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Abstract: The class of multivalued mappings with bounded angular
distortion (BAD) property in metric spaces can be considered as
a multivalued analogãó for quasim�obius mappings. We study the
connections between quasimeromorphic self-mappings of X = R̄n

and multivalued mappings F : X → 2X with BAD property. The
main result of the paper concerns the multivalued mappings F :
D → 2C̄ with BAD property of a domainD ⊂ C̄. If the image F (x)
of each point x ∈ D is either a point or a continuum with bounded
turning then F is proved to be a single-valued quasim�obius mapping.
The crucial point in the proof of this result is the local connectedness
of the set F (X) for the multivalued continuous mapping F : X →
2Y with BAD property. We obtain su�cient conditions providing
F (X) to have local connectedness or bounded turning property in
the most general case.
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1 Introduction

The de�nition of quasisymmetric and quasim�obius mappings was given
by P. Tukia and J. V�ais�al�a [1], [2], [3] in order to extend the notion of
quasiconformality to the case of arbitrary (and in particular, discrete) metric
spaces. The quasim�obius property was de�ned as the existence of some
estimate for the distortion of absolute cross-ratio of a quadruple of points
(i.e. tetrad) under the mapping. It is also equivalent to the existence of two-
sided bounds for the distortion of Ptolemaic characteristics of tetrads (see [4],
proposition 3.4). Moreover, it was shown in [5] under some assumptions on
metric spaces that the lower estimate alone (for the distortion of Ptolemaic
characteristic) is su�cient for the quasim�obius property of the mapping (see
[5], theorem 6.2).

A multivalued mapping is called hyperinjective if the images of distinct
points do not intersect each other. Thus, the multivalued hyperinjective
mapping F : X → 2Y transforms each tetrad from X into a quadruple of
pairwise disjoint sets in Y (so-called generalized angle, or generalized tetrad).
The value of generalized angle was introduced in [4] (see de�nition 4.1) as a
counterpart for the Ptolemaic characteristic of tetrads. Then the condition
of lower boundedness of the distortion of this characteristic distinguishes the
class BAD (Bounded Angular Distortion) of multivalued mappings in metric
spaces which may be considered as a multivalued analogue for quasim�obius
mappings. Some topological and metric properties of such mappings were
investigated in [5], [6], [7] and [8]. In one special case, the metric spaces
X and Y being unit circles in C̄, the multivalued quasim�obius mappings
F : X → 2Y with BAD property have been thoroughly studied in [9]. Namely,
it was proved that the left inverse to F mapping f = F−1 : F (X) → X is of
the form f(z) = [φ(z)]N where φ is a quasim�obius homeomorphism of unit
circle onto itself.

The purpose of our further research is to study the connection between
quasimeromorphic self-mappings of X = R̄n and multivalued mappings
F : X → 2X with BAD property. The main result presented below as

Theorem 4.1. of section 4 concerns the multivalued mappings F : D → 2C̄

with BAD property of a domain D ⊂ C̄. If the image F (x) of each point
x ∈ D is either a point or a continuum with bounded turning then F is
proved to be a single-valued quasim�obius mapping. The crucial point in
the proof of this result is the local connectedness of the set F (X) for the
multivalued continuous mapping F : X → 2Y with BAD property. The
su�cient conditions providing F (X) to have local connectedness or bounded
turning property in the most general case are obtained in Theorem 3.1. of
section 3 which will be also useful in our further studies.
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2 De�nitions and notations

De�nition (see [1], De�nition 2.7, p.100 or [10], �1, p. 559). A metric space
(X, ρ) has bounded turning property c-BT with a constant c ≥ 1 if any two
points x′ and x′′ of X can be joined by a continuum τ ⊂ X such that
diamρ(τ) ≤ c · ρ(x′, x′′).

In this de�nition, the spaceX is supposed to be connected. In more general
case, we use the following

2.1. De�nition. A metric space (X, ρ) has bounded turning property (c, δ)-
BT with constants c ≥ 1 and δ > 0 if any two points x′, x′′ ∈ X with
the distance ρ(x′, x′′) < δ can be joined by a continuum τ ⊂ X such that
diamρ(τ) ≤ c · ρ(x′, x′′).

If δ ≥ diamρ(X), then the property (c, δ)-BT is equivalent to c-BT and
provides the connectedness of X. If X is a continuum of bounded diameter
diamρ(X) = D < ∞, then the property (c, δ)-BT implies c′-BT with the
constant c′ = max{c,D/δ}.

De�nition (see [11], �49.I). A topological space X is locally connected if for
every point x ∈ X and it's open neighbourhood U there exists a connected
neighbourhood V of x such that V ⊂ U .

2.2. Lemma. A metric space with bounded turning (c, δ)-BT is locally connected.

See paragraph 5.1. for the proof.

De�nitions. Throughout this paper 2Y denotes the set of all nonempty
subsets of Y . The multivalued mapping F : X → 2Y is said to be hyperinjective
if x1 ̸= x2 implies F (x1) ∩ F (x2) = ∅. The images F (x) ⊂ Y of points
x ∈ X will be called thick points. In metric spaces (X, ρ) and (Y, σ) the
multivalued mapping F : X → 2Y with closed thick points is said to be
continuous if the convergence xn → x in X implies the existence of the
topological limit of the sequence {F (xn)} of closed sets in Y and the equality
Limn→∞F (xn) = F (x0). For more detailed de�nition see paragraph 5.2.

2.3. Proposition. Let X,Y be topological spaces and F : X → 2Y be a
multivalued hyperinjective continuous mapping.

(i) If a set K ⊂ X is compact and each of thick points F (x) for x ∈ K
is compact then the set F (K) := ∪{F (x) : x ∈ K} is compact as well.
Moreover, since Y is a Hausdor� space, the left inverse to F mapping f =
F−1 : F (K) → K is continuous.

(ii) If γ ⊂ X is a connected set and F (x0) is connected for some point
x0 ∈ γ, then F (γ) is connected as well. In particular, if γ ⊂ X is a continuum
and all thick points F (x) for x ∈ γ are continua, then F (γ) is a continuum
in Y .

The proof of Proposition 2.3. will be given in paragraph 5.3.
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De�nition (see [12], section 32.1). A metric (or semimetric) space (X, ρ) is
said to be Ptolemaic if the Ptolemy's inequality

ρ(x1, x2) · ρ(x3, x4) + ρ(x1, x4) · ρ(x2, x3) ≥ ρ(x1, x3) · ρ(x2, x4)
holds for every four of distinct points x1, x2, x3, x4 ∈ X.

In particular, the space R̄n with chordal metric and the space Rn with
Euclidean or chordal metric both are Ptolemaic spaces. Any subspace of a
Ptolemaic space remains to be Ptolemaic.

De�nition (see [4], de�nition 4.1). A generalized angle in a metric (or
semimetric) space (Y, σ) is a quadruple of non-empty pairvise disjoint sets
Ψ = (A1, A2;B1, B2), and it's value α(Ψ) is de�ned as

α(Ψ) := inf
u1∈A1;u2∈A2

(
sup

v1∈B1;v2∈B2

σ(u1, u2) · σ(v1, v2)
σ(u1, v1) · σ(u2, v2) + σ(u1, v2) · σ(u2, v1)

)
.

It is clear, that α(Ψ) ≤ 1 for every generalized angle Ψ in Ptolemaic metric
space.

2.4. De�nition (see [6], section 4.1). Let (X, ρ) and (Y, σ) be Ptolemaic
metric (or semimetric) spaces. Let a real non-decreasing function ω : [0, 1] →
[0, 1] be positive on (0, 1], and ω(0) = 0 = limt↘0 ω(t). Then a multivalued

hyperinjective mapping F : X → 2Y is said to have ω-BAD property
(Bounded Angular Distortion) with control function ω if the estimate α(F (Ψ)) ≥
ω(α(Ψ)) is valid for every generalized angle Ψ = (A1, A2;B1, B2) in X and
it's image F (Ψ) = (F (A1), F (A2);F (B1), F (B2)) in Y .

For every control function ω in ω-BAD property the real function ω(−1) :
[0, 1] → [0, 1] is de�ned by formula ω(−1)(s) := sup{t ∈ [0, 1] : ω(t) ≤ s}. In
general, the function ω(−1) is not inverse to ω in the strict sense, but it has
all the properties of control function, and ω(−1)(ω(t)) ≥ t for all t ∈ [0, 1].

It was shown in [6] (section 4.2) that it is su�cient to check the inequality
α(F (Ψ)) ≥ ω(α(Ψ)) in ω-BAD property only for generalized angles Ψ of the
form Ψ = ({a1}, {a2}; {b1}, {b2}). In this case, the value

α(Ψ) = α(a1, a2; b1, b2) =
ρ(a1, a2) · ρ(b1, b2)

ρ(a1, b1) · ρ(a2, b2) + ρ(a1, b2) · ρ(a2, b1)
is called the Ptolemaic characteristic of tetrad (a1, a2; b1, b2).

2.5. De�nition. Let (X, ρ) and (Y, σ) be metric spaces, and F : X → 2Y

be a multivalued hyperinjective mapping. A pair of positive numbers (δ,∆)
is called the normalizer of F if there exists a set {a1, a2, a3} of points in X
such that ρ(ai, aj) ≥ δ and distσ(F (ai), F (aj)) ≥ ∆ for all i, j ∈ {1, 2, 3}
with i ̸= j.

It should be noted that a multivalued hyperinjective mapping F : X →
2Y with compact thick points has many normalizers. It su�ces to take an
arbitrary triple of distinct points (a1, a2, a3) inX and put δ := min{ρ(ai, aj) :
i ̸= j} and ∆ := min{distσ(F (ai), F (aj)) : i ̸= j}.
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3 Local connectedness and bounded turning

In this section, we prove the following theorem.

3.1. Theorem. Let (X, ρ) and (Y, σ) be Ptolemaic metric spaces and a
multivalued hyperinjective continuous mapping F : X → 2Y has ω-BAD
property. If all thick points F (x) with x ∈ X are compact sets with bounded
turning property (C0, δ0)-BT, then the following statements hold.

(i) If X is compact and locally connected, then F (X) is also compact and
locally connected.

(ii) If X has a �nite diameter diamρ(X) = d < ∞, normalizer (δ,∆),
and bounded turning property (C, δ′)-BT, then F (X) has bounded turning
property (C∗, δ∗)-BT. Here, the constants C∗ and δ∗ depend only on the
normalizer (δ,∆), constants (C0, δ0), (C, δ

′) in BT properties, the diameter
d of X, and the control function ω in BAD property.

The proof of the theorem is divided into several consecutive steps.

3.2. Proposition. Under the assumptions in Theorem 3.1., if the mapping
F has a normalizer (δ,∆), then for every x0 ∈ X and y0 ∈ F (x0), there
exists a point a ∈ X such that

ρ(x0, a) > δ/2 , distσ(y0, F (a)) ≥ ∆/2 . (3.2.1)

Proof. Let A = {a1, a2, a3} be the triple of points in X which realizes the
normalizer (δ,∆). Then there is a pair of distinct points {ai, aj} ⊂ A such
that ρ(x0, ai) > δ/2 and ρ(x0, aj) > δ/2. Indeed, if ρ(x0, a

′) > δ/2 for all
a′ ∈ A, then we can take an arbitrary pair of distinct points in A as {ai, aj}.
If ρ(x0, a

′) ≤ δ/2, then ρ(a′′, x0) ≥ ρ(a′′, a′) − ρ(a′, x0) > δ − δ/2 = δ/2 for
every a′′ ∈ A \ {a′}. Then {ai, aj} = A \ {a′} is the required pair of points.

Next, there exists a pair of distinct points {ak, as} such that

min{distσ(y0, F (ak)) ≥ ∆/2 , distσ(y0, F (as))} ≥ ∆/2 .

Indeed, if distσ(y0, F (a′)) ≥ ∆/2 for all a′ ∈ A, then we can take an arbitrary
pair of distinct points in A as the pair {ak, as}. If distσ(y0, F (a′)) < ∆/2 for
a point a′ ∈ A, then there exists a point y′ ∈ F (a′) such that σ(y0, y

′) < ∆/2.
Therefore for any point a′′ ∈ A and every z ∈ F (a′′), the inequality σ(y0, z) ≥
σ(z, y′)− σ(y0, y

′) > ∆−∆/2 = ∆/2 holds. Thus {ak, as} = A \ {a′} is the
required pair of points.

Since {i, j} ∩ {k, s} ̸= ∅, there exists a point a ∈ {ai, aj} ∩ {ak, as} for
which (3.2.1) is valid.

Proposition 3.2. is proved.

3.3. Proposition. Let (X, ρ) be a metric space with a pair of distinct points
x0 and a. If C ≥ 1 and points x1, x in X are such that

ρ(x0, x
′) ≤ C · ρ(x0, x1) < ρ(x0, a)/2 , (3.3.1)

then the generalized angle Ψ = (x0, x1;x
′, a) has the value α(Ψ) > (3+4C)−1.
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Proof. Since ρ(x0, x
′) ≤ Cρ(x0, x1) and ρ(x1, x

′) ≤ (1 + C)ρ(x0, x1), then

α(Ψ) =
ρ(x0, x1)ρ(x

′, a)

ρ(x0, x′)ρ(x1, a) + ρ(x0, a)ρ(x1, x′)
≥ ρ(x′, a)

Cρ(x1, a) + (1 + C)ρ(x0, a)
.

Then in the numerator, we use the inequalities ρ(x′, a) ≥ ρ(x0, a)−ρ(x0, x
′) >

ρ(x0, a)/2, and in the denominator, we note that ρ(x1, a) ≤ ρ(x0, a) +
ρ(x0, x1) < (1 + 1/(2C))ρ(x0, a). Continuing the inequality, we have

α(Ψ) >
1/2

(12C)/2 + (1 + C)
=

1

3 + 4C
.

The Proposition 3.3. is proved.

3.4. Proposition. Under the assumptions in Theorem 3.1., let the mapping
F have the normalizer (δ,∆). Let C ≥ 1 and the points y0 ∈ F (x0) and
y1 ∈ F (x1) be such that x0 ̸= x1 and

ρ(x0, x1) ≤ δ/(4C) , σ(y0, y1) ≤ (∆/4)ωC , (3.4.1)

where ωC := ω(1/(3 + 4C)). Then for every point x′ ∈ X the condition
ρ(x0, x

′) ≤ C · ρ(x0, x1) implies that

F (x′) ∩B(y0, σ(y0, y1) · 2/ωC) ̸= ∅ . (3.4.2)

Proof. By Proposition 3.2., the estimates (3.2.1) are valid for some point
a ∈ X. Let x′ ∈ X\{x0, x1, a} be such that ρ(x0, x

′) ≤ C ·ρ(x0, x1). Estimate
(3.3.1) in Proposition 3.3. follows from inequalities (3.2.1) and (3.4.1), indeed
ρ(x0, x

′) ≤ C · ρ(x0, x1) ≤ δ/4 < ρ(x0, a)/2. Thus we have the estimate
α(Ψ) > (3 + 4C)−1 for the value of the generalized angle Ψ = (x0, x1;x

′, a).
For the value of the generalized angle F (Ψ) = (F (x0, F (x1);F (x′), F (a)),
we have the following inequalities

α(F (Ψ)) ≤ sup
v′∈F (x′); v∈F (a)

σ(y0, y1) · σ(v′, v)
σ(y0, v′) · σ(y1, v) + σ(y0, v) · σ(y1, v′)

.

Since σ(y0, v
′) ≥ distσ(y0, F (x′)) and σ(y0, v) ≥ distσ(y0, F (a)) ≥ ∆/2) then

we have

α(F (Ψ)) ≤

σ(y0, y1)

min{∆/2, distσ(y0, F (x′))}

(
sup

v′∈F (x′); v∈F (a)

σ(v′, v)

σ(v′, y0) + σ(v, y0)

)
≤

σ(y0, y1)

min{∆/2, distσ(y0, F (x′)}
.

From the ω-BAD property and the estimate α(Ψ) > (3 + 4C)−1 we get
the inequality

σ(y0, y1)

min{∆/2, distσ(y0, F (x′))}
≥ α(F (Ψ)) ≥ ω((3 + 4C)−1) = ωC .

Hence, min{∆/2, distσ(y0, F (x′))} ≤ σ(y0, y1)/ωC .
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Since ∆/2 > ∆/4 ≥ σ(y0, y1)/ωC by (3.4.1), then

distσ(y0, F (x′)) ≤ σ(y0, y1)/ωC .

This means that the thick point F (x′) intersects the open ball B(y0, R) with
radius R = σ(y0, y1) · 2/ωC .

If x′ = x0, then (3.4.2) is obvious. If x′ = x1, then y1 ∈ B(y0, σ(y0, y1) ·
2/ωC), and (3.4.2) is true. Under the condition ρ(x0, x

′) ≤ C · ρ(x0, x1),
the point x′ cannot coincide with a since ρ(x0, a) > δ/2 = C · δ/(4C) ≥
C · ρ(x0, x1).

Thus (3.4.2) holds for every point x′ such that ρ(x0, x
′) ≤ C · ρ(x0, x1).

Proposition 3.4. is proved.

3.5. Proposition. Let the mapping F : X → 2Y satisfy the conditions in
Theorem 3.1. Let y0 ∈ F (x0) and ε ∈ (0, δ0/2) be given. Then for every
thick point F (x′) the set F (x′) ∩ B(y0, ε) (it may be empty) is contained in
a component of the set F (x′) ∩B(y0, (1 + 2C0)ε).

Proof. Clearly, it su�ces to consider the case of non-empty set F (x′) ∩
B(y0, ε). Let y

′, y′′ ∈ F (x′)∩B(y0, ε). Because of bounded turning property
(C0, δ0)-BT and the inequality σ(y′, y′′) ≤ σ(y′, y0) + σ(y′′, y0) < δ0, there
exists a continuum τ ⊂ F (x′) such that y′, y′′ ∈ τ and diamσ(τ) ≤ C0 ·
σ(y′, y′′) < 2C0ε. Since σ(y0, y

′) + diamσ(τ) < ε + 2C0ε, τ ⊂ B(y0.(1 +
2C0)ε). It means that y′ and y′′ enter into the same component U of the set
F (x′) ∩ B(y0, ε). Since y′, y′′ have been arbitrarily chosen points in F (x′) ∩
B(y0, ε), the desired result F (x′) ∩B(y0, ε) ⊂ U follows.

Proposition 3.5 is proved.

3.6. Proposition. Let the mapping F : X → 2Y satisfy the conditions in
Theorem 3.1. and have the normalizer (δ,∆). Let C ≥ 1 and the points
y0 ∈ F (x0), y1 ∈ F (x1) be such that

0 < ρ(x0, x1) ≤ δ/(4C) ; r = σ(y0, y1) ≤ min{∆/4, δ0/8} · ωC . (3.6.1)

Let the connected set γ ⊂ X be such that x0, x1 ∈ γ ⊂ B(x0, C · ρ(x0, x1)).
Then the set

F (γ) ∩B(y0, 2r(1 + 2C0)/ωC)

has a component W such that y0, y1 ∈ W and

F (γ) ∩B(y0, 2r/ωC) ⊂ W.

Proof. Let U be the family of all those components of the set F (γ)∩B(y0, 2r(1+
2C0)/ωC), that intersect the ball B(y0, 2r/ωC). Then ρ(x0, x1) ≤ δ/(4C),
σ(y0, y1) ≤ (∆/4)ωC by (3.6.1) and ρ(x0, x

′) < C · ρ(x0, x1) for all x′ ∈ γ.
Hence, the set F (x′) ∩ B(y0, 2r/ωC) is not empty (by Proposition 3.4.). It
means that for every point x′ ∈ γ there exists an element U(x′) in the family
U .

Since ε := 2r/ωC < (δ0/4) · 2/ωC = δ0/2, by Proposition 3.5. the set
F (x′)∩B(y0, 2r/ωC) is contained in a component of the set F (x′)∩B(y0, 2r(1+
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2C0)/ωC). It follows that the element U(x′) corresponding to the point x′ ∈ γ
contains non-empty set F (x′) ∩B(y0, 2r/ωC).

Let us show that the set W := ∪{U : U ∈ U} has required properties.
It is contained in the ball B(y0, 2r(1 + 2C0)/ωC) (because every element of
U is contained in that ball) and contains the set F (γ) ∩ B(y0, 2r/ωC). In
particular, y0, y1 ∈ W . Therefore, we have to prove that W is connected and
then U = {W}.

Suppose W to be non-connected. Then there exist open sets S1, S2 ⊂ Y
such that W ⊂ S1 ∪ S2, S1 ∩ S2 = ∅ and W ∩ S1 ̸= ∅ ̸= W ∩ S2. Replacing
Sj (j = 1, 2) by open sets Sj ∩ B(y0, 2r(1 + 2C0)/ωC) we may assume that
S1 ∪ S2 ⊂ B(y0, 2r(1 + 2C0)/ωC). Since every U ∈ U is a connected set,
for every U ∈ U either U ⊂ S1 or U ⊂ S2 holds. The restriction F |γ is a
lower semicontinuous mapping, so the sets Vj = {x ∈ γ : F (x) ∩ Uj ̸= ∅}
(j = 1, 2) are open in γ. For every point x ∈ γ the set F (x) ∩ B(y0, 2r/ωC)
is non-empty and is contained in an element U(x) ∈ U which is contained
either in S1 or in S2. It means that for every one point x ∈ γ we have either
x ∈ V1 or x ∈ V2 but not both x ∈ V1 and x ∈ V2. Thus V1 ̸= ∅ ≠ V2,
γ = V1 ∪ V2 and V1 ∩ V2 = ∅ for open sets V1, V2, and this contradicts the
connectedness of γ.

Proposition 3.6. is proved.

3.7. Proposition. Let the mapping F : X → 2Y satisfy the conditions in
Theorem 3.1. and have the normalizer (δ,∆). Let d = diamρ(X) < ∞. Then
for each pair of points x′, x′′ in X the following inequality holds

distσ(F (x′), F (x′′)) ≥ ∆ · ω
(

δ2

4d2

)
· ω
(
ρ(x′, x′′)

δ

4d2

)
. (3.7.1)

Furthermore, ρ(f(y′), f(y′′)) ≤ ζ(σ(y′, y′′)) for all y′, y′′ ∈ F (X), where

ζ(t) :=
4d2

δ
· ω(−1)

(
t

∆ · ω(δ2/(4d2))

)
. (3.7.2)

Proof. Let the normalizer (δ,∆) be realized by 3-point set A = {a0, a1, a2}.
For a point x ∈ X \A let us consider the generalized angle Ψ = (x, aj ; ai, ak)
where {j, i, k} = {0, 1, 2}. From ρ(ai, ak) ≥ δ and ρ( . , . ) ≤ d it follows that

α(Ψ) =
ρ(x, aj)ρ(ai, ak)

ρ(x, ai)ρ(aj , ak) + ρ(x, ak)ρ(aj , ai)
≥ δ

2d2
ρ(x, aj) . (3.7.3)

The value of generalized angle F (Ψ) = (F (x), Aj ;Ai, Ak) (here Aj := F (aj),
Ai := F (ai), Ak := F (ak)) is

α(F (Ψ)) = inf
u1∈F (x); u2∈Aj

(
sup

v1∈Ai; v2∈Ak

σ(u1, u2)σ(v1, v2)

σ(u1, v1)σ(u2, v2) + σ(u1, v2)σ(u2, v1)

)
.
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For an arbitrary pair of points u01 ∈ F (x), u02 ∈ Aj it follows from estimates
σ(u02, v2) ≥ ∆ and σ(u02, v1) ≥ ∆ that

α(F (Ψ)) ≤ σ(u01, u
0
2)

∆
sup

v1∈Ai; v2∈Ak

σ(v1, v2)

σ(v1, u01) + σ(u01, v2)
≤ σ(u01, u

0
2)

∆
.

It means that α(F (Ψ)) ≤ distσ(F (x), Aj)/∆. Then ω-BAD property and
(3.7.3) give us the inequality

distσ(F (x), Aj) ≥ ∆ · ω
(
ρ(x, aj)

δ

2d2

)
(3.7.4)

which holds for every point x ∈ X \ A and every j ∈ {0, 1, 2}. If i ̸= j we
have distσ(Ai, Aj) ≥ ∆ ≥ ∆ · ω(ρ(ai, aj))δ/(2d2) and if x ∈ Ai where i = j
the inequality (3.7.4) turns to the equality 0 = 0. Thus (3.7.4) is true for
every x ∈ X and for each j ∈ 0, 1, 2.

For an arbitrary point x′ ∈ X there exists a pair of points {b1, b2} such
that ρ(x′, b1) ≥ δ′ and ρ(x′, b2) ≥ δ′ where δ′ = δ/2. Then for B1 = F (b1)
and B2 = F (b2) the estimate (3.7.4) gives us the inequality

distσ(F (x′), Bj) ≥ ∆ · ω
(
ρ(x′, bj)

δ

2d2

)
≥ ∆ · ω

(
δ2

4d2

)
where j ∈ {1, 2}. The set B = {x′, b1, b2} de�nes for the mapping F the
normalizer (δ′,∆′) with ∆′ := ∆ · ω(δ2/(4d2)) ≤ ∆. The estimate (3.7.4)
being applied to an arbitrary point x′′ ∈ X and the normalizer (δ′,∆′) gives
us the desired inequality (3.7.1):

distσ(F (x′′), F (x′)) ≥ ∆′·ω
(
ρ(x′′, x′)

δ′

2d2

)
= ∆·ω

(
δ2

4d2

)
·ω
(
ρ(x′, x′′)

δ

4d2

)
.

Now, for every pair of points y′, y′′ ∈ F (X) and the corresponding points
f(y′), f(y′′) ∈ X we get the inequality

σ(y′, y′′)

∆ · ω(δ2/(4d2))
≥ ω

(
ρ(f(y′), f(y′′))

δ

4d2

)
.

The increasing function ω(−1) with ω(−1)(ω(p)) ≥ p (see section 2.4.) being
applied to both sides of this inequality gives the desired estimate

ρ(f(y′), f(y′′)) ≤ 4d2

δ
· ω(−1)

(
σ(y′, y′′)

∆ · ω(δ2/(4d2))

)
= ζ(σ(y′, y′′)) .

Proposition 3.7 is proved.

3.8. Proof of Theorem 3.1(i). We may assume without loss of generality
that Y = F (X). The compact metric spaceX has a �nite diameter diamρ(X) =
d < ∞. Let (δ,∆) be a normalizer for F and the function ζ(t) be de�ned by
(3.7.2).

Let y0 be an arbitrary point in F (X) and y0 ∈ F (x0) for x0 ∈ X. We are
to show that every open ball B(y0, R) contains a connected neighbourhood
of the point y0. Let C := 2 and ω0 := ΩC = ω(1/11).
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Since the set {t > 0 : ζ(t) < δ/(4C)} is not empty and ζ(t) → 0 as t → 0,
there exists t0 > 0 such that ζ(t) < δ/(4C) for all t ≤ t0. Let

R0 := min

{
R · ω0

2(1 + C0)
;
∆

4
ω0 ;

δ0
8
ω0 ; t0

}
.

The mapping F being lower semicontinuous, the set V0 := {x ∈ X : F (x) ∩
B(y0, R0) ̸= ∅} is an open neighbourhood of the point x0. The space X is
locally connected, so there exists a connected open neighbourhood V ′

0 ⊂ V0

of the point x0. Consider a point x1 ∈ V ′
0 such that V ′

0 ⊂ B(x0, Cρ(x0, x1)).
Since x1 ∈ V0, the set F (x1) ∩ B(y0, R0) is not empty, so there exists a
point y1 in this set. Then Proposition 3.7. gives the inequalities ρ(x0, x1) ≤
ζ(σ(y0, y1)) ≤ ζ(R0) ≤ ζ(t0) < δ/(4C).

Thus the points x1 and y1 ∈ F (x1) satisfy the conditions (3.6.1) in
Proposition 3.6.:

ρ(x0, x1) < δ/(4C) ; σ(y0, y1) < R0 ≤ min

{
∆

4
,
δ0
8

}
ω0 .

The connected set γ = V ′
0 contains the points x0, x1 and is contained in

the open ball B(x0, C · ρ(x0, x1)). Then by Proposition 3.6. the nonempty
set F (V ′

0) ∩ B(y0, σ(y0, y1) · 2(1 + 2C0)/ω0) has a component W such that
y0, y1 ∈ W and W0 ⊂ W where W0 := F (V ′

0)∩B(y0, σ(y0, y1)·2/ω0). Besides
W ⊂ B(y0, σ(y0, y1) · 2(1 + 2C0)/ω0) ⊂ B(y0, R0).

The set V ′
0 is open, the set X \ V ′

0 is compact, all thick points of the
mapping F are compact. Then by Proposition 2.3(i) the set F (X) \ V ′

0 is
compact. Hence the set F (V ′

0) = F (X) \ F (X \ V ′
0) is open. Then W0 is

open and the connected set W is a neighbourhood of the point y0 which is
contained in the given open neighbourhood B(y0, R) of the point y0.

It means that F (X) is locally connected at every point y0 ∈ F (X).
The proposition (i) in Theorem 3.1. is proved.

3.9. Proof of Theorem 3.1(ii). For the given normalizer (δ,∆) and the
constant d = diamρ(X) let the function ζ(t) be de�ned by (3.7.2). Since
ζ(t) ↘ 0 as t → 0, there exists t0 > 0 such that ζ(t) < min{δ′, δ/(4C)} for
all t ≤ t0. Let ωC := ω(1/(3 + 4C)) and δ∗ := min{(∆/4)ωC , (δ0/8)ωC , t0}.

Let points y0 ∈ F (x0) and y1 ∈ F (x1) be such that σ(y0, y1) ≤ δ∗.
It follows from δ∗ ≤ t0 that ρ(x0, x1) ≤ ζ(δ∗) ≤ ζ(t0) ≤ δ′. The bounded

turning property (C, δ′)-BT of the spaceX gives the existence of a continuum
γ ⊂ X such that x0, x1 ∈ γ and diamρ(γ) ≤ C · ρ(x0, x1). It means that γ ⊂
B̄(x0, C·ρ(x0, x1)). Since ρ(x0, x1) < δ/(4C) and σ(y0, y1) ≤ min{∆/4, δ0/8}·
ωC , we may apply Proposition 3.6. to γ and obtain a connected setW ⊂ F (γ)
such that y0, y1 ∈ W andW ⊂ B̄(y0, σ(y0, y1)·2(1+2C0)/ωC)). The set F (γ)
being compact (by Proposition 2.3.), the set W̄ ⊂ F (γ) is a continuum such
that y0, y1 ∈ W̄ and diamσ(W̄ ) ≤ σ(y0, y1) ·C∗ where C∗ := 4(1+2C0)/ωC .

Due to the arbitrary choice of points y0, y1 ∈ F (X) with σ(y0, y1) ≤ δ∗

the set F (X) has bounded turning property (C∗, δ∗)-BT.
Theorem 3.1. is proved.
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4 Main result

In this section the following result will be posed.

4.1. Theorem. Let D be a domain in the extended complex plane C̄ and

F : D → 2C̄ be a hyperinjective mapping with ω-BAD property. If all thick
points of F are continua with bonded turning property (C, δ)-BT, then F is a
single-valued η-quasim�obius mapping with the distortion function η depending
only on the control function ω.

The proof of the theorem is divided into several consecutive steps.
Recall that a point p in a connected space X is called separating point if

the set X \ {p} is not connected (see [11], �46.VIII).

4.2. Proposition. Let X,Y be metric spaces and F : X → 2Y be a hyperinjective
continuous mapping with all thick points being continua. If X has no separating
points then F (X) has no separating points as well.

The proof will be given in paragraph 5.4.

4.3. Proposition. Under the conditions in Theorem 4.1. let the mapping F
be continuous. If a circle γ ⊂ D bounds an open ball B0 ⊂ D, then F (γ) is
a Jordan curve of bounded turning BT.

Proof. By Proposition 2.3. F (γ) is a continuum. By Theorem 3.1(i) F (γ) is
locally connected, and by Proposition 4.2. it has no separating points.

The setB1 := D\B̄0 is a domain (see [13], Theorem 10-2). By Proposition 2.3.
the sets F (B0), F (B1) are connected and therefore each of them is contained
in a component of C̄ \ F (γ).

Let us assume that a point y0 ∈ F (γ) is not a limit point for F (Bj) where
j ∈ {0, 1}. Then y0 ∈ F (x0) for x0 ∈ γ and there exists an open ball U
centered at y0 such that U ∩ F (Bj) = ∅. Since F is continuous, it follows
that the set V := {x ∈ D : F (x) ∩ U ̸= ∅} is an open neighbourhood of
x0. Hence there exists a point x1 ∈ V ∩ Bj such that F (x1) ∩ U ̸= ∅ and
F (x1) ∩ F (Bj) ̸= ∅. It contradicts to U ∩ F (Bj) = ∅.

Thus every point y0 ∈ F (γ) is a limit point both for F (B0) and for F (B1).
Recall (see [11], �52.IV) that θ-curve is a join τ1 ∪ τ2 ∪ τ3 of three Jordan

arcs with common ends a, b such that τi ∩ τj = {a, b} for all i, j ∈ {1, 2, 3},
i ̸= j. Let us show that F (γ) contains no θ-curves.

If a θ-curve τ = τ1 ∪ τ2 ∪ τ3 contains in F (γ), then it divides C̄ into three
non-intersecting domains G12, G13, G23 with boundaries ∂Gij = τi ∪ τj (see
[11], �61.II, Theorem 2). Then for some indices j, k ∈ {i, j, k} = {1, 2, 3}
the set F (B0) ∪ F (B1) intersects with Gjk. Since every point of the arc τi
is a limit point for each of connected sets F (B0) and F (B1), we obtain the
inclusion F (B0)∪ F (B1) ⊂ Gij ∪Gik. But Gij ∪Gik does not intersect Gjk,
and it contradicts to F (B0)∪F (B1)∩Gjk ̸= ∅. Thus there is no θ-curves in
F (γ).

It is known (see [11], �52.IV, Theorem 1), that if a non-degenerate locally
connected continuum in C̄ has no separating points and does not contain θ
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curves, then it is a Jordan curve. It means that F (γ) is a Jordan curve, and
it has bounded turning BT by Theorem 3.1(ii).

Proposition 4.3. is proved.

4.4. Proposition. If under the assumptions in Theorem 4.1. the mapping
F (γ) is continuous, then F (x) is a singleton for every x ∈ D.

Proof. For an arbitrary given point x0 ∈ D there exists an open disk B ⊂ D
with the boundary ∂B = γ ⊂ D. According to Proposition 4.3. the set
F (γ) ⊂ C̄ is a Jordan curve. Then there exists a homeomorphism g : C̄ → C̄
such that g(F (γ)) = γ (see, e.g., [11], �61.V, Corollary 2). The multivalued
mapping G = g ◦ F : γ → 2γ is continuous and all its thick points are
compact. According to Lemma 5.5. there exists an integer N > 0 such that
#G(z) = N for each of thick points G(z) with z ∈ γ. Since every thick point
G(z) is a continuum, N = 1. It means that all thick points G(z) and hence
all thick points F (y), y ∈ γ, are singletons. In particular, #F (x0) = 1. Thus

the mapping F : D → 2C̄ is actually a single-valued mapping F : D → C̄
since y0 was an arbitrary point in D.

Proposition 4.4. is proved.

4.5. Proof of Theorem 4.1. There is no assumption on F to be continuous

in Theorem 4.1. However, the mapping F 0 : D → 2C̄ in Lemma 5.6. is
continuous and possesses ω-BAD property with the same control function
ω. Since the topological limit of continua with bounded turning (C, δ)-BT
is either a single point or a continuum with bounded turning (C, δ)-BT, the
mapping F 0 satis�es the conditions in Proposition 4.4. Thus F 0 is a single-
valued mapping F 0 : D → C̄ with ω-BAD property. Then the mapping F 0

is η-quasim�obius mapping where the control function η depends only on ω
(see [5], Theorem 6.2). In particular, F 0 is K-quasiconformal mapping whith
the coe�cient of quasiconformality K depending only on ω.

For every point z0 ∈ D the continuum F (z0) contains the point w0 =
F 0(z0). If there exists a point w ∈ F (z0)\{w0}, then w = F 0(z) where z ̸= z0.
This contradicts the hyperinjectivity of F . It means that F (z0) = {F 0(z0)}
and that F (z) ≡ F 0(z) at every point z ∈ D.

Hence F is a single-valued mapping and it is η-quasim�obius with η depending
only on ω.

The proof of Theorem 4.1. is complete.

5 Appendix

5.1. Proof for Lemma 2.2. For connected spaces it was noticed in [10], �2,
p.562. Let the metric space (X, ρ) has the bounded turning property (c, δ)-
BT and U ⊂ X be an open neighbourhood of an arbitrary given point p ∈ X.
Consider a closed ball B̄(p, r) with radius r < δ. Let U0 be the component of
U such that p ∈ U0. Because of (c, δ)-BT property every point x ∈ B(p, r/c)
may be connected to p by a continuum τ ⊂ B̄(p, r). Since U0 is the maximal
connected set in U that contains the point p, we have x ∈ τ ⊂ U0. Thus
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B(p, r/c) ⊂ U0, and p is the inner point in U0. It means that U0 ⊂ U is the
desired connected neibourhood of p.

5.2. (see [11], �17.III). In topological spacesX and Y , the miltivalued mapping
F : X → 2Y with closed thick points is called to be lower semicontinuous if
the set {x ∈ X : F (x)∩U ̸= ∅} is open for an arbitrary open set U ⊂ Y . This
mapping is said to be upper semicontinuous if the set {x ∈ X : F (x) ⊂ U}
is open for an arbitrary open set U ⊂ Y . The mapping F : X → 2Y is said
to be continuous if it is both upper and lower semicontinuous.

If Y is a compact metric space, then the exponential topology (i.e. Vietoris
topology) in 2Y (see [11], �17.I) coinsides with the metric topology de�ned
by the Hausdor� distance (see [11], �21.7 and �42.II) as well as with topology
generated in 2Y by the operation of topological limit Lim (see [11], �42.II,
note 1).

5.3. Proof for Proposition 2.3(i). Let an open covering U of the set F (K)
be given. Then for each point x0 ∈ K the thick point F (x0) being compact
has a �nite subcovering U(x0). The set U(x0) = ∪{U ∈ U(x0)} is an open
neibourhood of thick point F (x0). Then the upper semicontinuous property
of the mapping F implies the existence of an open neibourhood V (x0) of x0
such that F (V (x0)) ⊂ U(x0). Thus we obtain the open covering {V (x0) :
x0 ∈ K} of the compact K, and then there exists a �nite subcovering
{V (x1), ..., V (xk)} of K. Then {U(x1), ...,U(xk)} ⊂ U is a desired �nite
subcovering of F (K). Thus the compactness of F (K) is proved.

Let the space Y be Hausdor�, and let us consider the left inverse mapping
f : F (K) → K. An arbitrary given close subset E ⊂ K is compact (see [11],
�41.II, Theorem 2]). Then F (E) is compact in Y by above proof. Since every
compact set in a Hausdor� space is closed (see [11], �41.II, Theorem 1]),
then the set f−1(E) = F (E) is closed. It means (see [11], �13.IV) that the
mapping f is continuous.
Proof for Proposition 2.3(ii). The restriction F |γ remains to be hyperinjective
and continuous. Suppose on the contrary that F (γ) is not connected. Then
F (γ) = U1 ⊔U2 for nonempty open subsets U1, U2 ⊂ F (γ) with U1 ∩U2 = ∅.
Since F |γ is continuous, we get three pairvise non-intersecting open sets
V1 = {x ∈ γ : F (x) ⊂ U1}, V2 = {x ∈ γ : F (x) ⊂ U2}, and V12 = {x ∈ γ :
F (x)∩U1 ̸= ∅ ≠ F (x)∩U2}. Since the set γ is connected and γ = V1⊔V2⊔V12,
just only one of the sets V1, V2, V12 is not empty. There exists at least one
thick point F (x0) which is connected and therefore it cannot intersect both
U1 and U2. It means that F (x0) ⊂ Uj for some j ∈ {1, 2}. Clearly, we may
assume that F (x0) ⊂ U1. Then x0 ∈ V1 ̸= ∅ and V2 = V12 = ∅. Thus γ = V1

and F (γ)∩U2 = ∅. It means that U2 = ∅, and it contradicts our assumption.
It follows that F (γ) is a connected set.

5.4. Proof for Proposition 4.2. The set F (X) is compact (by Proposition 2.3.),
so we can assume that Y = F (X). Let us assume (on the contrary) that a
point y0 ∈ F (x0) is separating point in Y .
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The point x0 is not separating in X, so the set X \{x0} is connected. Then
(by Proposition 2.3.) the set F (X \ {x0}) = Y \F (x0) is also connected and
is contained in a component U0 of the set Y \ {y0}. Being a component the
set U0 is closed with respect to Y \ {y0} (see [11], �46.III, Theorem 1). Then
the set V0 := (Y \ {y0}) \U0 is open with respect to Y \ {y0} and non-empty
according to our assumption. Since Y \ {y0} is open in Y , then V0 is open
in Y as well. Besides, V0 = (Y \ {y0}) \ U0 ⊂ (Y \ {y0}) \ (Y \ F (x0)) =
F (x0) \ {y0}. Since the mapping F is lower semicontinuous, then the set
{x ∈ X : F (x) ∩ V0 ̸= ∅} = {x0} must be open in X. But the connected set
X does not have isolated points. This contradiction completes the proof of
Proposition 4.2.

5.5. Lemma (see [9], Lemma 1.3). Let X = Y = {z ∈ C̄ : |z| = 1} and
F : X → 2Y be a hyperinjective mapping from a circle X ⊂ C̄ into a circle
Y ⊂ C̄. If F is continuous and all thick points F (x) are compact, then there
exists an integer N > 0 and a homeomorphism φ : Y → Y such that the left
inverse mapping f : Y → X is f(y) = (φ(y))N .

5.6. Lemma (see [7], Theorems 3.2 and 3.5). Let X, Y be Ptolemaic M�obius
spaces. Assume that a hyperinjective mapping F : X → 2Y possesses the ω-
BAD property and all it's thick points F (x) are closed in Y. Then at every
limit point x0 ∈ X there exists a topological limit

L(x0) := Lim x→x0; x ̸=x0F (x) ⊂ F (x0).

Moreover, the mapping

F 0(x) :=

{
F (x), if x is an isolated point in X;

L(x), if x is a limit point

is continuous and possesses the ω-BAD property witn the same control function
ω.

References

[1] P. Tukia, J. V�ais�al�a, Quasisymmetric embeddings of metric spaces, Ann. Acad. Sci.
Fenn., Ser. A I Math., 5:1 (1980), 96�114. Zbl 0403.54005

[2] J.V�ais�al�a, Quasi-symmetric embeddings in Euclidean spaces, Trans. Am. Math. Soc.,
264:1 (1981), 191�204. Zbl 0456.30018

[3] J.V�ais�al�a, Quasim�obius maps, J. Anal. Math., 44 (1985), 218�234. Zbl 0593.30022
[4] V.V. Aseev, A.V. Sychev, A.V. Tetenov, M�obius-invariant metrics and generalized

angles in Ptolemaic spaces, Sib. Math. J., 46:2 (2005), 189�204. Zbl 1080.54019
[5] V.V. Aseev, Generalized angles in Ptolemaic M�obius structures. II, Sib. Math. J.,

59:5 (2018), 768�777. Zbl 1415.30018
[6] V.V. Aseev, Generalized angles in Ptolemaic M�obius structures, Sib. Math. J., 59:2

(2018), 189�201. Zbl 1395.30027
[7] V.V. Aseev, Multivalued mappings with quasim�obius property, Sib. Math. J., 60:5

(2019), 741�756. Zbl 1433.30067

[8] V.V. Aseev, On coordinate vector-functions of quasiregular mappings, Sib. �Electron.
Math. Izv., 15 (2018), 768�772. Zbl 1397.30022



MULTIVALUED QUASIM�OBIUS PROPERTY AND BOUNDED TURNING 1199

[9] V.V. Aseev, Multivalued quasim�obius mappings of circle to circle, Sib. Math. J., 62:1
(2021), 14�22. Zbl 1456.30040

[10] P. Tukia, Spaces and arcs of bounded turning, Mich. Math. J., 43:3 (1996), 559�584.
Zbl 0871.30018

[11] K. Kuratowski, Topology, Academic Press and Polish Scienti�c Publishers, New York,
London, and Warszawa, 1966. Zbl 0158.40802

[12] L.M. Blumenthal, Theory and applications of distance geometry, Clarendon Press,
Oxford, 1953. Zbl 0050.38502

[13] M.H.A. Newman, Elements of the topology of plane sets of points, Cambridge Univ.
Press, Cambridge, 1939. Zbl 0021.06704

Nikolay Abrosimov

Sobolev Institute of Mathematics,

pr. Koptyuga, 4,

630090, Novosibirsk, Russia

Email address: abrosimov@math.nsc.ru

Vladislav Aseev

Sobolev Institute of Mathematics,

pr. Koptyuga, 4,

630090, Novosibirsk, Russia

Email address: aseevvv@yandex.ru


	Introduction
	Definitions and notations
	Local connectedness and bounded turning
	Main result
	Appendix

