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Abstract: We have studied the problem of steady-state �ow of
viscoelastic liquid in the �at channel for the modi�ed Vinogradov�
Pokrovskii rheological model. It was shown that the problem has
a set of solutions which could be calculated exactly. These type of
solutions correspond to the �ow with permeable walls and variable
discharge along the �at channel. The solutions include the cases of
constant and linear pressure gradient in the channel.

Keywords: Vinogradov�Pokrovskii rheological model, Poiseuille
�ow, steady-state solutions.

1 Introduction

Liquid polymers are the viscoelastic �uid medias which consist of the long
entangled macromolecules. Under the �ows with non-zero velocity gradients
this macromolecules interact with each other in a complex way, stretch
and rotate over time. This molecular structure gives the polymeric medias
certain distinctive features such as memory of deformations, anisotropy and
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shear-thinning. The mathematical description of such a complex matter is a
di�cult problem which implies many assumptions and simpli�cations. Some
of them are often not very well justi�ed from the physical point of view. Any
mathematical model of viscoelastic media have to take into account some
features of the liquid and ignore others, since it is practically impossible to
include all of the signi�cant features in single model simple enough to be
of any use. The result of it is the number of di�erent models of polymer
dynamics which utlize various approaches and assumptions. It has to be
noted that these models are usually quite complex mathematically and many
of their mathematical properties are not studied yet.

The core of any rheological model of viscoelastic �uid is the constitutive
equation which connects the tensor of stresses with the tensor of velocity
gradients. The exact form of this expression depends on the assumptions
made and thus is di�erent in di�erent models. Generally speaking it makes
sense to highlight two approaches for the derivation of constitutive equation.
The �rst one is the phenomenological approach which is focused on the
experimental measurements of real liquid polymeric solutions and melts
received by rheometric devices [1, 2]. Using the data, the one can make
certain assumptions based on general understanding of the behavior of the
liquid in study and receive the constitutive equation which �ts the experiments.
The second approach is the mesoscopic one which relies on the stochastic
modeling of the dynamics and interaction of the macromolecules themselves
[3, 4, 5]. The macroscopic constitutive equation is thus received by ensemble
average of Brownian motion of molecules. In this paper we are using the
mesoscopic rheological Vinogradov�Pokrovskii model (mVP) [6, 7].

As it was mentioned, the rheological models are quite complex mathematically,
which makes the study of their properties challenging. In particular, the
number of known exact solutions for the models is limited by several simple
cases. Even more so, the mVP model, as being relatively recent, is not well
studied yet in that regard. So the goal of this paper is to look for one group
of solutions for this model which can be found exactly. At the same time the
exact solutions provide a lot of information about properties of the model
which makes the search of such solutions the important goal, especially if
the model is not thoroughly studied yet. The search of the exact partial
solutions for rheological models is a popular modern subject of research and
number of recent papers introduced several cases when these solutions could
be obtained for di�erent models [8, 9, 10, 11]. In particular, there are some
exact solutions for mVP models representing rectilinear and rotating steady-
state �ows [13, 14].

One of the most well-known type of stationary �ow of viscous liquid is the
Pouseuille �ow in �at or cylindrical channel, meaning the stationary �ow
under constant pressure gradient and under non-slip boundary conditions.
The similar type of �ow for viscoelastic polymeric liquids is the popular
subject of the research due to both relative simplicity of its geometry and
important applications for both technological processes and study if the
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stability of the viscoelastic �ows. The exact solutions of plain Poiseuille-
type were found for several widely known models such as Oldroyd-b model
[9, 10, 11] and Doi-Edwards model [8] under certain simpli�cations. There are
also couple of the papers dedicated to Pouseuille-type �ow for mVP model,
including the papers written by the authors of the current one [13, 15].
It was shown that exact solutions for plain Pouseuille �ow for this model
can be obtained even if it was required to use numerics to construct this
solutions for practical purposes. It was also revealed that this solutions
are not always unique. The analysis of this potential non-uniqueness of the
stationary solutions was later performed by assuming that the walls of the �at
channel are permeable. It was shown that of all possible stationary solutions
for Pouseuille �ow only one is close to the solutions of the problem with
small �ow through the walls, which makes only one solution feasible from
that point of view [15].

The current paper develops the idea of the steady-state �ow in the �at
channel with permeable (perforated) walls. This type of �ow has its own
interest since the perforated walls with forced pumping of the gas or liquid
through them is the proven way of stabilization of the �ow in the tube or
channel. It appears that the mVP model has a class of solutions for that
type of �ow which could be found exactly under certain assumptions. It is
shown in the paper that these solutions correspond to the �ow with variable
discharge and variable pressure gradient, which expand the set of known
exact solutions for stationary two-dimensional �ows of mVP model.

2 Governing equations

We are looking for the two-dimensional �ow of incompressible viscoelasic
liquid in the �at channel of the width l. Let us introduce the equations of
the Vinogradov�Pokrovskii rheological model (mVP) as it was described in
[7]. The notations for the dimensionless variables are the time t, Carthesian
coordinates (x, y), velocity vector u = (u, v), pressure p. The dimension
scale for these variables are l/uH , l, uH and ρu2H respectively, where uH is
the characteristic velocity and ρ is the constant pressure of the liquid. The
continuity equation has the standard form

divu = ux + vy = 0, (1)

The general form of the momentum equations could be expressed in the
following form

du

dt
+▽p = divΠ, (2)

where
d

dt
=

∂

∂t
+ (u,▽) =

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
.

The right-hand side of the equations contain the dimensionless second-order
tensor Π = (αij), i, j = 1, 2, which represents the additional viscoelastic
stresses of the system. In mVP this tensor is called the tensor of anisotropy.
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The equations which de�ne the components of this tensor through the hydrodynamical
variables are the constitutive equations of the model. Generally speaking,
such tensor is de�ned through the tensor of velocity gradients (tensor of
the speed of deformation) [5]. The di�culty of the formulation of rheological
constitutive equation is that the dependence of tensorΠ from velocity gradient
tensor is nonlinear and non-local in time. Liquid polymers demonstrate the
memory e�ects which means that the tensor Π depends on the history of the
�ow, not just of the state of the �ow at the current moment. It follows that
the constitutive equation could not be the straightforward algebraic relation
but should be the system of di�erential or integral equations instead. The
mVPmodel utilizes the mesoscopic approach for the derivation of constitutive
equation, meaning that the dynamics of the marcomolecules is modeled by
reducing it to movement of one molecule in the anisotropic viscous media.
The molecule itself is modeled as two beads connected with the elastic spring.
This viscous media represents the in�uence of the neibouir molecules on the
moving one. The molecule is moving according to the stochastic generalized
Langevin equation [3]. The assumption is made that the viscoelastic stresses
in the liquid are caused by deviation from the equilibrium state and that
deviation are determined by tensor of anisotropy and two phenomenological
constants k and β, representing the e�ect of the size and orientation of the
macromolecules in the �ow. Thus the �xed velocity �eld u could correspond
to di�erent stresses. In two-dimensional case the constitutive equations are
three di�erential equations:

dα11

dt
− 2α1ux − 2α12uy + Λ11 = 0, (3)

dα12

dt
− α1vx − α2uy + K̃Iα12 = 0, (4)

dα22

dt
− 2α2vy − 2α12vx + Λ22 = 0. (5)

Here
αi = αij + κ2, i, j = 1, 2;κ2 = 1/(ReW );
Λii = KIαii + βRe(α2

ii + α2
12), i = 1, 2;

KI = Re(κ2 + k̄/3I), I = α11 + α22,

K̃I = KI + βReI = Re(κ2 + k̂/3I), k̂ = k + 3β, k = k − β,
Re = ρuH l/η0 is the Reynolds number , W = τ0uH/l is the Weissenberg
number (see[7]), η0, τ0 are the initial values of sheer viscosity and relaxation
time respectively (see [7, 16]). The system (1)-(5) is the mVP model in two-
dimensional case.

Now let us introduce the boundary conditions of the problem. Assume
that the velocity at the walls of the channel (y = 0 and y = 1) is under
control, that is the velocity vector is set. In this paper we will use the most
simpli�ed approach by ignoring the size and position of the holes in the
walls of the channel and making the walls permeable at any point (see [18]).
Assuming that the continuity eqiation is true up to the walls, we are getting



THE EXACT SOLUTIONS FOR THE FLOW OF LIQUID POLYMER 1541

the boundary conditions of the following form:{
y = 0 : u = q0(t, x), vy = −(q0)x(t, x), t > 0, x ∈ R1;

y = 1 : u = q1(t, x), vy = −(q1)x(t, x), t > 0, x ∈ R1.
(6)

Here q0(t, x) è q0(t, x) are known functions.

3 Steady-state �ows in the �at channel

In this section we are showing the solutions of the problem in several
partial cases where the exact solutions are available. First we will assume
that the solution is steady, that is the unknown functions are independent
on time. Also let the vertical velocity component v be independent on x. It
immediately follows from (1) that the horizontal velocity component u is

u = f(y)− xv′(y),

where f(y) is some smooth function. Similar to [18], we will look for the
steady-state solutions of the following form for the equations (1)-(5):

αij = αij(y), i, j = 1, 2,

p = G(y) + P̂0 − Âx+ B̂x2

2 ,

u = f(y)− xv′(y),

v = v(y).

(7)

Here G(y) is an unknown function, G(0) = 0, P̂0 is the pressure at y = x = 0,

Â is the dimensionless pressure gradient at x = 0 along the axis of the
channel, B̂ is some constant, F0,1(y) are the unknowns.

The expression for the tensor of anisotropy in (7) implies the natural
assumption that the internal stresses for the stabilized �ow should be independent
on the x coordinate. The expression for p for this type of �ows commonly
assumes that B̂ = 0 because it thus match the pressure pro�le for the well-
known plain Poiseuille �ow of viscous liquid [17]. Here we use more general
form for pressure, more typical for the rotating �ows [14]. We will show that
precise solutions of the problem are obtainable even for this slightly more
general case.

Next, assume that

α̂22(y) = −κ2 = const, α̂12 ≡ 0, (8)

which appears to be a special case greatly simplifying the equations of the
model. We will also assume that k̄ = 0, β = 1.

For the functions v, f , α̂11 we have the following equations from (1)-(5):

vv
′′ − (v′)2 − B̂ = 0; (9)

vf
′ − fv′ − Â = 0; (10)

vα̂′
11 + 2v′(α̂11 + κ2) + κ2Reα̂11 +Reα̂2

11, (11)

α̂11(0) = α0.
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Let us de�ne the boundary conditions for the velocity components. Assume
that the v is known at the walls of the channel, then from (7) we have

u = ν0 − v′(y)x, v(y) = µ0, y = 0,

u = ν1 − v′(y)x, v(y) = µ1, y = 1,

or

f = ν0, v = µ0, y = 0,

f = ν1, v = µ1, y = 1.
(12)

Here ν0,1 and µ0,1 are some constants.
Let us �rst rewrite the (11) such as:

vγ′ + 2v′γ − κ2Reγ +Reγ2 = 0, γ|y=0 = γ(0),

or

(v2γ)′ − κ2Re

v
(v2γ) = −Re

v3
(v2γ)2. (13)

Here γ = α̂11(y) + κ2.
The equation (13) is the Bernoulli di�erential equation. We will get the

solution by the well-known procedure [19]. Let

w =
1

v2γ
w′ =

(v2γ)′

(v2γ)2
,

Then we have:

w′ +
κ2Re

v
w =

Re

v3
,

It follows that

v2γ(y) =
v2(0)γ(0) exp (Re

∫ y
0 κ2/v(ξ)dξ)

1 + v2(0)γ(0)
∫ y
0 Re/v3(ξ) exp (Re

∫ ξ
0 κ2/v(η)dη)dξ

,

where γ(0) = α̂0 + κ2. Then

α11(y) =
µ2
0(α̂0 + κ2) exp (Re

∫ y
0 κ2/v(ξ)dξ)

v2(y)(1 + µ2
0(α̂0 + κ2)

∫ y
0 Re/v3(ξ) exp (Re

∫ ξ
0 κ2/v(η)dη)dξ)

−κ2.

(14)
The formula (14) provides the value of α11(y) for known v(y).

Function G satis�es the equation (see (7)):

(G+
v2

2
)′ = 0,

or

G(y) =
µ0

2
− v2(y)

2
. (15)

The equation (9) could be rewritten as:(
v′

v

)′
=

B̂

v2
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or

Y ′′ = B̂exp(−2Y ), Y = lnv. (16)

By reducing the order of the equation (16), we get the following:

∂Z2

∂exp(−2Y )
= B̂, (17)

where Z(Y ) = Y ′ .
It follows from (17) that:

(v′)2 = Cv2 − B̂. (18)

Let us gradually calculate the solutions of (18) for several possible cases.

First we will assume that B̂ < 0 and C < 0. Then

v′(y) = c1
√
k2 − v2(y). (19)

Here:
k2 = |B̂|/c21, c1 is some constant.

By taking the boundary conditions (9) into account we have:{
v′2(0) = c21(k

2 − µ2
0),

v′2(1) = c21(k
2 − µ2

1).

From (19) we �nally have:

arcsin
v(y)

k
= c1y + c2

or

v(y) = k sin(c1y + c2), k =
|B̂|

1
2

c1
, (20)

where c2 is constant.
From the boundary condition at (20) y = 0 we have:

c2 = arcsin
µ0

k
, (21)

and at y = 1:

c1 = −arcsin
µ0

k
+ arcsin

µ1

k
. (22)

From (20)-(22) it follows that

v(y) = v(y) = k sin(arcsin
µ0

k
+ y[arcsin

µ1

k
− arcsin

µ0

k
]).

We are assuming that (see (21), (22)):

0 < c2 ≤
π

2
, 0 < c1 + c2 ≤

π

2
.

Now let us look at (10). This equation can be rewritten in the form(
f

v

)′
=

Â

v2
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therefore

f(y) = v(y)

∫ y

0

Â

v2(ξ)
dξ + c3,

where c3 is constant.
It follows from the boundary conditions (10) that

f(0) = c3 = ν0,

f(1) = v(1)

∫ 1

0

Â

v2(1)
dξ + ν0 = ν1.

Finally,

Âv(1)

∫ 1

0

dξ

v2(ξ)
= ν1 − ν0. (23)

Note that the equation (24) connects the value Â with parameters ν0 and
ν1. We have to assume that (24) is true for the problem to have the solutions

of the form (7). But that means we cannot set the values of Â, B̂, µ0, µ1,
ν0, ν1 independently, because the boundary conditions of (10) would not
be guaranteed in that case. The representation (7) and the assumption (8)

forces us to treat the equation (24) as the de�nition of Â:

Â =
ν1 − ν0

µ0

∫ 1
0 1/(v2(ξ))dξ

.

The integral in the last equation can be calculated:∫ y

0

dξ

v2(ξ)
=

∫ y

0

dξ

(k sin(l̂(ξ)))2
,

(l̂(y) = c1y + c2, dl̂ = c1dy,

1

k2c1

∫ c1y+c2

c2

dl̂

sin2 l̂
= − 1

k2c1
(ctg(c1y + c2)− ctgc2).

Then the equation (24) will take the form:

ν1 − ν0 − Â
k sin(c1 + c2)

k2c1

sin(c1)

sin(c1 + c2) sin c2
= 0.

Then

Â =
(ν1 − ν0)c1k sin c2

sin c1
. (24)

The solutions if the problem are:

v(y) = k sin(c1y + c2),

u(y) =
Âv(y)(ctg(c2)− ctg(c1y + c2))

c1k2
− xkc cos(c1y + c2) + ν0,

p(x, y) = G(y) + P̂0 − Âx+
B̂x2

2
.

(25)
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Here
c1 = −arcsin

µ0

k
+ arcsin

µ1

k
, c2 = arcsin

µ0

k
,

k = |B̂|/c1, Â is determined by (24) and G(y) is calculated by (15). The

values B̂, µ0, µ1, ν0, ν1, P̂0 are the parameters of the problem.
Now let us assume that B̂ < 0 and C > 0 in (18). Then

v′(y) = c1
√

k2 + v2(y). (26)

where k2 = |B̂|/c21. We have∫
dv√

v2 + k2
= ln|v +

√
v2 + k2| = c1y + c2,

v +
√
v2 + k2 = c2e

c1y

From the boundary conditions we have

v(y) =
c22e

2c1y − k2

2c2ec1y
,

where

c1 = ln
µ1 +

√
µ2
1 + k2

µ0 +
√

µ2
0 + k2

c2 = µ0 +
√
µ2
0 + k2.

Now from (10) we can determine f :

f(y) = v(y)

∫ y

0

Â

v2(ξ)
dξ + c3.

Then, using the boundary conditions (12)

f(y) =
−Â

4c1c32e
c1y

(1− c22e
2c1y − k2

c22 − k2
) + ν0. (27)

Using the last equation at y = 1 as de�nition for Â, we have

Â =
4(ν1 − ν0)c1c

3
2e

c1(c22 − k2)

c22e
2c1 − c22

. (28)

Finally we have

v(y) =
c22e

2c1y − k2

2c2ec1y
,

u(y) =
−Â

4c1c32e
c1y

(1− c22e
2c1y − k2

c22 − k2
)− x

2
(
c1c2e

c1y

2
+

k2c1
2c2ec1y

),

p(x, y) = G(y) + P̂0 − Âx+
B̂x2

2
.

(29)

Here

c1 = ln
µ1 +

√
µ2
1 + k2

µ0 +
√

µ2
0 + k2

, c2 = µ0 +
√
µ2
0 + k2, k = |B̂|/c1,
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Â is determined by (24) and G(y) is calculated by (15). As before, the
components of the tensor of anisotropy are determined by (8), (14).

It may have look like the case B̂ < 0 corresponds to the boundary-value
problem with multiple solutions. Indeed, the problem (10)-(12) provides two
sets of solutions (25), (29) with identical boundary conditions (12). But in
fact the solutions of type (25) and type (29) have di�erent pressure pro�les.

To show that, let us denote B̂1 as a coe�cient for the solution (25) and B̂2

for (29). We have

B̂1(k) = c21k
2 = −

(
arcsin

µ0

k
+ arcsin

µ1

k

)2
k2,

B̂2(k) = c21k
2 =

(
ln
µ1 +

√
µ2
1 + k2

µ0 +
√
µ2
0 + k2

)2

k2.

It can be shown that

lim
k→+∞

B̂1(k) = lim
k→+∞

B̂2(k) = −(µ0 − µ1)
2,

but
∂

∂k
B̂1(k) > 0,

∂

∂k
B̂2(k) < 0, k > max(|µ0|, |µ1|).

It follows that for all possible k we have B̂1(k) < −(µ0 − µ1)
2, B̂2(k) >

−(µ0−µ1)
2. That means the solutions (25) and (29) correspond to di�erent

values of B̂ and thus any given pressure pro�le of the form (7) provides either
solution (25) or solution (29) but not both of them at the same time.

Now we will look for the solutions with B̂ = 0, which corresponds to the
case with constant pressure gradient along the axis of the channel.

From B̂ = 0 and (9) it follows that:(
v′

v

)′
= 0

and

v = c1e
c2y,

here c1, c2 are constants.
From boundary conditions at y = 0 we have

c1 = µ0, (30)

and at y = 1:

c2 = ln
µ1

µ0
. (31)

From (30) and (31) we have

v(y) = µ0

(
µ1

µ0

)y

.
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Now from (10) we have (
f

v

)′
=

Â

v2
,

and

f

v
=

Â

µ2
0

y∫
0

(
µ1

µ0

)−2ξ

dξ + c3,

where c3 is constant. From the boundary conditions at y = 0 we have

c3 =
ν0
µ0

.

Thus, the f(y) is equal to

f(y) =

(
1

2ln(µ1/µ0)

Â

µ2
0

(
1−

(
µ1

µ0

)−2y
)

+
ν0
µ0

)
µ0

(
µ1

µ0

)y

=

=
1

2ln(µ1/µ0)

Â

µ0

((
µ1

µ0

)y

−
(
µ1

µ0

)−y
)

+ ν0

(
µ1

µ0

)y

.

and from the condition at y = 0 we have

f(1) = ν1 =
Â

2µ0ln(µ1/µ0)

(
µ2
1 − µ2

0

µ0µ1

)
+

ν0µ1

µ0
.

As before, we will use the last equation to de�ne Â:

Â =
2µ0µ1ln(µ1/µ0)

µ2
1 − µ2

0

(ν1µ0 − ν0µ1).

The expressions for the rest of the unknowns are similar to the case of
B̂ < 0. So the �nal expression of the solution is

v(y) = µ0

(
µ1

µ0

)y

,

u(y) =
1

2ln(µ1/µ0)

Â

µ0

((
µ1

µ0

)y

−
(
µ1

µ0

)−y
)
+

+ ν0

(
µ1

µ0

)y

− xµ0ln
µ1

µ0

(
µ1

µ0

)y

,

p(x, y) =
µ2
0

2
− µ2

0

2

(
µ1

µ0

)2y

+ P̂0 − Âx.

(32)

The last case to study is B̂ > 0. As before, we have the following equation
from (18):

v′(y) = c1
√

v2(y)− k2. (33)
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where k2 = |B̂|/c21. Then∫
dv√

v2 − k2
= ln|v +

√
v2 − k2| = c1y + c2

v +
√
v2 − k2 = c2e

c1y

From boundary conditions we have

v(y) = v =
c22e

2c1y + k2

2c2ec1y

where

c1 = ln
µ1 +

√
µ2
1 − k2

µ0 +
√

µ2
0 − k2

c2 = µ0 +
√
µ2
0 − k2.

Finally we have:

f(y) =
−Â

4c1c32e
c1y

(1− c22e
2c1y + k2

c22 + k2
) + ν0.

Using the last equation at y = 1 as de�nition for Â, we have

Â =
4(ν1 − ν0)c1c

3
2e

c1(c22 + k2)

c22e
2c1 − c22

.

u(y) =
−Â

4c1c32e
c1y

(1− c22e
2c1y + k2

c22 + k2
)− x

2
(
c1c2e

c1y

2
− k2c1

2c2ec1y
).



v(y) = v =
c22e

2c1y + k2

2c2ec1y
,

u(y) =
−Â

4c1c32e
c1y

(1− c22e
2c1y + k2

c22 + k2
)− x

2
(
c1c2e

c1y

2
− k2c1

2c2ec1y
),

p(x, y) = G(y) + P̂0 − Â,

(34)

where

c1 = ln
µ1 +

√
µ2
1 − k2

µ0 +
√

µ2
0 − k2

c2 = µ0 +
√
µ2
0 − k2, k = |B̂|/c1,

Â is determined by (24) and G(y) is calculated by (15). As before, the
components of the tensor of anisotropy are determined by (8), (14).

Fig. 1 illustrates the solution of type (25) at x = 0. This solution is
calculated for the case that the �ow into the channel exceeds the �ow out of it
(µ0 = 2, µ1 = 1). The vertical velocity decreases along the line perpendicular
to the axis of the channel. Also the pressure at the boundary y = 0 is lower
than at the boundary y = 1. It is clear from (25) that the pressure along

the Ox axis reaches maximum at the point x = Â/B̂. It is also easy to see
that the horizontal component of the �ow changes direction. The liquid is
moving left for the x < −L and moving right for x > L where L is some
constant. Solutions of type (29) are shown on Fig. 2. As it can be seen, the
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overall shape of these pro�les is quite similar to the case of type (25). The
pro�les for the cases (32) and (34) could be plotted in the same manner but
we are not showing them here since their appearence is not much di�erent
from the one shown on the Fig. 1 and Fig. 2.
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Ðèñ. 1. Pro�les for the solution at x = 0. Here µ0 = 2,
µ1 = 1, ν0 = 0, ν1 = 1, B̂ = −2.58.

The variable �ow discharge of the liquid polymer in the channel is equal
to

Q =

∫ 1

0
u(x, y)dy =

∫ 1

0
f(y)dy − x(µ1 − µ0).

It can be seen from the obtained formulas that the discovered class of the
solutions has some distinctive features. This class does not include the plain
Poiseuille-type of the �ows, that is the �ows with no-slip conditions at the
walls and constant pressure gradient. Indeed, if B̂ = 0 and µ0 = µ1 = 0,
then the equation (9) has the solution equal to zero, which in turn means

that Â = 0, meaning the solution of the problem is the trivial state of the
rest. Even more so, this class of the solutions does not include the solution
with µ0 = µ1 in general. That means, the quantity of the liquid pumped
through the one wall should be di�erent from the quantity if liquid drained
through the other, which in turn does not allow us to have the solutions
with constant �ow discharge along the channel. All of it implies that our
assumptions about perforated walls and various discharge are essential to
have the solutions of introduced type. It has to be noted though, that the
mVP model has the Pouseuille-type solutions and the solutions with constant
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Ðèñ. 2. Pro�les for the solution at x = 0. Here µ0 = 2,
µ1 = 1, ν0 = 0, ν1 = 1, B̂ = −0.66.

discharge in general [12, 13], but their form is di�ernt from the expressions
introduced in this paper.

Conclusions

In this paper we have studied the problem of steady-state �ow of liquid
polymer in the �at channel with permeable walls within the rheological mVP
model. Under some assumptions we have introduced the set of exact solutions
of that problem. These solutions represent the �ows with variable discharge
along the axis of the channel and with variable pressure gradient, which di�er
these solutions from the classical Pouseuille �ows.
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