
S e⃝MR
ÑÈÁÈÐÑÊÈÅ ÝËÅÊÒÐÎÍÍÛÅ

ÌÀÒÅÌÀÒÈ×ÅÑÊÈÅ ÈÇÂÅÑÒÈß

Siberian Electronic Mathematical Reports

http://semr.math.nsc.ru
ISSN 1813-3304

Vol. 20, No. 2, pp. 1590�1596 (2023) ÓÄÊ 517.986

https://doi.org/10.33048/semi.2023.20.097 MSC 16S34

MULTIVALUED GROUPS AND NEWTON

POLYHEDRON

V.G. BARDAKOV AND T.A. KOZLOVSKAYA

11/10/2019 ORCID-iD_icon-vector.svg

file:///Users/tao/Downloads/5008697/ORCID-iD_icon-vector.svg 1/1

Communicated by A.V. Vasil'ev

Abstract: On the set of complex number C it is possible to de�ne
n-valued group for any positive integer n. The n-multiplication
de�nes a symmetric polynomial pn = pn(x, y, z) with integer coef-
�cients. By the theorem on symmetric polynomials, one can present
pn as polynomial in elementary symmetric polynomials e1, e2, e3.
V. M. Buchstaber formulated a question on description coe�cients
of this polynomial. Also, he formulated the next question: How to
describe the Newton polyhedron of pn? In the present paper we
�nd all coe�cients of pn under monomials of the form ei1e

j
2 and

prove that the Newton polyhedron of pn is a right triangle.

Keywords: multi-set, multivalued group, symmetric polynomial,
Newton polyhedron.

One branch of Abstract Algebra is studying algebraic systems with multi-
valued operations. Solutions of the Yang-Baxter equation (2-simplex equa-
tion) and its generalization, n-simplex equations, n ≥ 3, are examples of
multivalued operations. In 1971, V. M. Buchstaber and S. P. Novikov [2]
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introduced a construction, suggested by the theory of characteristic classes
of vector bundles, in which the product of each pair of elements is an n-
multi-set, the set of n points with multiplicities. This construction leads to
the notion of n-valued group.

A good survey on n-valued groups and its applications can be found in
[1]. In Section 5 of this paper, n-valued groups were constructed on the set
of complex numbers C for any natural n. The n-valued multiplication is
described by the polynomials pn = pn(z;x, y) which are x, y, z�symmetric
polynomials with integer coe�cients. If we introduce elementary symmetric
polynomials

e1 = x+ y + z, e2 = xy + yz + zx, e3 = xyz,

then pn = Pn(e1, e2, e3) is a polynomial with integer coe�cients in variables
e1, e2, e3. In [1] two questions were formulated on the description the coef-
�cients of Pn as well as a question on the Newton polyhedron of pn.

In the present paper we �nd the coe�cients for monomials of the form

ei1e
j
2 in Pn. It gives particular answer to the �rst two questions. Also, we

prove that if

f = f(x1, x2, . . . , xn) ∈ Z[x1, x2, . . . , xn]
is a symmetric homogeneous polynomial of degree k, which contains a mono-
mial axk1 for some non-zero a, then its Newton polyhedron is the k∆n−1-
simplex. From this theorem follows that the Newton polyhedron of pn is the
right triangle with side which depend on n. This is the complete answer to
the third question.

At the end of the paper we formulate some open questions.

1 Multivalued groups and Buchstaber's questions

1.1. Multivalued groups. Recall de�nitions and some facts from the
theory of multivalued groups (see, for example, [1]).

Let X be a non-empty set. An n-valued multiplication on X is a map

µ : X×X → (X)n = SymnX, µ(x, y) = x∗y = [z1, z2, . . . , zn], zk = (x∗y)k,

where (X)n = SymnX is the n-th symmetric power ofX, that is the quotient
Xn/Sn of the Cartesian power Xn under the action of Sn by permutations
of components. The next axioms are natural generalizations of the classical
axioms of group multiplication.

Associativity. The n2-multi-sets:

[x∗(y∗z)1, x∗(y∗z)2, . . . , x∗(y∗z)n], [(x∗y)1∗z, (x∗y)2∗z, . . . , (x∗y)n∗z]

are equal for all x, y, z ∈ X.
Unit. An element e ∈ X such that

e ∗ x = x ∗ e = [x, x, . . . , x]

for all x ∈ X.
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Inverse. A map inv : X → X such that

e ∈ inv(x) ∗ x and e ∈ x ∗ inv(x)
for all x ∈ X.

The map µ de�nes n-valued group structure X = (X,µ, e, inv) on X if it
is associative, has a unit and an inverse.

Let µ be the multiplication

µ : C× C → (C)n

that is de�ned by the formula

µ(x, y) = x ∗ y = [( n
√
x+ ϵr n

√
y)n, 1 ≤ r ≤ n],

where ϵ is a primitive n-th root of unity. This multiplication endows C with
the structure of an n-valued group with the unit e = 0. The inverse element
is given by the map inv(x) = (−1)nx.

The n-valued multiplication is described by the polynomials

pn = pn(z;x, y) =
n∏

k=1

(z − (inv(x) ∗ inv(y))k),

whence the product x ∗ y is de�ned by z-roots of the equation pn = 0.
The polynomials pn(z;x, y) are x, y, z�symmetric polynomials with integral
coe�cients, e.g.,

p1 = x+ y + z, p2 = (x+ y + z)2 − 4(xy + yz + zx).

Set

e1 = x+ y + z, e2 = xy + yz + zx, e3 = xyz.

Then
p1 = e1,

p2 = e21 − 22 e2,

p3 = e31 − 33 e3,

p4 = e41 − 23 e21e2 + 24 e22 − 27 e1e3,

p5 = e51 − 54 e21e3 + 55 e2e3,

p6 = e61−22 ·3 e41e2+24 ·3 e21e22−26 e32−2 ·34 ·17 e31e3−23 ·34 ·19 e1e2e3+
33 · 193 e23,

p7 = e71 − 5 · 74 e41e3 + 2 · 76 e21e2e3 − 77 e22e3 + 78 e1e
2
3.

The following questions were formulated in [1].
(1) What is the relationship between prime factors of n and prime factors

of the coe�cients of the polynomials pn?
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(2) How to distinguish the monomials that have zero coe�cient?
(3) How to describe the Newton polyhedron of pn?

2 Coe�cients and the Newton polyhedron of pn

Since pn is a symmetric homogeneous polynomial of degree n, by the
theorem on symmetric polynomials we can present pn as a polynomial on
the elementary symmetric polynomials e1, e2, and e3,

pn =
∑

k1≥k2≥k3≥0
k1+k2+k3=n

Ak1,k2,k3e
k1−k2
1 ek2−k3

2 ek33 ∈ Z[e1, e2, e3].

The main problem is to �nd the coe�cients Ak1,k2,k3 .
We can write pn in the form

pn =
n∏

k=1

(z − ((inv(x) ∗ inv(y))k) =
n∏

k=1

(z − ((−1)nx ∗ (−1)ny)k) =

=

n∏
k=1

(
z −

(
n
√

(−1)nx+ ϵk n
√

(−1)ny
)n)

.

If y = 0, then

p̄n = pn(z;x, 0) =

n∏
k=1

(
z − ( n

√
(−1)nx)n

)
=

n∏
k=1

(z − (−1)nx) = (z − (−1)nx)n .

Denote by

ē1 = e1(z;x, 0) = x+ z, ē2 = e2(z;x, 0) = zx.

We see that e3(z;x, 0) = 0.
The next proposition gives particular answers to the �rst two questions.

Proposition 1. 1) If n is odd, then all Ak1,k2,0, k2 ̸= 0, are zero, i.e. in this

case pn does not contains monomials ei1e
j
2, j > 0.

2) If n = 2k is even, then the coe�cient A2k−i,i,0 at e
2(k−i)
1 ei2, is equal to

A2k−i,i,0 = (−4)iCi
k = (−4)i

k!

i!(k − i)!
, i = 1, 2, . . . , k.

Proof. 1) If n is odd, then

p̄n = (z + x)n = ēn1 .

It means that in pn all coe�cients Ak1,k2,0, where k1 ≥ k2 > 0 and k1+k2 = n
are zero.

2) If n = 2k is even, then

p̄n = (z − x)n = (ē21 − 4ē2)
k =

k∑
i=0

(−4)iCi
k(ē

2
1)

k−i(ē2)
i.
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Hence, we have found the following coe�cients in pn.

A2k−i,i,0 = (−4)iCi
k, i = 1, 2, . . . , k.

□

Example. From this proposition follows that for even n hold

p̄2 = ē21 − 22 ē2,

p̄4 = ē41 − 23 ē21ē2 + 24 ē22,

p̄6 = ē61 − 22 · 3 ē41ē2 + 24 · 3 ē21ē22 − 26 ē32,

p̄8 = ē81 − 24 ē61ē2 + 25 · 3 ē41ē22 − 28 ē21ē
3
2 + 28 ē42.

It is easy to see that for even n all coe�cients of p̄n except the coe�cient
at ēn1 are even. This is not true for polynomials pn, as example p6 shows. We
can formulate
Conjecture. 1) If n = pm is a power of a prime p, then all coe�cients,

except the coe�cient at en1 are divided into p. 2) If n is even, then all
coe�cients Ak1,k2,k3 are non-zero.

2.1. Newton polyhedron. In this subsection we give a complete answer
to the third question in [1]. Recall the necessary de�nition. Let

f = f(x1, x2, . . . , xn) =
∑

ai1...inx
i1
1 . . . xinn ∈ Z[x1, x2, . . . , xn]

be a polynomial with integer coe�cients. Denote by If the set of multi
indexes (i1, . . . , in) such that ai1...in ̸= 0. The convex hull

Nf = Conv(If ) ⊂ Rn

is said to be a Newton polyhedron of f .
To �nd Newton polyhedra for polynomials pn, consider them for small n,
p1 = x+ y + z,

p2 = x2 + y2 + z2 − 2xy − 2yz − 2zx,

p3 = (z + x+ y)3 − 27xyz,

p4 = ((x+ y+ z)2− 4(xy+ yz+ zx))2− 27(x+ y+ z)xyz = p22− 27p1xyz.

Denote by Ni ⊂ R3 the Newton polyhedron for pi. Then
� N1 is the right triangle A1B1C1 with the vertices A1 = (1, 0, 0), B1 =

(0, 1, 0), C1 = (0, 0, 1);
� N2 is the right triangle A2B2C2 with the vertices A2 = (2, 0, 0), B2 =

(0, 2, 0), C2 = (0, 0, 2);
� N3 is the right triangle A3B3C3 with the vertices A3 = (3, 0, 0), B3 =

(0, 3, 0), C3 = (0, 0, 3);



MULTIVALUED GROUPS AND NEWTON POLYHEDRON 1595

� N4 is the right triangle A4B4C4 with the vertices A4 = (4, 0, 0), B4 =
(0, 4, 0), C4 = (0, 0, 4).

To describe Nk for k > 2 we introduce the next de�nition.

De�nition 1. Let k be a positive integer. The standard n-simplex of size k
is the subset of Rn+1 given by

k∆n =

{
(t0, t1, . . . , tn) ∈ Rn+1 |

n∑
i=0

ti = k and ti ≥ 0 for i = 0, 1, . . . , n

}
.

For simplicity we shall call the standard n-simplex of size k by k∆n-simplex.

For k = 1 we get the de�nition of the standard n-simplex (or unit simplex).
The k∆n-simplex has n+ 1 vertices,

E0 = (k, 0, 0, . . . , 0, 0), E1 = (0, k, 0, . . . , 0, 0), . . . En = (0, 0, 0, . . . , 0, k).

Now we are ready to prove the main result of the present subsection.

Theorem 1. Let f = f(x1, x2, . . . , xn) ∈ Z[x1, x2, . . . , xn] be a symmetric
homogeneous polynomial of degree k, which contains a monomial axk1 for
some non-zero a. Then its Newton polyhedron Nf is the k∆n−1-simplex.

Proof. Since axk1 is a monomial of f and f is symmetric, it contains monomials
axki for all i = 1, 2, . . . , n. Hence, Nf contains the vertices

E0 = (k, 0, 0, . . . , 0, 0), E1 = (0, k, 0, . . . , 0, 0), . . . En−1 = (0, 0, 0, . . . , 0, k) ∈ Rn

and hence it contains k∆n−1-simplex. Let us show that any other vertex of
Nf , which corresponds a monomial in f lies in this simplex. Indeed, any such
monomial has the form

bxk11 xk22 . . . xknn , b ∈ R, b ̸= 0.

Since

k1 + k2 + . . .+ kn = k, ki ≥ 0 for i = 1, 2, . . . , n,

the corresponding vertex lies in k∆n−1-simplex. □

We seen that the polynomial pk is homogeneous and has the form pk =
ek1+ . . .. Hence, the answer to the third question of V. M. Buchstaber follows
from Theorem 1.
Corollary. The Newton polyhedron that corresponds to the polynomial

pk(x, y, z), k ≥ 1, is the k∆2-simplex that is a right triangle with sides of

length
√
2 k.
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3 Some open questions

The following questions seem interesting:

(1) Let f = f(x1, x2, . . . , xn) ∈ Z[x1, x2, . . . , xn] be a symmetric polyno-
mial, Nf is its Newton polyhedron. Let us present f as a polynomial
in elementary symmetric polynomial, f = F [e1, . . . , en] ∈ Z[e1, . . . , en]
and construct its Newton polyhedronNF . What is the relation between
Nf and NF ?

(2) Let f = f(x1, x2, . . . , xn) ∈ Z[x1, x2, . . . , xn] be a symmetric polyno-
mial of degree k, which does not contain xk1. What can we say about
its Newton polyhedron Nf?

(3) Since there is a homomorphism of one multivalued group to another
multivalued group and the kernel of this homomorphism is de�ned,
we can talk about extensions of multivalued groups. Construct a
theory of extensions of multivalued groups.

(4) Is it possible to de�ne (co)homology for multivalued groups?

Acknowledgments. The authors thank V. M. Buchstaber and D. V. Tala-
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