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COMPLEX AND SYMPLECTIC GEOMETRY OF VECTOR

BUNDLE MANIFOLDS

M.T.K. ABBASSI, R. EL MASDOURI, AND I. LAKRINI

Abstract. The aim of this paper is to explore the complex and symplec-
tic geometries of vector bundle manifolds. We will construct an almost
complex structure on total spaces of vector bundles, endowed with a
complex structure, over an almost complex base. Then we give necessary
and su�cient conditions for its integrability. Meanwhile, we accomplish a
symplectic version of this construction. We construct almost symplectic
structures on vector bundle manifolds and we characterize those which
are symplectic on the total space. Finally, we apply the constructions to
the case of tangent bundles and Whitney sums. In particular, we obtain
an in�nite family of non-compact �at K�ahler manifolds.

Keywords: (almost) complex structure, symplectic structure, K�ahler
manifold, vector bundle, spherically symmetric metric.

Introduction

The Riemannian geometry of vector bundles has been deeply studied in various
contexts. For example, many geometers have worked on the geometry of tangent
bundles, starting with a systematic study of the Sasaki metric, and then introducing
other metrics. An essential step in the topic was the classi�cation of `natural'
Riemannian metrics on tangent bundles which has been accomplished using jets
and natural di�erential operators, see [24] for details. This classi�cation has lead
to the huge class of g-natural metrics on tangent bundles. For details, we refer the
reader to [1, 2, 3] and the references therein. Further, many Riemannian metrics
on tangent bundles were generalized to vector bundles e.g. the Sasaki metric (cf.
[22]), the Cheeger-Gromoll metric and generalized Cheeger-Gromoll metrics (cf.
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[12]). Recently, R. Albuquerque introduced a class of Riemannian metrics on vector
bundle manifolds, namely the class of Spherically symmetric metrics (cf. [8]). For
a profound study of di�erent aspects of this class of metrics, we refer the reader to
[4, 5, 8].

Nevertheless, little attention was given to complex and symplectic geometry of
vector bundle manifolds. In the context of tangent bundles, using the decomposition
of the tangent space to the tangent bundle, P. Dombrowski introduced an almost
complex structure on tangent bundles to a�ne manifolds (cf. [18]). This almost
complex structure is integrable if and only if the base is �at. In order to overcome
the �atness, many generalizations of Dombrowski's structure have been introduced.
For instance, R. Aguilar introduced isotropic almost complex structures on open sets
of TM (cf. [7]), that he called isotropic almost complex structure. Their integrability
have been studied in [7, 11]. In another context, M. I. Munteanu introduced another
class of almost complex structures on tangent bundles and studied their integrability
[30]. Other constructions were accomplished by M. Tahara, L. Vanhecke and Y.
Watanabe in [36] and V. Oproiu in [31]. It is noteworthy that all of these construc-
tions are limited only to the case of tangent bundles. On the other hand, it is
well known that the cotangent bundle admits a natural symplectic structure which
stems from the Liouville 1-form (cf. [9, 32]).

The class of vector bundle manifolds constitutes a large and interesting class of
manifolds. Dombrowski's construction cannot be directly generalized. Nevertheless,
when the base manifold is an almost complex manifold and the vector bundle
possesses complex structures on �bers, one can construct almost complex structures
on the total spaces. A symplectic version of those construction is also possible.
More precisely, assume a vector bundle is endowed with a complex structure on
�bers and the base manifold is endowed with an almost complex structure. Then,
using the decomposition of the tangent spaces of the total space provided by the
connection, we construct from the previous data an almost complex structure Js

(resp. an almost symplectic form Ωs when the base is almost symplectic) which is
compatible with spherically symmetric metrics (cf. [8]). Surprisingly, it turns out
that the constructed almost complex structure and almost symplectic structure
are associated to each other via the Sasaki metric ([1, 22, 34]). We will derive the
necessary and su�cient conditions for both the integrability of Js and closedness
of Ωs. In particular, we give necessary and su�cient conditions for the total space
to be a K�ahler manifold. In fact, based on a classi�cation of compact �at K�ahler
manifolds of dimensions four and six, our constructions will allow us to give a whole
new family of non-compact �at K�ahler manifolds.

As direct applications to the constructions performed so far, we will explore the
complex geometry of the Whitney sums of vector bundles, and in particular the
complex geometry of tangent bundles of second order. Further, we study the case
of the tangent bundle of a K�ahler manifold and �nally, we focus on the symplectic
geometry of the tangent bundle of the cotangent bundle of a Riemannian manifold.

All geometric objects are smooth and smooth will always mean di�erentiable of
class C∞. All manifolds are assumed to be connected.

1. Preliminaries

Let (E, π,M) be a K-vector bundle over an even dimensional manifold (unless
otherwise stated, all dimensions are real), with K = R or C. If E is a real vector
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bundle, then a complex structure on E is a section J ∈ Γ(End(E)) with J2 = −IdE ,
where End(E) is the vector bundle of endomorphisms of E and IdE is the identity
of the vector bundle E (cf. [32]). On the other hand, a symplectic structure on a
vector bundle E is a section of E∗ ⊗ E∗ (i.e. Ω ∈ Γ(E∗ ⊗ E∗)) such that Ωx is a
symplectic form on Ex, for all x ∈ M , that is Ωx : Ex×Ex −→ R is a non-degenerate
skew-symmetric bilinear form. In this case (E,Ω) is said to be a symplectic vector
bundle (cf. [27, 32]).

A real vector bundle admits a complex vector bundle structure if and only if it
admits a complex structure (cf. [32]). Indeed, given a complex structure J on a real
vector bundle E, the multiplication de�ned by (a+ ib).e = ae+ bJe, for e ∈ E and
a+ ib ∈ C, confers to E the structure of a complex vector bundle. Conversely, given
a complex vector bundle, the multiplication by the complex unit i induces on the
real underlying vector bundle a complex structure (cf. [32]).

Complex structures and symplectic structures on vector bundles are equivalent.
Indeed, if Ω is a symplectic structure on a vector bundle, then there exists a �ber
metric h on E compatible with Ω in the sense that the bundle isomorphism E −→ E∗

de�ned by e 7→ Ω(e, .) is an isometry with respect to the dual metric to h, hence a
complex structure is de�ned through h(JEσ, δ) = Ω(σ, δ), for σ, δ ∈ Γ(E). Further,
this complex structure satis�es the following properties

i) Ω(JEσ, JEδ) = Ω(σ, δ). In this case, we say that JE and Ω are compatible,
and

ii) h(JEσ, JEδ) = h(σ, δ). We say also that JE and h are compatible.

We shall refer to this complex structure as the complex structure associated with Ω.
Conversely, given a complex structure JE on E, there exist a metric �ber h which
is compatible with JE , this gives a symplectic structure Ω, de�ned by Ω(σ, δ) =
h(JEσ, δ), which is compatible with h and JE and said to be associated with JE .
For more details, see [32, 27].

Let (E, JE) be a vector bundle endowed with a complex structure, a compatible
�ber metric and the associated symplectic structure Ω. De�ne Hx : Ex ×Ex −→ C
by H(X,Y ) := Ω(X, JEY ) + iΩ(X,Y ), for X,Y ∈ TeE. For every e ∈ E, the
complex bilinear form He is a Hermitian inner product, hence H is said to be a
Hermitian metric on E and (E,H) is said to be a Hermitian vector bundle.

If E = TM is the tangent bundle to M , then a complex structure JM on TM
is said to be an almost complex structure on M . In this case (M,JM ) is said to
be an almost complex manifold. The dimension of an almost complex manifold is
necessarily even. Further, an almost complex structure induces a natural orientation
of the underlying manifold. Accordingly, a symplectic structure on TM is a non-
degenerate 2-form ω on M , and in this case ω is said to be an almost symplectic
structure onM ; furthermore, if ω is closed, then ω is said to be a sympletic structure
and (M,ω) is said to be a symplectic manifold.

If (M, g) is a Riemannian manifold and JM is an almost complex structure on
it, then JM is said to be compatible with g if it satis�es

(1) g(JMX, JMY ) = g(X,Y ),

for all X,Y ∈ TxM , x ∈ M . In this case the triple (M, g, JM ) is said to be an
almost Hermitian manifold. This compatibility is the same as the compatibility in
the sense of �ber metrics and complex structures on vector bundles.
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Every complex manifold has a natural almost complex structure. Indeed, let M
be a complex manifold and m its complex dimension. Identify Cm with R2m, and
let (U, zj), with j = 1, ...,m, a coordinate system, which yields real coordinates
(xj , yj) such that zj = xj + iyj . In this chart, consider the �eld of endomorphisms
de�ned by JM : ∂

∂xj 7−→ ∂
∂yj and JM : ∂

∂yj 7−→ − ∂
∂xj . Thus, J is an almost complex

structure. An almost complex structure JM on a 2m-dimensional real manifold M
is said to be integrable if JM is induced by a, necessarily unique, complex structure.

The classical Newlander-Nirenberg theorem gives a tensorial characterization of
integrable almost complex structures. Indeed, for vector �elds X,Y ∈ X(M), let

(2) N(X,Y ) = [X,Y ] + JM [JMX,Y ] + JM [X, JMY ] − [JMX,JMY ],

be the Nijenhuis tensor of an almost complex structure JM . Then, JM is integrable
if and only if N vanishes identically (cf. [20]). An almost Hermitian manifold with
an integrable complex structure is called a Hermitian manifold.

Let (M, g, JM ) be an almost Hermitian manifold, then we have the 2-form de�ned
by

(3) ω(X,Y ) = g(JMX,Y )

for all vectors X,Y ∈ TMX,Y ∈ TxM , x ∈ M . The 2-form ω is called the
fundamental form. If the form ω is closed, that is a symplectic form on M , then
(M, g, JM ) is said to be an almost K�ahler manifold, and if JM is integrable, then
(M, g, JM ) is a K�ahler manifold.

2. Constructions

Consider a real vector bundle (E, π,M) of rank k, over an n-dimensional manifold,
endowed with:

(i) A �ber metric h,
(ii) A complex structure JE compatible with h in the sense that

hx(JE(e1), JE(e2)) = hx(e1, e2),

for all e1, e2 ∈ Ex and x ∈ M ,
(iii) A connection ∇ which is compatible with h i.e. ∇h = 0.

Denote by RE the curvature of ∇ and by K the connection map (the connector)
associated with ∇ (cf. [18, 25, 32]). Denote by Ω the symplectic structure associated
to JE given by Ω(σ, δ) = h(JEσ, δ), for all σ, δ ∈ Γ(E). Further, assume that M is
endowed with an almost complex structure JM (we shall use the abbreviation a.c.s)
and a Riemannian metric g such that the triple (M, g, JM ) is an almost Hermitian
manifold and denote by ∇M the Levi-Civita connection of (M, g) and by R its
curvature tensor.

Denote by H (resp. V) the horizontal (resp. vertical) subbundle. At each point
e ∈ E, the tangent space TeE splits as

(4) TeE = He ⊕ Ve,

where He = ker(Ke) (resp. Ve = ker((π∗)e) is the horizontal (resp. vertical)
subspace. Further, the tangent bundle of E splits as

TE = H⊕ V.
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The elements of H (resp. V) are said to be horizontal (resp. vertical) vectors.
Analogously, a vector �eld is said to be horizontal (resp. vertical) if it lies completely
in H (resp. V).

If X ∈ TxM , with x ∈ M , then for every e ∈ E, there exist a unique horizontal
vector Xh

e ∈ He, with π∗X
h
e = X, called the horizontal lift of X at e. Accordingly,

for every vector �eld X ∈ X(M), there exists a unique horizontal vector �eld Xh,
which is π-related to X, called the horizontal lift of X.

For x ∈ M and e, u ∈ π−1(x), set γe,u(t) = e + tu with t ∈ (−ϵ, ϵ), then
γe,u(t) ∈ π−1(x), for any |t| < ϵ. Then, the vertical lift of u at e is the vertical
vector given by uv

e =
.
γe,u(0). Analogously, sections of E can be lifted. Indeed, if σ

is a section of E, its vertical lift is the vertical vector �eld σv de�ned by

σv(e) = σ(π(e))ve ,

where σ(π(e))ve is the vertical lift of σ(π(e)) at e.
Finally the splitting in (4) induces a decomposition of vectors. In fact, for all

X ∈ TeE, X = XH +XV , where XH ∈ He (resp. X
V ∈ Ve) is the horizontal (resp.

vertical) component of X. This induces a decomposition of vector �elds; indeed, if
X ∈ X(E), then there exist a horizontal vector �eld XH and a vertical vector �led
XV such that X = XH + XV .

We shall de�ne almost complex structures on E which are motivated by the
form of some Riemannian metrics on vector bundle manifolds. The Sasaki metric
(cf. [22]) on vector bundles is the Riemannian metric on E de�ned by

(5) Gs
e(X,Y ) = gπ(e)(π∗X,π∗Y ) + hπ(e)(KeX,KeY ),

for every e ∈ E and X,Y ∈ TeE. This metric is a generalization of the classical
Sasaki metric on tangent bundles of Riemannian manifolds. We refer the reader to
[1, 2, 18, 23] for more details. Many generalizations were considered e.g. Cheeger-
Gromoll metric and the generalized Cheeger-Gromoll metric (cf. [1, 2, 29, 12]).
Recently, R. Albuquerque introduced the class of metrics de�ned as follows

(6) Gss
e (X,Y ) = e2φ1(r)gπ(e)((dπ)e(X), (dπ)e(Y )) + e2φ2(r)hπ(e)(Ke(X),Ke(Y )),

for all e ∈ E and X,Y ∈ TeE, with φ1, φ2 are smooth scalar functions on E
depending only on the norm r = h(e, e) and smooth at r = 0 on the right as
well as all their successive derivatives. He called such metrics spherically symmetric
metrics. We refer the reader to [4, 5, 6, 8] for more details on this class of metrics.

Motivated by the previous considerations, one can de�ne the following tensors.
For each e ∈ E, consider the tensor de�ned as follows

(7) Js
e (X) =

(
JM (π∗(X))

)h
e

+ (JE(KeX))ve ,

for all X ∈ TeE.
Obviously, the mapping Js is a (1, 1)-tensor �eld on E. The tensor �eld Js is

completely characterized by

(8)

{
J(Xh) = (JMX)h,
J(σv) = (JEσ)v;

for all X ∈ X(M) and σ ∈ Γ(E).

Remark 1. The previous construction may be generalized as follows: consider two
functions φ1 and φ2 smooth on (0,+∞) and at zero on the right as well as all their
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successive derivatives, and set

(9) Jss
e (X) = eφ1(r)

(
JM (π∗(X))

)h
e

+ eφ2(r)(JE(KeX))ve .

for e ∈ E, X ∈ TeE and r = h(e, e). Of course, for φ1 = φ2 = 0, Jss = Js.

Analogously, Jss is a (1, 1)-tensor �eld on E. Moreover,
(
Jss

)2
= −IdTE if and

only if φ1 = φ2 = 0.

Lemma 1. Let E be a vector bundle as before, then Js is an a.c.s on E and
(E,Gss, Js) is an almost Hermitian manifold.

Proof. For e ∈ E and X ∈ TeE, we have

(Js
e )2(X) = Js

((
JM (π∗(X))

)h
e

+ (JE(KeX))ve .
)

=
(
JM

(
JM (π∗(X))

))h

+
(
JE

(
JE(Ke(X))

))v

= −π∗(X)he −K(X)ve

= −X,

hence Js is an a.c.s. It remains to check the compatibility of Js with spherically
symmetric metrics. Let e ∈ E and X,Y ∈ TeE, then

Gss
e (Js

eX, Js
eY )

= Gss
e

((
JM (π∗(X))

)h
e

+ (JE(KeX))ve ,
(
JM (π∗(Y ))

)h
e

+ (JE(KeY ))ve

)
= e2φ1(r)gπ(e)

(
JM (π∗(X)), JM (π∗(Y ))

)
+ e2φ2(r)h

(
JE(Ke(X)), JE(Ke(Y ))

)
= e2φ1(r)gπ(e)

(
π∗(X), π∗(Y )

)
+ e2φ2(r)h

(
Ke(X),Ke(Y )

)
= Gss

e (X,Y ).

□

Remark 2. One may try to enlarge the class of metrics on the total space. One of
the possible choices is to consider a class of metrics which generalizes at the same
time spherically symmetric metrics and the generalized Cheeger-Gromoll metrics
(cf. [8, 12]). Precisely, we can consider the class of metrics given by

G = Gss + fξ♭ ⊗ ξ♭

where Gss is a spherically symmetric metric with weights φ1, φ2, f : E −→ R is
a smooth function such that f + e2φ2 > 0, with ξ : E −→ TE is the tautological
vertical vector �eld on E de�ned by ξe = eve . The `♭' is taken w.r.t h. For more
details on this class of metrics, see [8]. Unfortunately, this class of metrics fails to
be compatible with Js.

A symplectic version of the previous construction is possible for a symplectic
vector bundle with an almost symplectic base. Indeed, assume now that the base
manifold is endowed with an almost symplectic form ω and that Ω is a symplectic
structure on E. For e ∈ E and X ∈ TeE, de�ne

(10) Ωs
e(X,Y ) = ωπ(e)(π∗X,π∗Y ) + Ω(KeX,KeY ).
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It is clear that Ωs is a non-degenerate 2-form on E. Hence (E,Ωs) is an almost
symplectic manifold. This almost symplectic form is totally characterized by

(11)

 Ωs(Xh, Y h) = ω(X,Y ),
Ωs(Xh, σv) = 0,
Ωs(σv, δv) = Ω(σ, δ);

for all X,Y ∈ X(M) and σ, δ ∈ Γ(E).

3. Integrability of Js

Since we are dealing with tensors, we will make a suitable choice of vector �elds
which will simplify our computations. In fact, we will compute the components of
the Nijenhuis tensor using horizontal lifts of vector �elds on the base and vertical
lifts of sections of E.

Let π⋆RE denote the curvature of the pullback connection π⋆∇ which is a
connection on the pullback vector bundle π⋆E. We shall use the notation Rξ(., .) =
π⋆RE(., .)ξ. The vector bundle π⋆E is naturally isomorphic to the vertical subbundle
of E (cf. [19, 32]), then Rξ(., .) gives vertical vector �elds.

The Lie brackets of the di�erent types of vector �elds (cf. [8, 19, 22]) are given
by:

Lemma 2. Let X,Y ∈ X(M) and σ, δ ∈ Γ(E), then

(1) [Xh, Y h] = [X,Y ]h −Rξ(Xh, Y h),
(2) [Xh, σv] = (DXσ)v,
(3) [σv, δv] = 0.

We shall denote by Ns the Nijenhuis tensor of Js, then:

Proposition 1. Let X,Y ∈ X(M) and σ, δ ∈ Γ(E), then we have

Ns(Xh, Y h) = N(X,Y )h −
(
RE(X,Y ). + JER

E(JMX,Y ).(12)

+JER
E(X, JMY ).− JER

E(JMX, JMY ).
)v

,

Ns(Xh, σv) =
(
∇Xσ + JE

(
∇JMXσ

)
+ JE

(
∇XJEσ

)
−∇JMX(JEσ

))v

,(13)

Ns(σv, δv) = 0,(14)

where N is the Nijenhuis tensor of JM .
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Proof. By virtue of Proposition 2 and equations (8), we have:

Ns(Xh, Y h) = [Xh, Y h] + Js[JsXh, Y h] + Js[Xh, JsY h] − [JsXh, JsY h]

= [Xh, Y h] + Js[(JMX)h, Y h] + Js[Xh, (JMY )h] − [(JMX)h, (JMY )h]

=
(
[X,Y ]h −Rξ(Xh, Y h)

)
+ Js

(
[JMX,Y ]h −Rξ((JMX)h, Y h)

)
+ Js

(
[X, JMY ]h −Rξ(Xh, (JMY )h)

)
− Js

(
[JMX, JMY ]h −Rξ((JMX)h, (JMY )h)

)
=

(
[X,Y ]h −Rξ(Xh, Y h)

)
+ (JM [JMX,Y ])h −

(
JER

E(JMX,Y ).
)v)

+ (JM [X, JMY ])h −
(
JER

E(X, JMY ).
)v

− (JM [JMX, JMY ])h −
(
JER

E(JMX,JMY ).
)v

= N(X,Y )h −
(
RE(X,Y ). + JER

E(JMX,Y ). + JER
E(X, JMY ).

− JER
E(JMX, JMY ).

)v

,

Ns(Xh, σv) = [Xh, σv] + Js[JsXh, σv] + Js[Xh, Jsσv] − [JsXh, Jsσv]

=
(
∇Xσ

)v
+ Js

((
∇JMXσ

)v)
+ Js

((
∇XJEσ

)v)−
(
∇JMX(JEσ)

)v
=

(
∇Xσ

)v
+
(
JE

(
∇JMXσ

))v

+
(
JE

(
∇XJEσ

))v

−
(
∇JMX(JEσ)

)v
=

(
∇Xσ + JE

(
∇JMXσ

)
+ JE

(
∇XJEσ

)
−∇JMX(JEσ

))v

,

Ns(σv, δv) = [σv, δv] + Js[Jsσv, δv] + Js[σv, Jsδv] − [Jsσv, Jsδv]

= [σv, δv] + Js[
(
JEσ

)v
, δv] + Js[σv,

(
JEδ

)v
] − [

(
JEσ

)v
,
(
JEδ

)v
]

= 0.

□

Now, we consider the integrability problem of the almost complex structure Js.
We shall analyse the expressions of the Nijenhuis tensor in order to �nd necessary
and su�cient conditions for the integrability of Js. The complex structure JE is
said to be parallel if

∇X

(
JEσ

)
= JE

(
∇Xσ

)
,

for all X ∈ X(M) and σ ∈ Γ(E). The above condition is nothing but parallelism of
JE ∈ Γ(End(E)) with respect to the connection on End(E) (or E∗ ⊗ E) induced
from the connection ∇.

Example 1. If (M, g, J) is a K�ahler manifold, then we have ∇MJ = 0 where ∇M

is the Levi-Civita connection of (M, g).

Proposition 2. Assume that JE is parallel. Then Js is integrable if and only if
the following hold

(1) JM is integrable,
(2) ρ(X,Y ) = 0,
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where

ρ(X,Y ) = RE(X,Y ).+JER
E(JMX,Y ).+JER

E(X, JMY ).−JER
E(JMX, JMY ).,

for all X,Y ∈ X(M).

Proof. The parallelism of JE implies that Ns(Xh, σv) = 0. Indeed, for σ ∈ Γ(E)
and X ∈ X(M), we have

∇Xσ + JE
(
∇JMXσ

)
+ JE

(
∇XJEσ

)
−∇JMX(JEσ

)
= ∇Xσ + ∇JMXJEσ −

(
∇Xσ

)
−∇JMX(JEσ) = 0.

Hence, Js is integrable if and only if Ns(Xh, Y h) = 0, for all X,Y ∈ X(M).
Equivalently, Js is integrable if and only if the following hold

• N(X,Y ) = 0,
• RE(X,Y ).+JER

E(JMX,Y ).+JER
E(X, JMY ).−JER

E(JMX,JMY ). = 0,

for all X,Y ∈ X(M). □

Proposition 3. If Js is integrable, then the following hold:

(1) JM is integrable,
(2) RE(X, JMY ) = RE(JMX,Y ), for all X,Y ∈ X(M).

In particular, if the connection ∇ is �at and JE is parallel, then Js is integrable if
and only if JM is integrable.

Proof. Let X,Y ∈ X(M) and σ, δ ∈ Γ(E), then equation (12) implies that
N(X,Y ) = 0, and(

RE(X,Y ). + JER
E(JMX,Y ). + JER

E(X,JMY ).− JER
E(JMX, JMY ).

)
= 0.

Taking Y = JMX, one gets

(15)
(
RE(X, JMX). + JER

E(JMX,X).
)

= 0,

for all X ∈ X(M), which implies that RE(X, JMX) = 0 for all X ∈ X(M). We
deduce, taking X + Y instead of X into (15), that

RE(X, JMY ) = RE(JMX,Y ),

for all X,Y ∈ X(M). As matter of fact, if ∇ is �at and JE is parallel, then Js is
integrable if and only if JM is integrable. □

4. When Ωs is closed?

Proposition 4. Let X,Y ∈ X(M) and σ, δ ∈ Γ(E), then the exterior di�erential
of Ωs is completely determined by:

dΩs(Xh, Y h, Zh) = dω(X,Y, Z),(16)

dΩs(σv, δv, γv) = 0,(17)

dΩs(Xh, Y h, σv) = Ωs(Rξ(Xh, Y h), σv),(18)

dΩs(Xh, σv, Y h) = −Ωs(Rξ(Xh, Y h), σv),(19)

dΩs(σv, Xh, Y h) = Ωs(Rξ(Xh, Y h), σv),(20)

dΩs(Xh, σv, δv) = Xh.Ω(σ, δ) − Ω(DXσ, δ) + Ω(DXδ, σ),(21)

dΩs(σv, Xh, δv) = −Xh.Ω(σ, δ) − Ω(DXσ, δ) + Ω(DXδ, σ),(22)

dΩs(σv, δv, Xh) = −Xh.Ω(σ, δ) − Ω(DXσ, δ) + Ω(DXδ, σ);(23)
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for all X,Y, Z ∈ X(M) and σ, δ, γ ∈ Γ(E).

Proof. For all X ′, Y ′, Z ′ ∈ X(E), we have

dΩs(X ′, Y ′, Z ′) = X ′.Ωs(Y ′, Z ′) − Y ′.Ωs(X ′, Z ′) + Z ′.Ωs(X ′, Y ′) − Ωs([X ′, Y ′], Z ′)

+ Ωs([X ′, Z ′], Y ′) − Ωs([Y ′, Z ′], X ′).

(24)

Putting X ′ = Xh, Y ′ = Y h and Z ′ = Zh, we obtain

dΩs(Xh, Y h, Zh) = Xh.ω(Y, Z) − Y h.ω(X,Z) + Zh.ω(X,Y ) − Ωs([X,Y ]h

−Rξ(Xh, Y h), Zh) + Ωs([X,Z]h −Rξ(Xh, Zh), Y h) − Ωs([Y,Z]h

−Rξ(Y h, Zh), Xh)

= X.ω(Y, Z) − Y.ω(X,Z) + Z.ω(X,Y ) − ω([X,Y ], Z)

+ ω([X,Z], Y ) − ω([Y,Z], X)

= dω(X,Y, Z),

since Rξ(Xh, Zh) is a vertical vector �eld, for every X,Y ∈ X(M). On the other
hand, taking X ′ = σv, Y ′ = δv and Z ′ = γv into (24), we get

dΩs(σv, δv, γv) = σv.Ωs(δ, γ) − δv.Ωs(σv, γv) + γv.Ωs(σv, δv)

− Ωs([σv, δv], γv) + Ωs([σv, γv], δv) − Ωs([δv, γv], σv)

= σv.Ω(δ, γ) − δv.Ω(σ, γ) − γv.Ω(σ, δ)

= 0,

since Ω(δ, γ) is a function on M , so all its derivatives in the direction of vertical
vectors vanish. Similarly, putting X ′ = Xh, Y ′ = Y h and Z ′ = σv into (24), we
obtain

dΩs(Xh, Y h, σv) = Xh.Ωs(Y h, σv) − Y h.Ωs(Xh, σv) + σv.ω(X,Y )

− Ωs([X,Y ]h −Rξ(Xh, Y h), σv) + Ωs((DXσ)v, Y h) − Ωs((DY σ)v, Xh)

= Ωs(Rξ(Xh, Y h), σv).

In the same way, we have

dΩs(Xh, σv, Y h) = −Ωs(Rξ(Xh, Y h), σv)

dΩs(σv, Xh, Y h) = Ωs(Rξ(Xh, Y h), σv).

Finally, we get

dΩs(Xh, σv, δv) = Xh.Ωs(σv, δv) − σv.Ω(Xh, δv) − δv.Ωs(Xh, σv)

− Ωs([Xh, σv], δv) + Ωs([Xh, δv], σv) − Ωs([σv, δv], Xh)

= Xh.Ω(σ, δ) − Ω(DXσ, δ) + Ω(DXδ, σ).

In the same way we obtain

dΩs(σv, Xh, δv) = −Xh.Ω(σ, δ) − Ω(DXσ, δ) + Ω(DXδ, σ)

dΩs(σv, δv, Xh) = −Xh.Ω(σ, δ) − Ω(DXσ, δ) + Ω(DXδ, σ).

□
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Next, we prove that Ωs is in fact the almost symplectic form associated to
(E,Gs, Js) provided the compatibility between JE (resp. JM ) and Ω (resp. ω).
Indeed, we have

Proposition 5. Assume that JE (resp. JM ) is compatible with Ω (resp. ω), then

Gs(JsZ,W ) = Ωs(Z,W ),

for all Z,W ∈ X(E).

Proof. Let X,Y ∈ X(M) and σ, δ ∈ Γ(E), then

Gs(JsXh, Y h) = Gs
(
(JMX)h, Y h

)
= g(JMX,Y ) = ω(X,Y ) = Ωs(Xh, Y h),

Gs(Jsσv, δv) = Gs
(
(JEσ)v, δv

)
= h(JEσ, δ) = Ω(σ, δ) = Ωs(σv, δv).

□

Remark 3. We have proved in Lemma 1 that the triple (E,Gss, Js) is an almost
Hermitian manifold. Denote by Ωss the almost symplectic form associated with this
triple, Ωss generalizes Ωs.

When a vector bundle with a connection is endowed with a �ber metric, a
complex structure and a symplectic structure such that the triple is pairwise compa-
tible, if any two of them are parallel, then so is the third (cf. [27, 32]). So, assume
that E is endowed with the symplectic structure Ω associated to JE and h, then
the parallelism of JE implies that of Ω.

Theorem 1. Assume that the complex structure JE is parallel and let ω be an
almost symplectic on M . Then (E,Ωs) is a symplectic manifold if and only if the
following conditions hold:

(i) ω is a symplectic form,
(ii) ∇ is �at.

Proof. If Ωs is a symplectic form, then by virtue of (16) of Proposition 4, we
conclude that ω is symplectic. Further, equation (18) implies that Rξ = 0, and
hence ∇ is �at.

Conversely, if ω is symplectic and∇ is �at, then all the components of dΩs vanish
except for (21), (22) and (23). On the other hand, the parallelism of JE implies that
of Ω, and hence

X.Ω(σ, δ) = Ω(∇Xσ, δ) + Ω(σ,∇Xδ),

which implies at once that Ωs is closed. □

Corollary 1. Assume ∇ is �at, then (E,Gs, Js) is a K�ahler manifold if and only
if (M, g, JM ) is a K�ahler manifold.

Remark 4. The construction of Ωs may be accomplished for any symplectic vector
bundle with an almost symplectic base manifold and endowed with a connection ∇
without any reference to complex structures. In this case, if the symplectic structure
Ω is parallel, then the manifold (E,Ωs) is a symplectic manifold if and only if the
base manifold is symplectic and the connection is �at.

It has been shown that, in the case of �at connections, (E,Gs) is �at if and
only if (M, g) is �at (cf. [4]). In conclusion, considering a vector bundle E, over
a K�ahler manifold, endowed with a �ber metric, a compatible �at connection and
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a compatible parallel complex structure, then the manifold (E,Gs, Js) is a non-
�at (unless the base is �at) K�ahler manifold. This will allow the construction of a
very wide class of new K�ahler manifolds out of the old ones. Furthermore, if the
base is not a K�ahler manifold, then one gets new examples of complex manifolds,
Hermitian manifolds and symplectic manifolds depending on the initial data.

5. Applications

5.1. Whitney sums of vector bundles. Given a vector bundle E over an almost
complex manifold (M,JM ) such that E is endowed with a �ber metric h and a
compatible connection ∇. The Whitney sum (E ⊕ E, π⊕,M) possesses a natural
complex structure de�ned by

(25) JE⊕E(σ, δ) = (−δ, σ),

for σ, δ ∈ Γ(E) (cf. [32]).
Thus the manifold E ⊕ E may be endowed with the almost complex structure

given by

(26) J(Z) =
(
JMπ∗Z

)h⊕
+

(
JE⊕EK

⊕Z
)v⊕

for all Z ∈ T(e1,e2)(E ⊕ E) and (e1, e2) ∈ E ⊕ E, where K⊕ is the connection map

of the connection naturally induced on E ⊕ E from ∇, which we denote by ∇⊕.
Further, v⊕ (resp. h⊕) denotes the vertical lift to E ⊕E (resp. horizontal lift with
respect to ∇⊕). This almost complex structure can be expressed in a more precise
manner, but we need �rst to prove the following preparatory lemmas. First of all,
the connection ∇⊕ gives the splitting

T(e1,e2)(E ⊕ E) = (He1 ×He2) ⊕ (Ve1 × Ve2),

for all (e1, e2) ∈ E ⊕ E.

Lemma 3. Given σ, δ ∈ Γ(E) and X ∈ X(M), then

(σ, δ)v⊕ = (σv, δv)

Xh⊕ = (Xh, Xh),

where Xh (resp σv and δv) is the horizontal lift of X with respect to ∇ (resp. are
the vertical lifts of sections of E).

Proof. Let X ∈ X(M), then (Xh, Xh) is horizontal with respect to ∇⊕ and π⊕-
related to X, hence Xh⊕ = (Xh, Xh). On the other hand, if σ, δ ∈ Γ(E), then
(σ, δ) : M −→ E ⊕ E is a section of E ⊕ E. Thus

(σ, δ)v⊕(e1, e2) =
d

dt

∣∣∣
t=0

(
(e1, e2) + t(σ(π(e1)), δ(π(e1)))

)
=

d

dt

∣∣
t=0

(
e1 + tσ(π(e1)), e2 + tδ(π(e1))

)
=

(
σv(e1), δv(e2)

)
= (σv, δv)(e1, e2).

□
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Thus, the almost complex structure J is totally determined by the following{
J(Xh⊕) =

(
(JMX)h, (JMX)h

)
J((σ, δ)⊕v) = (−δv, σv).

The complex structure JE⊕E is compatible with h⊕h. Furthermore, parallelism
also holds. More precisely we have the following:

Lemma 4. The complex structure JE⊕E is parallel with respect to ∇⊕.

Proof. Let σ, δ ∈ Γ(E), then

(∇⊕JE⊕E)(σ, δ) = ∇⊕(JE⊕E(σ, δ)) − JE⊕E(∇⊕(σ, δ))

= ∇⊕(−δ, σ) − JE⊕E(∇σ,∇δ)

= (−∇δ,∇σ) − (−∇δ,∇σ)

= 0.

□

Thus by virtue of Proposition 3, the almost complex structure is integrable if
and only if the following hold:

(1) JM is integrable;
(2) ρ⊕(X,Y ) = 0, for all X,Y ∈ X(M), where ρ⊕ is the 2-form given in

Proposition 2 with respect to ∇⊕.

If E = T 2M is the second tangent bundle of a Riemannian manifold M with Levi-
Civita connection ∇. Then we have

ζ: T 2M → TM ⊕ TM
Z 7→ ζ(Z) = (π∗,K)(Z),

is a vector bundle isomorphism, where K is the connection map of ∇ and πM is
the canonical projection of the tangent bundle TM of M (cf. [32]), hence T 2M is
endowed with an almost complex structure which is integrable if and only if the
corresponding almost complex structure on TM ⊕ TM is integrable.

5.2. An in�nite family of examples. The tangent bundles to almost Hermitian
manifolds constitute a wide class of examples of vector bundles with a complex
structure, hence the constructions made above apply naturally, which yields new
almost complex structures on the tangent bundle manifolds. More precisely, let
(M, g, JM ) be an almost Hermitian manifold, then JM gives rise to complex structu-
res on �bers de�ned by

(27) J(X) =
(
JMπ∗X

)h
+

(
JMK(X)

)v
for all X ∈ T(x,u)TM and (x, u) ∈ TM . By virtue of Lemma 1, the tensor �eld J
is an almost complex structure on TM . Denote by ∇ the Levi-Civita connection of
g. If JM is parallel (w.r.t ∇), that is the connection ∇ is almost complex (cf. [26]),
then by virtue of Proposition 2, the almost complex structure J is integrable if and
only if

(i) JM is integrable,
(ii) ρ(X,Y ) = 0, for all X,Y ∈ X(M);
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where ρ is the 2-form de�ned in Proposition 2. Condition (ii) is equivalent to (M, g)
being �at. Indeed, since JM is ∇-parallel we have R(JMX, JMY ) = R(X,Y ), hence
condition (ii) together with Proposition 3 give the following

R(JMX,Y ) = R(X,JMY ) = R(JMX, J2
MY ) = −R(JMX,Y ),

which implies at once that R = 0, whence (M, g) is �at. Consequently, J is
integrable if and only if (M, g, JM ) is a �at Hermiatian manifold. Furthermore,
if we endow TM with the symplectic form Ωs constructed in the previous section
from ω, where ω is the fundamental 2-form of (M, g, JM ), then (TM,Ωs) is a
symplectic manifold if and only if (M,ω) is a �at symplectic manifold. All at all,
the triple (TM,Gs, Js) is a �at K�ahler manifold if and only if (M, g, J) is a �at
K�ahler manifold.

Using tangent bundles, Whitney sums and the classi�cation of compact �at
K�ahler manifolds in dimensions four and six, one can construct in�nite families
of examples of non-compact �at K�ahler manifolds. Indeed, using Corollary 1, one
can construct in�nitely many examples of �at K�ahler manifolds using a classi�cation
of four and six dimensional compact �at K�ahler manifolds performed in [17]. The
classi�cation of compact �at Riemannian manifolds is a classical subject in Rieman-
nian geometry, see for examples [13, 14, 15, 16] and the references therein. This leads
to a classi�cation of compact �at K�ahler manifolds of dimensions four and six.

Let Mn = O(n) ⋉ Rn be the group of rigid motions of Rn. A rigid motion
(m, v) ∈ Mn acts on Rn by

(m, v).x = mx + v, for x ∈ Rn.

Denote by r : Mn −→ O(n) (the rotational part) (resp. t : Mn −→ Rn (the
translational part)) the natural projections. Following the notations in [16], if π is
a subgroup of Mn, we denote by π ∩ Rn the set of pure translations (i.e. the set
of element (m, v) ∈ π, with m = In). The subgroup π is said to be torsion free if
α ∈ π and αk = (I, 0) implies that α = (I, 0) ((I, 0) is the identity element of Mn).
In this terminology, the subgroup π ∩Rn is a torsion-free abelian normal subgroup
of π.

Denote by An = GLn(R)⋉Rn the group of a�ne motions. A subgroup π of Mn

is said to be irreducible if t(απα−1) spans Rn, for all α ∈ An. A crystallographic
subgroup of Mn is a discrete irreducible subgroup of Mn. A crystallographic sub-
group which is torsion-free is called a Bieberbach subgroup of Mn. For a detailed
exposition and a discussion of the relevance of these notions, we refer to [16].
Bieberbach proved three fundamental theorems on crystallographic subgroups of
Mn. The �rst theorem assert that if π is a crystallographic subgroup of Mn, then

(i) π∩Rn is a free abelian group on n generators which are linearly independent
translations,

(ii) r(π) is �nite;

where r(π) is the rotational parts of elements in π, which is isomorphic to π/(π∩Rn).
For the other two theorems as well as related results, we refer to [16]. Furthermore,
if π is a crystallographic subgroup of Mn, then the sequence

(28) 0 −→ π ∩ Rn −→ π −→ r(π) −→ 1,

is exact. The algebraic analogues of those groups have been introduced, see [16].
A crystallographic group is a group which contains a �nitely generated maximal
abelian torsion-free subgroup of �nite index. A Bieberbach group is a crystallographic
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group which is itself torsion-free (cf. [16]). Hence, for a crystallographic group π,
there is a sequence

(29) 0 −→ N −→ π −→ Φ −→ 1,

where Φ is a �nite group and N is a �nitely generated maximal abelian torsion-free
subgroup of π. For such a triple of groups, π is called an extension of Φ by N .

The geometric relevance comes from the fact that every compact �at Riemannian
manifold M is isometric to one of the form Rn/π where π is a discrete irreducible
and torsion-free subgroup of Mn. Further, the fundamental group of M is given by
π1(M) = π and the holonomy of M is isomorphic to π/(π ∩ Rn) (cf. [13, 16, 38]).
Furthermore, in [10], L. Auslander and M. Kuranishi proved that every Bieberbach
group is the fundamental group of a compact �at Riemannian manifold (cf. [10]).

On the other hand it has been proved that a compact Riemannian manifold is
�at if and only if its holonomy group is �nite. Further, every �nite group Φ is the
holonomy of a compact �at Riemannian manifold. Such a manifold is said to be
a Φ-manifold (cf. [13]). Hence Bieberbach groups were classi�ed by picking up a
�nite group, which is the holonomy, and classify all the extensions by some �nitely
generated maximal abelian torsion-free subgroup. Which leads to a classi�cation of
compact �at Riemannian manifolds. For a detailed study of the classi�cation, we
refer to [16].

Moreover, it has been proved that every �nite group is the holonomy of a compact
�at K�ahler manifold (cf. [21]), hence one can choose among its extensions those
that correspond to fundamental groups of compact �at K�ahler manifolds (cf. [21]).
So, based on results from �nite group theory and their integral representations as
well as the classi�cation of Bieberbach groups, K. Dekimpe, M. Ha lend fa and
A. Szczepa�nski have given a classi�cation of compact �at K�ahler manifolds of
dimensions four and six. Precisely, they have proved that there exist exactly eight
K�ahler manifolds of dimension four. We denote the collection of those manifolds by
C4. Further, they proved that there exist exactly 173 six dimensional compact �at
K�ahler manifolds. We denote their collection by C6. For more details, see [17].

Now, let (M, g, J) be a four (resp. six) dimensional compact �at K�ahler manifold
belonging to the collection C4 (resp. C6). Then, by virtue of Corollary 1, the triple
(TM,Gs, Js) is a �at K�ahler manifold with twice the dimension of M , hence a
collection of eight and twelve dimensional �at K�ahler manifolds.

An in�nite family of �at K�ahler manifolds can be constructed from tangent
bundles and the direct sum operation. For the sake of simplicity, denote the vector
bundle TM ⊕ ... ⊕ TM (k times) by k(TM). Endow k(TM) with the connection,
denoted by ∇k, induced from the Levi-Civita connection ∇ on M . Since (M, g)
is �at, then ∇k is �at. Denote by JTM⊕TM the canonical complex structure on
TM ⊕ TM (which is also 2(TM)), then by virtue of Corollary 1, the triple (TM ⊕
TM,Gs, Js) is a non-compact �at K�ahler manifold of dimension 3n, where n is the
dimension of M . By induction, this construction can be carried on. More precisely,
the vector bundle 2m(TM) −→ M possesses a canonical complex structure since the
total space is the direct sum of two copies of 2(m−1)(TM). Thus, by Corollary 1, the
triple (2m(TM), Gs, Js), with Gs (resp. Js) is the Sasaki metric (resp. the complex
structure) on 2m(TM), is a non-compact �at K�ahler manifold. Hence in�nitely
many examples of �at K�ahler manifolds with dimension (2m + 1)n, where n is the
dimension of M .
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Consequently, we have constructed in�nitely many examples of non-compact �at
K�ahler manifolds of dimensions of the form (2m + 1)n, with m ≥ 0 and n = 4, 6.

5.3. The tangent bundle to the cotangent bundle. Let (M, g) be a Rieman-
nian manifold with ∇M is its Levi-Civita connection, and let T ∗M be its cotangent
bundle. Denote by θ the Liouville 1-form on T ∗M and ω = −dθ the canonical
symplectic structure induced by θ. The constructions made before applies in a
direct manner to the vector bundle π : T (T ∗M) −→ T ∗M as follows. Assume that
G is a Riemannian metric on T ∗M which is compatible with ω in the sense that
u −→ ω(u, .) are isometries with respect to the dual metric and denote by ∇ the
Levi-Civita connection of G, set

Ωs(Z,W ) = ω(π∗Z, π∗W ) + ω(KZ,KW ),

where Z,W ∈ T (T ∗M) and K is the connection map of ∇. The 2-form Ωs is an
almost complex structure on T ∗M which is integrable if and only if the following
hold:

(i) ∇ is �at,
(ii) ω is parallel.

It is noteworthy that there is a very wide class of metrics on T ∗M which can be
constructed `naturally' from g (cf. [28, 33, 35, 37]). For our purposes, it su�ces to
chose one among them which is compatible with the canonical symplectic structure
on T ∗M .
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