

# СИБИРСКИЕ ЭЛЕКТРОННЫЕ MATEMATИЧЕСКИЕ ИЗВЕСТИЯ Siberian Electronic Mathematical Reports

iberian Electronic Mathematical Reports

http://semr.math.nsc.ru ISSN 1813-3304

Том 20, № 2, стр. 1290-1294 (2023) https://doi.org/10.33048/semi.2023.20.077 УДК 519.177 MSC 05C50

# ON REDUCTION FOR EIGENFUNCTIONS OF GRAPHS

# A. VALYUZHENICH

Communicated by D.S. KROTOV

**Abstract:** In this work, we prove a general version of the reduction lemmas for eigenfunctions of graphs admitting involutive automorphisms of a special type.

Keywords: eigenfunctions of graphs, involutive automorphism.

# 1 Introduction

Recently, for the eigenspaces of the Hamming and Johnson graphs, reduction lemmas were established (see [3, Lemma 1] and [6, Lemma 1]). In [1, 2, 3, 4, 5, 6, 7, 8], these lemmas were applied to study eigenfunctions and equitable 2-partitions of the Hamming and Johnson graphs. In this work, we generalize the reduction lemmas to graphs admitting involutive automorphisms of a special type. In particular, we prove that an analogue of the reduction lemmas holds for the halved n-cube.

The paper is organized as follows. In Section 2, we introduce basic definitions. In Section 3, we prove a general version of the reduction lemmas. Then, in Section 4, we apply this result to the Hamming graph, the Johnson graph, and the halved n-cube.

VALYUZHENICH, A., ON REDUCTION FOR EIGENFUNCTIONS OF GRAPHS.

<sup>© 2023</sup> VALYUZHENICH A.

This work was funded by the Russian Science Foundation under grant 22-21-20018. Received May, 22, 2023, published November, 22, 2023.

### 2 Basic definitions

Let G be a graph. The vertex set of G is denoted by V(G). Given a vertex x of G, denote by  $N_G(x)$  the set of all neighbors of x in G. For a set  $W \subseteq V(G)$ , denote by G[W] the subgraph of G induced by W. The automorphism group of G is denoted by  $\operatorname{Aut}(G)$ . An automorphism  $\varphi$  of G is called *involutive* if  $\varphi^2$  is the identity automorphism.

The eigenvalues of a graph are the eigenvalues of its adjacency matrix. Let G be a graph and let  $\lambda$  be an eigenvalue of G. A function  $f: V(G) \longrightarrow \mathbb{R}$  is called a  $\lambda$ -eigenfunction of G if  $f \neq 0$  and the equality

$$\lambda \cdot f(x) = \sum_{y \in N_G(x)} f(y) \tag{1}$$

holds for any vertex  $x \in V(G)$ . The set of functions  $f: V(G) \longrightarrow \mathbb{R}$  satisfying (1) for any vertex  $x \in V(G)$  is called a  $\lambda$ -eigenspace of G. Denote by  $U_{\lambda}(G)$  the  $\lambda$ -eigenspace of G.

Let G be a graph. Let  $\varphi$  be an automorphism of G and let  $\{V_1, V_2, V_3\}$  be a partition of V(G). The pair  $(\varphi, \{V_1, V_2, V_3\})$  is called *special* if the following conditions hold:

- (1)  $\varphi(V_1) = V_2$  and  $\varphi(V_2) = V_1$ , i.e.,  $\varphi$  swaps  $V_1$  and  $V_2$ .
- (2) For any vertex  $x \in V_i$ , where  $i \in \{1, 2\}$ , it holds  $N_G(x) \cap V_{3-i} = \{\varphi(x)\}$ .
- (3)  $\varphi(x) = x$  for any vertex  $x \in V_3$ , i.e.,  $\varphi$  stabilises  $V_3$  pointwise.

**Remark 1.** If  $(\varphi, \{V_1, V_2, V_3\})$  is a special pair of a graph G, then the following properties hold:

- The graphs  $G[V_1]$  and  $G[V_2]$  are isomorphic.
- The graph  $G[V_1 \cup V_2]$  is isomorphic to the Cartesian product of  $G[V_1]$ and  $K_2$ .
- The automorphism  $\varphi$  is involutive.

Let G be a graph with a special pair  $P = (\varphi, \{V_1, V_2, V_3\})$ . Let  $G[V_1]$ and  $G[V_2]$  be isomorphic to a graph  $G_0$ , and let  $\varphi_1 : V_1 \longrightarrow V(G_0)$  and  $\varphi_2 : V_2 \longrightarrow V(G_0)$  be the corresponding isomorphisms. Given a function  $f : V(G) \longrightarrow \mathbb{R}$ , we define a function  $f_{P,\varphi_1,\varphi_2}$  on the vertices of  $G_0$  as follows:

$$f_{P,\varphi_1,\varphi_2}(x) = f(\varphi_1^{-1}(x)) - f(\varphi_2^{-1}(x)).$$

Let  $\{i_1, \ldots, i_k\}$  be a subset of  $\{1, 2, \ldots, n\}$ , where  $1 \leq k < n$ . For a vector  $x \in \mathbb{Z}_q^n$ , denote by  $\Delta_{i_1,\ldots,i_k}(x)$  the vector obtained from x by deleting coordinates with indices  $i_1, \ldots, i_k$ .

Let  $i, j \in \{1, 2, ..., n\}$  and i < j. For a vector  $x \in \mathbb{Z}_q^n$ , denote by  $\pi_{i,j}(x)$  the vector obtained from x by interchanging the ith and jth coordinates.

The weight of a vector  $x \in \mathbb{Z}_q^n$ , denoted by |x|, is the number of its non-zero coordinates.

#### A. VALYUZHENICH

### **3** Reduction for eigenfunctions of graphs

In this section, we prove the main theorem of this paper.

**Theorem 3.1.** Suppose G is a graph with a special pair  $P = (\varphi, \{V_1, V_2, V_3\})$ Let  $G[V_1]$  and  $G[V_2]$  be isomorphic to a graph  $G_0$ , and let  $\varphi_1 : V_1 \longrightarrow V(G_0)$ and  $\varphi_2 : V_2 \longrightarrow V(G_0)$  be the corresponding isomorphisms. If f is a  $\lambda$ eigenfunction of G, then  $f_{P,\varphi_1,\varphi_2} \in U_{\lambda+1}(G_0)$ .

*Proof.* For every  $i \in \{1, 2, 3\}$ , denote  $G_i = G[V_i]$ . Define a function h on the vertices of G as follows:

$$h(x) = f(x) - f(\varphi(x)).$$

Since f is a  $\lambda$ -eigenfunction of G and  $\varphi \in \operatorname{Aut}(G)$ , we have  $h \in U_{\lambda}(G)$ . The restriction of h to  $V_1$  is denoted by  $h_1$ .

Let us prove that  $h_1 \in U_{\lambda+1}(G_1)$ . Consider a vertex  $x \in V_1$ . Since  $h \in U_{\lambda}(G)$ , we have

$$\lambda \cdot h(x) = \sum_{y \in N_G(x)} h(y).$$

Then

$$\begin{split} \lambda \cdot h(x) &= \sum_{y \in N_G(x) \cap V_1} h(y) + \sum_{y \in N_G(x) \cap V_2} h(y) + \sum_{y \in N_G(x) \cap V_3} h(y) = \\ &= \sum_{y \in N_{G_1}(x)} h(y) + h(\varphi(x)) + \sum_{y \in N_G(x) \cap V_3} h(y). \end{split}$$

Note that  $h(\varphi(x)) = f(\varphi(x)) - f(x) = -h(x)$ . Since  $\varphi$  stabilises  $V_3$  pointwise, we have h(y) = 0 for any vertex  $y \in V_3$ . Hence we obtain that

$$(\lambda+1)\cdot h(x) = \sum_{y\in N_{G_1}(x)} h(y).$$

Therefore,  $h_1 \in U_{\lambda+1}(G_1)$ . Finally, note that  $f_{P,\varphi_1,\varphi_2} = h_1(\varphi_1^{-1})$ . Since  $h_1 \in U_{\lambda+1}(G_1)$  and  $\varphi_1$  is an isomorphism between  $G_1$  and  $G_0$ , we obtain that  $f_{P,\varphi_1,\varphi_2} \in U_{\lambda+1}(G_0)$ .

## 4 Examples

In this section, we discuss how to apply Theorem 3.1 to the Hamming graph, the Johnson graph, and the halved *n*-cube. In particular, we show that these graphs admit special pairs.

**4.1. Hamming graph.** The Hamming graph H(n,q) is defined as follows. The vertex set of H(n,q) is  $\mathbb{Z}_q^n$ , and two vertices are adjacent if they differ in exactly one coordinate.

Let  $k, m \in \mathbb{Z}_q, k \neq m$ , and  $r \in \{1, 2, \dots, n\}$ . Denote

$$V_1 = \{ x \in \mathbb{Z}_q^n : x_r = k \},$$
  
$$V_2 = \{ x \in \mathbb{Z}_q^n : x_r = m \},$$

1292

and  $V_3 = \mathbb{Z}_q^n \setminus (V_1 \cup V_2)$ . Denote  $X = \{V_1, V_2, V_3\}$ . Define a map  $\varphi : \mathbb{Z}_q^n \longrightarrow \mathbb{Z}_q^n$  as follows:

$$\varphi(x_1, \dots, x_n) = (x_1, \dots, x_{r-1}, (km)(x_r), x_{r+1}, \dots, x_n)$$

(here (km) is the transposition of k and m). Note that  $(\varphi, X)$  is a special pair of H(n, q).

Let  $G_0 = H(n-1,q)$ . Define maps  $\varphi_1 : V_1 \longrightarrow V(G_0)$  and  $\varphi_2 : V_2 \longrightarrow V(G_0)$  as follows:

and

$$\varphi_1(x) = \Delta_r(x)$$

$$\varphi_2(y) = \Delta_r(y).$$

One can check that  $G[V_1]$  and  $G[V_2]$  are isomorphic to  $G_0$ , and  $\varphi_1$  and  $\varphi_2$  are the corresponding isomorphisms. Thus,  $(\varphi, X)$ ,  $G_0$ ,  $\varphi_1$  and  $\varphi_2$  satisfy the conditions of Theorem 3.1.

**4.2. Johnson graph.** The Johnson graph J(n, k) is defined as follows. The vertex set of J(n, k) is  $\{x \in \mathbb{Z}_2^n : |x| = k\}$ , and two vertices are adjacent if they differ in exactly two coordinates.

Let  $i, j \in \{1, 2, \dots, n\}$  and i < j. Denote

$$V_1 = \{ x \in \mathbb{Z}_2^n : |x| = k, x_i = 1, x_j = 0 \},\$$

$$V_2 = \{ x \in \mathbb{Z}_2^n : |x| = k, x_i = 0, x_j = 1 \},\$$

and  $V_3 = V(J(n,k)) \setminus (V_1 \cup V_2)$ . Denote  $X = \{V_1, V_2, V_3\}$ . Define a map  $\varphi : V(J(n,k)) \longrightarrow V(J(n,k))$  as follows:

$$\varphi(x) = \pi_{i,j}(x).$$

Note that  $(\varphi, X)$  is a special pair of J(n, k).

Let  $G_0 = J(n-2, k-1)$ . Define maps  $\varphi_1 : V_1 \longrightarrow V(G_0)$  and  $\varphi_2 : V_2 \longrightarrow V(G_0)$  as follows:

$$\varphi_1(x) = \Delta_{i,j}(x)$$

and

$$\varphi_2(y) = \Delta_{i,j}(y).$$

One can check that  $G[V_1]$  and  $G[V_2]$  are isomorphic to  $G_0$ , and  $\varphi_1$  and  $\varphi_2$  are the corresponding isomorphisms. Thus,  $(\varphi, X)$ ,  $G_0$ ,  $\varphi_1$  and  $\varphi_2$  satisfy the conditions of Theorem 3.1.

**4.3. Halved** *n*-cube. The halved *n*-cube  $\frac{1}{2}H(n)$  is defined as follows. The vertex set of  $\frac{1}{2}H(n)$  is  $\{x \in \mathbb{Z}_2^n : |x| \text{ is even}\}$ , and two vertices are adjacent if they differ in exactly two coordinates.

Let  $i, j \in \{1, 2, \dots, n\}$  and i < j. Denote

$$V_1 = \{ x \in \mathbb{Z}_2^n : |x| \text{ is even}, x_i = 1, x_j = 0 \},$$
$$V_2 = \{ x \in \mathbb{Z}_2^n : |x| \text{ is even}, x_i = 0, x_j = 1 \},$$
and  $V_3 = V(\frac{1}{2}H(n)) \setminus (V_1 \cup V_2).$  Denote  $X = \{V_1, V_2, V_3\}.$ 

1293

Define a map  $\varphi: V(\frac{1}{2}H(n)) \longrightarrow V(\frac{1}{2}H(n))$  as follows:

 $\varphi(x) = \pi_{i,j}(x).$ 

Note that  $(\varphi, X)$  is a special pair of  $\frac{1}{2}H(n)$ .

We define a graph  $G_0$  as follows. The vertex set of  $G_0$  is  $\{x \in \mathbb{Z}_2^{n-2} : |x| \text{ is odd}\}$ , and two vertices are adjacent if they differ in exactly two coordinates. Note that  $G_0$  is isomorphic to  $\frac{1}{2}H(n-2)$ . Define maps  $\varphi_1 : V_1 \longrightarrow V(G_0)$  and  $\varphi_2 : V_2 \longrightarrow V(G_0)$  as follows:

and

$$\varphi_1(x) = \Delta_{i,j}(x)$$

$$\varphi_2(y) = \Delta_{i,j}(y).$$

One can check that  $G[V_1]$  and  $G[V_2]$  are isomorphic to  $G_0$ , and  $\varphi_1$  and  $\varphi_2$  are the corresponding isomorphisms. Thus,  $(\varphi, X)$ ,  $G_0$ ,  $\varphi_1$  and  $\varphi_2$  satisfy the conditions of Theorem 3.1.

# 5 Acknowledgements

The author is grateful to Sergey Goryainov and Ivan Mogilnykh for helpful discussions.

## References

- R. J. Evans, A. L. Gavrilyuk, S. Goryainov, K. Vorob'ev, *Equitable 2-partitions of the Johnson graphs J(n,3)*, arXiv:2206.15341, 2022.
- [2] I. Mogilnykh, A. Valyuzhenich, Equitable 2-partitions of the Hamming graphs with the second eigenvalue, Discrete Math., 343:11 (2020), Article ID 112039. Zbl 1447.05174
- [3] A. Valyuzhenich, Minimum supports of eigenfunctions of Hamming graphs, Discrete Math., 340:5 (2017), 1064-1068. Zbl 1357.05094
- [4] A. Valyuzhenich, K. Vorob'ev, Minimum supports of functions on the Hamming graphs with spectral constraints, Discrete Math., 342:5 (2019), 1351–1360. Zbl 1407.05226
- [5] A. Valyuzhenich, Eigenfunctions and minimum 1-perfect bitrades in the Hamming graph, Discrete Math., 344:3 (2021), Article ID 112228. Zbl 1456.05111
- [6] K. Vorob'ev, I. Mogilnykh, A. Valyuzhenich, Minimum supports of eigenfunctions of Johnson graphs, Discrete Math., 341:8 (2018), 2151-2158. Zbl 1388.05119
- K. Vorob'ev, Equitable 2-partitions of Johnson graphs with the second eigenvalue, arXiv:2003.10956, March 2020.
- [8] K. Vorob'ev, On reconstruction of eigenfunctions of Johnson graphs, Discrete Appl. Math., 276 (2020), 166-171. Zbl 1435.05137

ALEXANDR VALYUZHENICH CHELYABINSK STATE UNIVERSITY, BRAT'EV KASHIRINYH ST., 129, 454021, CHELYABINSK, RUSSIA Email address: graphkiper@mail.ru

1294