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Abstract: In this work, we prove a general version of the reduction
lemmas for eigenfunctions of graphs admitting involutive automor-
phisms of a special type.
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1 Introduction

Recently, for the eigenspaces of the Hamming and Johnson graphs, reduc-
tion lemmas were established (see [3, Lemma 1] and [6, Lemma 1]). In
[1, 2, 3, 4, 5, 6, 7, 8], these lemmas were applied to study eigenfunctions
and equitable 2-partitions of the Hamming and Johnson graphs. In this
work, we generalize the reduction lemmas to graphs admitting involutive
automorphisms of a special type. In particular, we prove that an analogue
of the reduction lemmas holds for the halved n-cube.

The paper is organized as follows. In Section 2, we introduce basic de�ni-
tions. In Section 3, we prove a general version of the reduction lemmas. Then,
in Section 4, we apply this result to the Hamming graph, the Johnson graph,
and the halved n-cube.
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2 Basic de�nitions

LetG be a graph. The vertex set ofG is denoted by V (G). Given a vertex x
of G, denote by NG(x) the set of all neighbors of x in G. For a setW ⊆ V (G),
denote by G[W ] the subgraph of G induced by W . The automorphism group
of G is denoted by Aut(G). An automorphism φ of G is called involutive if
φ2 is the identity automorphism.

The eigenvalues of a graph are the eigenvalues of its adjacency matrix. Let
G be a graph and let λ be an eigenvalue of G. A function f : V (G) −→ R is
called a λ-eigenfunction of G if f ̸≡ 0 and the equality

λ · f(x) =
∑

y∈NG(x)

f(y) (1)

holds for any vertex x ∈ V (G). The set of functions f : V (G) −→ R satisfying
(1) for any vertex x ∈ V (G) is called a λ-eigenspace of G. Denote by Uλ(G)
the λ-eigenspace of G.

Let G be a graph. Let φ be an automorphism of G and let {V1, V2, V3} be
a partition of V (G). The pair (φ, {V1, V2, V3}) is called special if the following
conditions hold:

(1) φ(V1) = V2 and φ(V2) = V1, i.e., φ swaps V1 and V2.
(2) For any vertex x ∈ Vi, where i ∈ {1, 2}, it holds NG(x) ∩ V3−i =

{φ(x)}.
(3) φ(x) = x for any vertex x ∈ V3, i.e., φ stabilises V3 pointwise.

Remark 1. If (φ, {V1, V2, V3}) is a special pair of a graph G, then the
following properties hold:

• The graphs G[V1] and G[V2] are isomorphic.
• The graph G[V1∪V2] is isomorphic to the Cartesian product of G[V1]
and K2.

• The automorphism φ is involutive.

Let G be a graph with a special pair P = (φ, {V1, V2, V3}). Let G[V1]
and G[V2] be isomorphic to a graph G0, and let φ1 : V1 −→ V (G0) and
φ2 : V2 −→ V (G0) be the corresponding isomorphisms. Given a function
f : V (G) −→ R, we de�ne a function fP,φ1,φ2 on the vertices of G0 as
follows:

fP,φ1,φ2(x) = f(φ−1
1 (x))− f(φ−1

2 (x)).

Let {i1, . . . , ik} be a subset of {1, 2, . . . , n}, where 1 ≤ k < n. For a
vector x ∈ Zn

q , denote by ∆i1,...,ik(x) the vector obtained from x by deleting
coordinates with indices i1, . . . , ik.

Let i, j ∈ {1, 2, . . . , n} and i < j. For a vector x ∈ Zn
q , denote by πi,j(x)

the vector obtained from x by interchanging the ith and jth coordinates.
The weight of a vector x ∈ Zn

q , denoted by |x|, is the number of its non-zero
coordinates.
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3 Reduction for eigenfunctions of graphs

In this section, we prove the main theorem of this paper.

Theorem 3.1. Suppose G is a graph with a special pair P = (φ, {V1, V2, V3})
Let G[V1] and G[V2] be isomorphic to a graph G0, and let φ1 : V1 −→ V (G0)
and φ2 : V2 −→ V (G0) be the corresponding isomorphisms. If f is a λ-
eigenfunction of G, then fP,φ1,φ2 ∈ Uλ+1(G0).

Proof. For every i ∈ {1, 2, 3}, denote Gi = G[Vi]. De�ne a function h on the
vertices of G as follows:

h(x) = f(x)− f(φ(x)).

Since f is a λ-eigenfunction of G and φ ∈ Aut(G), we have h ∈ Uλ(G). The
restriction of h to V1 is denoted by h1.

Let us prove that h1 ∈ Uλ+1(G1). Consider a vertex x ∈ V1. Since h ∈
Uλ(G), we have

λ · h(x) =
∑

y∈NG(x)

h(y).

Then

λ · h(x) =
∑

y∈NG(x)∩V1

h(y) +
∑

y∈NG(x)∩V2

h(y) +
∑

y∈NG(x)∩V3

h(y) =

=
∑

y∈NG1
(x)

h(y) + h(φ(x)) +
∑

y∈NG(x)∩V3

h(y).

Note that h(φ(x)) = f(φ(x))−f(x) = −h(x). Since φ stabilises V3 pointwise,
we have h(y) = 0 for any vertex y ∈ V3. Hence we obtain that

(λ+ 1) · h(x) =
∑

y∈NG1
(x)

h(y).

Therefore, h1 ∈ Uλ+1(G1). Finally, note that fP,φ1,φ2 = h1(φ
−1
1 ). Since h1 ∈

Uλ+1(G1) and φ1 is an isomorphism between G1 and G0, we obtain that
fP,φ1,φ2 ∈ Uλ+1(G0). □

4 Examples

In this section, we discuss how to apply Theorem 3.1 to the Hamming
graph, the Johnson graph, and the halved n-cube. In particular, we show
that these graphs admit special pairs.

4.1. Hamming graph. The Hamming graph H(n, q) is de�ned as follows.
The vertex set of H(n, q) is Zn

q , and two vertices are adjacent if they di�er
in exactly one coordinate.

Let k,m ∈ Zq, k ̸= m, and r ∈ {1, 2, . . . , n}. Denote
V1 = {x ∈ Zn

q : xr = k},

V2 = {x ∈ Zn
q : xr = m},
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and V3 = Zn
q \ (V1 ∪ V2). Denote X = {V1, V2, V3}.

De�ne a map φ : Zn
q −→ Zn

q as follows:

φ(x1, . . . , xn) = (x1, . . . , xr−1, (km)(xr), xr+1, . . . , xn)

(here (km) is the transposition of k and m). Note that (φ,X) is a special
pair of H(n, q).

Let G0 = H(n − 1, q). De�ne maps φ1 : V1 −→ V (G0) and φ2 : V2 −→
V (G0) as follows:

φ1(x) = ∆r(x)

and

φ2(y) = ∆r(y).

One can check that G[V1] and G[V2] are isomorphic to G0, and φ1 and φ2

are the corresponding isomorphisms. Thus, (φ,X), G0, φ1 and φ2 satisfy the
conditions of Theorem 3.1.

4.2. Johnson graph. The Johnson graph J(n, k) is de�ned as follows. The
vertex set of J(n, k) is {x ∈ Zn

2 : |x| = k}, and two vertices are adjacent if
they di�er in exactly two coordinates.

Let i, j ∈ {1, 2, . . . , n} and i < j. Denote

V1 = {x ∈ Zn
2 : |x| = k, xi = 1, xj = 0},

V2 = {x ∈ Zn
2 : |x| = k, xi = 0, xj = 1},

and V3 = V (J(n, k)) \ (V1 ∪ V2). Denote X = {V1, V2, V3}.
De�ne a map φ : V (J(n, k)) −→ V (J(n, k)) as follows:

φ(x) = πi,j(x).

Note that (φ,X) is a special pair of J(n, k).
Let G0 = J(n− 2, k− 1). De�ne maps φ1 : V1 −→ V (G0) and φ2 : V2 −→

V (G0) as follows:

φ1(x) = ∆i,j(x)

and

φ2(y) = ∆i,j(y).

One can check that G[V1] and G[V2] are isomorphic to G0, and φ1 and φ2

are the corresponding isomorphisms. Thus, (φ,X), G0, φ1 and φ2 satisfy the
conditions of Theorem 3.1.

4.3. Halved n-cube. The halved n-cube 1
2H(n) is de�ned as follows. The

vertex set of 1
2H(n) is {x ∈ Zn

2 : |x| is even}, and two vertices are adjacent
if they di�er in exactly two coordinates.

Let i, j ∈ {1, 2, . . . , n} and i < j. Denote

V1 = {x ∈ Zn
2 : |x| is even, xi = 1, xj = 0},

V2 = {x ∈ Zn
2 : |x| is even, xi = 0, xj = 1},

and V3 = V (12H(n)) \ (V1 ∪ V2). Denote X = {V1, V2, V3}.
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De�ne a map φ : V (12H(n)) −→ V (12H(n)) as follows:

φ(x) = πi,j(x).

Note that (φ,X) is a special pair of 1
2H(n).

We de�ne a graph G0 as follows. The vertex set of G0 is {x ∈ Zn−2
2 :

|x| is odd}, and two vertices are adjacent if they di�er in exactly two coordi-
nates. Note that G0 is isomorphic to 1

2H(n − 2). De�ne maps φ1 : V1 −→
V (G0) and φ2 : V2 −→ V (G0) as follows:

φ1(x) = ∆i,j(x)

and
φ2(y) = ∆i,j(y).

One can check that G[V1] and G[V2] are isomorphic to G0, and φ1 and φ2

are the corresponding isomorphisms. Thus, (φ,X), G0, φ1 and φ2 satisfy the
conditions of Theorem 3.1.
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