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Abstract: The method of approximating functions by polynomials
based on Taylor series expansion is widely known. However, the
residual term of such an approximation can be signi�cant if the
function has large gradients. The work assumes that the function
has a decomposition in the form of a sum of regular and boundary
layer components. The boundary layer component is a function of
general form, known up to a factor, and is responsible for large
gradients of the given function. This decomposition is valid, in
particular, for the solution of a singularly perturbed problem. To
approximate the function, a formula is proposed that uses the
Taylor series expansion of the function and is exact for the bounda-
ry layer component. Under certain restrictions on the boundary
layer component, estimates of the error in the approximation of
the function are obtained. These estimates do not depend on the
boundary layer component. Cases of functions of one and two
variables are considered.
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1 Introduction

The method of approximating a function by polynomials based on Taylor
series expansion is widely known. However, the remainder of such an expan-
sion can be signi�cant if the function has large gradients. Therefore, the
question of interest is how to approximate such a function based on the use
of Taylor series expansion so that the error is not signi�cant. Let us consider
the cases of functions with large gradients of one variable u(x) on the interval
[0, 1] and two variables u(x, y) in the rectangular domain [0, 1]2.

We will assume that the function has a decomposition in the form of
a sum of regular and boundary layer components. In particular, such a
decomposition is valid for the solution of the singularly perturbed problem
[1]. Boundary layer components are considered as functions of a general
form, are known up to a factor and are responsible for large gradients of the
function. In the case of a function of one variable such a decomposition was
constructed to solve the singularly perturbed problem in [2]. In the case of
a function of two variables, the function u(x, y) corresponds to the solution
of a singularly perturbed elliptic problem, and the decomposition for it was
constructed in [3].

Based on the use of the Taylor series expansion of the function, we will
construct an approximation to the function based on �tting to the boundary
layer component and estimate the error of such approach.
Notations. By C and Cj we mean positive constants that are independent

of the grid step h, of the boundary layer components Φ(x),Θ(y) and their
derivatives. We will assume that in the case of an exponential boundary
layer, these constants do not depend on the small parameter ε. We will limit
the various quantities to one constant Cj , if this is clear from the text.

2 Construction and proving of an approximation for a

function of one variable

Let u(x) be a su�ciently smooth function on the interval [0, 1]. The well-
known Taylor series expansion with residual term Rk(u, x) in integral form
looks as

u(x) =

k∑
j=0

u(j)(x0)

j!
(x− x0)

j +Rk(u, x), (1)

where

Rk(u, x) =
1

k!

x∫
x0

u(k+1)(t)(x− t)k dt. (2)
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Let us h = |x − x0|. We will assume that x > x0. In the case of x < x0
the interval [x0, x] is replaced by the interval [x, x0].

From (2) the estimates follow:

|Rk(u, x)| ≤
hk

k!

x∫
x0

|u(k+1)(t)| dt,

|Rk(u, x)| ≤
hk+1

(k + 1)!
max

s∈[x0,x]

∣∣∣u(k+1)(s)
∣∣∣. (3)

According to (3), for some constant C |Rk(u, x)| ≤ Chk+1, if the derivative

u(k+1)(x) is uniformly bounded.
We will be interested in the case when this derivative is not uniformly

bounded. Let the following decomposition be valid for a su�ciently smooth
function u(x):

u(x) = p(x) + γΦ(x), x ∈ [0, 1], (4)

where p(x) is a regular component with limited derivatives up to a certain
order, Φ(x) is a boundary layer component, which is a function of general
form and is responsible for large gradients of the function u(x). Function Φ(x)
is assumed to be known, p(x) and γ are not speci�ed, and the coe�cient γ
is limited.

Let us note the cases of specifying Φ(x), when the function u(x) has the
form (4).

In the presence of a power-law boundary layer

Φ(x) = (x+ ε)α, 0 < α < 1, x ≥ 0, ε ∈ (0, 1].

In the presence of a logarithmic singularity Φ(x) = lnx, x ≥ ε > 0.
Decomposition of a function with such a singularity was used in [4], where
an elliptic equation was considered in a domain with a small hole of radius
ε.

Let us dwell on the case of an exponential boundary layer, when the
function u(x) is the solution of a singularly perturbed boundary value problem
[1]:

εu′′(x) + a1(x)u
′(x)− a2(x)u(x) = f(x), u(0) = A, u(1) = B, (5)

where a1(x) ≥ β > 0, a2(x) ≥ 0, ε ∈ (0, 1], functions a1, a2, f are quite
smooth. The peculiarity of the problem (5) is that the equation degenerates
at ε → 0, due to which at small values ε the solution has large gradients at
the boundary x = 0.

According to [2], for the solution of the problem (5) for an arbitrarily given
�nite n0, the decomposition (4) is valid with the following relations:

Φ(x) = e−αx/ε, α = a1(0), (6)

|p(n)(x)| ≤ C0

[
1 +

1

εn−1
e−βx/ε

]
, n ≤ n0, γ = −εu′(0)/a1(0).

Here the constant C0 does not depend on ε and n.
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In [2], decomposition (4) was used to construct a di�erence scheme based
on �tting to the boundary layer component Φ(x). In [5], [2] it was proven
that with such approach, the convergence of the di�erence scheme becomes
uniform with respect to the small parameter ε.

In [6] decomposition (4) is used to construct an interpolation formula
that is exact on the component Φ(x). The formula contains an arbitrarily
speci�ed number of interpolation nodes, and in accordance with [6] its error
is uniform in the component Φ(x). In this case, the monotonicity of the
derivatives of the function Φ(x) was used. This condition is satis�ed in the
case of the function (6). According to (6), the following estimate is true

|Φ(n)(x)| ≤ C/εn. Therefore, in accordance with (3) the error |Rk(u, x)| can
be signi�cant for small values of ε.

Let us show that the error is signi�cant in the case when in (1) k = 1 :

u(x) ≈ u(x0) + (x− x0)u
′(x0). (7)

Let in decomposition (4) Φ(x) = e−x/ε, where ε ∈ (0, 1]. Then for x0 = 0
and ε = h = x− x0 we have

R1(Φ, x) = Φ(h)− Φ(0)− hΦ′(0) = e−1.

Thus, in the presence of an exponential boundary layer, the error of the
formula (7) does not decrease with decreasing h, if ε = h. It is of interest
how to apply the Taylor series to approximate a function with decomposition
(4).

To approximate the function u(x) of the form (4), we correct Taylor's
formula (1) so that the formula becomes exact on the component Φ(x).

Assuming that Φ(k+1)(x0) ̸= 0, we de�ne the approximation:

u(x) ≈ Gk(u, x) =
k∑

j=0

u(j)(x0)

j!
(x− x0)

j+

+
[
Φ(x)−

k∑
j=0

Φ(j)(x0)

j!
(x− x0)

j
] u(k+1)(x0)

Φ(k+1)(x0)
. (8)

From (8) it follows that Gk(γΦ, x) = γΦ(x).
Taking into account (4), we get

u(x)−Gk(u, x) = p(x)−Gk(p, x) + γ(Φ(x)−Gk(Φ, x)). (9)

Taking into account the relation γΦ(x) = Gk(γΦ, x) and (8), from (9) we
obtain

u(x)−Gk(u, x) = p(x)−
k∑

j=0

p(j)(x0)

j!
(x− x0)

j−

−
[
Φ(x)−

k∑
j=0

Φ(j)(x0)

j!
(x− x0)

j
] p(k+1)(x0)

Φ(k+1)(x0)
. (10)
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According to (1), the relation (10) can be written as:

u(x)−Gk(u, x) = Rk(p, x)−
Rk(Φ, x)

Φ(k+1)(x0)
p(k+1)(x0). (11)

From (3), (11) it follows∣∣∣u(x)−Gk(u, x)
∣∣∣ ≤ hk+1

(k + 1)!

[
1 + max

s∈[x0,x]

∣∣∣Φ(k+1)(s)
∣∣∣/∣∣∣Φ(k+1)(x0)

∣∣∣]×
max

s∈[x0,x]

∣∣∣p(k+1)(s)
∣∣∣. (12)

From the estimate (12) it follows the next lemma.

Lemma 1. Let the function u(x) has decomposition (4),

Φ(k+1)(x0) ̸= 0 and for some constant C1 the following estimate is valid:

max
s∈[x0,x]

∣∣∣Φ(k+1)(s)
∣∣∣ ≤ C1

∣∣∣Φ(k+1)(x0)
∣∣∣. (13)

Then for some constant C2 there is an error estimate:∣∣∣u(x)−Gk(u, x)
∣∣∣ ≤ C2h

k+1 max
s∈[x0,x]

∣∣∣p(k+1)(s)
∣∣∣, (14)

where Gk(u, x) corresponds to (8).

In contrast to the estimate (3) for formula (1), the error estimate (14)
for formula (8) is uniform in the boundary layer component Φ(x) and its
derivatives.

Let us look at examples of application of Lemma 1.
In the case of an exponential boundary layer at the boundary x = 0

function Φ(x) corresponds to (6), so for x > x0 the condition (13) is satis�ed
when setting C1 = 1.

In the case of x < x0 and an exponential boundary layer at the boundary
x = 1, the function Φ(x) in accordance with [1] has the form: Φ(x) =

eα(x−1)/ε.And in this case, the condition (13) is satis�ed when setting C1 = 1.
Let's consider the formula (8) for k = 0 :

u(x) ≈ u(x0) +
[
Φ(x)− Φ(x0)

] u′(x0)
Φ′(x0)

. (15)

Let Φ(x) = e−x/ε, x > x0. Then for the error ∆ of this formula we have:

∆ = u(x)−u(x0)−
[
Φ(x)−Φ(x0)

] u′(x0)
Φ′(x0)

= p(x)−p(x0)−ε(1−e−h/ε)p′(x0),

where h = x− x0. Using the condition |p′(x)| ≤ C, for some constant C1 we
get |∆| ≤ C1h. This corresponds to the estimate (14) at k = 0.

From the example it follows that the error of the formula (15) of orderO(h)
uniformly in a small parameter ε, while the application of the corresponding
classical formula (7) leads to errors of the order of O(1).

Let us show that the developed formula (8) is applicable in particular,
when numerically solving delay singularly perturbed di�erential equations.
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Numerical methods for solving delay singularly perturbed problems were
considered in a number of works, for example, in [7], [8].

Let us dwell on the boundary value problem

εu′′(x) + a(x)u′(x)− b(x)u(x− δ) = f(x),

u(x) = g(x),−δ ≤ x ≤ 0, u(1) = B, (16)

where the functions in (16) are su�ciently smooth, a(x) ≥ a0 > 0, ε ∈
(0, 1], b(x) ≥ 0. To get rid of the term with a delay argument, an approach
has been developed based on the expansion of this term in a Taylor series.
For example, in [7],[8] approximation looks like

u(x− δ) ≈ u(x)− δu′(x). (17)

Then the problem (16) is reduced to a singularly perturbed problem without
term with a delay argument:

εũ′′(x)+(a(x)+b(x)δ)ũ′(x)−b(x)ũ(x) = f(x), ũ(0) = g(0), ũ(1) = B. (18)

It is necessary to apply a di�erence scheme to �nd the solution ũ(x) of the
problem (18). Next, to the singularly perturbed problem (18) we can apply a
di�erence scheme whose convergence is uniform in a small parameter ε. The
issue of constructing di�erence schemes for singularly perturbed problems
has been widely studied since 1969. Two main approaches have emerged:
grid re�nement in the boundary layer [1], [9], [10] and �tting the di�erence
scheme to the boundary layer component on a uniform grid [5], [2], [11].

Note that using the formula (17) to move to a problem without a delay
argument can lead to signi�cant errors, since the solution to the problem (16)
has large gradients in the boundary layer region. According to the example
(7) the error of the formula (17) can be of the order of O(1) at ε ≤ Cδ.
Because of this, when moving to the problem (18 ) in the region of large
gradients of the function u(x) the error |u(x) − ũ(x)| can be of the order
of O(1). The case of negative delay is possible when δ < 0. In the case
of a singularly perturbed problem, to move to a problem without a delay
argument, one can use the developed formula (8), researched in Lemma 1.

3 The case of a function of two variables

Let us dwell on the use of the Taylor series to approximate a function of
two variables with large gradients. Let the function u(x, y) be represented
as:

u(x, y) = p(x, y) + γ1Φ(x) + γ2Θ(y), (x, y) ∈ [0, 1]2. (19)

We assume that the regular component p(x, y) is not speci�ed and has
derivatives limited to a certain order, the coe�cients γ1, γ2 are not speci�ed
and limited, Φ(x) and Θ(y) are known boundary layer components with large
gradients.
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In particular, the decomposition (19) is valid for the solution of the elliptic
problem with exponential boundary layers [3]:

εuxx + εuyy + a(x)ux + b(y)uy − c(x, y)u = f(x, y), (x, y) ∈ Ω = (0, 1)2,

u(x, y) = g(x, y), (x, y) ∈ Γ,

where Γ = Ω⧹Ω, functions a, b, c, f, g are smooth enough,

a(x) ≥ β1 > 0, b(y) ≥ β2 > 0, c(x, y) ≥ 0, ε ∈ (0, 1].

In accordance with [3] in (19)

Φ(x) = e−αx/ε, Θ(y) = e−βy/ε, (20)

where α = a(0), β = b(0).

3.1. Formula of �rst order accuracy. Let

(x0, y0), (x, y) ∈ [0, 1]2, h =
√
(x− x0)2 + (y − y0)2. (21)

Let us consider the issue of approximating u(x, y) based on the use of Taylor
series expansion around the point (x0, y0).

First, let's estimate the approximation error u(x, y) ≈ u(x0, y0). Let ∆ =
u(x, y) − u(x0, y0). Due to the presence of boundary layer components in
accordance with (19), the error |∆| can be signi�cant, despite the smallness of
h. For example, if these components correspond to (20), then in the boundary
layer region the case |∆| ≥ Ch/ε is possible for some constant C. The error
increases with decreasing parameter ε.

Let us proceed to constructing a �rst-order accuracy formula whose error
estimate is uniform in the components Φ(x),Θ(y).Assuming that Φ′(x0) ̸= 0,
Θ′(y0) ̸= 0, we de�ne a formula that is exact on the components Φ(x),Θ(y):

u(x, y) ≈ G1(u, x, y) =

= u(x0, y0) +
Φ(x)− Φ(x0)

Φ′(x0)
u′x(x0, y0) +

Θ(y)−Θ(y0)

Θ′(y0)
u′y(x0, y0). (22)

From (22) we have

|u(x, y)−G1(u, x, y)| = |p(x, y)−G1(p, x, y)| ≤ |p(x, y)− p(x0, y0)|+

+
|Φ′(s1)|
|Φ′(x0)|

|x− x0| |p′x(x0, y0)|+
|Θ′(s2)|
|Θ′(y0)|

|y − y0| |p′y(x0, y0)|. (23)

The following lemma follows from the estimate (23).

Lemma 2. Let the function u(x, y) has the decomposition (19), for some
constant C the following relations are valid:

|p′x(s1, s2)| ≤ C, |p′y(s1, s2)| ≤ C, Φ′(x0) ̸= 0,Θ′(y0) ̸= 0.

Let for some constant C1

|Φ′(s1)| ≤ C1|Φ′(x0)|, |Θ′(s2)| ≤ C1|Θ′(y0)|, s1 ∈ [x0, x], s2 ∈ [y0, y]. (24)

Then there is the constant C2 such that

|u(x, y)−G1(u, x, y)| ≤ C2h.
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If Φ(x) and Θ(y) correspond to (20), then condition (24) is satis�ed when
setting C1 = 1.

In the cases x < x0 or y < y0, Lemma 2 remains valid with by appropriately
replacing the interval, for example, [x0, x] with [x, x0].

3.2. Formula of second order accuracy. The approximation by the
Taylor formula of the second order of accuracy has the form

u(x, y) ≈ u(x0, y0) +
∂u

∂x
(x0, y0)(x− x0) +

∂u

∂y
(x0, y0)(y − y0). (25)

As in the one-dimensional case, it can be shown that applying the formula
(25) to a function with large gradients of the form (19) due to the presence
of boundary layer components can lead to errors of the order of O(1).

Let's modify the formula (25) so that the formula becomes exact for the
boundary layer components. Assuming that Φ′′(x0) ̸= 0 and Θ′′(y0) ̸= 0,
let's move from (25) to the formula

u(x, y) ≈ G2(u, x, y) = u(x0, y0) +
∂u

∂x
(x0, y0)(x− x0) +

∂u

∂y
(x0, y0)(y− y0)+

+
Φ(x)− Φ(x0)− Φ′(x0)(x− x0)

Φ′′(x0)

∂2u

∂x2
(x0, y0)+

+
Θ(y)−Θ(y0)−Θ′(y0)(y − y0)

Θ′′(y0)

∂2u

∂y2
(x0, y0).

It is easy to verify that

G2(γ1Φ, x, y) = γ1Φ(x), G2(γ2Θ, x, y) = γ2Θ(y).

Hence,
u(x, y)−G2(u, x, y) = p(x, y)−G2(p, x, y) =

=
[
p(x, y)− p(x0, y0)−

∂p

∂x
(x0, y0)(x− x0)−

∂p

∂y
(x0, y0)(y − y0)

]
−

−1

2

[Φ′′(s1)(x− x0)
2

Φ′′(x0)

∂2p

∂x2
(x0, y0) +

Θ′′(s2)(y − y0)
2

Θ′′(y0)

∂2p

∂y2
(x0, y0)

]
,

where s1 ∈ [x0, x], s2 ∈ [y0, y].
This relation implies the validity of the following lemma.

Lemma 3. Let the function u(x, y) has the decomposition (19) and for some
constant C0 for all s1 ∈ [x0, x], s2 ∈ [y0, y] the wollowing estimates are
performed:

|p′′xx(s1, s2)| ≤ C0, |p′′yy(s1, s2)| ≤ C0, |p′′xy(s1, s2)| ≤ C0.

Let Φ′′(x0) ̸= 0,Θ′′(y0) ̸= 0 and for some constant C1 for all s1 ∈ [x0, x], s2 ∈
[y0, y] the following estimates are valid:

|Φ′′(s1)| ≤ C1|Φ′′(x0)|, |Θ′′(s2)| ≤ C1|Θ′′(y0)|. (26)

Then there is a constant C2 such that

|u(x, y)−G2(u, x, y)| ≤ C2h
2,
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where h is given in (21).

In the case when Φ(x) and Θ(y) correspond to (20), the conditions (26)
are satis�ed when given C1 = 1.

In the cases x < x0 or y < y0, Lemma 3 remains valid with by appropriately
replacing the interval, for example, [x0, x] with [x, x0].

4 Conclusion

The issue of approximating a function with large gradients based on Taylor
series expansion is investigated. The problem is that the residual term can
be signi�cant if the function has large gradients. The case is considered when
the function contains the boundary layer components, known up to a factor
and responsible for large gradients of the function. This decomposition of
the function is valid, for example, for the solution of a singularly perturbed
problem. In the cases of a function of one and two variables, a modi�cation
of Taylor series expansion is proposed to achieve the fact that the remainder
term does not depend on the boundary layer components. It is proven that
then the estimate of the error of the remainder term depends only on the
derivatives of the regular component.
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