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ABSTRACT. The subgroups A and B are said to be cc-permutable,
if A is permutable with B” for some x € (A4, B). A subgroup A of
a finite group G is called weakly tcc-subgroup (wtcc-subgroup, for
brevity) in G, if there exists a subgroup Y of G such that G = AY
and A has a chiefseries 1 = Ag < A4; < ... < A,_; < A, = A such
that every A; is cc-permutable with all subgroups of Y for all
i =1,...,s. Inthis paper, we studied the influence of given systems
of wtec-subgroups on the structure of a group G.

Keywords: Finite group, cc-permutable subgroups, Sylow sub-
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1 Introduction

Throughout this paper, all groups are finite and G always denotes a finite
group. We use the standard notations and terminology of [1, 2]. The notation
H < G means that H is a subgroup of a group G. If H < G and H # G, we
write H < G. The notation H <1 G means that H is a normal subgroup of a
group G.

We say that the subgroups A and B of a group G are permutable if
AB = BA. Note that the equality AB = BA is equivalent to AB < G.
In accordance with [2], subgroups A and B of a group G are called totally
permutable if every subgroup of A is permutable with every subgroup of B.
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In [3] the following concept was introduced: the subgroups A and B are
said to be cc-permutable, if A is permutable with B for some = € (A, B).
It is clear that if A and B are permutable, then A and B are cc-permutable.
Naturally total permutability was generalized to tcc-permutability, i.e. the
subgroups A and B of G are said to be tcc-permutable [4] if every subgroup
of A is cc-permutable with every subgroup of B. Results related to the study
of groups with given systems of cc-permutable or tce-permutable subgroups
were provided in [5], see also the literature in [4].

We follow [6, 7| and collect the following concepts:

(1) A subgroup A of a group G is called tcc-subgroup in G, if there exists
a subgroup T of G such that:

(1.1) G = AT

(1.2) A and T are tcc-permutable.

(2) A subgroup A of a group G is said to be NS-supplemented in G, if
there exists a subgroup B of G such that:

(2.1) G = AB;

(2.2) whenever X is a normal subgroup of A and p € 7w(B), there exists a
Sylow p-subgroup B), of B such that XB, = B,X.

By [6, Lemma 3.1 (3)], every tce-subgroup of G is NS-supplemented in G,
but the converse does not hold. For example, the alternating group G = Ay
has NS-supplemented Sylow 3-subgroup P and P is not tcc-subgroup in G.
In [6, 7] proved the supersolubility of a group G under the condition that
factors, Sylow subgroups, maximal subgroups, minimal subgroups, maximal
subgroups of every Sylow subgroups of G are NS-supplemented or tcc-sub-
groups in G.

In the present paper, we study another generalization of tcc-subgroup in
a new way.

Definition.

A subgroup A of a group G is called weakly tcc-subgroup (wtcc-subgroup,
for brevity) in G, if there exists a subgroup Y of G such that:

(1) G = AY;

(2) A has a chief series

l=Ag< A <...<A, 1 <A,=A (1)

such that every A; is cc-permutable with all subgroups of Y for all i =
1,...,s.

In this definition, we say that Y is a wtcc-supplement to A in G and a
chief series (1) is a wtcc-series of A.

It is clear that every tcc-subgroup of G is wtce-subgroup in G, but the
converse does not hold. For example, the group G = Z3 x S3 has Sylow
3-subgroup P such that P is a wtcc-subgroup in G, but P is not tcc-
subgroup in G. Besides, the groups A4 and Z3 x S3 show that there is no
inclusion-relationship between the concepts to be wtce-subgroup and to be
NS-supplemented.
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In Section 3, we give some properties of wtce-subgroups. In Section 4, we
study the structure of a group G in which the maximal subgroups, Sylow
subgroups, minimal subgroups, 2-maximal subgroups, maximal subgroups
of every Sylow subgroup, factors are wtcc-subgroups. Besides, we obtain
the generalization of some result of [6] without using the properties of tcc-
permutability.

Theorem. Let G be a group.

1. Then G is supersoluble if one of the following statements holds:

(1.1) every maximal subgroup of G is a wtcc-subgroup in G.

(1.2) every Sylow subgroup of G is a wtcc-subgroup in G.

(1.3) let H be a normal subgroup of G. Suppose that G /H is supersoluble
and every cyclic subgroup of prime order or order 4 of H is a wtcc-subgroup
in G.

(1.4) every 2-maximal subgroup of G is a wtce-subgroup in G.

(1.5) all maximal subgroups of every non-cyclic Sylow subgroup of G are
wtce-subgroups in a soluble group G.

2. Let A and B be wtcc-subgroups in a group G and G = AB. If A and
B are supersoluble, then GG is supersoluble.

The following example shows that we cannot omit the condition «every
cyclic subgroup of order 4 of H is a wtce-subgroup in G» in (1.3) of main
theorem.

Example. The non-supersoluble group G = Qs X Zg (IdGroup=|[72,3],
see [8]) has a cyclic 2-subgroup H of order 4 such that H is not a wtcc-
subgroup in G and every subgroup of prime order of G is a wtcc-subgroup
in G.

2 Preliminaries

In this section, we give some definitions and basic results which are essen-
tial in the sequel.

Denote by Z(G), F(G) and ®(G) the centre, Fitting and Frattini sub-
groups of G respectively, and by O,(G) and Oy (G) the greatest normal
p- and p’-subgroups of G respectively. Denote by 7(G) the set of all prime
divisors of order of G. We use Ej: to denote an elementary abelian group of
order p', Z,, to denote a cyclic group of order m, @, to denote a quaternion
group of order m. The semidirect product of a normal subgroup A and a
subgroup B is written as follows: A x B. If H is a subgroup of G, then Hg =
Nye HY is called the core of H in G. Recall that H® = (H9 | g € G) is the
smallest normal subgroup of G containing H.

A group whose chief factors have prime orders is called supersoluble. Recall
that a p-closed group is a group with a normal Sylow p-subgroup and a p-
nilpotent group is a group with a normal Hall p’-subgroup. If a group G
contains a maximal subgroup M with trivial core, then G is said to be
primitive and M is its stabilizer.
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The class of all supersoluble groups is denoted by . A simple check proves
the following lemma.

Lemma 1. Let G be a soluble group. Assume that G ¢ U, but G/K € A for
every non-trivial normal subgroup K of G. Then:

(1) G contains a unique minimal normal subgroup N, N = F(G) =
0,(G) = Cg(N) for some p € n(G);

(2) 2(G) = 0,/(G) = 8(G) = 1;

(3) G is primitive; G = N x M, where M is a stabilizer;

(4) N is an elementary abelian subgroup of order p™, n > 1.

Lemma 2. ([11, Theorem 2|) Let G be a group with p € 7(G) and p # 3. If
G has a Hall {p,r}-subgroup for every r € w(G), then G is p-soluble.

Lemma 3. Let G be soluble. If G has a subgroup H of prime indez, then
G/Hg is supersoluble.

Proof Suppose that H is not normal in G. Then Hg # H and G/Hg is
primitive with stabilizer H/H¢g. By [12, Theorem 15.6],

G/HG = (P/Hg) X (H/HG), P/HG = Cg/HG(P/Hg).
Let |G : H| = p, where p is prime. Then
|G/Hg : H/Hg| = |G : H| =p, |P/Hg|=p.

The subgroup H/Hg is cyclic, as the automorphism group of P/Hg of prime
order. Hence G/Hg is supersoluble. If H is normal in G, then H = Hg and
G /Hg is supersoluble. Lemma is proved.

A subgroup A of a group G is called seminormal in G, if there exists
a subgroup B such that G = AB and AX is a subgroup of G for every
subgroup X of B, see [5].

Lemma 4. (|13, Lemma 10]) If A is a seminormal 2-nilpotent subgroup of G,
then AC is soluble.

Lemma 5. (|14, Theorem|) Let G be a finite group, and H a subgroup of
G. Suppose that for every prime p dividing the order of G there exists a
Sylow p-subgroup Gy, of G such that H is subnormal in (H,Gp). Then H is
subnormal in G.

3 Properties of wtcc-subgroups

Lemma 6. Let A be a wtcc-subgroup in G and Y be a wtcc-supplement to
AinGandl = Ay < A1 < ... < Ay 1 < Ay = A be a wtee-series of A.
Then the following statements hold:
(1) A is a wtee-subgroup in H for any subgroup H of G such that A < H;
(2) if A is supersoluble, then AN/N 1is a wtcc-subgroup in G/N for any
N 4Gy
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(3) for every i = 1,...,s and arbitrary X <Y there exists an element
y €Y such that A; XY < G. In particular, A;M < G for some mazimal
subgroup M of Y and A;H < G for some Hall w-subgroup H of soluble Y
and any ™ C w(G);

(4) A;K <G for everyi=1,...,s and every subnormal subgroup K of Y ;

(5) for every i =1,...,s and every subnormal subgroup K of Y we have
A;K9 <G for any g € G;

(6) if Y is soluble and A is r-closed, then Sylow r-subgroup A, of A is
subnormal in G, where r is the greatest prime in w(G);

(7) if A is 2-nilpotent, then the derived subgroup A’ is subnormal in G.

Proof 1. Since Y is a wtce-supplement to A in G, it follows that G = AY.
By Dedekind’s identity, H = HNAY = A(HNY). Since HNY <Y, then
forany i=1,...,s and any Z < HNY there exists an element u € (4;, Z)
such that A;Z% < G. Hence A is a wtce-subgroup in H.

2. Since G = AY, it follows that G/N = (AN/N)(Y N/N). Let X/N be an
arbitrary subgroup of Y N/N. Since N < X <Y N, we have by Dedekind’s
identity, X = X NYN = (X NY)N.

Consider the series

1= AgN/N < A{N/N < ...< A,_1N/N < A,N/N = AN/N  (2)

of AN/N'. Since A; is normal in A4, it follows that A < Ng(A;N) and A;N/N
is normal in AN/N. Obviously,

Since A is supersoluble, | A;/A;—1 | is a prime and therefore
| (AiN/N)/(A;—1N/N) | is a prime. Hence the series (2) is a chief series
of AN/N.

Because X NY is a group of Y, we have for any ¢ = 1,..., s there exists
an element u € (A;, X NY) such that 4;(X NY)"* < G. Hence

(A;N/N)(X/N)“N = A;(X NY)“N/N < G/N

for uN € (A;, XNY)N/N C (4;, X)N/N = (A;N/N, X/N). Consequently,
AN/N is a wtce-subgroup in G/N.

3. Since A is a wtce-subgroup in G, for every ¢ = 1,...,s and X <Y
there exists an element u € (A;, X) such that 4, X" < G. Because u € G =
AY =Y A, it follows that © = ya for some y € Y and a € A. Then

AXY = A XY = A;(XY) = A%(XY)" = (A4, XY)" < G.

Hence there is a subgroup A; XY in G for some y € Y. Clearly, that if X is
a Hall 7w-subgroup of Y, then H = XV is a Hall w-subgroup of Y. Thus
A;H < @G. Similarly, for maximal subgroup X of Y. Then M = XV is a
maximal subgroup of Y and A;M < G.

4. Since K is subnormal in Y, there is a chain of subgroups

Y=Ky>2K>...>2K, 1 >2K,=K
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such that K1 is normal in K for all i. We use induction by n. By (3), there
exists an element y € Y such that A; K} = AjK; <G forevery j =1,...,s.
Hence the statement holds for n = 0 and n = 1. Therefore n > 2. By (1), 4
is a wtee-subgroup in AK; and K7 is a wtce-supplement to A in AK;. Since
the length of subnormal chain between K and K less than n, it follows that
by induction, there is a subgroup A;K of AK;. Consequently A;K < G.

5. Since g € G = AY = Y A, it follows that ¢ = ya for some y € Y and
a € A. Then

AK9 = ARV = A (KY)® = (A4, KY)°.

Since K is subnormal in Y, we have KV is subnormal in Y. By (4), 4, KY < G.
Theredore, AK9 < G.

6. We proceed by induction on | G |. By (3), AY; < G for some Hall
r’-subgroup Y7 of Y. If AY; < G, then by (1), A is a wtce-subgroup in AY;
and by induction, A, is subnormal in AY7. Besides, A, is subnormal in some
Sylow r-subgroup G, of G. Let Y, < R, where R is a Sylow r-subgroup
of G and RY = G, for some g € G. By [9, Theorem 1], A, is subnormal
in G = AY = AV1Y, = (AV))YY = (AY})G,.

Hence we consider that G = AY;. By (3), AQ < G for some Sylow ¢-
subgroup @ of Y. If AQ < G, then A is a wtce-subgroup in AQ and by
induction, A, is subnormal in AQ. Therefore A, is normal in AQ and Q <
Ng(Ay). Since it is true for any ¢ € w(Y1), it follows that A, is normal
in G = AY;.

Hence G = AQ. By (4), Q is a minimal wtcc-supplement to A in G. By (3),
AM < G for some maximal subgroup M of ). Because A is a wtcc-subgroup
in AM , we have by induction, A, is subnormal in AM and hence A, is normal
in AM. Since | G : AM |= q, it follows that G/(AM)¢ is isomorphic to a
subgroup of symmetric group S,. Hence G, < (AM)g < AM and A, = G,
is subnormal in G.

7. We proceed by induction on |G|. By (3), for every p € m(Y") there exists
a Sylow p-subgroup Y}, of Y such that AY,, < G. Suppose that AY, < G for
every p € m(Y'). Then by (1), A is a wtce-subgroup in AY), and by induction,
A’ is subnormal in AY),. It is clear that for every p € n(G) there exists a
Sylow p-subgroup R of G such that R < AY),. Since A’ < (A, R) < AY,, we
have A’ is subnormal in (A’, R). By Lemma 5, A’ is subnormal in G.

Hence we consider that G = AY, for some ¢ € w(Y). By (4), A is
seminormal in G. Since A is 2-nilpotent, A% is soluble by Lemma 4. Hence
G = AY, = A%Y, is soluble. By (4), Y, is a minimal wtcc-supplement to
A in G and AT < G for some maximal subgroup 7' of Y,. Because A is a
wtee-subgroup in AT, we have by induction, A’ is subnormal in AT. Since
| G : AT |= g, it follows that by Lemma 3, G/(AT)¢ is supersoluble and
hence the derived subgroup

(G/(AT))' = G'(AT)g/(AT)g
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is nilpotent. Since A’ < G’, we have
A(AT)6/(AT) < G'(AT)/(AT)g

and hence A'(AT)q is subnormal in G. It is clear that A" < A/(AT)qg <
AT. Since A’ is subnormal in AT, A" is subnormal in A'(AT)g and A’ is
subnormal in G. Lemma is proved.

4 Main results

(1.1) Let M be an arbitrary maximal subgroup of G. By Lemma 6 (3),
MY, < G for some Sylow p-subgroup Y, of Y. Since M is maximal in G, it
follows that either MY, = M or MY, = G. If MY, = M for all p € n(Y),
then Y < M and G = MY = M, a contradiction. Therefore there exists
q € 7(Y') such that MY, = G and Yj is a wtcc-supplement to M in G. By
Lemma 6 (4), we can consider that Y; is a minimal wtcc-supplement to M
in G. By Lemma 6(3), MS < G and | G : MS |= g for some maximal
subgroup S of Y;. Since M is a maximal subgroup of G, we have
|G: M |=| G:MS |=q. By [1, VL.9.5], G is supersoluble.

(1.2) We show that G is soluble. Let R be a Sylow r-subgroup of G. Then
R is a wtce-subgroup in G. Let T be a wtce-supplement to R in G. By
Lemma 6 (3), RQ < G for some Sylow g-subgroup @ of T and for any ¢ €
m(T)\{p}. The subgroup RQ is a Hall {r, ¢}-subgroup of G. By Lemma 2, G
is r-soluble for r # 3. Let ¢ be the smallest prime in 7(G). If ¢ > 2, then G
is soluble. If t = 2, then by the above, G is t-soluble and consequently, G is
soluble.

Next we show that G is supersoluble. Assume that the claim is false and
let G be a minimal counterexample. Let N be a non-trivial normal subgroup
of G and RN/N be a Sylow r-subgroup of G/N. By Lemma 6 (2), RN/N is
a wtce-subgroup in G/N. Then G/N is supersoluble by the choice of G.

Let P be a Sylow p-subgroup of G, where p is the greatest prime in 7(G).
By Lemma 6 (6), P is subnormal in G and consequently, P is normal in G.
By Lemma 1, G has a unique minimal normal subgroup N such that N =
Cg(N) = Oy(G) = F(G) = P and N is an elementary abelian subgroup of
order p™, n > 1.

Let T be a wtce-supplement to P in G and

1=Ph<Ph<..<P1<P=P

be a wtce-series of P. It is clear | P |= p. By Lemma 6 (3), for every r € 7(T)
there exists a Sylow r-subgroup R of T such that PR < G. If p # r, then

PﬂPIRzpl(PﬂR):Pl

is normal in P/R and R < Ng(Pp). Since this inclusion holds for any
r € n(T)\ {p}, we have T} < Ng(P1) for some Hall p'-subgroup 77 of T.
Hence P is normal in G = PT = PT,T1 = P13, a contradiction.
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(1.3) Assume that the theorem is false and let G' be a minimal counterexam-
ple. Let K be a proper subgroup of G. It clear that K N H < K and
K/KNH ~ KH/H is supersoluble. By Lemma 6 (1), every cyclic subgroup of
prime order or order 4 of KN H is a wtce-subgroup in K. Then by induction,
K is supersoluble and hence G is a minimal non-supersoluble group. Suppose
that H is a proper subgroup of G. Hence H is supersoluble. Let ¢ be the
greatest prime in 7(H). Then by [1, VI.9.1], a Sylow g-subgroup @ of H is
normal in H and consequently, @ is normal in G. Let Q1 = Q1/Q be a cyclic
subgroup of prime order or order 4 of H/Q. Then

Q1= (2Q) = (1)Q/Q = (x)/(x) N Q = (=),

because z ¢ Q. Since € H, by Lemma 6 (2), Q1 is a wtcc-subgroup in G/Q.
Since (G/Q)/(H/Q) is supersoluble, by induction, G/Q is supersoluble.

By [10], G is soluble, G has a unique normal Sylow p-subgroup P and
P = G%, P = P/®(P) is a minimal normal subgroup of G = G/®(P)
and | P/®(P) |> p. Besides, P has exponent p if p # 2 and exponent at
most 4 if p = 2.

If p # q, then G ~ G/Q N P is supersoluble, because G/Q and G/P are
supersoluble. So p = ¢ and Q@ < P. Since Q®(P)/®(P) < P and P is a
minimal normal subgroup of G, we have Q < ®(P) or Q®(P) = P. If Q <
®(P), then G is supersoluble, because @ < ®(G) and G/Q is supersoluble, a
contradiction. If Q®(P) = P, then @Q = P. Therefore, we can consider that
P<H.

Suppose that p = 2. Let x € P and P, = (z). Then | Py [=2or | P, |=4.
By the hypothesis, P; is a wtce-subgroup in G. By Lemma 6 (3), G has a
Hall 2’-subgroup S such that P1.S < G. By [1, IV.2.8], P, < Ng(S) and
consequently, P < Ng(S) and S is normal in G, a contradiction.

Assume that p > 2. Let K = K/®(P) be a subgroup of order p in P.
Then

K = (z®(P)) = (z)®(P)/®(P).
Since x € P, it follows that | (x) |= p and hence by Lemma 6 (2), K is a
wtce-subgroup in G and T = T/®(P) is a wtce-supplement to K in G. Hence
by Lemma 6 (3), for every r € 7n(T), r # p there exists a Sylow 7-subgroup
R of T such that KR < G. It is clear that R is a Sylow r-subgroup in G.
We have that
PNKR=K(PNR)=K

is normal in KR and R < Ng(K). Since P is abelian, K is normal in G.
Therefore K = P, a contradiction.

(1.4) Assume that the claim is false and let G be a minimal counterexam-
ple. By Lemma 6(1) and by (1.1), every maximal subgroup M of G is
supersoluble. Hence G is a minimal non-supersoluble group. Then by [10],
G is soluble, | 7(G) |< 3 and G has a unique normal subgroup P = G*. It
is clear that ®(G) = 1. Hence P is a minimal normal subgroup of order p",
n >1and G = P x M for some maximal subgroup M of G.
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If | 7(G) |= 3, then G has an ordered Sylow tower of supersoluble type and
M =TxR,where |T |=t,| R|=randt,r € 7(G). The subgroups T' and R
are 2-maximal subgroups of G. Then by hypothesis, TY; = G = RY5, where
Y1 and Y5 are wtce-supplements in G. Besides, P <Y; and P < Y5. Let P,
be a minimal normal subgroup of P. Then by Lemma 6 (4), T" < Ng(Py)
and R < Ng(Py). Then Pj is normal in G = PM = PTR, a contradiction.

So, | 7(G) |= 2. Then M is a g-subgroup. If | M |> ¢, then M has a
maximal subgroup M;j such that My # 1. It is clear that H = P x M is
a maximal subgroup of G. Since H is supersoluble, it follows that H has a
maximal subgroup H; such that My < Hy and | H : Hy |= p. By hypothesis,
H; is a wtce-subgroup in G. Then H1V = G, where V is a wtce-supplement
to Hy in G. Let

1=Ko<K;<...<K;1<K,=H

be a wtecc-series of Hy. Since G is p-closed, H; is p-closed and | K; |= p.
By Lemma 6 (3), V has a Sylow g-subgroup V; such that KV, < G. Hence
Vy £ Ng(K1) and K is normal in G = H1V = H PV, a contradiction.

Therefore, | M |= ¢ and P is a maximal subgroup of G. Let P; be a
maximal subgroup of P. Then by hypothesis, P1 K = G, where K is a wtcc-
supplement to Py in G. By Lemma 6 (3), K has a Sylow ¢g-subgroup K; such
that P1K; < G and K; < Ng(P;). Hence P; is normal in G = P K = PKj.
Hence | P |= p, a contradiction.

(1.5) Let P be a Sylow p-subgroup of G. If P is cyclic, then G is p-
supersoluble. Let P be non-cyclic. Then by Lemma 6 (3), for every maximal
subgroup P; of P and every ¢ € n(G) \ {p} there exists a Sylow ¢g-subgroup
Q@ of G such that P,Q < G. By [7, Theorem 3.4], G is p-supersoluble. Since
it is true for any p € 7(G), we have G is supersoluble.

2. Assume that the claim is false and let G be a minimal counterexample.
Let N be a non-trivial normal subgroup of G. The subgroups AN/N =~
A/ANN and BN/N ~ B/BNN are wtce-subgroups in G/N by Lemma 6 (2),
AN/N ~ A/JANN and BN/N ~ B/BN N are supersoluble. Hence G/N =
(AN/N)(BN/N) is supersoluble by induction.

We show that G is soluble. By Lemma 6 (7), A" and B’ are subnormal in G.
If A and B are abelian, then by Theorem It6, G is soluble. Hence we consider
that either A’ # 1 or B’ # 1. Suppose that A’ # 1. Since A is supersoluble,
(ANC is nilpotent. If (A")® = G, then G is soluble. If (4))¢ < G, then
G /(A" is supersoluble. Hence G is soluble.

Since by hypothesis, A and B are supersoluble wtcc-subgroups of soluble
group G, by Lemma 6 (6), A, and B, are subnormal in G for the greatest
prime p € 7(G). Because P = A, B,, is a Sylow p-subgroup of G, we have G
is p-closed. By Lemma 1, G has a unique minimal normal subgroup N such
that N = Cg(N) = Op(G) = F(G) = P and N is an elementary abelian
subgroup of order p”, n > 1.

Without loss of generality, we assume that A, # 1. Let

1=A4<A; <. <A1 <A, =A



ON WEAKLY tcc-SUBGROUPS 1473

be a wtce-series of A. Since A is p-closed, | A1 |= p. By Lemma 6 (3),
A1Y; < G for some Hall p’-subgroup Y7 of Y. Then

A1:POA1Y1:A1(PQ}/1)

is normal in A;Y). Hence Y7 < Ng(Aj). Since P is abelian, a Sylow p-
subgroup Y), of Y centralizes A; and A; is normal in G = AY,, Y1, a contradic-
tion.

The theorem is proved.
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