СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ
 Siberian Electronic Mathematical Reports
 http://semr.math.nsc.ru
 ISSN 1813-3304

ON REDUCTION FOR EIGENFUNCTIONS OF GRAPHS

A. VALYUZHENICH

Communicated by D.S. Krotov

Abstract

In this work, we prove a general version of the reduction lemmas for eigenfunctions of graphs admitting involutive automorphisms of a special type.

Keywords: eigenfunctions of graphs, involutive automorphism.

1 Introduction

Recently, for the eigenspaces of the Hamming and Johnson graphs, reduction lemmas were established (see [3, Lemma 1] and [6, Lemma 1]). In $[1,2,3,4,5,6,7,8]$, these lemmas were applied to study eigenfunctions and equitable 2-partitions of the Hamming and Johnson graphs. In this work, we generalize the reduction lemmas to graphs admitting involutive automorphisms of a special type. In particular, we prove that an analogue of the reduction lemmas holds for the halved n-cube.

The paper is organized as follows. In Section 2, we introduce basic definitions. In Section 3, we prove a general version of the reduction lemmas. Then, in Section 4, we apply this result to the Hamming graph, the Johnson graph, and the halved n-cube.

[^0]
2 Basic definitions

Let G be a graph. The vertex set of G is denoted by $V(G)$. Given a vertex x of G, denote by $N_{G}(x)$ the set of all neighbors of x in G. For a set $W \subseteq V(G)$, denote by $G[W]$ the subgraph of G induced by W. The automorphism group of G is denoted by $\operatorname{Aut}(G)$. An automorphism φ of G is called involutive if φ^{2} is the identity automorphism.

The eigenvalues of a graph are the eigenvalues of its adjacency matrix. Let G be a graph and let λ be an eigenvalue of G. A function $f: V(G) \longrightarrow \mathbb{R}$ is called a λ-eigenfunction of G if $f \not \equiv 0$ and the equality

$$
\begin{equation*}
\lambda \cdot f(x)=\sum_{y \in N_{G}(x)} f(y) \tag{1}
\end{equation*}
$$

holds for any vertex $x \in V(G)$. The set of functions $f: V(G) \longrightarrow \mathbb{R}$ satisfying (1) for any vertex $x \in V(G)$ is called a λ-eigenspace of G. Denote by $U_{\lambda}(G)$ the λ-eigenspace of G.

Let G be a graph. Let φ be an automorphism of G and let $\left\{V_{1}, V_{2}, V_{3}\right\}$ be a partition of $V(G)$. The pair $\left(\varphi,\left\{V_{1}, V_{2}, V_{3}\right\}\right)$ is called special if the following conditions hold:
(1) $\varphi\left(V_{1}\right)=V_{2}$ and $\varphi\left(V_{2}\right)=V_{1}$, i.e., φ swaps V_{1} and V_{2}.
(2) For any vertex $x \in V_{i}$, where $i \in\{1,2\}$, it holds $N_{G}(x) \cap V_{3-i}=$ $\{\varphi(x)\}$.
(3) $\varphi(x)=x$ for any vertex $x \in V_{3}$, i.e., φ stabilises V_{3} pointwise.

Remark 1. If $\left(\varphi,\left\{V_{1}, V_{2}, V_{3}\right\}\right)$ is a special pair of a graph G, then the following properties hold:

- The graphs $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ are isomorphic.
- The graph $G\left[V_{1} \cup V_{2}\right]$ is isomorphic to the Cartesian product of $G\left[V_{1}\right]$ and K_{2}.
- The automorphism φ is involutive.

Let G be a graph with a special pair $P=\left(\varphi,\left\{V_{1}, V_{2}, V_{3}\right\}\right)$. Let $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ be isomorphic to a graph G_{0}, and let $\varphi_{1}: V_{1} \longrightarrow V\left(G_{0}\right)$ and $\varphi_{2}: V_{2} \longrightarrow V\left(G_{0}\right)$ be the corresponding isomorphisms. Given a function $f: V(G) \longrightarrow \mathbb{R}$, we define a function $f_{P, \varphi_{1}, \varphi_{2}}$ on the vertices of G_{0} as follows:

$$
f_{P, \varphi_{1}, \varphi_{2}}(x)=f\left(\varphi_{1}^{-1}(x)\right)-f\left(\varphi_{2}^{-1}(x)\right) .
$$

Let $\left\{i_{1}, \ldots, i_{k}\right\}$ be a subset of $\{1,2, \ldots, n\}$, where $1 \leq k<n$. For a vector $x \in \mathbb{Z}_{q}^{n}$, denote by $\Delta_{i_{1}, \ldots, i_{k}}(x)$ the vector obtained from x by deleting coordinates with indices i_{1}, \ldots, i_{k}.

Let $i, j \in\{1,2, \ldots, n\}$ and $i<j$. For a vector $x \in \mathbb{Z}_{q}^{n}$, denote by $\pi_{i, j}(x)$ the vector obtained from x by interchanging the ith and jth coordinates.

The weight of a vector $x \in \mathbb{Z}_{q}^{n}$, denoted by $|x|$, is the number of its non-zero coordinates.

3 Reduction for eigenfunctions of graphs

In this section, we prove the main theorem of this paper.
Theorem 3.1. Suppose G is a graph with a special pair $P=\left(\varphi,\left\{V_{1}, V_{2}, V_{3}\right\}\right)$ Let $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ be isomorphic to a graph G_{0}, and let $\varphi_{1}: V_{1} \longrightarrow V\left(G_{0}\right)$ and $\varphi_{2}: V_{2} \longrightarrow V\left(G_{0}\right)$ be the corresponding isomorphisms. If f is a λ eigenfunction of G, then $f_{P, \varphi_{1}, \varphi_{2}} \in U_{\lambda+1}\left(G_{0}\right)$.
Proof. For every $i \in\{1,2,3\}$, denote $G_{i}=G\left[V_{i}\right]$. Define a function h on the vertices of G as follows:

$$
h(x)=f(x)-f(\varphi(x)) .
$$

Since f is a λ-eigenfunction of G and $\varphi \in \operatorname{Aut}(G)$, we have $h \in U_{\lambda}(G)$. The restriction of h to V_{1} is denoted by h_{1}.

Let us prove that $h_{1} \in U_{\lambda+1}\left(G_{1}\right)$. Consider a vertex $x \in V_{1}$. Since $h \in$ $U_{\lambda}(G)$, we have

$$
\lambda \cdot h(x)=\sum_{y \in N_{G}(x)} h(y) .
$$

Then

$$
\begin{aligned}
\lambda \cdot h(x)= & \sum_{y \in N_{G}(x) \cap V_{1}} h(y)+\sum_{y \in N_{G}(x) \cap V_{2}} h(y)+\sum_{y \in N_{G}(x) \cap V_{3}} h(y)= \\
& =\sum_{y \in N_{G_{1}}(x)} h(y)+h(\varphi(x))+\sum_{y \in N_{G}(x) \cap V_{3}} h(y) .
\end{aligned}
$$

Note that $h(\varphi(x))=f(\varphi(x))-f(x)=-h(x)$. Since φ stabilises V_{3} pointwise, we have $h(y)=0$ for any vertex $y \in V_{3}$. Hence we obtain that

$$
(\lambda+1) \cdot h(x)=\sum_{y \in N_{G_{1}}(x)} h(y) .
$$

Therefore, $h_{1} \in U_{\lambda+1}\left(G_{1}\right)$. Finally, note that $f_{P, \varphi_{1}, \varphi_{2}}=h_{1}\left(\varphi_{1}^{-1}\right)$. Since $h_{1} \in$ $U_{\lambda+1}\left(G_{1}\right)$ and φ_{1} is an isomorphism between G_{1} and G_{0}, we obtain that $f_{P, \varphi_{1}, \varphi_{2}} \in U_{\lambda+1}\left(G_{0}\right)$.

4 Examples

In this section, we discuss how to apply Theorem 3.1 to the Hamming graph, the Johnson graph, and the halved n-cube. In particular, we show that these graphs admit special pairs.
4.1. Hamming graph. The Hamming graph $H(n, q)$ is defined as follows. The vertex set of $H(n, q)$ is \mathbb{Z}_{q}^{n}, and two vertices are adjacent if they differ in exactly one coordinate.

Let $k, m \in \mathbb{Z}_{q}, k \neq m$, and $r \in\{1,2, \ldots, n\}$. Denote

$$
\begin{aligned}
V_{1} & =\left\{x \in \mathbb{Z}_{q}^{n}: x_{r}=k\right\}, \\
V_{2} & =\left\{x \in \mathbb{Z}_{q}^{n}: x_{r}=m\right\},
\end{aligned}
$$

and $V_{3}=\mathbb{Z}_{q}^{n} \backslash\left(V_{1} \cup V_{2}\right)$. Denote $X=\left\{V_{1}, V_{2}, V_{3}\right\}$.
Define a map $\varphi: \mathbb{Z}_{q}^{n} \longrightarrow \mathbb{Z}_{q}^{n}$ as follows:

$$
\varphi\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{r-1},(k m)\left(x_{r}\right), x_{r+1}, \ldots, x_{n}\right)
$$

(here $(k m)$ is the transposition of k and m). Note that (φ, X) is a special pair of $H(n, q)$.

Let $G_{0}=H(n-1, q)$. Define maps $\varphi_{1}: V_{1} \longrightarrow V\left(G_{0}\right)$ and $\varphi_{2}: V_{2} \longrightarrow$ $V\left(G_{0}\right)$ as follows:

$$
\varphi_{1}(x)=\Delta_{r}(x)
$$

and

$$
\varphi_{2}(y)=\Delta_{r}(y) .
$$

One can check that $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ are isomorphic to G_{0}, and φ_{1} and φ_{2} are the corresponding isomorphisms. Thus, $(\varphi, X), G_{0}, \varphi_{1}$ and φ_{2} satisfy the conditions of Theorem 3.1.
4.2. Johnson graph. The Johnson graph $J(n, k)$ is defined as follows. The vertex set of $J(n, k)$ is $\left\{x \in \mathbb{Z}_{2}^{n}:|x|=k\right\}$, and two vertices are adjacent if they differ in exactly two coordinates.

Let $i, j \in\{1,2, \ldots, n\}$ and $i<j$. Denote

$$
\begin{aligned}
& V_{1}=\left\{x \in \mathbb{Z}_{2}^{n}:|x|=k, x_{i}=1, x_{j}=0\right\}, \\
& V_{2}=\left\{x \in \mathbb{Z}_{2}^{n}:|x|=k, x_{i}=0, x_{j}=1\right\},
\end{aligned}
$$

and $V_{3}=V(J(n, k)) \backslash\left(V_{1} \cup V_{2}\right)$. Denote $X=\left\{V_{1}, V_{2}, V_{3}\right\}$.
Define a map $\varphi: V(J(n, k)) \longrightarrow V(J(n, k))$ as follows:

$$
\varphi(x)=\pi_{i, j}(x)
$$

Note that (φ, X) is a special pair of $J(n, k)$.
Let $G_{0}=J(n-2, k-1)$. Define maps $\varphi_{1}: V_{1} \longrightarrow V\left(G_{0}\right)$ and $\varphi_{2}: V_{2} \longrightarrow$ $V\left(G_{0}\right)$ as follows:

$$
\varphi_{1}(x)=\Delta_{i, j}(x)
$$

and

$$
\varphi_{2}(y)=\Delta_{i, j}(y) .
$$

One can check that $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ are isomorphic to G_{0}, and φ_{1} and φ_{2} are the corresponding isomorphisms. Thus, $(\varphi, X), G_{0}, \varphi_{1}$ and φ_{2} satisfy the conditions of Theorem 3.1.
4.3. Halved n-cube. The halved n-cube $\frac{1}{2} H(n)$ is defined as follows. The vertex set of $\frac{1}{2} H(n)$ is $\left\{x \in \mathbb{Z}_{2}^{n}:|x|\right.$ is even $\}$, and two vertices are adjacent if they differ in exactly two coordinates.

Let $i, j \in\{1,2, \ldots, n\}$ and $i<j$. Denote

$$
\begin{aligned}
& V_{1}=\left\{x \in \mathbb{Z}_{2}^{n}:|x| \text { is even, } x_{i}=1, x_{j}=0\right\}, \\
& V_{2}=\left\{x \in \mathbb{Z}_{2}^{n}:|x| \text { is even, } x_{i}=0, x_{j}=1\right\},
\end{aligned}
$$

and $V_{3}=V\left(\frac{1}{2} H(n)\right) \backslash\left(V_{1} \cup V_{2}\right)$. Denote $X=\left\{V_{1}, V_{2}, V_{3}\right\}$.

Define a $\operatorname{map} \varphi: V\left(\frac{1}{2} H(n)\right) \longrightarrow V\left(\frac{1}{2} H(n)\right)$ as follows:

$$
\varphi(x)=\pi_{i, j}(x)
$$

Note that (φ, X) is a special pair of $\frac{1}{2} H(n)$.
We define a graph G_{0} as follows. The vertex set of G_{0} is $\left\{x \in \mathbb{Z}_{2}^{n-2}\right.$: $|x|$ is odd $\}$, and two vertices are adjacent if they differ in exactly two coordinates. Note that G_{0} is isomorphic to $\frac{1}{2} H(n-2)$. Define maps $\varphi_{1}: V_{1} \longrightarrow$ $V\left(G_{0}\right)$ and $\varphi_{2}: V_{2} \longrightarrow V\left(G_{0}\right)$ as follows:

$$
\varphi_{1}(x)=\Delta_{i, j}(x)
$$

and

$$
\varphi_{2}(y)=\Delta_{i, j}(y) .
$$

One can check that $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ are isomorphic to G_{0}, and φ_{1} and φ_{2} are the corresponding isomorphisms. Thus, $(\varphi, X), G_{0}, \varphi_{1}$ and φ_{2} satisfy the conditions of Theorem 3.1.

5 Acknowledgements

The author is grateful to Sergey Goryainov and Ivan Mogilnykh for helpful discussions.

References

[1] R. J. Evans, A. L. Gavrilyuk, S. Goryainov, K. Vorob'ev, Equitable 2-partitions of the Johnson graphs $J(n, 3)$, arXiv:2206.15341, 2022.
[2] I. Mogilnykh, A. Valyuzhenich, Equitable 2-partitions of the Hamming graphs with the second eigenvalue, Discrete Math., 343:11 (2020), Article ID 112039. Zbl 1447.05174
[3] A. Valyuzhenich, Minimum supports of eigenfunctions of Hamming graphs, Discrete Math., 340:5 (2017), 1064-1068. Zbl 1357.05094
[4] A. Valyuzhenich, K. Vorob'ev, Minimum supports of functions on the Hamming graphs with spectral constraints, Discrete Math., 342:5 (2019), 1351-1360. Zbl 1407.05226
[5] A. Valyuzhenich, Eigenfunctions and minimum 1-perfect bitrades in the Hamming graph, Discrete Math., 344:3 (2021), Article ID 112228. Zbl 1456.05111
[6] K. Vorob'ev, I. Mogilnykh, A. Valyuzhenich, Minimum supports of eigenfunctions of Johnson graphs, Discrete Math., 341:8 (2018), 2151-2158. Zbl 1388.05119
[7] K. Vorob'ev, Equitable 2-partitions of Johnson graphs with the second eigenvalue, arXiv:2003.10956, March 2020.
[8] K. Vorob'ev, On reconstruction of eigenfunctions of Johnson graphs, Discrete Appl. Math., 276 (2020), 166-171. Zbl 1435.05137

Alexandr Valyuzhenich
Chelyabinsk State University,
Brat'ev Kashirinyh st., 129,
454021, Chelyabinsk, Russia
Email address: graphkiper@mail.ru

[^0]: Valyuzhenich, A., On reduction for eigenfunctions of graphs.
 (C) 2023 Valyuzhenich A.

 This work was funded by the Russian Science Foundation under grant 22-21-20018.
 Received May, 22, 2023, published November, 22, 2023.

