]. It is not hard to see that
the right nullspace of the incidence matrix WS coincides with the second
eigenspace of the block graph of S (see Proposition 4 below).

The minimum of the L∞ norm for �ows of Steiner triple systems were
considered in works [1], [2], [4]. Akbari, Burgess, Danziger and Mendelsohn
[3] showed that the minimum of the norm of the �ows in any Steiner triple
system of order n is upper bounded by O(n2).

On the other hand, studies show that for particular families of Steiner
triple systems, the actual minimum of the norm of the �ows is much smaller
thanO(n2) and this fact �nds similarities in a conjecture of Tutte on existence
of a 5-�ow for the graphs [24]. Speaking more precisely, all Steiner triple
systems of order 15 have 3-�ows [1]. Furthermore, it was proven that some
well-known recursive classes of Steiner triple systems, such as direct product
construction, 2v+7-construction admit a 3-�ow, given a 3-�ow in the original
Steiner triple system [4]. As for the 2v+1-construction, the resulting Steiner
triple systems has 3, 4 or 5-�ow [3]. In Section 5 we establish that the
Assmuss-Mattson [6] Steiner triple system obtained from any Steiner triple
system S of order at least 49 has a 5-�ow, regardless of the �ow in the original
system S.

One might consider a more general de�nition of a �ow for any given
natural matrix W , which is, for example, the inclusion matrix of subsets
[1] or subspaces [23]. A �ow in these cases is the sum of eigenvectors of a
Johnson or Grassmann graph with speci�c eigenvalues. For example, let W
be the inclusion matrix of 2-subsets and k-subsets of n-element set. In [1]
it was shown that for k = 3, there is a nowhere-zero integer vector v such
that Wv = 0, ∥v∥∞ = 2, i.e. a generalized 3-�ow. Note that for k = 3 any
nonzero vector v such that Wv = 0 is an eigenvector of the Johnson graph
J(n, 3) with the third eigenvalue. Relying on the properties of higher order
inclusion matrices, the authors of [1] extended the result and showed that
a 3-�ow exists for the inclusion matrix of 2-subsets and k-subsets for any
k ≥ 3.

The perspective of the continuing studies of �ows for Steiner triple systems
and structural matrices implies the following natural question.
Problem 1. Given a distance-regular graph Γ of diameter d and its

rational eigenvalue θi(Γ), 0 ≤ i ≤ d, �nd

min{∥u∥∞+1 : u is a nowhere-zero integer θi(Γ)-eigenvector of Γ},

which we denote as m(i,Γ) in below.
From results of Akbari et al. there is always a solution for Problem 1.

Theorem 1. [1], [2] Let Γ be a distance-regular graph with a rational eigenvalue
θi(Γ), 0 ≤ i ≤ d. Then there is a NZI θi(Γ)-eigenvector of Γ.
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Proof. By [2, Theorem 3] there is a nowhere-zero real eigenvector for every
eigenvalue of any distance-regular graph. By [1, Lemma 3.3] the existence of
a nowhere-zero real vector, belonging to the null space of a rational matrix
implies the existence of nowhere-zero integer vector in the null space. By
taking the matrix to be AΓ− θiI, where AΓ is the adjacency matrix of Γ, we
obtain the required. □

De�nitions, notation and basic theory are in Section 2. The results of
Section 3 are presented in a general context: for the q-ary Steiner triple
systems and Grassmann graphs; the classic Steiner triple systems and Johnson
graph are treated as a particular case. Recently, the q-ary Steiner triple
systems were shown to exist asymptotically [19], however there is only one
explicit example [9] of order 13. We consider a description of the eigenspaces
of the block graph of any q-ary Steiner triple system in terms of the point-
block incidence matrix of STS. In particular, for the �rst eigenvalues, we see
that the eigenvectors of the Grassmann graph Jq(n, 3) are in a natural one-
to-one correspondence with that of the block graph of the q-ary Steiner triple
system S order n: the restriction of any eigenvector of Jq(n, 3) to the blocks
of S is an eigenvector of the block graph of S. This relation between the �rst
eigenspaces of STSs and Jq(n, k) is in spirit of [25], where an extension of the
eigenvectors of Johnson graphs to that of Hamming graphs was established.
Despite this strong connection, in Section 4 we show that the minimums of
the L∞ norm for nowhere-zero eigenvectors for both graphs are di�erent for
q = 1. We establish lower and upper bounds on the optimum norms of the
NZI θ1(J(n, k))-eigenvectors of the Johnson graphs J(n, k) and obtain the
exact minimums for in�nite series of Johnson graphs J(n, k). In particular,
we completely solve the problem for k = 3 and all n > 63 (see Theorem 5).
Bounds on the L∞ norm of the NZI eigenvectors of the block graphs of STSs
with the second eigenvalue (which is equivalent to �nding i-�ow for STSs
for small i) are given in Section 5. We start Section 5.1 with reviewing the
existing results for �ows in the projective and the Bose Steiner triple systems
which utilize the aspects of cyclicity and resolvability of these designs. In
Section 5.2 we show that any Steiner triple system constructed by Assmuss-
Mattson approach [6] of order at least 99 has a 5-�ow. The results of this
section are described in terms of �ows of Steiner triple systems rather than
eigenvectors of their block graphs.

In Section 6 we discuss completely regular codes in the block graphs of
Steiner triple systems. These objects are in the scope of current study, as the
minimum possible value of the L∞ norm of nowhere-zero integer eigenvectors
is attained on a vector arising from a speci�c completely regular code (see
Proposition 2). From the perspective of Cameron-Liebler line classes [10], the
completely regular codes in the block graphs of the Steiner triple systems
with the covering radius 1 and the �rst eigenvalue are of interest as they
provide one of di�erent variations [13], [17] of such objects. The block graph
of the projective (Hamming) Steiner triple system of order 2r−1 is isomorphic
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to the Grassmann graph J2(r, 2) and all such completely regular codes are
exactly Cameron-Liebler line classes in PG(r − 1, 2). We conjecture that
these codes comprise only the following classic examples of Cameron-Liebler
line classes: a point, hyperplane and nonincident point-hyperplane pair (see
Problem 2 in Section 6) and show that there are no other codes for the STSs
of orders 13 and 15. These codes in the block graphs of Steiner triple systems
and a�ne Steiner triple systems in particular, were considered in [18], where
these objects and the conjecture above were treated from the perspective of
small support eigenvectors of the block graphs.

2 De�nitions and notations

2.1. Johnson, Grassmann graphs, q-ary Steiner triple systems and
their block graphs. A regular graph of diameter d is called distance-
regular if there is an array of integers

{β0, . . . , βd−1; γ1, . . . , γd},

such that for any vertices x and y at distance i, i ∈ {0, . . . , d} there are
exactly βi neighbors of y at distance i + 1 from x and γi neighbors of y
at distance i − 1 from x. The array of integers {β0, . . . , βd−1; γ1, . . . , γd} is
called the intersection array of the distance-regular graph Γ. We say that
a nonzero vector v is a θ(Γ)-eigenvector if AΓv = θ(Γ)v, where AΓ is the
adjacency matrix of Γ. In this case θ(Γ) is called an eigenvalue of Γ. It is
well known that any distance-regular graph of diameter d has exactly d+ 1
distinct eigenvalues, which we index in descending order: θ0(Γ) > θ1(Γ) >
. . . > θd(Γ). Note that θ0(Γ) is the valency of the graph Γ.

The vertices of the Grassmann graph Jq(n, k) are k-subspaces of the �nite
vector space Fn

q over the �eld Fq and the edges are the pairs of subspaces
meeting in (k−1)-subspace. We also include a limit case of q = 1 as we de�ne
the Johnson graph J(n, k) (also denoted by J1(n, k)) to be the graph with
the vertex set being k-subsets of {1, . . . , n} and edges being pairs of subsets
meeting in (k− 1) set. Let [nk ]q be the Gaussian binomial coe�cient and [nk ]1
be the ordinary binomial coe�cient. The k+1 eigenvalues of Jq(n, k), q ≥ 1
are as follows:

θi(Jq(n, k)) = qk+1[k−i
1 ]q[

n−k−i
1 ]q − [i1]q, 0 ≤ i ≤ k.

By a q-ary Steiner triple system (brie�y, STS) S we mean a collection
of 3-subspaces (called blocks) of Fn

q such that any 2-subspace of Fn
q is in

exactly one subspace in S. By letting q = 1 we include Steiner triple system
in the traditional sense in the de�nition above, i.e. a collection of 3-subsets
of {1, . . . , n} (called blocks or triples) such that any 2-subset is in exactly
one block. A 1-subspace of Fn

q (1-subset of {1, . . . , n}) is called a point of
S. By the order of S, we mean the dimension n of the ambient space Fn

q

(the number of points for q = 1). A Steiner triple system of order n (in the
classical sense) is called resolvable if its blocks are parted into parallel classes,
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i.e. collections of pairwise nonintersecting blocks with the size of each class
equal to n

3 .
The incidence matrix of a q-ary Steiner triple system S is the matrix WS ,

whose rows are indexed by the points of S and the columns are indexed by
its blocks is de�ned as follows:

(WS)i,T =

{
1, i ⊆ T

0, otherwise
.

Similarly, we de�ne the point-block incidence matrix W of Jq(n, k) with
the rows indexed by the points (1-subspaces) and the columns are indexed
by the k-subspaces of Fn

q . The block intersection graph of q-ary, q ≥ 1, STS
S, denoted by ΓS , has the blocks of S as vertices and distinct blocks having
a nonempty intersection as the edges. It is well-known that this graph is
strongly-regular [5] and has the following eigenvalues:

θ1(ΓS) =
[n1 ]q − 1

[31]q − 1
− [31]q − 1,

θ2(ΓS) = −[31]q.

The blocks of any q-ary STS, q ≥ 1, of order n could be treated as a set
of vertices of Jq(n, 3). So the block intersection graph can be viewed as the
subgraph of the distance-2 graph of Jq(n, 3) induced by the blocks of STS.

2.2. Completely regular codes. Given C ⊆ V (Γ), the distance partition
with respect to C is C0 = C, . . . , Cρ such that

Ci = {x : d(x,C) = i}.

The maximum of all i's is denoted by ρ and is called the covering radius
of C. A subset C ⊆ V (Γ) is called a completely regular code if there are
numbers α0, . . . , αρ, β0, . . . , βρ−1, γ1, . . . , γρ such that any vertex of Ci is
adjacent to exactly αi, βi, γi vertices of Ci, Ci+1 and Ci−1 respectively, for i =
0, . . . ρ and γ0 = βρ+1 = 0. The array {β0, . . . , βρ−1; γ1, . . . , γρ} is called the
intersection array of the completely regular code C. The following tridiagonal
(ρ+ 1)× (ρ+ 1) matrix

α0 β0 0 0 . . . 0
γ1 α1 β1 0 . . . 0
. . . . . .
. . . . . .
0 . 0 γρ−1 αρ−1 βρ−1

0 . 0 0 γρ αρ

 ,

is called the intersection matrix of the completely regular code C.
The eigenvalues of this matrix are the eigenvalues of the completely regular

code C. It is well-known that the eigenvalues of any completely regular code
in a regular graph are necessarily eigenvalues of the graph, which is known
as Lloyd's theorem.
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Given a set of vertices C in a graph Γ we denote by χC its characteristic
vector in the vertex set of the graph.

Proposition 1. (Folklore) Let C be a completely regular code with ρ =
1, eigenvalue θi(Γ), i ̸= 0 and intersection array {β0; γ1} in a distance-
regular graph Γ. Then the vector β0χC − γ1χV (Γ)\C is a θi(Γ)-eigenvector
of Γ. Moreover, any θi(Γ)-eigenvector (up to multiplicity) taking only two
values can be obtained in this manner.

The current study of the completely regular codes from the point of view
of Problem 1 is inspired by the following statement.

Proposition 2. Let Γ be a distance-regular graph. Then we havem(i,Γ) ≥ 2.
Moreover the equality m(i,Γ) = 2 holds if and only if there is a completely
regular code with ρ = 1, intersection array {β0;β0} and eigenvalue θi(Γ) in
Γ.

Proof. We obviously have m(i,Γ) ≥ 2 and m(i,Γ) attains the lower bound
2 if and only if there is a θi(Γ)-eigenvector taking values +1 and −1 only.
From Proposition 1 we obtain the required. □

For the completely regular codes with ρ = 1 and the second eigenvalue, we
see that they are equivalent to 1-subdesigns of the considered Steiner triple
system.

Proposition 3. Let S be a Steiner triple system of order n. A set S′ ⊂ S
is a completely regular code with ρ = 1 and eigenvalue θ2(ΓS) if and only if
S′ is a 1-design.

Proof. Let S′ be a subset of blocks of S. The set S′ is 1-(n, 3, λ)-design if
and only if the vector WS((

n−1
2 −λ)χS′−λχS\S′) is all-zero, where WS is the

point-block incidence matrix of STS S. This follows from the fact that any
point of S belongs to n−1

2 and λ blocks of S and S′. In view of Proposition

4.1 below this is equivalent to the vector (n−1
2 − λ)χS′ − λχS\S′ being a

θ2(ΓS)-eigenvector. As any two-valued eigenvector of the graph corresponds
to a completely regular code with ρ = 1, see Proposition 1, we obtain the
required.

□

3 A description of the eigenspaces of the block graphs of

STS and the �rst eigenspace of Jq(n, k)

Firstly, we consider the following auxiliary fact.

Theorem 2. [7, Theorem 1] Let Γ be a biregular bipartite graph with valencies
c and c′, the halved graphs Γ and Γ′ and let I denote the |V (Γ)| × |V (Γ′)|
incidence matrix of two parts of Γ. Let any pair of vertices of V (Γ) at distance
2 in Γ have exactly m common neighbors and any pair of vertices of V (Γ′)
at distance 2 in Γ have exactly m′ common neighbors. The following holds
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1. Let u be a θ-eigenvector of Γ′, θ ̸= − c′

m′ . Then the vector Iu is a
c′−c+m′θ

m -eigenvector of Γ.
2. Given a nonzero vector u, Iu is the all-zero vector if and only if u is

− c′

m′ -eigenvector of Γ′.

Example 1. Consider the biregular graph whose parts are the points and
the blocks of a q-ary STS S with adjacency being point-block inclusion.
The halved graphs are the complete graph K[n1 ]q

on the points of S (as Γ

in Theorem 2) and the block graph ΓS of S (as Γ′ in Theorem 2), I is the
point-block incidence matrix WS of the design S. It is not hard to see that

parameters in Theorem 2 are m = m′ = 1, c =
[n1 ]q−1

[31]q−1
, c′ = [31]q.

We obtain the following relation between the null-spaces of the incidence
matrix of the Steiner triple systems and the second eigenspace of their block
graphs.

Proposition 4. Let S be a q-ary STS S, q ≥ 1 with the point-block intersection
matrix WS. Then

1. A nonzero vector u ful�llsWSu=0 if and only if u is a θ2(ΓS)-eigenvector
of ΓS.

2. A vector v is a (∥v∥∞+1)-�ow for S if and only if v is a nowhere-zero
integer θ2(ΓS)-eigenvector of the block graph ΓS of the Steiner triple system
S.

Proof. We apply Theorem 2.2 for the graph in Example 1. □

3.1. The �rst eigenspaces of the block graphs of STSs, Grassmann

and Johnson graphs. In the theorem below byW we denote the incidence
matrix of all 1-subspaces of Fn

q (1-subsets of {1, . . . , n} for q = 1) vs k-
subspaces Fn

q (1-subsets of {1, . . . , n} for q = 1). A vector is a restriction of
a vector v to a set of its indices S if the vector is obtained by deleting all the
elements of v having indices outside of S. This operation in coding theory is
also known as puncturing. Contrary a vector v is extended to a vector if the
latter is obtained by appending some extra elements to v.

In what follows by U(n, q) we denote the set of all real-valued nonzero
vectors indexed by the vertices of the graph Jq(n, 1), q ≥ 1 with the sum of
its values being zero. We also use the shorthand notation U(n) for U(n, q)
when q is 1.

Theorem 3. 1. The set U(n, q) is the set of all θ1(Jq(n, 1))-eigenvectors of
Jq(n, 1).

2. [14][20]W T (U(n, q)) is the set of all θ1(Jq(n, k))-eigenvectors of Jq(n, k).
3. If S is a q-ary Steiner triple system of order n, then W T

S (U(n, q)) is
the set of all θ1(ΓS)-eigenvectors of its block graph ΓS.

4. Let S be a q-ary Steiner triple system of order n and ΓS be its block
graph. The restriction of any θ1(Jq(n, 3))-eigenvector of Jq(n, 3) to the blocks
of S is a θ1(ΓS)-eigenvector of ΓS and each θ1(ΓS)-eigenvector of ΓS is
extended to a unique θ1(Jq(n, 3))-eigenvector of Jq(n, 3).
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5. If S is a q-ary Steiner triple system of order n, then m(1,ΓS) ≤
m(1, Jq(n, [

3
1]q)).

Proof. 1. The graph Jq(n, 1) is the complete graphK[n1 ]q
. Since θ1(Jq(n, 1)) =

−1, we see a (−1)-eigenvector u of K[n1 ]q
is such that

∑
x∈K[n1 ]q

ux = 0 and vice

versa.
2. For the Johnson graphs J(n, k) this property was established by Delsarte

[14]. For the Grassmann graphs the proof could be found in [20]. We note
that the result follows by consecutively applying Theorem 2.1 to the pairs of
the graphs Jq(n, i) and Jq(n, i+ 1) for i = 0, . . . , k − 1. The graphs are the
halved graphs of the bipartite graph, with the adjacency being the inclusion
relation of i-subspaces into i+ 1-subspace of Fn

q (which is Γ in Theorem 2).

3. In view of Theorem 2 consider the bipartite graph Γ where the adjacency
is the containment relation for the vertices (subspaces and subsets for q =
1) of Jq(n, 1) and Jq(n, k). The graph is the same as in Example 1 but
conversely to it the block intersection graph of S is denoted by Γ and the
complete graph K[n1 ]q

is denoted by Γ′. The values mentioned in Theorem 2

are c = [31]q, c
′ =

[n1 ]q−1

[31]q−1
,m = m′ = 1. By Theorem 2.1, we see that any vector

of W T
S (U(n, q)) is a eigenvector of ΓS with eigenvalue c′ − c+ θ1(Jq(n, 1)) =

[n1 ]q−1

[31]q−1
− [31]q − 1 = θ1(ΓS).

On the other hand, we apply Theorem 2.1 to Γ with the interchanged roles
of Γ and Γ′. We see that any θ1(ΓS)-eigenvector v of ΓS implies that WSv
is a θ1(Jq(n, 1))-eigenvector of the graph Jq(n, 1). Therefore, W

T
S establishes

an isomorphism between the �rst eigenspaces of Jq(n, 1) and ΓS .
4. From the second and third statements of the theorem, we see that W T

S

(W T
Jq(n,3)

respectively) settles an isomorphism between the �rst eigenspaces

of the complete graph and the block graph (the graph Jq(n, k) respectively).
The blocks of each STS S could be treated as vertices of Jq(n, 3) and the
rows of the block-point incidence matrix W T

S for q-ary STS S form a subset
of the rows of the block-point incidence matrix W T

Jq(n,3)
for Jq(n, 3), which

implies the required.
5. From the fourth statement of the current theorem we see that the

restriction of a θ1(Jq(n, 3))-eigenvector v of Jq(n, 3) to the blocks of S is
a θ1(ΓS)-eigenvector v′ of S. Obviously the norm is not increased upon
restriction and we have that ∥v∥∞ ≥ ∥v′∥∞.

□

Remark 1. When q is 1 (i.e. for STS in traditional sense and Johnson
graphs) the bound in Theorem 3.5 is not sharp as we show in the next Section
that for any STS S of order n m(1,ΓS) ≤ 5 whereas m(1, J(n, 3)) ≥ 6 for
all n ≥ 64.
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4 Minimum of the L∞ norm on nowhere-zero integer

eigenvector for the block graphs of STSs and Johnson

graphs

In the rest of the paper, we set q = 1 and consider Steiner triple systems
in the classical sense.

4.1. Minimum of the L∞ norm of nowhere-zero integer eigenvectors

with the �rst eigenvalue for Johnson graphs. In this subsection we
denote by (n, k) the greatest common divisor of n and k.

Lemma 1. Any θ1(J(n, k))-eigenvector of J(n, k) is equal to W Tu, for some
u ∈ U(n). If W Tu is a integer θ1(n, k)-eigenvector of J(n, k), then ui and uj
have the same fractional parts for all 1 ≤ i, j ≤ n. Moreover, the fractional
parts equal r

s , where r and s are some non-negative integers such that 0 ≤
r < s, (r, s) = 1 and s is a divisor of (n, k).

Proof. By Theorem 3 we see that any θ1(J(n, k))-eigenvector of J(n, k) is
equal to W Tu, where u is such that u ∈ U(n). Let us prove that ui and uj
have the same fractional parts for any i ̸= j. Consider some pairwise distinct
positions i1 = i, i2 . . . , ik, which are di�erent from j. By hypothesis of the
theorem we have ui + ui2 + . . . + uik and uj + ui2 + . . . + uik are integers.
Hence, ui − uj is an integer and ui and uj have the same fractional parts.
Denote this fractional part by α. Consider some k elements of u: ui1 . . . , uik .
We have that the sum ui1 + . . .+ uik is an integer (since W Tu is an integer
vector). On the other hand, this sum has the same fractional part as kα.
Hence, α is rational and can be represented as r

s , where r and s are non-

negative integers, 0 ≤ r < s, (r, s) = 1. Also we have kr
s is an integer, hence,

s is a divisor of k. Since
n∑

i=1
ui = 0, nr

s is an integer and, hence, s is a divisor

of n. Therefore, s is a divisor of (n, k). □

Proposition 5. If n ≥ 2k then we have m(1, J(n, k)) ≤ n−k
(n,k) + 1.

Proof. For this statement we take the vector

uT = (
1

(n, k)
, . . . ,

1

(n, k)
,−n− 1

(n, k)
),

of length n, where 1
(n,k) is repeated n − 1 times. The vector W Tu has two

di�erent values k
(n,k) and − n−k

(n,k) . Since n ≥ 2k, we have ∥W Tu∥∞ = n−k
(n,k) .

We see that
n∑

i=1
ui = 0 and from Lemma 1 the vector W Tu is a nowhere-zero

integer θ1(J(n, k))-eigenvector of the graph J(n, k). □

Note that in Proposition 5 the bound tends to in�nity when n is growing
as a function of k. However, for a "small" n, for example n = 2k, it can be
sharp. In the following statements we provide further upper bounds for odd
and even cases of k.
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Proposition 6. Let k be odd. Then
1. If n is even then m(1, J(n, k)) ≤ k + 1.
2. If n is odd then m(1, J(n, k)) ≤ 2k + 1.

Proof. By Lemma 1, the vector W Tu is a θ1(J(n, k))-eigenvector of J(n, k)
if u ∈ U(n).

1) For the �rst statement we take the vector

uT = (1, . . . , 1,−1, . . . ,−1),

of length n with n
2 positions with the value 1 and n

2 positions with the value
−1.

2) For the second statement we take the vector

uT = (k + 1,−1, . . . ,−1, 1, . . . , 1),

of length n with n−k−2
2 positions with the value 1, n+k

2 positions with the
value −1, where u1 = k + 1. □

Proposition 7. Let k be even and γ be the smallest positive integer number
that does not divide k. We have the following.

1. If n is divisible by γ then m(1, J(n, k)) ≤ (⌊γ2 ⌋+ 1)k + 1.
2. If n is not divisible by γ then m(1, J(n, k)) ≤ (⌊γ2 ⌋+1)(2k+β− 1)+1,

where β is the remainder of division of n− (k + 1) by γ.

Proof. By the hypothesis of the proposition, n− (β + k + 1) = qγ for some
positive integers q and β. We now de�ne a vector u ∈ U(n). Divide the �rst
n−(β+k+1) positions into q blocks of the same size γ. If γ is odd then each
block consists of ⌊γ2 ⌋ positions with the value ⌊γ2 ⌋+ 1 and ⌊γ2 ⌋+ 1 positions
with the value −⌊γ2 ⌋. If γ is even then each block consists of ⌊γ2 ⌋−1 positions
with the value ⌊γ2 ⌋+ 1 and ⌊γ2 ⌋+ 1 positions with the value −⌊γ2 ⌋+ 1. Note
that we described the values in all γ positions in each block and the sum of
the values in each block equals 0. We now de�ne the values for the remaining
k+β+1 positions of u. We set one element to be equal to −(k+β)(⌊γ2 ⌋+1)
and the other (k + β) elements to be (⌊γ2 ⌋ + 1). The sum of the values in
all positions of u equals 0, i.e. u ∈ U(n), and the sum of the values in any
k positions is an integer, i.e. W Tu is an eigenvector that takes only integer
values.

Let us prove that the sum of the values in any k distinct positions is not
0. If one of the elements in these positions is −(β + k)(⌊γ2 ⌋ + 1) then the
sum is less than 0 because the absolute value of any other element of u is
not greater than ⌊γ2 ⌋+ 1.

Consider the case γ is even i.e. γ = 2l. Take x, x ∈ {0, 1, . . . , k} positions
with the values l+1 and k− x positions with the values −l+1. The sum of
the values in these positions equals lx+ x− kl+ k+ lx− x = 2lx− k(l− 1)
which is 0 if and only if

2lx = k(l − 1).
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Let l be odd. From the equality above we see that k is divisible by odd l
and by 2 from the condition of the proposition, so k is divisible by γ = 2l,
which contradicts the de�nition of γ. If l is even, then l − 1 is odd. Hence,
again from the equality above we see that k should be divisible by γ = 2l, a
contradiction.

Consider the case when γ is odd, i.e. γ = 2l + 1. Take x positions, x ∈
{0, 1, . . . , k} with the value l+1 and k− x positions with the value −l. The
sum of the values in these positions equals lx+x−kl+ lx. If this sum equals
0 then x(2l + 1) = kl. Since k is not divisible by γ = 2l + 1, this equality
does not hold.

Therefore, W Tu is a NZI vector. If n is divisible by γ, then ∥W Tu∥∞ ≤
(⌊γ2 ⌋+1)k. If n is not divisible by γ, then ∥W Tu∥∞ ≤ (⌊γ2 ⌋+1)(2k+β−1). □

In the following lemmas we study the structural properties of NZI vectors
as we are working towards lower bounds on m(1, J(n, k)).

Lemma 2. Let a vector u ∈ U(n) have at least k positions with the value a+ r
s

and at least k positions with the value −b+ r
s for some non-negative integers

a, b, r and s, where b ̸= 0, 0 ≤ r < s, (r, s) = 1 and s is a divisor of (n, k). If

W Tu is a NZI vector then the number k(bs−r)
s(a+b) is not an integer.

Proof. Take x, 0 ≤ x ≤ k, positions of u with the value a + r
s and k − x

positions with the value −b+ r
s . The sum of these values equals x(a+ b) +

kr
s − bk. This sum equals 0 if and only if x = (bs−r)k

s(a+b) is an integer. □

Lemma 3. Let u be a vector in U(n) such that W Tu is NZI and ∥W Tu∥∞+

1 = m(1, J(n, k)). Let n > j2 + 2kj + 3k − j − j2

k , where j = 2k if k is odd
and j = (⌊γ2 ⌋ + 1)(2k + γ) if k is even, γ be the smallest positive integer
number that is not a divisor of k. Then u has at least k positions with the
same positive value and at least k positions with the same negative value.

Proof. If vector u has k positions with the value 0 then an element of W Tu
is zero. Hence, at least n − k + 1 positions of u has nonzero values. By
Propositions 6 and 7 we have that ∥W Tu∥∞ ≤ j, where j = 2k if k is odd
and j = (⌊γ2 ⌋+1)(2k+ γ) if k is even. Here γ is the smallest positive integer
number that does not divide k. Also denote by x the number of positions
with positive values and by y the number of positions with negative values.
By the remark on the number of nonzero elements in u in the beginning of
the proof, we have that

x+ y ≥ n− k + 1. (1)

Let us denote j
k by m. By Lemma 1 the values of the vector u in all

positions have the same fractional part. If u does not have k positions with
the same value then there are not more than k−1 positions with the integer
part i for any nonnegative i. So there are not more than (⌊m⌋ + 1)(k − 1)
positions with the integer part not more than ⌊m⌋. So, if x > (m+2)(k−1) ≥
(⌊m⌋ + 2)(k − 1) then there are at least k positions with the same positive
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value or there are k positions with values that are more than ⌊m⌋+1 > m. In
the latter case we have ∥W Tu∥∞ > mk = j, a contradiction. Analogously, if
y > (m+2)(k−1) then there are at least k positions with the same negative
value or we have a contradiction with the minimality of norm.

We show that n−k+1 > 2(m+2)(k− 1). By the condition of the lemma
we have the following:

n− k + 1− 2(m+ 2)(k − 1) = n− k + 1− 2(
j

k
+ 2)(k − 1) >

j2 + 2kj + 3k − j − j2

k
− k + 1− 2j − 4k +

2j

k
+ 4 =

j2 − 3j − 2k + 5 + 2kj − j2

k
+

2j

k
=

j(j(1− 1

k
)− 3 + 2k +

2

k
) + 5− 2k

Note that j ≥ 2k ≥ 4, so

j(j(1− 1

k
)− 3 + 2k +

2

k
) + 5− 2k ≥

j(2k − 2− 3 + 2k +
2

k
) + 5− 2k ≥ j − 2k + 5 > 0.

Because n−k+1 > 2(m+2)(k−1) then x or y is more than (m+2)(k−1).
Without loss of generality, we assume that x > (m + 2)(k − 1). If y is also
more than (m+ 2)(k − 1), then the Lemma holds, so we consider the case

y ≤ (m+ 2)(k − 1) (2)

in more details below.
In view of Lemma 1, we have that the positive values of u are not less

than 1
k . This, combined with inequalities (1) and (2) implies that the sum of

all positive elements in u is such that∑
i=1,...,n,ui>0

ui ≥
x

k
≥ n− k + 1− y

k
≥ n− k + 1− (m+ 2)(k − 1)

k
. (3)

Case 1. If y < k we consider the sum of y positions with negative values
and k − y positions with the smallest positive values in the vector u. Since
n∑

i=1
ui = 0 the absolute value of this sum equals the sum of x−k+y positions

with the largest positive values. Since each positive value in u is at least 1
k ,

this sum is not less than x−k+y
k ≥ (n−k+1−y)−k+y

k = n−2k+1
k . Hence, because

n > j2 + 2kj + 3k − j − j2

k > jk + 2k + 1, which we have by the hypothesis
of the Lemma, we obtain

∥W Tu∥∞ >
n− 2k + 1

k
>

jk + 2k + 1− 2k + 1

k
=

jk + 2

k
> j,
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which is a contradiction.
Case 2. If y ≥ k we consider the k minimum negative values of u. The

sum of these values is not greater than average negative value k times.
Because

∑
i=1,...,k

ui = 0, the absolutes of sum of negatives and sum of positives

coincide. So, from (3) the average among all negative is less then or equal to

− (n−k+1−y)
ky and there are pairwise distinct i1, . . . , ik:∑

l=1,...,k

uil ≤ −(n− k + 1− y)

y
. (4)

We show that we have n > (j + 1)y + k − 1. By the hypothesis of the
Lemma

n > j2+2kj+3k−j− j2

k
= j(j+2k−1− j

k
)+3k = j(mk+2k−1−m)+3k =

j(mk+2k−2−m)+mk+3k > j(mk+2k−2−m)+(mk+2k−2−m)+k =

(j + 1)(m+ 2)(k − 1) + k

From (2) we have that

(j + 1)(m+ 2)(k − 1) + k ≥ (j + 1)y + k > y(j + 1) + k − 1,

so we have that n > (j + 1)y + k − 1 and therefore from
∑

l=1,...,k

uil ≤

− (n−k+1−y)
y < −j, which contradicts ∥W Tu∥∞ ≤ j.

□

We introduce extra notations. Let γ be the smallest positive integer number

that is not a divisor of k. Denote by T (k) the number j2+2kj+3k− j− j2

k ,
where j = (⌊γ2 ⌋+ 1)(2k + γ) if γ is even and j = 2k if γ is odd.

We also introduce several extra sets and a number:

B(n, k) = {(a, b, r, s) : (bs− r)k

s(a+ b)
is not an integer, where a, b, r, s ≥ 0 are integers,

b ̸= 0, 0 ≤ r < s, (s, r) = 1, s is a divisor of (n, k)},

N(n, k) = min{max{k(a+
r

s
), k(b− r

s
)} : (a, b, r, s) ∈ B(n, k)},

M(n, k) = {(a, b, r, s) ∈ B(n, k) : max{k(a+
r

s
), k(b− r

s
)} = N(n, k)}.

Theorem 4. If n > T (k), then m(1, J(n, k)) ≥ N(n, k) + 1.

Proof. In view of Theorem 3 consider the vector u, u ∈ U(n) such that W Tu
is a NZI θ1(J(n, k))-eigenvector of J(n, k) and ∥W Tu∥∞+1 = m(1, J(n, k)).
By Lemma 3 we have that there are k positions of u with the value a + r

s
and k positions with the value −b + r

s for some b ̸= 0, (r, s) = 1, 0 ≤ r <

s, s is a divisor of (n, k). By Lemma 2 we have that (bs−r)k
s(a+b) is not an integer.
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Therefore, (a, b, r, s) ∈ B(n, k). On the other hand, ∥W Tu∥∞ is not less than
max{k(a+ r

s), k(b−
r
s)}, hence, ∥W

Tu∥∞ ≥ N(n, k). □

Corollary 1. Let (a, b, r, s) be in M(n, k). If n > T (k) and (bs−r)n
s(a+b) is an

integer, then m(1, J(n, k)) = N(n, k) + 1.

Proof. Take the vector u such that it has (bs−r)n
s(a+b) positions with the value

(a+ r
s) and

(as+r)n
s(a+b) positions with the value (−b+ r

s).

The norm of the vector W Tu equals max{k(a + r
s), k(b −

r
s)} = N(n, k).

On the other hand, by Theorem 4 we have m(1, J(n, k)) ≥ N(n, k) + 1,
hence, m(1, J(n, k)) = N(n, k) + 1 □

Corollary 2. Let γ be the smallest positive integer that does not divide k,
n > T (k), (n, k) = 1 and n be divisible by γ. We have that

1. If γ = 2 then m(1, J(n, k)) = k + 1.
2. If γ > 2 then m(1, J(n, k)) = (⌊γ2 ⌋+ 1)k + 1.

Proof. Let u be a vector in U(n) such that ∥W Tu∥∞ + 1 = m(1, J(n, k)). If
γ > 2 then since (n, k) = 1, k is even and n is odd, so due to Proposition 7 we
havem(1, J(n, k)) ≤ (⌊γ2 ⌋+1)k+1. If γ = 2 then k is odd and by condition of
corollary n is even, som(1, J(n, k)) ≤ k+1 by Proposition 6. Since (n, k) = 1
the fractional part of the value in any position of u equals 0 and any (a, b, r, s)
in M(n, k) has r = 0, s = 1. Let (a, b, r, s) be an quadruple from M(n, k).
We have that bk

a+b is not an integer and (a + b) is not a divisor of k. So we

have that a+ b ≥ γ. Note that if a+ b = γ, then (a, b) = 1. Indeed otherwise
we have a+b

(a,b) < γ, so bk
a+b is integer. We obtain that (a, b, 0, 1) /∈ B(n, k),

which is a contradiction.
On the other hand, if a+ b = γ, then max{a, b} ≥ ⌊γ2 ⌋+ 1 (if γ = 2 then

max{a, b} = 1). If a + b > γ then max{a, b} is also not less than ⌊γ2 ⌋ + 1
(1 in the case γ = 2). These lower bounds hold for any (a, b, 0, 1) ∈ M(n, k)
and therefore N(n, k) ≥ (⌊γ2 ⌋+ 1)k (k if γ = 2) and, hence, m(1, J(n, k)) =
(⌊γ2 ⌋+ 1)k + 1 (k + 1 if γ = 2). □

Corollary 3. If n > T (k) then m(1, J(n, k)) ≥ k + 1.

Proof. Suppose that m(1, J(n, k)) < k + 1. Then by Theorem 4 we have

N(n, k) ≤ m(1, J(n, k))− 1 < k,

i.e. there are integers a ≥ 0, b ≥ 1, r ≥ 0 and a divisor s of (n, k) such that

(bs− r)k

s(a+ b)
is not an integer,

max{k(a+
r

s
), k(b− r

s
)} < k.

The latter inequality implies that a = 0 and b = 1, which, combined with

the fact that s is a divisor of k implies that (bs−r)k
s(a+b) = (bs−r)k

s is an integer, a

contradiction.
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□

Proposition 8. If n is even, k is odd and n > T (k), then m(1, J(n, k)) =
k + 1.

Proof. From Proposition 6 we have m(1, J(n, k)) ≤ k+1 and from Corollary
3 we have m(1, J(n, k)) ≥ k + 1. □

Theorem 5. If n > T (3) = 63, then we have that

m(1, J(n, 3)) =


4, n is even

6, n is odd and n = 0, 6 mod 9

7, otherwise.

Proof. Let u be a vector in U(n) such that ∥W Tu∥∞ + 1 = m(1, J(n, k)).
The case of even n is a particular case of Proposition 8. In what follows

we assume that n is odd. By Proposition 6 we have ∥W Tu∥∞ ≤ 6.
1. Suppose the elements of u are integers. By Lemma 3 there are at least

3 elements of u equal to a and at least 3 elements equal to −b. If a ≥ 2 or
b ≥ 2 then we obtain desired inequality ∥W Tu∥∞ ≥ 6. Therefore, we have

a = 1 and b = 1. Since n is odd and
n∑

i=1
ui = 0, there is an element of u

with an even value c. This value cannot be 0, 2,−2, otherwise we have three
elements in u with zero sum and the vector W Tu has zero elements. Hence,
c ≥ 4 or c ≤ −4. In both cases, the bound ∥W Tu∥∞ ≥ 6 holds.

2. Suppose the elements of u have nonzero fractional parts. By Lemma 1
this fractional part is 1

3 or 2
3 and we necessarily have that n is divisible by 3.

Without loss of generality, we can assume that this fractional part equals 2
3

(otherwise we take the vector −u). By Lemma 3 the vector u has 3 elements
with some positive value a + 2

3 and 3 elements with some negative value

−b+ 2
3 . If a = 0, then b cannot be 1 or 2, otherwise there are three elements

of u with the sum equals 0. If b ≥ 3, then ∥W Tu∥∞ ≥ 7. If a ≥ 2, then
∥W Tu∥∞ ≥ 8. Both cases contradict ∥W Tu∥∞ ≤ 6. So we have a = 1 and
hence, ∥W Tu∥∞ ≥ 5. Also we have b = 1 or b = 2, otherwise ∥W Tu∥∞ ≥ 7.

2a. Let n be 3 mod 9. We also recall that n is odd and there are at least
3 elements in u equal 5

3 and at least 3 elements equal −b + 2
3 , where b is 1

or 2. We show that ∥W Tu∥∞ ≥ 6.

Consider case b = 1. Since
n∑

i=1
ui = 0 and n is odd, there is an element c

3 of

u for some even c. If c ≥ 8 or c ≤ −16 then ∥W Tu∥∞ ≥ 6. If c = 2,−4,−10
then there are three elements in u having zero sum, a contradiction.

Consider case b = 2. If all elements of u are 5
3 or −4

3 then n is divisible
by 9, which is not the case. So there is at least one element of u that di�ers
from 5

3 or −4
3 . If there is element that is not less than 8

3 or element that is

not more than −10
3 or two elements that equals −7

3 then ∥W Tu∥∞ ≥ 6. If

in vector u there is an element −1
3 or two elements equals 2

3 or two elements
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with the values 2
3 and −7

3 then there are three elements in u with zero sum.
It remains to consider the case when one element of u equals c

3 , where c is

2 or −7, any other element is 5
3 or −4

3 . Denote by x the number of elements
5
3 and by y the number of elements −4

3 in u. Then the sum of all elements

equals 5x−4y+c
3 , where x+y = n−1. Since

n∑
i=1

ui = 0 we have x = 4n−4−c
9 , i.e.

x = 4n−6
9 or x = 4n+3

9 . In both cases we have n = 6 mod 9, a contradiction.

We conclude that ∥W Tu∥∞ ≥ 6 for the case when n = 3 mod 9.
2b. If n = 0 mod 9 take the vector

uT = (
5

3
, . . . ,

5

3
,−4

3
, . . . ,−4

3
),

of length n, where 5
3 is repeated 4n

9 times. Hence, ∥W Tu∥∞ = 5.
2c. If n = 6 mod 9 take vector

uT = (
2

3
,
5

3
, . . . ,

5

3
,−4

3
, . . . ,−4

3
),

of length n, where 5
3 is repeated 4n−6

9 times, −4
3 is repeated 5n−3

9 times and

u1 =
2
3 . Hence, ∥W

Tu∥∞ = 5.
□

4.2. Minimum of L∞ norm of nowhere-zero integer eigenvectors

with the �rst eigenvalue for block graphs of STSs.

Theorem 6. Let S be a Steiner triple system of order n, n > 7. If n =
1 mod 4 then m(1,ΓS) ≤ 4 and if n = 3 mod 4 then m(1,ΓS) ≤ 5.

Proof. Let n be such that n = 1 mod 4. Suppose S is a STS with all triples
containing the point 1 being {1, 2, 3}, . . . , {1, n− 1, n}. We set the vector u
as follows: u1 = 0, ui = 1 for 2 ≤ i ≤ n+1

2 and ui = −1 for n+3
2 ≤ i ≤ n. The

vector W T
S u is a θ1(ΓS)-eigenvector of ΓS due to Theorem 3.3. The elements

of W T
S u are ui+uj +uk if {i, j, k} is a triple of S. If {i, j, k} contains 1, then

by the choice of u, we see that (W T
S u){i,j,k} is either 2 or −2. Otherwise,

ui + uj + uk is the sum of three numbers with absolute value 1, therefore
∥W T

S u∥∞ ≤ 3.
Let n be such that n = 3 mod 4. Without restriction of generality, {1, 2, 3}

is a triple in S. Set the vector u as follows: u1 = −1, u2 = 2, u3 = −3. We
will arrange the remaining n−5

2 values −1 and n−1
2 values 1 in the remaining

n positions of u according to the structure of S.
We consider an auxiliary graph on the vertices, which are the points

{4, . . . , n}. The edges are the pairs obtained from the all triples of S containing
2 or 3, excluding {1, 2, 3}, by removing the points 2 and 3. The edges are
labeled "2" or "3"which is the point that completes the edge, i.e. pair of
points, to a triple of S. From the de�nition of a Steiner triple system, we see
that the graph is the union of even length cycles that partition {4, . . . , n},
where labels, i.e. 2 and 3, for any two incident edges are di�erent.
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For a vector u we set its remaining elements (with indices of the vertices
of the auxiliary graph) to 1 and −1 as follows. We distinguish one cycle
i1, . . . , i2l. Choose a path i1, i2, i3 in the cycle and set values ui1 = ui2 =
ui3 = 1. The remaining values of u in this cycle are alternating −1 and 1:
ui4 = −1, ui5 = 1, ui6 = −1,. . . , ui2l = −1. For any other cycle j1, . . . , j2m
we set the values of u in the alternating way: uj2s+1 = −uj2(s+1)

= 1, for

s = 0, . . . ,m−1. By the choice of the values of u on the points {4, . . . , n}, for
any two adjacent vertices a, b in the auxiliary graph we have that ua+ub = 0
or 2.

Since
n∑

i=1
ui = 0, u is a (-1)-eigenvector of Kn. Now consider the vector

W Tu, which is a θ1(ΓS)-eigenvector of ΓS by Theorem 3.3. For a triple
{i, j, k} of S such that {i, j, k} ∩ {2, 3} = ∅, we see that ui + uj + uk is
the sum of elements whose absolute values are 1 (note that u1 = 1 and
|ui| = 1, i = 4 . . . , n). So ui + uj + uk is nonzero with the absolute value less
or equal to 3. Let {i, j, k} be a triple of S, such that k = 2 or 3 and i, j ≥ 4.
Since u2 = 2, u3 = −3 and ui + uj is either 0 or 2, the sum uk + ui + uj is
nonzero with the absolute value less or equal to 4. For the last remaining case
of triple {1, 2, 3} in S we have u1+u2+u3 = −2. We see that ∥W T

S u∥∞ ≤ 4.
□

5 Nowhere zero �ows for families of classic Steiner triple

system

Throughout this section, we use terms of �ows in Steiner triple systems
in the sense of work [1] rather than terms of eigenvectors.

5.1. Flows for some classic STSs.

Lemma 4. [3, Lemma 1.4] Let S be a resolvable STS of order n. If n =
1 mod 4, S has a 2-�ow, otherwise it has a 3-�ow.

Proposition 9. 1. Let S be the Steiner triple system formed by the supports
of weight three codewords of the Hamming code of length 2r − 1, r ≥ 4. Then
S admits a 3-�ow, but does not admit a 2-�ow.

2. Let S be the original Bose Steiner triple system of order 3p constructed
from the latin square of Zp, where p is an odd prime. Then S has a 2- or a
3-�ow.

Proof. 1. If r is even, then the Hamming STS of order 2r − 1 is known to
be resolvable, i.e. its blocks are parted into 2r−2

2 parallel classes [8]. In this
case, following Lemma 4, we see that a 3-�ow exists.

When r is odd, then it is easy to see that 2r is 2 modulo 6. Any Hamming
STS is cyclic, i.e. it has an automorphism of order being equal to the order
of S. By [4, Theorem 3.6] if the order of a STS S is 1 modulo 6 and S is
cyclic, then a 3-�ow for S exists.
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Suppose a 2-�ow v for Hamming STS S exists, so WSv = 0 and the
elements of the v are +1 and −1. This contradicts the fact that any row of
WS has exactly n−1

2 = 2r−1−1
2 of ones, which is odd.

2. The Steiner triple systems of order 9p constructed by Bose method were
recently shown to be resolvable by Colbourn and Lusi [11]. The result follows
from Lemma 4. □

5.2. Flows for Assmuss-Mattson construction. Let us consider the
Assmus-Mattson construction [6]. Given a Steiner triple system S of order n
with the pointset {1, . . . , n} and a point i, we denote by ī the number i+n.
For a function τ : S → {0, 1}, we de�ne the Assmuss-Mattson Steiner triple
system of order 2n+ 1 with point set {1, 2, . . . , n, 1̄, 2̄, . . . , n̄, 2n+ 1}:

S̄ =
⋃

{i,j,k}∈S

P ({i, j, k})∪

⋃
i=1,...,n

{i, ī, 2n+ 1},

where

P ({i, j, k}) = {{i, j, k}, {i, j̄, k̄}, {̄i, j, k̄}, {̄i, j̄, k}},
if τ({i, j, k}) = 0 and

P ({i, j, k}) = {{̄i, j, k}, {̄i, j̄, k̄}, {i, j, k̄}, {i, j̄, k}}
otherwise.

Our goal is to construct a zero-sum 5-�ow for S̄, i.e. to �nd a NZI vector
v such that

∑
T∈S̄,i∈T

vT = 0 for any i ∈ {1, 2, . . . , n, 1̄, 2̄, . . . , n̄, 2n + 1} and

∥v∥∞ = 4.
For our following arguments we need several auxiliary statements.
Let a1, a2, a3 be pairwise distinct elements from {1, . . . , n}. We de�ne a

real-valued vector g indexed by the triples in P ({a1, a2, a3}) depending on
τ({a1, a2, a3}). If τ({a1, a2, a3}) = 0, de�ne the elements of g (indexed by
triples in P ) as follows:

g{a1,a2,a3} = g{a1,ā2,ā3} = 1, g{ā1,ā2,a3} = g{ā1,a2,ā3} = −1.

If τ({a1, a2, a3}) = 1 de�ne

g{ā1,a2,a3} = g{ā1,ā2,ā3} = −1, g{a1,a2,ā3} = g{a1,ā2,a3} = 1.

Consider the properties of the introduced vector.

Proposition 10. The following holds for vector g:∑
T ′∈P ({a1,a2,a3}),a1∈T ′

gT ′ = 2, (5)

∑
T ′∈P ({a1,a2,a3}),ā1∈T ′

gT ′ = −2, (6)
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∑
T ′∈P ({a1,a2,a3}),s∈T ′

gT ′ = 0 for s ∈ {a2, a3, ā2, ā3}. (7)

Proof. The proof is obtained by direct calculations. □

Clearly, by direct permutation of points a1, a2 and a3 one may apply
Proposition 10 for a2 or a3 instead of a1.

Lemma 5. Let S be STS(n), where n ≥ 49. Then there is a function h :
S → {1, . . . , n} such that

(1) for any {i, j, k} ∈ S, h({i, j, k}) ∈ {i, j, k},
(2) for any i ∈ {1, . . . , n}, |{T ∈ S : h(T ) = i}| ≥ 4.

Proof. Consider the set A of all functions satisfying the �rst condition from
Lemma. Each function maps any triple T ∈ S to a point in T . Therefore

we have |A| = 3
n(n−1)

6 . The next step is counting the number of functions
from A not satisfying the second condition of Lemma for a �xed point i0.
Clearly, for any such function f , |{T ∈ S : h(T ) = i0}| equals 0, 1, 2 or 3.
We conclude that the number of such functions is equal to

R = 2
n−1
2 3

n(n−1)
6

−n−1
2 +

(n−1
2

1

)
2

n−1
2

−13
n(n−1)

6
−n−1

2 +(n−1
2

2

)
2

n−1
2

−23
n(n−1)

6
−n−1

2 +

(n−1
2

3

)
2

n−1
2

−33
n(n−1)

6
−n−1

2 .

Consequently, the number of functions inA not satisfying the second condition
from Lemma (in at least one point) is not greater than nR. As a result, we
have that the number of functions from A satisfying both conditions is at

least 3
n(n−1)

6 − nR which is equal to

2
n−1
2 3

n(n−1)
6

−n−1
2
(
(
3

2
)
n−1
2 − 1

384
n4 − 1

128
n3 − 71

384
n2 − 103

128
n
)
.

This expression is strictly positive for n ≥ 49 and the proof is �nished. □

Theorem 7. Any Assmuss-Mattson Steiner triple system of order N , N ≥
99 admits a zero-sum 5-�ow.

Proof. Let S of order N = 2n + 1 be obtained from a STS S of order n,
n ≥ 49 by Assmuss-Mattson construction with a function τ : S → {0, 1}.

We start from the all-zero vector v, indexed by the triples of S̄ and update
it with the course of the proof. At the end of the proof, v will be 5-�ow for
STS S̄. Consider the set B = {T ∈ S : 1 ∈ T} and T0 ∈ S\B. Without loss of
generality we assume that B = {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, . . . , {1, n−1, n}}
and T0 = {2, 4, 6}. The triples of S̄ are parted into the following three sets

of triples: P (T0) ∪
⋃

T ′∈B
P (T ′),

⋃
T ′∈S\(T0∪B)

P (T ′) and
n⋃

i=1
{i, ī, 2n + 1}. We

consequently de�ne the vector v on these sets.
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Let us consider an auxiliary vector w indexed by the triples from {T0}∪B.
For i, 1 ≤ i ≤ n−1

2 , and even n−1
2 , we de�ne w{2,4,6} = −2 and

w{1,2i,2i+1} =

{
1, 1 ≤ i ≤ n−1

4 + 1

−1, otherwise.

And for i, 1 ≤ i ≤ n−1
2 , and odd n−1

2 , we de�ne w{2,4,6} = −2 and

w{1,2i,2i+1} =


1, 1 ≤ i ≤ n−3

4

−1, n+1
4 ≤ i ≤ n−3

2

2, i = n−1
2 .

The choice of w implies that for any i ∈ {1, . . . , n}∑
T ′∈{T0}∪B,i∈T ′

w(T ′) ∈ {±1,±2}, (8)

∑
T∈{T0}∪B

wT = 0. (9)

Let us now de�ne the elements of v on the triples arising from {T0} ∪ B
in Assmuss-Mattson recursive approach. For T ∈ {T0} ∪ B, put vT ′ = wT

for all T ′ ∈ P (T ).
De�ne the numbers αs =

∑
T ′∈P (T0)∪

⋃
T∈B

P (T ),s∈T ′
vT ′ for s ∈ {1, . . . , n, 1̄, . . . , n̄}.

From the de�nition of P (T ) we see that for any i ∈ T the points i and ī are
in exactly two triples of P (T ). Since v(T ′) is the same for T ′ ∈ P (T ), we see
that for i ∈ {1, . . . , n} we have

αi = αī =
∑

T ′∈P (T0)∪
⋃

T∈B
P (T ),i∈T ′

vT ′ .

Because for any T ′ ∈ S, i ∈ T ′, the value of wT ′ is doubled in αi and
doubled in αī, using (8) we obtain that:

αi ∈ {±2,±4}. (10)

The equality (9) gives the following (note that so far, some values of v are
still zeros): ∑

i∈{1,...,n}

αi = 0. (11)

By Lemma 5 there is a function h de�ned on S such that for any {i, j, k} ∈ S,
h({i, j, k}) ∈ {i, j, k}, and for any i ∈ {1, . . . , n}, |{T ∈ S : h(T ) = i}| ≥ 4.
Take any point j ∈ {2, . . . , n}. Clearly, {T0} ∪B covers every point at most
twice. Consequently,

|Mj | ≥ 2,

where Mj = {T ∈ S \ ({T0} ∪ B) : h(T ) = j}. The next step is to apply
Proposition 10 in order to de�ne v on P (T ) and P ′(T ) for T ∈ Mj . If the
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size of Mj is even then we divide Mj into two sets M1
j and M2

j of equal

cardinality. After that we de�ne values of v as follows. For a triple T in M1
j ,

judging by the value of τ , we set the values vT ′ to be +1 and -1 for all triples
in T ′ ∈ P (T ) as the values of vector g in Proposition 10 with a1 = j. For
a triple T in M2

j we set the values vT ′ to be +1 and -1 for all triples in

T ′ ∈ P (T ) as the values of vector −g in Proposition 10 with a1 = j.
Due to de�nition of vT ′ from g(T ′) we have:

∑
T ′∈P (T ):j∈T ′,T∈Mj

vT ′ =
∑

T ′∈P (T ):j∈T ′,T∈M1
j

gT ′ −
∑

T ′∈P (T ):j∈T,T∈M2
j

gT ′ =

∑
T∈M1

j

∑
T ′∈P (T ):j∈T ′

g(T ′)−
∑

T∈M2
j ,

∑
T ′∈P (T ):j∈T ′

g(T ′);

Taking into account equality (5) and because |M1
j | = |M2

j |, we see that∑
T∈M1

j

∑
T ′∈P (T ):j∈T ′

g(T ′)−
∑

T∈M2
j ,

∑
T ′∈P (T ):j∈T ′

g(T ′) =
∑

T∈M1
j

2−
∑

T∈M2
j

2 = 0.

The same holds for the point j̄ as we use (6) to obtain the following:

∑
T ′∈P (T ):j̄∈T ′,T∈Mj

vT ′ =
∑

T∈M1
j

∑
T ′∈P (T ):j̄∈T ′

g(T ′)−
∑

T∈M2
j ,

∑
T ′∈P (T ):j̄∈T ′

g(T ′) =

∑
T∈M1

j

−2 +
∑

T∈M2
j

2 = 0.

Thus, we have: ∑
T ′:T ′∈P (T ),T∈Mj ,j∈T ′

vT ′ =
∑

T ′:T ′∈P (T ),T∈Mj ,j̄∈T ′

vT ′ = 0. (12)

Moreover, according to (7) we see that for the "projection"of any point
di�erent from j is zero. For any s ∈ T ∪ {̄i : i ∈ T} \ {j, j̄} we have that:∑

T ′:T ′∈P (T ),T∈Mj ,s̄∈T ′

vT ′ =
∑

T ′:T ′∈P (T ),T∈Mj ,s̄∈T ′

gT ′ = 0. (13)

In the case of odd size of the set Mj , we divide Mj into three non-

intersecting subsets M1
j , M

2
j and M3

j respectively of sizes
|Mj |+1

2 ,
|Mj |−3

2

and 1. We repeat the procedure (as for the case when Mj was of even size)
for the �rst two sets with vectors g and −g correspondingly. For the last
one-element set we do the same but with the vector −2g. Similarly to the
case of even size of Mj , we have equalities (12) and (13). We repeat the
arguments for sets Mt for all remaining t ∈ {1, . . . , n} \ {1, j}.

So far we have de�ned the elements of v indexed by all triples in S̄ \
{{i, ī, 2n+1}, i = 1, . . . , n} and they are nonzeros. Moreover, from (12), (13)
and (10) for any i ∈ {1, . . . , n}



1146 E.A. BESPALOV, I.YU. MOGILNYKH, K.V. VOROB'EV

∑
T ′∈S̄\{{i,̄i,2n+1},i=1,...,n},i∈S̄

vT ′ =
∑

T ′∈S̄\{{i,̄i,2n+1},i=1,...,n},̄i∈S̄

vT ′ = αi ∈ {±2,±4}.

(14)
The last step that �nishes the proof is to de�ne v on the set of triples⋃

i=1,2,...,n

{i, ī, 2n+ 1}

in the following way:

v{i,̄i,2n+1} = −αi for i ∈ {1, . . . , n}. (15)

From (11) we see that ∑
{i,̄i,2n+1},l=1,...,n

v{i,̄i,2n+1} =
n∑

i=1

αi = 0. (16)

Summing up the above we have the following.
1. All values of v are nonzeros with absolute values not greater than 4.
2. From (14) and (15), for any i ∈ {1, . . . , n}

∑
T ′∈S̄,i∈T ′

vT ′ =
∑

T ′∈S̄,̄i∈T ′
vT ′ =

0.
3. From (16) the equality

∑
T ′∈S̄,2n+1∈T ′

vT ′ = 0 holds.

In other words, v is a 5-�ow for S̄. □

6 Completely regular codes in the block graphs of STSs

Let S be a Steiner triple system in the classical sense of order n. The
following are examples of completely regular codes in the block graph of S.

Covering radius ρ = 1 and eigenvalue θ1(Γ):
Construction 1. {B ∈ S : i ∈ B}, where i is any �xed point {1, . . . , n}.
Construction 2. Any Steiner subsystem of S having order n−1

2 .
Construction 3. {B ∈ S : i ∈ B} ∪ S′, where S′ is any Steiner subsystem

of S having order n−1
2 , such that i is a point of S but not a point of S′.

Covering radius ρ = 1 and eigenvalue θ2(Γ):
Construction 4 (see Proposition 3). Any 1-subdesign of S.
Covering radius ρ = 2:
Construction 5. Any Steiner subsystem of S of order less then n−1

2 .
Remark 2. Actually, Construction 5 lists all completely regular codes in

the block graphs with ρ = 2. This can be shown, for example, using the
technique from [22, Theorem 4 and Lemma 2] that utilizes the fact that all
such codes naturally arise from subsets of the vertices of the clique graph of
the block graph. This is beyond the scope of the current study, so we skip
the details here.

The block graph of the projective (Hamming) Steiner triple system of
order 2r − 1 is isomorphic to the Grassmann graph J2(r, 2). The completely
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regular codes with ρ = 1 and the �rst eigenvalue in these graphs are known
as Cameron-Liebler line classes. These objects were characterized in [16] as
follows: these are Constructions 1-3 or their opposite codes. Judging by this
fact for the most "symmetric" Steiner triple system, we propose the following:
Problem 2. Find any other completely regular codes with ρ = 1 and

the �rst eigenvalue in the block graphs of Steiner triple systems of order
n, n ≥ 13 or prove that no such codes exist.

All Steiner triple systems of orders 13 and 15 are enumerated and there
are 2 and 80 isomorphism classes of such Steiner triple systems respectively
[12].

Theorem 8. Let S be a Steiner triple system of order 13 or 15. Then all
completely regular codes with ρ = 1 in ΓS and eigenvalue θ1(ΓS) are codes
from Constructions 1-3.

Proof. For a given Steiner triple system of order n, the number of codes
from Construction 2 equals the number of Steiner subsystems of order n−1

2 .
Using a well-known result of [15] the number of such subsystems equals the
2n−r − 1, where r is the binary rank of Steiner triple system. We recall that
the rank is the dimension of the subspace, spanned by the characteristic
vectors of triples in the point set. We see that there are exactly (2n−r − 1)
and (2n−r − 1)n+1

2 codes given by Constructions 2 and 3 respectively.
We conclude that for a given Steiner triple system, the number of codes

from Constructions 1, 2, 3 are as follows:

n+ (2n−r − 1)(
n+ 3

2
). (17)

We use integer based computer search for completely regular codes with
ρ = 1, described in [21]. Given the intersection array, a computer linear
programming solver outputs the number of completely regular codes having
this intersection array. For all considered Steiner triple systems of orders n =
13 and 15 of any given rank r, the solver output the number of completely
regular codes with eigenvalue θ1(ΓS) being equal to (17), thus we have the
required. □
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