СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports

http://semr.math.nsc.ru

FINITE SIMPLE GROUPS WITH TWO MAXIMAL SUBGROUPS OF COPRIME ORDERS

N.V. MASLOVA

Dedicated to the memory of Vyacheslav Aleksandrovich Belonogov
Abstract. In 1962, V. A. Belonogov proved that if a finite group G contains two maximal subgroups of coprime orders, then either G is one of known solvable groups or G is simple. In this short note based on results by M. Liebeck and J. Saxl on odd order maximal subgroups in finite simple groups we determine possibilities for triples (G, H, M), where G is a finite nonabelian simple group, H and M are maximal subgroups of G with $(|H|,|M|)=1$.
Keywords: finite group, simple group, maximal subgroup, subgroups of coprime orders.

1. Introduction

Throughout the paper we consider only finite groups, and henceforth the term group means finite group. Our terminology and notation are mostly standard and can be found in $[3,4,6]$. We denote the group $P S L_{n}(q)$ by $P S L_{n}^{+}(q)$ and the group $P S U_{n}(q)$ by $P S L_{n}^{-}(q)$. The largest integer power of a prime p dividing a positive integer k is called the p-part of k and is denoted by k_{p}. Given an integer a and a positive integer n coprime to a, the multiplicative order $\operatorname{ord}_{n}(a)$ of a modulo n is the smallest positive integer k with

$$
a^{k} \equiv 1 \quad(\bmod n)
$$

In other words, the multiplicative order of a modulo n is the order of a in the multiplicative group of the units in the ring of the integers modulo n.

[^0]Following [2], we write that a group G is a group of type A if G is a non-special group of order $p q^{\beta}$, where p and q are primes, a subgroup of order q^{β} is a normal elementary abelian subgroup in $G, q^{\beta} \equiv 1(\bmod p)$, and β is the least with this property.

In 1962, V. A. Belonogov [2, Theorem 8] proved the following proposition.
Proposition 1. If a finite group G contains two maximal subgroups of coprime orders, then G is a cyclic group of order pq, where p and q are distinct primes, or G is a group of type A or G is simple.

It is clear that if a simple group G has two maximal subgroups H and M with $(|H|,|M|)=1$, then $|H|$ is odd or $|M|$ is odd. Maximal subgroups of odd orders in simple groups were described by M. Liebeck and J. Saxl [7]. M. Aschbacher [1] described natural geometrically defined eight families \mathfrak{C}_{i} for $1 \leq i \leq 8$ of subgroups of simple classical groups, which are now called Aschbacher classes, and has proved that if a maximal subgroup of a simple classical group does not belong to the union of Aschbacher classes of the group, then this maximal subgroup is almost simple. Based on the classification of finite simple groups, results by M. Liebeck and J. Saxl [7], Aschbacher's classification and further results on maximal subgroups in almost simple groups $[3,6]$ in this short note we prove the following theorem.
Theorem 1. Let G be a finite nonabelian simple group.
(i) If G is sporadic, then G contains two maximal subgroups H and M with $(|H|,|M|)=1$ if and only if one of the following statements holds:
(1) $G \cong M_{23}, H \cong 23: 11$, and M is one of the following subgroups: $P S L_{3}(4): 2_{2}$, $2^{4}: A_{7}, A_{8}, 2^{4}:\left(3 \times A_{5}\right): 2$;
(2) $G \cong F_{2}=B, H \cong 47: 23$ and M is one of the following subgroups: $2 \cdot\left({ }^{2} E_{6}(2)\right): 2,2^{9+16} . P S p_{8}(2), T h,\left(2^{2} \times F_{4}(2)\right): 2,2^{2+10+20} .\left(M_{22}: 2 \times S_{3}\right)$, $2^{5+5+10+10} . P S L_{5}(2), S_{3} \times F i_{22}: 2,\left[2^{35}\right] .\left(S_{5} \times P S L_{3}(2)\right), H N: 2, P \Omega_{8}^{+}(3): S_{4}$, $3^{1+8}: 2^{1+6 \cdot} P S U_{4}(2) .2,5: 4 \times H S: 2,\left(3^{2}: D_{8} \times P S U_{4}(3) .2^{2}\right) .2, S_{4} \times{ }^{2} F_{4}(2)$, $3^{2+3+6} \cdot\left(S_{4} \times 2 S_{4}\right), S_{5} \times M_{22}: 2,5^{3 \cdot} P S L_{3}(5),\left(S_{6} \times P S L_{3}(4): 2\right) .2,5^{1+4}: 2^{1+4} \cdot A_{5} \cdot 4$, $\left(S_{6} \times S_{6}\right) \cdot 4,5^{2}: 4 S_{4} \times S_{5}, P S L_{2}(49) \cdot 2, M_{11}, P S L_{2}(31), P S L_{3}(3), P S L_{2}(17): 2$, $P S L_{2}(11): 2$.
(ii) If G is an alternating group of degree at least 5 or an exceptional group of Lie type, then G does not contain two maximal subgroups of coprime orders.
(iii) Let G be a simple classical group of Lie type. Assume that G contains two maximal subgroups H and M with $(|H|,|M|)=1$, and without loss of generality assume that $|H|$ is odd. Then one of the following statements holds:
(1) $G \cong P S L_{2}(q)$, where $7<q \equiv 3(\bmod 4), H \cong E_{q}: \frac{q-1}{2}$, and $M \cong D_{2(q+1)}$;
(2) $G \cong P S L_{2}(q)$, where q is prime and $q \equiv 23(\bmod 24), H \cong E_{q}: \frac{q-1}{2}$, and $M \cong S_{4} ;$
$(3) G \cong P S L_{2}(q)$, where q is prime and $q \equiv 83,107(\bmod 120), H \cong E_{q}: \frac{q-1}{2}$, and $M \cong A_{4}$;
(4) $G \cong P S L_{2}(q)$, where q is prime and $q \equiv 59(\bmod 60), H \cong E_{q}: \frac{q-1}{2}$, and $M \cong A_{5}$;
(5) $G \cong P S L_{n}(q)$, where n is an odd prime, q is not a power of n, and $\operatorname{ord}_{n}(q)=$ $n-1, H \cong \frac{q^{n}-1}{(q-1)(q-1, n)}: n$, and M is the stabilizer in G of a subspace of dimension m of the natural projective module of G, where $2 \leq m \leq n-2$;
(6) $G \cong P S U_{n}(q)$, where n is an odd prime and q is not a power of n, $H \cong \frac{q^{n}+1}{(q+1)(q+1, n)}: n, M$ is the stabilizer in G of a non-degenerate subspace of
dimension m of the natural projective module of G, where $2 \leq m \leq \frac{n-1}{2}$, and one of the following statements holds:
(6a) $n \equiv 1(\bmod 4)$, ord $_{n}(q)=n-1$, and $(n, q) \neq(5,2)$;
(6b) $n \equiv 3(\bmod 4)$ and $\operatorname{ord}_{n}(q)=\frac{n-1}{2}$.
(7) $G \cong P S U_{3}(q)$, where $q \neq 5$ and $(q+1)_{3}=3, H \cong \frac{q^{3}+1}{(q+1)(q+1,3)}: 3$, and M is the stabilizer in G of a totally singular subspace of dimension 1 of the natural projective module of G.
(8) $G \cong P S U_{n}(q)$, where $n \geq 5$ is a prime, q is not a power of $n,(n, q) \neq$ $(5,2), H \cong \frac{q^{n}+1}{(q+1)(q+1, n)}: n, M$ is the stabilizer in G of a totally singular subspace of dimension m of the natural projective module of G, and one of the following statements holds:
(8a) $n \equiv 1(\bmod 4), \operatorname{ord}_{n}(q)=n-1$, and $1 \leq m<\frac{n}{3} ;$
(8b) $n \equiv 3(\bmod 4)$, $\operatorname{ord}_{n}(q)=\frac{n-1}{2}$, and $1 \leq m<\frac{n}{3}$;
($8 c$ c) $\operatorname{ord}_{n}(q)=n-1$ and $\frac{n}{3}<m<\frac{n}{2}$;
(8d) $n \equiv 3(\bmod 4)$, ord $_{n}(q)=n-1$, and $\frac{n+1}{4}<m<\frac{n}{3}$.
(9) $G \cong P S L_{n}^{\varepsilon}(q)$, where $n \geq 13$ is a prime and $\varepsilon \in\{+,-\}, H \cong \frac{q^{n}-\varepsilon 1}{(q-\varepsilon 1)(q-\varepsilon 1, n)}: n$, and M is almost simple.

Moreover, H is always a subgroup from the union of Aschbacher classes of G, and all the possibilities when M is a subgroup from the union of Aschbacher classes of G are listed in Statements $(i i i)(1)-(i i i)(8)$.

2. Proof of Theorem 1

The following assertion is well-known and easy-proving.
Lemma 1. Let $q>1$ be an integer and k and m be positive integers. Then
(i) $\left(q^{k}-1, q^{m}-1\right)=q^{(k, m)}-1$;
(ii) $\left(q^{k}+1, q^{m}+1\right)=q^{(k, m)}+1$ if $k_{2}=m_{2}$ and $\left(q^{k}+1, q^{m}+1\right)=(2, q+1)$

otherwise;

(iii) $\left(q^{k}-1, q^{m}+1\right)=q^{(k, m)}+1$ if $k_{2}>m_{2}$ and $\left(q^{k}-1, q^{m}+1\right)=(2, q+1)$ otherwise.

The following result by M. Liebeck and J. Saxl will be useful to prove Theorem 1.
Proposition 2 ([7, Theorem 2]). Let G be a finite simple group and H be a maximal subgroup of odd order form G. Then one of the following statements holds:
(1) $G \cong A_{p}, H \cong p \cdot \frac{p-1}{2}, p$ is prime, $p \equiv 3(\bmod 4)$, and $p \notin\{7,11,23\}$;
(2) $G \cong P S L_{2}(q), H \cong E_{q} \cdot \frac{q-1}{2}$, and $q \equiv 3(\bmod 4)$;
(3) $G \cong P S L_{n}(q), H \cong\left(\frac{q^{n}-1}{(q-1)(n, q-1)}\right) \cdot n$, n is an odd prime, and $G \nsubseteq P S L_{3}(4)$;
(4) $G \cong P S U_{n}(q), H \cong\left(\frac{q^{n}+1}{(q+1)(n, q+1)}\right) . n$, n is an odd prime, and $G \nsupseteq P S U_{3}(3)$, $\mathrm{PSU}_{3}(5), \mathrm{PSU}_{5}(2)$;
(5) $G \cong M_{23}$ and $H \cong 23: 11$;
(6) $G \cong$ Th and $H \cong 31: 15$;
(7) $G \cong F_{2}$ and $H \cong 47: 23$;
(8) $G \cong F_{1}$ and $H \cong 59: 29$ or $H \cong 71: 35$.

Let G be a nonabelian simple group. Assume that M and H are maximal subgroups of G such that $(|M|,|H|)=1$. Without loss of generality, we can assume that $|H|$ is odd. Now with respect to the classification of finite simple groups, consider simple groups case by case.

Let G be sporadic. Then one of Statements (5)-(8) of Proposition 2 holds.
Assume that $G \cong M_{23}$. Maximal subgroups of G are known, see [4]. Thus, G contains a maximal subgroup $H \cong 23: 11$, and M is a maximal subgroup of G such that $(|M|,|H|)=1$ if and only if $M \in\left\{P S L_{3}(4): 2_{2}, 2^{4}: A_{7}, A_{8}, 2^{4}:\left(3 \times A_{5}\right): 2\right\}$.

Assume that $G \cong T h$. Maximal subgroups of G are known, see [8]. G contains a maximal subgroup $H \cong 31: 15$ but if M is a maximal subgroup of G which is not G-conjugate to H, then $|M|$ is divisible by 3 or 5 , therefore G does not contain a pair of maximal subgroup of coprime orders.

Let $G \cong F_{2}$ be the Baby Monster group. Maximal subgroups of G are known [10], their orders are presented also in [8]. By [8, 10], G contains a maximal subgroup $H \cong 47: 23$, and M is a maximal subgroup of G such that $(|M|,|H|)=1$ if and only if M is one of the following subgroups of $G: 2 \cdot\left({ }^{2} E_{6}(2)\right): 2,2^{9+16} \cdot P S p_{8}(2)$, $T h,\left(2^{2} \times F_{4}(2)\right): 2,2^{2+10+20} .\left(M_{22}: 2 \times S_{3}\right), 2^{5+5+10+10} . P S L_{5}(2), S_{3} \times F i_{22}: 2$, $\left[2^{35}\right] .\left(S_{5} \times P S L_{3}(2)\right), H N: 2, P \Omega_{8}^{+}(3): S_{4}, 3^{1+8}: 2^{1+6} P S U_{4}(2) .2,5: 4 \times H S: 2$, $\left(3^{2}: D_{8} \times P S U_{4}(3) .2^{2}\right) .2, S_{4} \times{ }^{2} F_{4}(2), 3^{2+3+6} .\left(S_{4} \times 2 S_{4}\right), S_{5} \times M_{22}: 2,5^{3 \cdot} P S L_{3}(5)$, $\left(S_{6} \times P S L_{3}(4): 2\right) .2,5^{1+4}: 2^{1+4} . A_{5} .4,\left(S_{6} \times S_{6}\right) .4,5^{2}: 4 S_{4} \times S_{5}, P S L_{2}(49) \cdot 2, M_{11}$, $P S L_{2}(31), P S L_{3}(3), P S L_{2}(17): 2, P S L_{2}(11): 2$.

Let $G \cong F_{1}$ be the Monster group and $H_{1} \cong 59: 29$ be a subgroup of G. Then H_{1} is a $\{29,59\}$-Hall subgroup of G, and by [5, Theorem A], the $\{29,59\}$ Hall subgroups form a unique conjugacy class in G. Note that by [8], G contains a maximal subgroup $H \cong P S L_{2}(59)$, and H contains a parabolic maximal subgroup which is a $\{29,59\}$-Hall subgroup of G. Thus, H_{1} is not maximal in G and G does not contain a maximal subgroup of the form $59: 29$. Let $H_{2} \cong 71: 35$ be a subgroup of G. By [9], H_{2} is the normalizer in G of a Sylow 71-subgroup of G, therefore the subgroups of the form 71:35 form a unique conjugacy class in G. Now by [8], G contains a maximal subgroup $K \cong P S L_{2}(71)$, and K contains a parabolic maximal subgroup of the form $71: 35$. Thus, H_{2} is not maximal in G and G does not contain a maximal subgroup of the form $71: 35$.

Statement (i) of Theorem 1 holds.
Let G be a simple alternating group. Then Statement (1) of Proposition 2 holds. Assume that G acts naturally on the set $\Omega=\{1, \ldots, p\}$. Let M be a maximal subgroup of G such that p does not divide $|M|$. Then M is intransitive on Ω, and therefore M is the stabilizer in G of a partition $\Omega=\Omega_{1} \cup \Omega_{2}$ of Ω into disjoint subsets Ω_{1} and Ω_{2}. Now since p is prime, $p \equiv 3(\bmod 4)$, and $p \notin\{7,11,23\}$, we have that $p \geq 19$, and it is clear that $|M|$ is not coprime to $\frac{p-1}{2}$. Therefore G does not contain a pair of maximal subgroup of coprime orders. Thus, Statement (ii) of Theorem 1 holds for alternating groups.

If G is an exceptional group of Lie type, then by Proposition 2, G does not contain a maximal subgroup of odd order. Thus, Statement (ii) of Theorem 1 holds for exceptional groups of Lie type.

Let G be a finite simple classical group. Then one of Statements (2)-(4) of Proposition 2 holds.

Let Statement (2) of Proposition 2 hold, i.e. $G=P S L_{2}(q)$ for $3<q \equiv 3$ $(\bmod 4)$. Maximal subgroups of G are known (see, for example, [3, Tables 8.1, 8.2, 8.7]). Note that the group $G=P S L_{2}(q)$ contains a parabolic maximal subgroup H of the form $E_{q} \cdot \frac{q-1}{2}$, and $|H|$ is odd if and only if $q \equiv 3(\bmod 4)$. We consider possibilities for M case by case.

If $M \cong D_{2(q-1)}$, then it is clear that $(|M|,|H|) \neq 1$.
Let $M \cong D_{2(q+1)}$. Then $(|H|,|M|)=1$ if and only if $q \equiv 3(\bmod 4)$ and M is maximal in G if and only if $q \notin\{7,9\}$. Thus, Statement (iii)(1) of Theorem 1 holds.

Let $M \cong S_{4}$. Note that M is maximal in G if and only if q is prime and $q \equiv \pm 1$ $(\bmod 8)$, in particular, q is not a power of 3 . Then $(|M|,|H|)=1$ if and only if $q \equiv 3(\bmod 4)$ and $q \equiv 2(\bmod 3)$, i.e. $q \equiv 11(\bmod 12)$. Therefore M is a maximal subgroup of G such that $(|M|,|H|)=1$ if and only if q is a prime and $q \equiv 23(\bmod 24)$. Thus, Statement (iii)(2) of Theorem 1 holds.

Let $M \cong A_{4}$. Note that M is maximal in G if and only if either $q=5$ or q is prime and $q \equiv \pm 3, \pm 13(\bmod 40)$. Then again $(|M|,|H|)=1$ if and only if $q \equiv 11$ $(\bmod 12)$. Therefore M is a maximal subgroup of G such that $(|M|,|H|)=1$ if and only if q is a prime and $q \equiv 83,107(\bmod 120)$. Thus, Statement (iii)(3) of Theorem 1 holds.

If $M \cong P S L_{2}\left(q_{0}\right) \cdot 2$, where $q=q_{0}^{2}$, or $M \cong P S L_{2}\left(q_{0}\right)$, where $q=q_{0}^{r}$ and r is an odd prime, then it is clear that $(|M|,|H|) \neq 1$.

Let $M \cong A_{5}$. Note that $G=P S L_{2}(q)$ contains a maximal subgroup isomorphic to A_{5} if and only if either q is prime and $q \equiv \pm 1(\bmod 10)$ or $q=p^{2}$, where p is prime and $p \equiv \pm 3(\bmod 10)$. It is easy to see that $(|M|,|H|)=1$ if and only if $q \equiv 11(\bmod 12)$ and $q \equiv 2,3,4(\bmod 5)$. Note that if $q=p^{2}$, where $p \equiv \pm 3$ $(\bmod 10)$, then $q \equiv 9,49(\bmod 60)$, therefore this case does not appear. So, M is a maximal subgroup of G such that $(|M|,|H|)=1$ if and only if q is prime and $q \equiv 59(\bmod 60)$. Thus, Statement $(i i i)(4)$ of Theorem 1 holds.

Let Statement (3) of Proposition 2 hold, i. e. $G \cong P S L_{n}(q), H \cong\left(\frac{q^{n}-1}{(q-1)(n, q-1)}\right) \cdot n$, n is an odd prime, and $G \not \not P P S L_{3}(4)$. Note that by [3, Table 8.3], the group $P S L_{3}(4)$ does not contain a maximal subgroup of odd order. Thus, we can assume that $G \not \not P P S L_{3}(4)$, and by [3, Tables $8.3,8.18,8.35,8.70$] and [6, Table 3.5.A, Proposition 4.3.6], G has a maximal subgroup $H \cong\left(\frac{q^{n}-1}{(q-1)(n, q-1)}\right)$.n such that $|H|$ is odd. By the Aschbacher theorem, for each maximal subgroup M of G, if M does not belong to the union of Aschbacher classes $\mathfrak{C}_{i}(G)$ for $i \in\{1, \ldots, 8\}$, then M is almost simple and we write $M \in \mathfrak{S}(G)$ in this case. If $n \leq 11$, then all maximal subgroups of G are known, see [3, Tables $8.3,8.4,8.18,8.19,8.35,8.36,8.70$ 8.71], and if $n \geq 13$, then maximal subgroups of G from the union of Aschbacher classes of G are known, see [6, Table 3.5.A]. So, we consider possibilities for M case by case.

Since n is odd and prime, by Tables $8.3,8.4,8.18,8.19,8.35,8.36,8.70$, and 8.71 of [3] and [6, Table 3.5.A, Propositions 4.1.17, 4.2.9, 4.5.3, 4.6.5, 4.8.4, 4.8.5], if M is a maximal subgroup of G which is not isomorphic to H, then one of the following statements holds:
$\left(\mathfrak{C}_{1}\right) M$ is the stabilizer in G of a subspace of dimension m of the natural projective module of G, where $1 \leq m \leq n-1$;
$\left(\mathfrak{C}_{2}\right) M \cong\left[\frac{(q-1)^{n-1}}{(q-1, n)}\right]: S_{n}$ is the stabilizer in G of a decomposition of the natural projective module of G into a direct sum of subspaces of dimension 1;
$\left(\mathfrak{C}_{5}\right) M \cong \frac{c}{(q-1, n)} P G L_{n}\left(q_{0}\right)$ if $q=q_{0}^{r}$ for odd prime r, where $c=\frac{(q-1)}{\left[q_{0}-1, \frac{q-1}{(q-1, n)}\right]}$;
$\left(\mathfrak{C}_{6}\right) M \cong\left[n^{3}\right] . S p_{2}(n)$ if some special conditions for n and q hold and $3^{2} . Q_{8}$ if $n=3$ and some special conditions for q hold;
$\left(\mathfrak{C}_{8}\right) M \cong \operatorname{PSO}_{n}(q)$ or $M \cong P S U_{n}\left(q_{0}\right) \cdot\left[\frac{\left(q_{0}+1, n\right) c}{(q-1, n)}\right]$ for $c=\frac{(q-1)}{\left[q_{0}+1, \frac{q-1}{(q-1, n)}\right]}$ if $q=q_{0}^{2}$;
(S) M is almost simple.

Note that by [3, Tables $8.3,8.18,8.35,8.70$] and [6, Proposition 4.1.17], for each $1 \leq m \leq n-1$, the stabilizer M in G of a subspace of dimension m of the natural projective module of G is a maximal subgroup of G. Moreover, by [6, Proposition 4.1.17],

$$
|M|=\frac{q^{n(n-1)} \cdot(q-1)}{(q-1, n)} \cdot \prod_{i=2}^{m}\left(q^{i}-1\right) \cdot \prod_{i=2}^{n-m}\left(q^{i}-1\right)
$$

By Lemma 1, is clear that $(|M|,|H|)=1$ if and only if n does not divide $|M|$. Note that by Fermat's little theorem, if q is not a power of n, then n divides $q^{n-1}-1$. So, n does not divide $|M|$ if and only if q is not a power of $n, 2 \leq m \leq n-2$, and $\operatorname{ord}_{n}(q)=n-1$. Thus, Statement $(i i i)(5)$ of Theorem 1 holds.

If $M \cong\left[\frac{(q-1)^{n-1}}{(q-1, n)}\right]: S_{n}$, then it is clear that n divides $|M|$, therefore $|M|$ and $|H|$ are not coprime.

If $M \cong \frac{c}{(q-1, n)} P G L_{n}\left(q_{0}\right)$ for $q=q_{0}^{r}$ with r odd prime and $c=\frac{(q-1)}{\left[q_{0}-1, \frac{q-1}{(q-1, n)}\right]}$ or $M \cong P S U_{n}\left(q_{0}\right) \cdot\left[\frac{\left(q_{0}+1, n\right) c}{(q-1, n)}\right]$ for $q=q_{0}^{2}$ and $c=\frac{(q-1)}{\left[q_{0}+1, \frac{q-1}{(q-1, n)}\right]}$, then $q_{0}^{n-1}-1$ divides $|M|$, and by Fermat's little theorem, if q is not a power of n, then n divides $q_{0}^{n-1}-1$. Thus, in any case n divides $|M|$, therefore $|M|$ and $|H|$ are not coprime.

If $M \cong\left[n^{3}\right] . S p_{2}(n)$, then it is clear that n divides $|M|$, therefore $|M|$ and $|H|$ are not coprime.

If $M \cong P S O_{n}(q)$, then $q^{n-1}-1$ divides $|M|$, again using Fermat's little theorem, we conclude that n divides $|M|$. Thus, $|M|$ and $|H|$ are not coprime.

Almost simple subgroups of low-dimensional finite simple linear groups are known, see [3, Tables $8.4,8.19,8.36,8.71]$. Following [3], here we provide the preimage \tilde{M} in $\tilde{G}=S L_{n}(q)$ if in some cases G has a maximal almost simple subgroup isomorphic to M.
"Almost simple" maximal subgroups of $S L_{n}(q)$ for $n \in\{3,5,7,11\}$

n	Group \bar{G}	Subgroups \dot{M}
3	$S L_{3}(q)$	$(q-1,3) \times P S L_{2}(7), 3 \cdot A_{6}$
5	$S L_{5}(q)$	$(q-1,5) \times P S L_{2}(11), M_{11},(q-1,5) \times P S U_{4}(2)$
7	$S L_{7}(q)$	$(q-1,7) \times P S U_{3}(3)$
11	$S L_{11}(q)$	$P S L_{2}(23), M_{24},(q-1,11) \times P S L_{2}(23),(q-1,11) \times P S U_{5}(2)$

Now it is clear that if $G=P S L_{n}(q)$ for $n \leq 11$ and M is a maximal almost simple subgroup from $\mathfrak{S}(G)$, then n divides $|M|$, therefore $|M|$ and $|H|$ are not coprime. Thus, Statement $(i i i)(9)$ of Theorem 1 holds for simple linear groups.

Let Statement (4) of Proposition 2 hold, i. e. $G \cong P S U_{n}(q), H \cong\left(\frac{q^{n}+1}{(q+1)(n, q+1)}\right) \cdot n$, n is an odd prime, and $G \not \approx P S U_{3}(3), P S U_{3}(5), P S U_{5}(2)$. Note that by [3, Tables 8.5, 8.20] groups $P S U_{3}(3), P S U_{3}(5)$, and $P S U_{5}(2)$ do not contain maximal subgroups of odd order. Thus, we can assume that $G \not \approx P S U_{3}(3), P S U_{3}(5)$, $P S U_{5}(2)$, and by [3, Tables 8.5, 8.20, 8.37, 8.72] and [6, Table 3.5.B, Proposition 4.3.6], G has a maximal subgroup $H \cong\left(\frac{q^{n}+1}{(q+1)(n, q+1)}\right) \cdot n$ such that $|H|$ is odd. By the Aschbacher theorem, for each maximal subgroup M of G, if M does not belong to the union of Aschbacher classes $\mathfrak{C}_{i}(G)$ for $i \in\{1, \ldots, 8\}$, then M is almost simple and we again write $M \in \mathfrak{S}(G)$ in this case. If $n \leq 11$, then all maximal subgroups
of G are known, see [3, Tables $8.5,8.6,8.20,8.21,8.37,8.38,8.72,8.73$], and if $n \geq 13$, then maximal subgroups of G from the union of Aschbacher classes of G are known, see [6, Table 3.5.B]. So, we consider possibilities for M case by case.

Since n is odd and prime, by Tables $8.5,8.6,8.20,8.21,8.37,8.38,8.72,8.73$ of [3] and [6, Table 3.5.B, Propositions 4.1.4, 4.1.18, 4.2.9, 4.5.3, 4.5.5, 4.6.5], if M is a maximal subgroup of G which is not isomorphic to H, then one of the following statements holds:
$\left(\mathfrak{C}_{1}\right) M$ is the stabilizer in G of a subspace of dimension m, where $1 \leq m \leq \frac{n-1}{2}$, of the natural projective module of G, and either the subspace is totally singular or the subspace is non-degenerate;
$\left(\mathfrak{C}_{2}\right) M \cong\left[\frac{(q+1)^{n-1}}{(q+1, n)}\right]: S_{n}$ is the stabilizer in G of a decomposition of the natural projective module of G into a direct sum of pairwise orthogonal non-degenerate subspaces of dimension 1 ;
$\left(\mathfrak{C}_{5}\right) M \cong \frac{c}{(q+1, n)} P G U_{n}\left(q_{0}\right)$ if $q=q_{0}^{r}$ for odd prime r, where $c=\frac{(q+1)}{\left[q_{0}+1, \frac{q+1}{(q+1, n)}\right]}$, or $M \cong P S O_{n}(q)$;
$\left(\mathfrak{C}_{6}\right) M \cong\left[n^{3}\right] . S p_{2}(n)$ if some special conditions for n and q hold or $3^{2} . Q_{8}$ if $n=3$ and some special conditions for q hold;
(S) M is almost simple.

Note that by [3, Tables 8.5, 8.20, 8.37, 8.72] and [6, Proposition 4.1.4], for each $1 \leq m \leq \frac{n-1}{2}$, the stabilizer M in G of a non-degenerate subspace of dimension m of the natural projective module of G is a maximal subgroup of G. Moreover, by [6, Proposition 4.1.4],

$$
|M|=\frac{q^{\frac{m^{2}+(n-m)^{2}-n}{2}} \cdot(q+1)}{(q+1, n)} \cdot \prod_{i=2}^{m}\left(q^{i}-(-1)^{i}\right) \cdot \prod_{i=2}^{n-m}\left(q^{i}-(-1)^{i}\right)
$$

By Lemma 1, is clear that $(|M|,|H|)=1$ if and only if n does not divide $|M|$. Note that by Fermat's little theorem, if q is not a power of n, then n divides $q^{n-1}-1$, therefore $\operatorname{ord}_{n}(q)$ divides $n-1$ and if n does not divide $|M|$, then $m \geq 2$. Let $n-1=k \cdot \operatorname{ord}_{n}(q)$. If $k \geq 3$ is odd, then n divides $q^{\frac{n-1}{k}}-1$ and $q^{\frac{n-1}{k}}-1$ divides $|M|$ since $\frac{n-1}{k}<\frac{n-1}{2}$ and $\frac{n-1}{k}$ is even. If $k \geq 4$ is even, then n divides $q^{\frac{2 \cdot(n-1)}{k}}-1$ and $q^{\frac{2 \cdot(n-1)}{k}}-1$ divides $|M|$ since $\frac{2(n-1)}{k} \leq \frac{n-1}{2}$ and $\frac{2(n-1)}{k}$ is even. Thus, if n does not divide $|M|$, then $k \in\{1,2\}$.

Assume that $n \equiv 1(\bmod 4)$, therefore $\frac{n-1}{2}$ is even and $q^{\frac{n-1}{2}}-1$ divides $|M|$. Thus, in this case if $k=2$, then n divides $|M|$. Suppose that $k=1$ and n divides $|M|$. Then n divides $q^{i}+1$ for some odd $i \leq n-2$. Therefore $n-1=\operatorname{ord}_{n}(q)$ divides $2 i \leq 2 n-4$. Thus, $2 i=n-1$ and i is even, a contradiction.

Assume that $n \equiv 3(\bmod 4)$, therefore $\frac{n-1}{2}$ is odd and $q^{\frac{n-1}{2}}+1$ divides $|M|$. Thus, in this case if $k=1$, then n divides $|M|$. Suppose that $k=2$ and n divides $|M|$. Then since $\frac{n-1}{2}$ is odd, we have $q^{\frac{n-1}{2}}-1$ does not divide $|M|$, therefore n divides $q^{i}+1$ for some odd $i \leq n-2$. Thus, $\frac{n-1}{2}=\operatorname{ord} d_{n}(q)$ divides $2 i \leq 2 n-4$. We have $2 i=n-1$ and $i=\frac{n-1}{2}$, a contradiction. Thus, Statement (iii)(6) of Theorem 1 holds.

Note that by [3, Tables $8.5,8.20,8.37,8.72$] and [6, Proposition 4.1.18], for each $1 \leq m \leq \frac{n-1}{2}$, the stabilizer M in G of a totally singular subspace of dimension m of the natural projective module of G is a maximal subgroup of G. Moreover, by
[6, Proposition 4.1.18],

$$
|M|=\frac{q^{\frac{n(n-1)}{2}} \cdot\left(q^{2}-1\right)}{(q+1, n)} \cdot \prod_{i=2}^{m}\left(q^{2 i}-1\right) \cdot \prod_{i=2}^{n-2 m}\left(q^{i}-(-1)^{i}\right)
$$

By Lemma 1, is clear that $(|M|,|H|)=1$ if and only if n does not divide $|M|$. Note that by Fermat's little theorem, if q is not a power of n, then n divides $q^{n-1}-1$, therefore $\operatorname{ord}_{n}(q)$ divides $n-1$.

Let $n=3$. Then $m=1,|M|=\frac{q^{3} \cdot\left(q^{2}-1\right)}{(q+1,3)}$, and 3 does not divide $|M|$ if and only if $(q+1)_{3}=3$. Thus, Statement $(i i i)(7)$ of Theorem 1 holds.

Let $n \geq 5$. Assume that $m>\frac{n}{3}$. Then the number $\prod_{i=2}^{n-2 m}\left(q^{i}-(-1)^{i}\right)$ divides the number $\prod_{i=2}^{m}\left(q^{2 i}-1\right)$, therefore n does not divide $|M|$ if and only if $\operatorname{ord}_{n}\left(q^{2}\right)>$ $m>\frac{n}{3}$. It is clear that $\operatorname{ord}_{n}\left(q^{2}\right)$ divides $\frac{n-1}{2}$, therefore n does not divide $|M|$ if and only if $\operatorname{ord}_{n}\left(q^{2}\right)=\frac{n-1}{2}$ which is equivalent to $\operatorname{ord}_{n}(q)=n-1$.

Assume that $m<\frac{n}{4}$. Then the number $\prod_{i=2}^{m}\left(q^{2 i}-1\right)$ divides the number $\prod_{i=2}^{n-2 m}\left(q^{i}-(-1)^{i}\right)$. Thus, as in the proof of Statement (iii)(6), we obtain that n does not divide $|M|$ if and only if either $n \equiv 1(\bmod 4)$ and $\operatorname{ord}_{n}(q)=n-1$ or $n \equiv 3(\bmod 4)$ and $\operatorname{ord}_{n}(q)=\frac{n-1}{2}$.

Finally, assume that $\frac{n}{4}<m<\frac{n}{3}$. Let $n-1=k \cdot \operatorname{ord}_{n}(q)$. If $k \geq 3$ and $\frac{n-1}{k}$ is even, then n divides $q^{\frac{n-1}{k}}-1$ and $q^{\frac{n-1}{k}}-1$ divides $\prod_{i=2}^{m}\left(q^{2 i}-1\right)$ since $\frac{n-1}{k}<\frac{n-1}{2}<2 \cdot \frac{n}{4}$. If $k \geq 4$ and $\frac{n-1}{k}$ is odd, then n divides $q^{\frac{n-1}{k}}-1$ and $q^{\frac{n-1}{k}}-1$ divides $\prod_{i=2}^{m}\left(q^{2 i}-1\right)$ since $2 \cdot \frac{n-1}{k} \leq 2 \cdot \frac{n-1}{4}<2 \cdot \frac{n}{4}$. Thus, $k \in\{1,2\}$.

Assume that $n \equiv 1(\bmod 4)$, therefore $\frac{n-1}{2}$ is even. Since $\frac{n}{4}<m$, we have $q^{\frac{n-1}{2}}-1$ divides $|M|$. Thus, in this case if $k=2$, then n divides $|M|$. Suppose that $k=1$ and n divides $|M|$. Then n divides $q^{i}-1$ for some $i \leq \frac{2 n}{3}$ or n divides $q^{i}+1$ for some odd $i \leq n-2$. Note that in the latter case $n-1=\operatorname{ord}_{n}(q)$ divides $2 i \leq 2 n-4$, therefore $2 i=n-1$ and i is even. In both cases we have a contradiction.

Assume that $n \equiv 3(\bmod 4)$, therefore $\frac{n-1}{2}$ is odd. Suppose that $k=2$ and n divides $|M|$. Then since $\frac{n-1}{2}$ is odd, we have $q^{\frac{n-1}{2}}-1$ does not divide $|M|$, therefore n divides $q^{i}-1$ for some even $i \leq \frac{2 n}{3}$ or n divides $q^{i}+1$ for some odd $i \leq n-2$. In the latter case, $\frac{n-1}{2}=\operatorname{ord}_{n}(q)$ divides $2 i \leq 2 n-4$. Thus, $2 i=n-1$ and $i=\frac{n-1}{2}$, a contradiction. Assume that $k=1$. If $m=\frac{n+1}{4}$, then n divides $q^{\frac{n-1}{2}}+1$ and $q^{\frac{n-1}{2}}+1$ divides $|M|$. Let $m>\frac{n+1}{4}$. Suppose that n divides $|M|$. Then n divides $q^{2 i}-1$ for some $i<\frac{n}{3}$ or n divides $q^{i}-1$ for some even $i<\frac{n-1}{2}$ or n divides $q^{i}+1$ for some odd $i<\frac{n-1}{2}$. In the latter case, n divides $q^{2 i}-1$ and $2 i<n-1$. In all cases we have contradictions. Thus, Statement (iii)(8) of Theorem 1 holds.

If $M \cong\left[\frac{(q+1)^{n-1}}{(q+1, n)}\right]: S_{n}$, then it is clear that n divides $|M|$, therefore $|M|$ and $|H|$ are not coprime.

If $M \cong \frac{c}{(q+1, n)} P G U_{n}\left(q_{0}\right)$ for $q=q_{0}^{r}$ with r odd prime and $c=\frac{(q+1)}{\left[q_{0}+1, \frac{q+1}{(q+1, n)}\right]}$, then $q_{0}^{n-1}-1$ divides $|M|$, and by Fermat's little theorem, if q is not a power of n, then n divides $q_{0}^{n-1}-1$. Thus, in any case n divides $|M|$, therefore $|M|$ and $|H|$ are not coprime.

Similarly, if $M \cong P S O_{n}(q)$, then $q^{n-1}-1$ divides $|M|$, again using Fermat's little theorem, we conclude that n divides $|M|$. Thus, $|M|$ and $|H|$ are not coprime.

If $M \cong\left[n^{3}\right] . S p_{2}(n)$, then it is clear that n divides $|M|$, therefore $|M|$ and $|H|$ are not coprime.

Almost simple subgroups of low-dimensional finite simple unitary groups are known, see [3, Tables 8.6, 8.21, 8.38, 8.73]. Following [3], here we provide the preimage \tilde{M} in $\tilde{G}=S U_{n}(q)$ if in some cases G has a maximal almost simple subgroup isomorphic to M.
"Almost simple" maximal subgroups of $S U_{n}(q)$ for $n \in\{3,5,7,11\}$

n	Group \tilde{G}	Subgroups \tilde{M}
3	$S U_{3}(q)$	$(q+1,3) \times P S L_{2}(7), 3 \cdot A_{6}, 3 \cdot A_{6} 2_{3}, 3 \cdot A_{7}$
5	$S U_{5}(q)$	$(q+1,5) \times P S L_{2}(11),(q+1,5) \times P S U_{4}(2)$
7	$S U_{7}(q)$	$(q+1,7) \times P S U_{3}(3)$
11	$S U_{11}(q)$	$(q+1,11) \times P S L_{2}(23),(q+1,11) \times P S U_{5}(2)$

Now it is clear that if $G=P S U_{n}(q)$ for $n \leq 11$ and M is a maximal almost simple subgroup from $\mathfrak{S}(G)$, then n divides $|M|$, therefore $|M|$ and $|H|$ are not coprime. Thus, Statement (iii)(9) of Theorem 1 holds for simple unitary groups.

Note that H is always a subgroup from the union of Aschbacher classes of G, and all the possibilities when M is a subgroup from the union of Aschbacher classes of G are listed in Statements $(i i i)(1)-(i i i)(8)$ of Theorem 1.

3. Acknowledgment

The author is thankful to Prof. Viktor S. Monakhov who has drawn the author's attention to the problem considered in this short note, to Dr. Alexey M. Staroletov, Dr. Nikolai A. Minigulov and to anonymous reviewers for their helpful comments which improved this text.

The author dedicates this work to the memory of Prof. Vyacheslav Aleksandrovich Belonogov who passed away on December 21, 2021. Prof. Belonogov was alert and actively worked up to the last his hours, and the author has had a chance to discuss the results of this work with him.

References

[1] M. Aschbacher, On the maximal subgroups of the finite classical groups, Invent. Math., 76:3 (1984), 469-514. Zbl 0537.20023
[2] V.A. Belonogov, On maximal subgroups. II, Izv. Vyssh. Uchebn. Zaved. Mat., 5 (1962), 3-11. Zbl 0135.05205
[3] J.N. Bray, D.F. Holt, C.M. Roney-Dougal, The maximal subgroups of the low-dimensional finite classical groups, London Math. Soc. Lect. Note Ser., 407, Cambridge University Press, Cambridge, 2013. Zbl 1303.20053
[4] J.H. Conway, et al., Atlas of finite groups, Clarendon Press, Oxford, 1985. Zbl Zbl 0568.20001
[5] F. Gross, Conjugacy of odd order Hall subgroups, Bull. Lond. Math. Soc., 19:4 (1987), 311-319. Zbl 0616.20007
[6] P.B. Kleidman, M. Liebeck, The subgroup structure of the finite classical groups, Cambridge University Press, Cambridge etc., 1990. Zbl 0697.20004
[7] M. Liebeck, J. Saxl, On point stabilizers in primitive permutation groups, Commun. Algebra, 19:10 (1991), 2777-2786. Zbl 0731.20003
[8] R.A. Wilson et. al., Atlas of finite group representations.
[9] R.A. Wilson, The odd-local subgroups of the Monster, J. Aust. Math. Soc., Ser. A, 44:1 (1988), 1-16. Zbl 0636.20014
[10] R.A. Wilson, The maximal subgroups of the Baby Monster, I, J. Algebra, 211 (1999), 1-14. Zbl 0916.20010

Natalia Vladimirovna Maslova
Krasovskii Institute of Mathematics and Mechanics UB RAS,
S. Kovalevskaya Str., 16,

620108, Yekaterinburs, Russia
Ural Federal University,
Turgeneva Str., 4,
620075 , Yekaterinburs, Russia
Email address: butterson@mail.ru

[^0]: Maslova, N.V., Finite simple groups with two maximal subgroups of coprime orders.
 (C) 2022 Maslova N.V..

 The reported study was funded by RFBR and BRFBR, project number 20-51-00007.
 Received April, 23, 2022, published December, 12, 2023.

