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Abstract. Stability of the family of integer translations of expo-
nential spline Um,p for arbitrary m, p is proven; Riesz bounds are
determined. The method presented in the paper allows to calculate
Riesz bounds for the convolution of a B-spline of an arbitrary order
and a function with an appropriated Fourier transform.
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1 Introduction

As known, piece-wise polynomial functions were used by many well-known
mathematicians long before the independent apparatus of polynomial splines
was introduced by Schoenberg in [1,2]. A large number of works has been
devoted to further generalization of the spline concept and study of approxi-
mation properties for splines of various nature. The �rst work in this direction
is recognized to be the Schoenberg paper [3], in which trigonometric splines
were considered as functions in the kernel of the di�erential operator ∆m =
D(D2+1) . . . (D2+m2). Later on, interpolation splines, generated by linear
di�erential operators under various restrictions, were introduced [see, for
example, 4,5,6]. With this approach, treatment of L-splines depends heavily
on obtaining explicit formulae for a related Green's function and associated

Mishchenko E.V., Stability condition and Riesz bounds for exponential

splines.

© 2023 Mishchenko E.V.

The study was carried out within the framework of the state contract of the Sobolev
Institute of Mathematics (project no. FWNF-2022-0008).

Received January, 16, 2023, published December, 12, 2023.
1430



STABILITY CONDITION AND RIESZ BOUNDS FOR EXPONENTIAL SPLINES1431

divided di�erences. At the same time, a variational approach to the theory
of splines in Hilbert space was developed, in which an interpolation spline is
de�ned as a solution to some extremal problem [7].

The role of splines in various applications is well known. Algorithms based
on polynomial splines have proven to be quite e�cient for signal processing
and imaging in medicine [8], especially for high resolution interpolation,
showing the best trade-o� between cost and quality among linear techniques.
Splines are used as basis functions in numerical methods, for example, in the
collocation method [9]. Polynomial splines also play a fundamental role in
wavelet theory [10]. Less attention was paid to exponential splines.

In distinction to the approach in [4�6], where exponential splines are
de�ned as functions in the null space of the operator Lm = (D − pI)(D −
2pI) . . . (D−pmI), D is the di�erentiaton operator, I is the identical operator,
m ∈ N, p ∈ R, in the present paper exponential analogues of B-splines,
hereinafter called E-splines, are constructed using convolution operators.
The class of exponential splines is an extension of polynomial B�splines in
the sense that B�splines of order m are limit cases of exponential splines.

It is worth saying that general spline theories are very elegant, but their
level of generality often makes it di�cult for a researcher to extract informa-
tion relevant to a particular case, especially while obtaining estimates. These
considerations were the motive for studying certain properties of the class
of exponential splines, which are fragments of exponentials connected in a
smooth way.

The purpose of this work is to study the stability of the system of integer
translations of exponential splines or, in other words, to establish the Riesz
bounds for this system.

2 Basic concepts and notation

The following concepts and notation are used in the paper.
Values of the functions sin ax

x , sinh bx
x and similar ones are assumed to be

de�ned at the point x = 0 by their limit values:

lim
x→0

sin ax

x
= a, lim

x→0

sinh bx

x
= b and so on.

.
The Fourier transform of a function ϕ(x) is denoted by ϕ̂(ξ) and given by

ϕ̂(ξ) =
1√
2π

∫
R
e−ixξϕ(x)dx.

The convolution (f ∗ g)(x) of two functions f(x) and g(x) is given by the
relation

(f ∗ g)(x) = f(x) ∗ g(x) =
∫
R
f(y)g(x− y)dx.

The following properties of convolution and Fourier transform will be useful

f(x) ∗ g(x) = g(x) ∗ f(x), (1)
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f̂ ∗ g(ξ) =
√
2πf̂(ξ) · ĝ(ξ). (2)

The symbol D′(R) denotes the space of distributions, δ(x) stands for the
Dirac distribution.

We use the notation Qm(x) for B-splines of order m which are piece-wise
polynomial m-times convolutions of the indicator of the interval [0, 1): for
m = 1

Q1(x) = χ[0,1)(x),

χ[0,1)(x) is the indicator function of the interval [0, 1):

χ[0,1)(x) =

{
1, if x ∈ [0, 1)
0, otherwise,

for m > 1

Qm(x) = (Qm−1 ∗ χ[0,1))(x) =

∫ 1

0
Qm−1(x− y)dy.

The exponential B-splines Um,p(x) are smoothly stitched fragments of expo-
nentials. The order of smoothness depends on the order of the spline.
De�nition 1. For any non-zero p ∈ (−∞,∞) and natural m we de�ne

the function Um,p(x), which we will call the exponential spline, or E-spline,
of order m with real parameter p. For m = 1

U1,p(x) = φp(x) =

{
pepx

ep−1 , if x ∈ [0, 1)

0, otherwise,

the function φp(x) is normalized in the sense that∫
R
φp(x)dx =

∫ 1

0
φp(x)dx = 1.

For m > 0 Um+1,p(x) is convolution of the indicator function and E-spline
of order m:

Um+1,p(x) = (Um,p ∗ χ[0,1))(x),

or, by the convolution property (1),

Um+1,p(x) = (Qm,p ∗ φp)(x).

The statement below characterizes the behavior of U1,p(x) for di�erent
values of p.
Theorem 1. The following convergence properties take place in the space

D′(R)
E 1. φp(x) → δ(x) as p → −∞.
E 2. φp(x) → χ[0,1)(x) for p → 0.
E 3. φp(x) → δ(1− x) as p → ∞.

Proof. Indeed, by the de�nition of convergence in the space D′(R), we
have to show that (φp, f) → (δ, f) as p → −∞ for any test function f ∈
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D(R). As (δ, f) = f(0), we have

(φp, f)− (δ, f) =

∫
R
f(x)φp(x)dx− f(0) · 1 =

=

∫ 1

0
f(x)φp(x)dx− f(0)

∫ 1

0
φp(x)dx =

∫ 1

0

(
f(x)− f(0)

)
φp(x)dx.

The function f(x) is continuous, so
1) ∃M > 0 such that

max
x∈[0,1]

|f(x)| ≤ M,

2) ∀ε > 0 ∃ ∆ > 0 such that |x| < ∆ implies |f(x)− f(0)| < ε
2 . Then∫ 1

0

(
f(x)− f(0)

)
φp(x)dx =

=

∫ ∆

0

(
f(x)− f(0)

)
φp(x)dx+

∫ 1

∆

(
f(x)− f(0)

)
φp(x)dx ≤

≤ ε

2

∫ ∆

0
φp(x)dx+ 2M

∫ 1

∆
φp(x)dx ≤ ε

2
+ 2M

(ep − ep∆

ep − 1

)
. (3)

Fixed ∆, it is possible to specify P ≤ 0, such that | ep−ep∆

ep−1 | < ε
4M ∀p < P .

Extending the inequality (3), we obtain that for arbitrary ε >, such P < 0
can be chosen that ∀p < P∫ 1

0

(
f(x)− f(0)

)
φp(x)dx < ε.

Property E1 is stated. Similar arguments yields to the property E3.
To establish E2, we note that the di�erence χ[0,1)(x)− φp(x) outside the

interval [0, 1) is equal to zero; for x ∈ [0, 1), applying the consequence of the
second remarkable limit, we obtain

lim
p→0

χ[0,1)(x)− φp(x) = lim
p→0

ep − 1− pepx

ep − 1
= 1− lim

p→0

pepx

ep − 1

= 1− lim
p→0

epx lim
p→0

p

ep − 1
= 1− 1 = 0

By properties E1 and E2 we have the convergence properties:

lim
p→0

Um+1,p(x) = Qm+1(x),

lim
p→−∞

Um+1,p(x) = Qm(x). ▶

Example. Figures 1 and 2 illustrate the convergence properties of Um,p

for m = 2

U2,p(x) =


0, x ≤ 0,
epx−1
ep−1 , 0 ≤ x ≤ 1,
ep−ep(x−1)

ep−1 , 1 ≤ x ≤ 2

0, 2 ≤ x.
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Ðèñ. 1. E-splines U2,p, a) p = −500, b) p = 0, 5

Ðèñ. 2. B�splines Qm, a) m = 1, b) m = 2

As well as Qm(x), Um,p(x) has the compact support (supp Um,p(x) =
[0,m)) and are continuous for m > 1 (Um,p(x) ∈ Cm−1(R)) that makes the
family {Um,p(· − k), k ∈ Z} very attractive for practical purpose provided
that we have an additional information on stability of this family.

3 Stability condition and Riesz bounds

De�nition 2. A family of integer translations {φ(x−n), n ∈ Z} generated
by a function φ(x) from a Hilbert space H is said to be stable, if there exist
two constants 0 < A,B < ∞ such that for any sequence {cn}n∈Z ∈ l2 the
following inequalities hold:

A

∞∑
n=−∞

|cn|2 ≤ ||
∞∑

n=−∞
cnφ(x− n)||2H ≤ B

∞∑
n=−∞

|cn|2. (4)

De�nition 3. If the linear span of the set {φ(· − n), n ∈ Z} is stable
and, additionally, dense in H, then they say that {φ(· − n), n ∈ Z} form an
unconditional or Riesz basis in H.
Remark 1. For A = B = 1 the Riesz basis turns into an orthonormal

basis. For example, {χ[0,1)(· −n), n ∈ Z} forms the orthonormal basis in the
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space of functions which are piece-wise constant on the intervals of the form
[k, k + 1).

Constants A and B in (4) characterize, in a sense, the "redundancy"of the
Riesz basis. They are also called the Riesz constants or the Riesz lower and
upper bounds.

The aim of the work is to establish the stability property for the system
of integer translations of E-splines for arbitrary m ∈ N and p ∈ (−∞,∞)
and determine its Riesz bounds.

It should be noted that in certain cases determination of Riesz bounds
becomes simpler if we pass from the function φ(x) to its Fourier transform
φ̂(ξ) and use the theorem which establishes equivalence of two statements
[10]:
� the set {ϕ(· − k), k ∈ Z} satis�es the Riesz condition with constants 2πA
and 2πB;
� the Fourier transform ϕ̂(ξ) satis�es the inequalities

A ≤
∑
k∈Z

|ϕ̂((ξ + 2πk)|2 ≤ B.

By this, to establish stability it su�ces to determine the lower and upper
estimates, uniform in ξ, for the series∑

k∈Z
|Ûm,p(ξ + 2πk)|2,

assuming that the parameter p and the order of the exponential spline m are
�xed.

In a view of

Q̂1(ξ) =
1

2π
e−iξ/2 sin(ξ/2)

ξ/2
,

by (2) we have

Q̂m(ξ) =
1√
2π

(
e−iξ/2 sin(ξ/2)

ξ/2

)m

and

Ûm+1,p(ξ) =
√
2πQ̂m(ξ) · φ̂p(ξ)

The Fourier transform for the function φp(x) is

φ̂p(ξ) =
1√
2π

∫ 1

0
e−ixξ pepx

ep − 1
dx =

1√
2π

p

ep − 1

ep−iξ − 1

p− iξ
,

and then

Ûm+1,p(ξ) =
1√
2π

(
e−i ξ

2
sin ξ/2

ξ/2

)m p

ep − 1

ep−iξ − 1

p− iξ
.

Hence

|Ûm+1,p(ξ)|2 =
1

2π
·
(sin ξ/2

ξ/2

)m
· p

2(e2p − 2ep cos ξ + 1)

(p2 + ξ2)(ep − 1)2
. (5)
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For the further consideration, we rewrite the last factor in (5) as follows:

p2

p2 + ξ2
· e

2p − 2ep cos ξ + 1

(ep − 1)2
=

(p/2)2

(p/2)2 + (ξ/2)2
·
(
1 +

sin2(ξ/2)

sinh2(p/2)

)
.

Then (5) takes the form

|Ûm+1,p(ξ)|2 =
1

2π

(p/2)2

(p/2)2 + (ξ/2)2

(
1 +

sin2(ξ/2)

sinh2(p/2)

)(sin ξ/2
ξ/2

)m

and, by this, we have the series
∞∑

k=−∞
|Ûm+1,p(ξ + 2πk)|2 =

=
1

2π

∞∑
k=−∞

(p/2)2

(p/2)2 + (ξ/2 + πk)2

(
1 +

sin2(ξ/2 + πk)

sinh2(p/2)

)(sin(ξ/2 + πk)

ξ/2 + πk

)2m
.

(6)
For the sake of convenience we denote

ak(ξ) =
(p/2)2

(p/2)2 + (ξ/2 + πk)2

(
1 +

sin2(ξ/2 + πk)

sinh2(p/2)

)
;

uk(ξ) =
1

2π

(sin(ξ/2 + πk)

ξ/2 + πk

)2m
. (7)

Thus, we have the function series
∞∑

k=−∞
|Ûm+1,p(ξ + 2πk)|2 =

∞∑
k=−∞

ak(ξ)uk(ξ),

which, due to its 2π�periodicity, can be considered only on the interval [0, 2π].
The following theorem is true.

Theorem 2. The function series (6) converges uniformly on the interval
[0, 2π] for any p ∈ (−∞,∞) and any positive integer m to a continuous
function Nm+1,p(ξ).
Proof. We �x a real p ̸= 0 and a non negative integer m and present the

series (6) as a sum of three terms

∞∑
k=−∞

ak(ξ)uk(ξ) =

−1∑
k=−∞

ak(ξ)uk(ξ) +

∞∑
k=1

ak(ξ)uk(ξ)+

+
1

2π

(p/2)2

(p/2)2 + (ξ/2)2

(
1 +

sin2(ξ/2)

sinh2(p/2)

)(sin ξ/2
ξ/2

)2m
. (8)

We prove convergence of the series in the �rst and second terms using the
Dirichlet's test: a series

∑∞
k=1 ak(ξ)uk(ξ) converges uniformly on a set Ξ if

ak(ξ) and uk(ξ) satisfy the conditions
1. the sequence {ak(ξ)} is monotone for any ξ and converges uniformly to 0
on Ξ as k → ∞;
2. partial sums Sn(ξ) =

∑∞
k=1 uk(ξ) are uniformly bounded on Ξ.
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In our case Ξ = [0, 2π] and ak(ξ) and uk(ξ) in
∑∞

k=1 ak(ξ)uk(ξ) are given
by (7).

1. As

ak(ξ) =
(p/2)2

(p/2)2 + (ξ/2 + πk)2

(
1 +

sin2(ξ/2 + πk)

sinh2(p/2)

)
=

=
(p/2)2

(p/2)2 + (ξ/2 + πk)2

(
1 +

sin2(ξ/2)

sinh2(p/2)

)
,

obviously, for any �xed ξ ∈ Ξ the sequence {ak(ξ)} decreases monotonically
as k → ∞. Moreover,

ak(ξ) ≤
(p/2)2

(p/2)2 + (πk)2

(
1 +

1

sinh2(p/2)

)
.

Hence for any given ε > 0 we can specify K > 1 such that ak(ξ) < ε for any
ξ ∈ Ξ as soon as k > K. The uniform convergence to zero of the sequence
{ak(ξ)} is shown. Thus, condition 1 is ful�lled.

2. Next, we show that the partial sums Sn(ξ) =
∑n

k=1 uk(ξ) are uniformly
bounded.

In [11, Th.1] it was shown that

∞∑
k=−∞

1

2π

(sin(ξ/2 + πk)

ξ/2 + πk

)2m
=

1

2π

Cm−1(cos
2 (ξ/2))

(2m− 1)!
,

for every �xed m ≥ 1. Trigonometric polynomials Cm(cos2 ξ) were proven
[11, Pr.1] to be de�ned on the wholeR, continuous, positive, axially symmetric
with the axis ξ = 0, π�periodic functions. They reach their maximum values

at the points ξ = kπ, and their minimum values at the points ξ = (2k+1)π
2 ,

k ∈ Z. Besides,

1

2π

Cm(cos2(π/2))

(2m+ 1)!
≤

∞∑
k=−∞

|Q̂m+1(ξ + 2πk)|2 ≤ 1

2π

Cm(cos2(0))

(2m+ 1)!
.

Cm(cos2(0))

(2m+ 1)!
= 1,

Cm(cos2(π/2))

(2m+ 1)!
=

22m+3

π2(m+1)

∞∑
k=0

1

(1 + 2k)2(m+1)
(9)

and the numerical sequence {Cm(cos2(π/2))/(2m+1)!} tends monotonically
to 0 as m → ∞.

Thus, partial sums Sn(ξ) are uniformly bounded on [0, 2π]:

Sn(ξ) =

n∑
k=1

1

2π

(sin(ξ/2 + πk)

ξ/2 + πk

)2m
<

∞∑
k=−∞

1

2π

(sin(ξ/2 + πk)

ξ/2 + πk

)2m
=

=
1

2π

Cm−1(cos
2 (ξ/2))

(2m− 1)!
≤ 1

2π
.
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It is evident that ak(ξ) = a−k(−ξ), uk(ξ) = u−k(−ξ), and the �rst term and
the second term in (8) are related by the formula

−1∑
k=−∞

ak(ξ)ukξ =
∞∑
k=1

ak(−ξ)uk(−ξ),

whence convergence of the series in the �rst term is also shown.
Finally, the function

µ(p, ξ) =
1

2π

(p/2)2

(p/2)2 + (ξ/2)2

(
1 +

sin2(ξ/2)

sinh2(p/2)

)(sin ξ/2
ξ/2

)2m
.

is de�ned on the whole Ξ, including ξ = 0, and continuous:

lim
ξ→0

(sin ξ/2
ξ/2

)2m
= 1 ⇒ lim

ξ→0
µ(p, ξ) =

1

2π
.

If p = 0, then in accordance with item E2 and the properties of the Fourier
transform

Ûm,0(ξ) = Q̂m(ξ),

and convergence of series (6) for p = 0 is proven. ▶
Corollary. For every p ∈ [0,∞) and integer m ≥ 1 there exist constants

Am,p, Bm,p ≥ 0 such that

Am,p ≤
∑
k∈Z

|Ûm,p(ξ + 2πk)|2 ≤ Bm,p.

Proof. Summarizing all the above, we conclude that the series (6) for �xed
m and p converges uniformly to a continuous 2π-periodic functionNm+1,p(ξ).
The continuous function Nm,p(ξ) on the interval [0, 2π] has a minimum and
a maximum

Am,p = min
ξ∈[0,2π]

Nm,p(ξ);

Bm,p = max
ξ∈[0,2π]

Nm,p(ξ). ▶

Next, we have to estimate their values. If it occurs that 0 < Am,p, Bm,p,
then existence of Riesz bounds becomes to be proven.
Lemma 1. The function

f(p) =
1

p2
− 1

sinh2 p

reaches its maximum value 1/3 at p = 0.
Proof. Indeed, by the symmetry of f(p), it su�ces to consider behavior

of f(p) only for p ∈ [0,∞). Its �rst derivative equals

f ′(p) = −2
( 1

p3
− cosh p

sinh3 p

)
= −2 · sinh

3 p− cosh p · p3

sinh3 p · p3
.

Next we show that the function h(p) = sinh3 p − cosh p · p3 is positive for
p > 0 and f ′(0) = 0. If so, f(p) monotonically decreases on [0,∞) and
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monotonically increases on (−∞, 0]. Consequently, p = 0 is its maximum.
Using the Taylor series expansion, we obtain

sinh2 p− p2 =
1

3
p4 +O(p6),

sinh2 p · p2 = p4 +O(p6).

We de�ne f(0) using the limit passage and have

f(0) = lim
p→0

f(p) = lim
p→0

1

p2
− 1

sinh2 p
= lim

p→0

sinhp−p2

sinh2 p · p2
=

1

3
.

Now turn back to h(p). As known,

sinh3 p =
1

4
(sinh 3− 3 sinh p),

then

h(p) = sinh3 p− cosh p · p3 =
∞∑
n=0

[1
4

( (3p)2n+1

(2n+ 1)!
− 3p2n+1

(2n+ 1)!

)
− p2n+3

(2n)!

]
=

=
∞∑
n=1

[1
4

( (3p)2n+1

(2n+ 1)!
− 3p2n+1

(2n+ 1)!

)
−

∞∑
n=0

p2n+3

(2n)!

]
=

=
∞∑
n=0

[1
4

( (3p)2n+3

(2n+ 3)!
− 3p2n+3

(2n+ 3)!

)
− p2n+3

(2n)!

]
=

=
1

4

∞∑
n=0

p2n+3 3
2n+3 − 3− 4(2n+ 1)(2n+ 2)(2n+ 3)

(2n+ 3)!

The problem reduces to studying signs of the coe�cients

An = 32n+3 − 3− 4(2n+ 1)(2n+ 2)(2n+ 3), n = 0, 1, ...,

or behavior of the function

A(x) = 9 · 3x − 3− 4x(x+ 1)(x+ 2),

because An = A(2n + 1). As easily seen, A0 = A(1) = 0, A1 = A(3) = 0.
Hence h(p) = A2p

7 +O(p9) in the neighborhood of p = 0. Then

f ′(0) = lim
p→0

f ′(p) = lim
p→0

h(p)

sinh3 p3
= 0.

For any α,B, a, b, c, d > 0 there exists x∗ > 0 such that Beαx > a + bx +
cx2+ dx3 for every x > x∗. Let x∗ be determined for α = ln 3, B = 9, a = 3,
b = 8, c = 12, d = 4. This proves that A(x) > 0 for any integer x such that
x > [x

∗−1
2 ]+1 and, generally speaking, it is left to check by direct calculations

whether An ≥ 0 for a �nite number of n such that 2 ≤ n ≤ [x
∗−1
2 ]+1 , but we

were lucky: in our case x∗ = 4, for example, and no additional calculations
were needed. ▶
Lemma 2. The function

g(ξ) =
1

sin2 ξ
− 1

ξ2
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reaches its minimum value 1/3 at the point ξ = 0.
Proof. Let

G(x) =
1

x
− ctg x. (10)

For |x| < π

x ctg x =
∑
n=0

(−1)nB2n
22n

(2n)!
x2n = x+

∞∑
n=1

(−1)2n+1 2
2n+1ζ(2n)

(2π)2k
x2n,

B2n are the Bernoulli numbers

B2n = 2(−1)n+1 ζ(2n)(2n)!

(2π)2k
, n > 1;B0 = 1;B2 =

1

6
, (11)

ζ(s) is the Riemann zeta function

ζ(2n) =
∞∑
k=1

1

k2n
, n ≥ 1. (12)

G(x) =
1

x
− ctg x =

∞∑
n=1

(−1)2n+2 2
2n+1ζ(2n)

(2π)2n
x2n−1 =

=
∞∑
n=1

22n+1ζ(2n)

(2π)2n
x2n−1 =

x

3
+

∞∑
n=1

x2n+1an+1, (13)

an =
22n+1ζ(2n)

(2π)2n
> 0, a1 = 1/3 (see (11), (12)), (14)

g(x) = G′(x) =
1

sin2 x
− 1

x2
, g(0) = 1/3. (15)

In a view of (13), (14)

g′(x) =
−2 cosx

sin3 x
+

2

x3
= G′′(x) ≥ 0, for x ≥ 0, (16)

moreover,

g′(x) > 0, 0 < x < π, g′(x) = 0 at x = 0 only.

If π ≤ x, obviously, g(x) ≥ 1− 1
x2 > 1/3 for every x.

Hence

g(ξ) =
1

sin2 ξ
− 1

ξ2
> 1/3, ξ > 0, g(0) = 1/3. ▶

Remark 2. We �nd G(0), g(0), g′(0) putting x = 0 in the series (13) and
its derivatives. Although they could be de�ned also by the limit passage as
x → 0 in explicit expressions (10), (15), (16).
Lemma 3. For any p ∈ (−∞,∞) and ξ ∈ (−∞,∞) the following estimates

hold:
sin2 ξ

ξ2
≤ p2

p2 + ξ2
· sinh

2 p+ sin2 ξ

sinh2 p
≤ 1. (17)
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Proof. As for any ξ, p ∈ (−∞,∞)

sin2 ξ ≤ ξ2, p2 ≤ sinh2 p

we have

p2 · sinh2 p+ p2 · sin2 ξ ≤ p2 · sinh2 p+ sinh2 p · ξ2,
and

p2

p2 + ξ2

(
1 +

sin2 ξ

sinh2 p

)
≤ 1.

The right inequality in (17) is proven.
Next, for any p, ξ ∈ (−∞,∞)

1

p2
− 1

sinh2 p
≤ sup

p∈R

( 1

p2
− 1

sinh2 p

)
=

1

3
=

= inf
ξ∈R

( 1

sin2 ξ
− 1

ξ2

)
≤ 1

sin2 ξ
− 1

ξ2
. (18)

Hence, for any p ∈ (−∞,∞) and ξ ∈ [0, 2π]

sin2 ξ

ξ2
≤ p2

p2 + ξ2
· sinh

2 p+ sin2 ξ

sinh2 p
. ▶

Lemma 3 together with (6) and (9) allows us to assert that for a �xed
m ∈ N and any p, ξ ∈ (−∞,∞)

∞∑
k=−∞

|Q̂m+1(ξ+2πk)|2 ≤
∞∑

k=−∞
|Ûm+1,p(ξ+2πk)|2 ≤

∞∑
k=−∞

|Q̂m(ξ+2πk)|2.

It is easy to see that Nm+1,p(ξ) = Nm+1,−p(ξ). Therefore Am,p = Am,−p,
Bm,p = Bm,−p.

Thus, we proved the following
Theorem 3. The system of integer translations {Um,p(x− k)}k∈Z , where

Um,p(x) is the exponential spline of order m, is stable for arbitrary m ∈ N
and p ∈ (−∞,∞). Its lower and upper Riesz bounds 2πAm,p, 2πBm,p satis�es
inequalities

22m+3

π2(m+1)

∞∑
k=0

1

(1 + 2k)2(m+1)
≤ 2πAm,p < 2πBm,p ≤ 1. (19)

(19) turns into equality at p = 0.

4 Conclusion

We proved that the family of integer translations of the exponential spline
Um,p is stable for arbitrary p ∈ R, m ≥ 1; its Riesz bounds were found.

As follows from the above, in a similar way one can obtain Riesz bases with
required properties considering integer translations of convolution of Qm(x)
and an appropriate function φ(x). Here the order m provides the smoothness
property, whereas the function φ(x) guarantees such properties, for example,
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as compactness of the support or symmetry and a�ects the value of Riesz
bounds.
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