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Abstract. The class of ordered structures is productively studied both
in order to classify them and in various applications connected with
comparing of objects and information structuring. Important particular
kinds of ordered structures are represented by o-minimal, weakly o-
minimal and circularly minimal ones as well as their variations including
de�nable minimality. We show that the well developed powerful theory
for o-minimality, circular minimality, and de�nable minimality is natural-
ly spread for the spherical case. Reductions of spherical orders to linear
ones, called the linearizations, and back reconstructions, called the sphe-
ri�cations, are examined. Neighbourhoods for spherically ordered struc-
tures and their topologies are studied. It is proved that related topological
spaces can be T0-spaces, T1-spaces and Hausdor� ones. These cases are
characterized by the cardinality estimates of the universe. De�nably
minimal linear orders, their de�nably minimal extensions and restrictions
as well as spherical ones are described. The notion of convexity rank is
generalized for spherically ordered theories, and values for the convexity
rank are realized in weakly spherically minimal theories which are coun-
tably categorical.
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1. Introduction

Ordered structures and their theories are broadly used in Mathematics and
applications both for studying various structural aspects of reality and for ranking
objects of di�erent nature in order to compare and structure them. There are many
classi�cation results for partially [1, 2, 3, 4], linearly [5], circularly [6, 7] ordered
structures, their elementary theories [7, 8] and automorphism groups [9, 10]. There is
a deep theory classifying o-minimal structures [16, 11], weakly o-minimal structures
[17] and their variations [18, 19, 20].

Recall [16] that a linearly ordered structure M = ⟨M,=, <, . . .⟩ is said to be
o-minimal if any de�nable (with parameters) subset of M is the union of �nitely
many intervals and points in M. We also recall [17] that such a structure M is
weakly o-minimal if any de�nable (with parameters) subset of M is a �nite union
of convex sets in M.

In the present paper we propose an approach classifying spherical generalizations
of o-minimal and weakly o-minimal theories and structures via minimal conditions
studied in [7, 8, 21] and of related topologies [23] connected with tame ones [11].

The paper is organized as follows. Preliminary notions on circular and spherical
orders, and topological terminology are represented in Section 2. In Section 3,
notions on spherical minimality are introduced, links between linear and spherical
orders are described. Topological properties related to spherical orders are studied
in Section 4. In Section 5, we describe links between linear and spherical de�nable
minimalities. Convexity rank and its realizations for spherically ordered theories
are described in Section 6.

2. Preliminaries

We denote by A,B, C, . . . structures and by A,B,C, . . . correspondent universes
of these structures. By Th(A) we denote the complete �rst-order theory of the
structure A. Throughout we use standard model-theoretic [24, 25, 26] and topologi-
cal [23] notions and notations.

Recall [7, 30, 31] that a circular, or cyclic order relation is described by a ternary
relation K3 satisfying the following conditions:
(co1) ∀x∀y∀z(K3(x, y, z) → K3(y, z, x));
(co2) ∀x∀y∀z(K3(x, y, z) ∧K3(y, x, z) ↔ x ≈ y ∨ y ≈ z ∨ z ≈ x);
(co3) ∀x∀y∀z(K3(x, y, z) → ∀t[K3(x, y, t) ∨K3(x, t, z) ∨K3(t, y, z)]);
(co4) ∀x∀y∀z(K3(x, y, z) ∨K3(y, x, z)).

In fact circular orders are obtained from linear ones by their representations on
circles.

Following [33] for a natural number n ≥ 1, a formula φ(x) of a theory T is
called n-ary, or an n-formula, if φ(x) is T -equivalent to a Boolean combination of
T -formulae, each of which is of n free variables.

For a natural number n ≥ 2, an elementary theory T is called n-ary, or an
n-theory, if any T -formula φ(x) is n-ary.

A theory T is called binary if T is 2-ary, it is called ternary if T is 3-ary, etc.
We will admit the case n = 0 for n-formulae φ(x). In such a case φ(x) is just

T -equivalent to a sentence ∀xφ(x).
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If T is a theory such that T is n-ary and not (n − 1)-ary then the value n is
called the arity of T and it is denoted by ar(T ). If T does not have any arity we
put ar(T ) = ∞.

Similarly, for a formula φ of a theory T we denote by arT (φ) the natural value
n if φ is n-ary and not (n− 1)-ary. If a theory T is �xed we write ar(φ) instead of
arT (φ).

Clearly, ar(K3(x, y, z)) = 3 if the relation has at least three element domain,
i.e., K3(x, y, z) is not reduced to Boolean combinations of formulae with at most
two free variables. Hence, theories with in�nite circular order relations are at least
3-ary.

The following generalization of a circular order produces a n-ball, or n-spherical,
or n-circular order relation [33, 34, 35], for n ≥ 3, which is described by a n-ary
relation Kn satisfying the following conditions:
(nso1) ∀x1, . . . , xn(Kn(x1, x2, . . . , xn) → Kn(x2, . . . , xn, x1));

(nso2) ∀x1, . . . , xn

(
(Kn(x1, . . . , xi, . . . , xj , . . . , xn)∧

∧Kn(x1, . . . , xj , . . . , xi, . . . , xn)) ↔
∨

1≤k<l≤n

xk ≈ xl

)
for any 1 ≤ i < j ≤ n;

(nso3) ∀x1, . . . , xn

(
Kn(x1, . . . , xn) →

→ ∀t

(
n∨

i=1

Kn(x1, . . . , xi−1, t, xi+1, . . . , xn)

) )
;

(nso4) ∀x1, . . . , xn(Kn(x1, . . . , xi, . . . , xj , . . . , xn)∨

∨Kn(x1, . . . , xj , . . . , xi, . . . , xn)), 1 ≤ i < j ≤ n.

Clearly, the axioms for n-spherical orders can be naturally adapted for 2-spherical,
i.e., linear ones producing a linear order K2. Here (nso2) gives the re�exivity:
∀xK2(x, x), and the antisymmetry: ∀x1, x2(K2(x1, x2) ∧ K2(x2, x1) → x1 ≈ x2),
(nso1) is replaced by the transitivity:

∀x1, x2, x3(K2(x1, x2) ∧K2(x2, x3) → K2(x1, x3)),

and the axioms (nso3) and (nso4) give the linearity:

∀x1, x2(K2(x1, x2) ∨K2(x2, x1)).

The only case n = 2, i.e. a linear order, can admit endpoints, since for the cases
n ≥ 3 each element lays between other ones.

Structures A = ⟨A,Kn⟩ with n-spherical orders Kn, where the domain A is
the set of all coordinates for tuples in Kn, will be called n-spherical orderings, or
n-spherical orders, too.

We have ar(Kn(x1, . . . , xn)) = n for spherical orders with at least n-elements
domains [33] producing at least n-ary theories with in�nite n-spherical order relations.
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Remark 2.1. Along with a n-spherical order Kn in a structure A = ⟨A,Kn⟩ a
dual n-spherical order Kn is de�nable which is de�ned by the formula

¬Kn(x1, . . . , xn) ∨
∨

1≤k<l≤n

xk ≈ xl.

In particular, any linear order ≤= K2 has the dual linear order ≥= K2, any circular
order ≤= K3 has the dual circular order K3, etc.

De�nition [23]. A topological space is a pair (X,O) consisting of a set X and a
family O of open subsets of X satisfying the following conditions:

(O1) ∅ ∈ O and X ∈ O;
(O2) If U1 ∈ O and U2 ∈ O then U1 ∩ U2 ∈ O;
(O3) If O′ ⊆ O then ∪O′ ∈ O.

De�nition [23]. A topological space (X,O) is a T0-space if for any pair of distinct
elements x1, x2 ∈ X there is an open set U ∈ O containing exactly one of these
elements.

De�nition [23]. A topological space (X,O) is a T1-space if for any pair of distinct
elements x1, x2 ∈ X there is an open set U ∈ O such that x1 ∈ U and x2 /∈ U .

De�nition [23]. A topological space (X,O) is a T2-space, or Hausdor� if for any
pair of distinct points x1, x2 ∈ X there are open sets U1, U2 ∈ O such that x1 ∈ U1,
x2 ∈ U2, and U1 ∩ U2 = ∅.

3. Linear and spherical orders and their minimalities

The following assertion connects linear orders and n-spherical orders.

Fact 1. (cf. [7, Fact 2.2], [32, Theorem 11.9])
(i) If ⟨M,≤⟩ is a linear ordering and

Kn = {(ai1 , ai2 , . . . ain) | ai = aj for some i ̸= j,

or a1 < a2 < . . . < an and (i1, i2, . . . , in) is obtained

by an even permutation of (1, 2, . . . , n)},
then Kn is a de�nable n-spherical order on M .

(ii) If ⟨M,Kn⟩ is a n-spherical ordering and a ∈ M , then the relation Kn−1,a

de�ned on Ma ⇌ M \ {a} by the rule

Kn−1,a(x1, . . . , xn−1) ⇌ Kn(a, x1, . . . , xn−1)

is a (n− 1)-spherical order. Moreover, the relations Kn−m,a1,...,am
de�ned on

Ma1,...,am
⇌ M \ {a1, . . . , am},

for pairwise distinct a1, . . . , am ∈ M , by the rule

Kn−m,a1,...,am(x1, . . . , xn−m) ⇌ Kn(a1, . . . , am, x1, . . . , xn−m)

are (n−m)-spherical orders including the linear order K2,a1,...,an−2
(x1, x2), where

n−m ≥ 2. Furthermore, extending this linear order to one, denoted by ≤′ and by
≤′

a1,...,an−2
, on M by specifying that a1 ≤′ . . . ≤′ an−2 ≤′ b for all b ∈ Ma1,...,am

then the derived n-spherical order relation is the original n-spherical order Kn.
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De�nition. The orders Kn−m,a1,...,am
(x1, . . . , xn−m) are called the (n − m)-

reductions of the n-spherical order Kn, with respect to a1, . . . , am, and the 2-
reductions K2,a1,...,an−2(x1, x2) are called the linearizations of Kn (with respect

to a1, . . . , an−2), denoted by L̂(Kn, a1, . . . , an−2) or simply L̂(Kn).
Thus we obtain the operations reducing n-spherical orders to linear ones. Con-

verse actions transforming linear orders L to n-spherical orders are called the n-

spheri�cations K̂n(L).

The following identities hold, with respect to �xed elements a1, . . . , an−2:

L̂(K̂n(L)) = L, K̂n(L̂(Kn)) = Kn.

Clearly, the operators L̂ and K̂n preserve the structural complexity, in particular,
the ω-categoricity and rank values for de�nable sets.

De�nition. Let A ⊆ M , where M = ⟨M,Kn, . . .⟩ is a n-spherically ordered
structure. The set A is called convex if for any a1, a2, . . . , an−1 ∈ A the following
holds: for any b ∈ M with |= Kn(a1, . . . , an−1, b) we have b ∈ A or for any b ∈ M
with |= ¬Kn(a1, . . . , an−1, b) we have b ∈ A.

Notation. 1. For a linearly ordered structure M = ⟨M,≤, . . .⟩ we denote by
sn(M) the structure ⟨M,Kn, . . .⟩, where we replace the linear order ≤ by a n-ary
relation Kn, which is derived from ≤ following Fact 1(i). Following [7] the operator
s3(·) is denoted by c(·).

By Fact 1 we also introduce structures smn (M), for m ≤ n, where the predicate
Km forM is replaced by the predicateKn. In particular, the operator s

2
3(·) produces

a circular order for a given linear order.
2. Let M0,M1, . . . ,Mk−1 be linear orderings. Replacing ≤ by Kn as above

we denote by sn(M0 + M1 + . . . + Mk−1) the n-spherically ordered sum M of
M0,M1, . . . ,Mk−1 such that for each 0 ≤ i ≤ k−1, considered (modk), Mi is the
immediate predecessor of Mi+1: that is, for a1, . . . , aj ∈ Mi, aj+2, . . . , an ∈ Mi+1,
and b ∈ M , if |= Kn(a1, . . . , aj , b, aj+2, . . . , an), then b ∈ Mi ∪Mi+1.

3. We put K0
n(x1, . . . , xn) ⇌ Kn(x1, . . . , xn) ∧

∧
i ̸=j

¬xi ≈ xj .

Remark 1. Notice that the operator s2n di�ers from n-spheri�cation K̂n since
in the second case n − 2 new elements are added. At the same time the results of
applications of operators s2n and K̂n can be isomorphic or non-isomorphic depending
on positions of new elements a1, . . . , an−2.

Indeed, s23(ω + ω∗) is isomorphic to K̂3(ω + ω∗) if new element a1 is situated
between elements of ω or of ω∗, and these structures are not isomorphic if new

element a1 is greater than ω and less than ω∗, obtaining K̂3(ω+ω∗) = c(ω+1+ω∗).

De�nition. Let S ⊆ M , where M = ⟨M,Kn, . . .⟩ is a n-spherically ordered
structure. The set S is said to be an open n-segment surface if S = {b ∈ M |
M |= K0

n(a1, b, a3, . . . , an)} for some pairwise distinct a1, a3, . . . , an ∈ M . It has
endpoints a1, a3, . . . , an. For an open n-segment surface S of a n-spherically ordered
set, sometimes we will write S = (a1, a3, . . . , an) if we wish to indicate the endpoint
frame of S. Similarly, we may de�ne closed, partially open, etc., n-segment surfaces
in M including all/some coordinates ai. By a n-segment surface in M we shall
mean, ambiguously, any of the above types of n-segment surfaces in M.

It is obvious that both a n-segment surface and a point are convex sets.
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De�nition. Let M = ⟨M,Kn, . . .⟩ be a n-spherically ordered structure. The
structure M is said to be n-spherically minimal if any de�nable (with parameters)
subset of M is a positive Boolean combination of segment surfaces and points in
M. The structure M is said to be weakly n-spherically minimal if any de�nable
(with parameters) subset of M is a �nite union of convex sets.

A complete theory T is said to be (weakly) n-spherically minimal if all its models
are (weakly) n-spherically minimal.

Following [7] for n = 3 we say on circular minimality instead of 3-spherical one.

The following proposition immediately follows by Fact 1.

Proposition 1. Let M = ⟨M,Kn, . . .⟩ be a (weakly) n-spherically minimal structu-
re, and a1, . . . , an−2 be arbitrary pairwise distinct elements of M . Take the relation
≤=≤a1,...,an−2

= Kn−2,a1,...,an−2
on

Ma1,...,an−2 = M \ {a1, . . . , an−2}

and ≤′=≤′
a1,...,an−2

on M as in Fact 1.

(i) Let Ma1,...,an−2
be the structure with domain Ma1,...,an−2

, the order ≤, and
a relation symbol for each {a1, . . . , an−2}-de�nable relation of M on powers of
Ma1,...,an−2

. Then Ma1,...,an−2
is a (weakly) o-minimal structure.

(ii) Let M′
a1,...,an−2

be the structure with domain M , the order ≤′, and a relation

symbol for each {a1, . . . , an−2}-de�nable relation of M on powers of M . Then
M′

a1,...,an−2
is (weakly) o-minimal.

Since o-minimal structures have o-minimal theories, Proposition 1 implies:

Corollary 1. Any n-spherically minimal structure has n-spherically minimal theory.

By the de�nition of sn(M) we have:

Proposition 2. Let M = ⟨M,≤, . . .⟩ be a weakly o-minimal structure. Then sn(M)
is a weakly n-spherically minimal structure.

The following examples illustrate possibilities of spherical minimality.

Example 1. (cf. [7, Example 2.9]) Taking an n-dimensional sphere S ⊆ Rn of
radius 1 and a n-spherical order Kn on S preserving orientations of directed n-
tetrahedrons we obtain the rotation group SO(n) which preservesKn. The expanded
group G = ⟨SO(n),Kn⟩ is n-spherically ordered. SinceKn is dense it is ω-categorical,
with quanti�er elimination in view of [35, Section 4]. Similarly [18, Theorem 5.1]
the structure G is n-spherically minimal.

Example 2. (cf. [7, Example 2.10]) Let R be an o-minimal expansion of a real
closed �eld ⟨R,≤,+, ·⟩. For an ultrapower ∗R of R and a set V := {x ∈ ∗R | |x| < n
for some n ∈ ω} the structure ⟨∗R, V ⟩ is weakly o-minimal by [36]. Replacing the
relation < by a correspondent n-spherical order Kn on ∗R and using Proposition
2, we obtain a weakly n-spherically minimal structure ⟨∗R, V,Kn⟩.

Example 3. It is known [16, 37] that o-minimal structures ⟨M,≤⟩ are elementary
equivalent to ordered sets of form C1+. . .+Cm, where Ci are elementary equivalent
to one of the following ordered sets: a �nite ordered set, ω, ω∗, ω + ω∗, ω∗ + ω, Q,
and if Ci does not have a last element, then Ci+1 has a �rst element.
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Generalizing constructions in [7] and using Proposition 1 we spread possibilities
for o-minimal structures M both for circularly minimal structures c(M) = s3(M)
and for n-spherically minimal structures sn(M), n ≥ 4.

Example 2.12 in [7] illustrates that for the circularly minimal structure c(ω +
ω∗ + Q + ω + ω∗ + Q), acl(∅) is a proper superset of dcl(∅) contrasting with the
o-minimal case, where acl(A) = dcl(A) for any subset A of a universe.

Similarly, the n-spherical structures, for n ≥ 4, produce algebraic closures acl(∅)
with acl(∅) ⫌ dcl(∅). These structures are based on possibilities of distributions
of discrete suborders, of dense n-spherical orders described in [35] with respect to
�nitely many accumulation points for �increasing/decreasing� sequences of elements
generalizing the order ω + ω∗.

4. Topologies for spherically ordered theories

De�nition. For a n-spherically ordered structure M = ⟨M,Kn, . . .⟩, n ≥ 4, and
for elements a1, . . . , an ∈ M we say that an lays between a1, . . . , an−1, or inside
with respect to a1, . . . , an−1 if

(1) M |= K0
n(a1, . . . , an−1, an).

If n = 2 then the relation (1) denotes that a2 is greater than a1, and for n = 3 that
relation denotes that a2 lays between a1 and a3, or inside with respect to a1, a3.

Similarly we say that ai lays between or inside with respect to a1, . . . , ai−1, ai+1,
. . . , an if ai lays between or inside with respect to the circular permutation ai+1, . . . ,
an, a1, . . . , ai−1 of a1, . . . , ai−1, ai+1, . . . , an.

If ai does not lay between a1, . . . , ai−1, ai+1, . . . , an we say that ai lays outside
with respect to a1, . . . , ai−1, ai+1, . . . , an.

By the axiom (nso1) of circular permutations the general case of (non-)between-
ness is reduced to that relation with respect to a1, . . . , an−1.

For a sequence a1, . . . , an−1 of pairwise distinct elements the set Int(a1, . . . , an−1)
(respectively, Ext(a1, . . . , an−1)) of all elements inside (outside) with respect to
a1, . . . , an−1 is called the interior (exterior) with respect to a1, . . . , an−1.

The sets Int(a1, . . . , an−1) and Ext(a1, . . . , an−1) are considered as neighbour-
hoods Uint and Uext of elements belonging to them.

By the de�nition we have Uint ∩ Uext = ∅ for the neighbourhoods Uint and Uext

with respect to a �xed sequence a1, . . . , an−1.
Assuming |M | ≥ n each element a ∈ M belongs to some neighbourhoods Uint

and Uext with respect to elements in M \ {a}. Thus the family O generated by
the neighbourhoods with respect to unions and �nite intersections produces a
topological space X Int

Ext(M) = (M,O). It is called n-spherical.
The n-spherical topological space X Int

Ext(M) has two natural restrictions X Int(M)
and XExt(M) generated by neighbourhoods Uint and Uext, respectively. These re-
strictions are called n-spherical, too.

Remark 2. Since neighbourhoods Uint and Uext with respect to a �xed sequence
a1, . . . , an−1 are disjoint and Uint∪Uext = M \{a1, . . . , an−1} these neighbourhoods
are complement each other. Thus X Int(M) and XExt(M) are dual: one of them is
uniquely de�ned by another one, via complements. Moreover, both X Int(M) and
XExt(M), separately and together, de�ne X Int

Ext(M).
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Proposition 3. For any n-spherically ordered structure M with |M | ≥ n the space
X Int

Ext(M) is Hausdor�.

Proof. Let a and b be two distinct elements in M .
If n = 2 then we have a < b or b < a. Without loss of generality we assume

that a < b. Having c ∈ M with a < c < b we obtain disjoint neighbourhoods Int(c)
and Ext(c) separating a ∈ Ext(c) and b ∈ Int(c). If c does not exist, i.e., b is the
successor of a we take separating neighbourhoods Int(a) and Ext(b) with a ∈ Ext(b)
and b ∈ Int(a). Thus X Int

Ext(M) is Hausdor�.
Now let n ≥ 3. We �x pairwise distinct elements d1, . . . , dn−2 ∈ M \ {a, b}. We

have two possibilities for a and b with respect to d1, . . . , dn−2:

|= K0
n(d1, . . . , dn−2, a, b),

or |= ¬K0
n(d1, . . . , dn−2, a, b), i.e., |= K0

n(d1, . . . , dn−2, b, a). Following Fact 1 the
relation K0

n(d1, . . . , dn−2, x, y) de�nes a linear order < on M \{d1, . . . , dn−2} imply-
ing a < b or b < a. Now repeating the arguments for n = 2 we obtain a pair of
disjoint neighbourhoods Int(d1, . . . , dn−2, c) and Ext(d1, . . . , dn−2, c), or Int(d1, . . . ,
dn−2, a) and Ext(d1, . . . , dn−2, b), or Ext(d1, . . . , dn−2, a) and Int(d1, . . . , dn−2, b),
separating a and b and witnessing the Hausdor�ness of X Int

Ext(M).

Remark 3. Any 2-spherically ordered structure M with |M | ≥ 2, i.e., a linearly
ordered structure with an order K2 = ≤ of cardinality at least 3, produces the T0-
spaces X Int(M) and XExt(M) which are not T1-spaces. Indeed, there are a1, a2 ∈ M
with a1 < a2, and for any a ∈ M we have Int(a) = {b ∈ M | a < b}, Ext(a) =
{b ∈ M | b < a}. Thus, the neighbourhoods Uint, respectively Uext, form chains
isomorphic to < and witnessing that X Int(M) and XExt(M) are T0-spaces, not
T1-ones. In particular, a2 is separated from a1 by Int(a1) but a1 is not separated
from a2 by interiors. Similarly, a1 is separated from a2 by Ext(a2) but a2 is not
separated from a1 by exteriors.

Remark 4. Any 3-spherically ordered structure M with |M | ≥ 3, i.e., a circularly
ordered structure with an orderK3, produces the T2-spaces X Int(M) and XExt(M).
Indeed, taking distinct elements a1, a2 ∈ M we have either |= K0

3 (a1, a2, b) or
|= K0

3 (a2, a1, b) for some b.
In the �rst case we have a2 ∈ Int(a1, b). If there is an element c between a1

and a2 we choose an element d between b and a1, or taking d = b if there are no
elements between b and a1, producing distinct neighbourhoods Int(d, c) and Int(c, b)
containing a1 and a2, respectively, and witnessing that X Int(M) is Hausdor�. If
there are no elements between a1 and a2 we repeat the choice of d and obtain
distinct neighbourhoods Int(d, a2) and Int(a1, b) containing a1 and a2, respectively,
witnessing again the Hausdor�ness of X Int(M).

In the second case we have similarly a1 ∈ Int(a2, b) and there are c, d ∈ M with
distinct neighbourhoods Int(d, c) and Int(c, b) containing a2 and a1, respectively, or
distinct neighbourhoods Int(d, a1) and Int(a2, b) containing a2 and a1, respectively,
and witnessing again the Hausdor�ness of X Int(M).

The Hausdor�ness of XExt(M) is implied by its duality with respect to the
Hausdor� space X Int(M).

Remark 5. Any n-spherically ordered structure M with |M | ≥ n ≥ 4 produces
the T2-spaces X Int(M) and XExt(M). Indeed, taking distinct elements a1, a2 ∈
M we choose pairwise distinct elements b1, . . . , bn−3 ∈ M \ {a1, a2} and obtain a
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circular order K0
n(b1, . . . , bn−3, x, y, z) on M \ {a1, a2} implying the Hausdor�ness

for X Int(M) and XExt(M) in view of Remark 4.

Remark 6. Any n-spherically ordered structure M with |M | < n produces the
spaces X Int(M), XExt(M), X Int

Ext(M) which are not T0-spaces. Indeed, if |M | < n
then Kn = Mn implying that there are no separated elements at all.

Summarizing the assertions and remarks above we obtain the following theorems.

Theorem 1. For any n-spherically ordered structure M the following conditions
are equivalent:

(1) X Int(M) is a T0-space;
(2) XExt(M) is a T0-space;
(3) X Int

Ext(M) is Hausdor�;
(4) |M | ≥ n.

Proof. (1) ⇒ (4), (2) ⇒ (4), (3) ⇒ (4) follow by Remark 6. (4) ⇒ (1) and
(4) ⇒ (2) are implied by Remark 3, (4) ⇒ (3) holds by Proposition 3.

Theorem 2. For any n-spherically ordered structure M the following conditions
are equivalent:

(1) X Int(M) is a T1-space;
(2) XExt(M) is a T1-space;
(3) X Int(M) is Hausdor�;
(4) XExt(M) is Hausdor�;
(5) |M | ≥ n ≥ 3.

Proof. (1) ⇒ (5), (2) ⇒ (5), (3) ⇒ (5), (4) ⇒ (5) follow by Remark 6. (5) ⇒ (3)
and (5) ⇒ (4) are implied by Remarks 4 and 5, and (3) ⇒ (1), (4) ⇒ (2), (1) ⇔ (2)
hold by the de�nition.

5. Definable minimality for linearly ordered and spherically

ordered theories

De�nition [21, 8]. A structure M is called de�nably minimal if each de�nable,
with parameters, subset of M is either �nite or co�nite.

De�nition [22]. A structure M is called strongly minimal if each structure
N ≡ M is de�nably minimal.

We denote by Mod(T ) the class of all T -models and by Min(T ) the class of all
de�nably minimal T -models.

By the de�nition we have the following:

Proposition 4. A theory T is strongly minimal if and only if Mod(T ) = Min(T ).

The linear order ω represents a de�nably minimal structure which is not strongly
minimal, since the theory Th(ω) is unstable, with the strict order property.

Following [21, 8] de�nably minimal linear orders are exhausted by expansions of
m, ω, ω∗, ω + ω∗, ω +m, m+ ω∗ for natural m.

Here the only orders m are minimal models of their theories, under inclusion,
since ω ≃ 1 + ω and ω∗ ≃ ω∗ + 1. Thus unstable de�nably minimal linear orders
do not have minimal models under inclusion. These minimal models and their
hypergraphs are studied both in general context [27] and for theories of abelian
groups [28, 29].
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Using the description of de�nably minimal linear orders we observe that there
are no uncountable de�nably minimal linear orders whereas by L�owenheim-Skolem
theorem strongly minimal theories with in�nite models have de�nably minimal
models of arbitrarily large in�nite cardinality.

The following theorem gives a description for de�nably minimal extensions and
restrictions of de�nably minimal linear orders.

Theorem 3. For any linear de�nably minimal order M a linear order N ⊃ M
with �nite N \ M is de�nably minimal if and only if N does not have the form
ω +m+ ω∗ for some natural m > 0.

Proof. Let N ⊃ M be a linear order with �nite Z = N \ M . We have the
following possibilities:

i) M = m ∈ ω and elements of Z are situated before, between and/or after
elements of m producing the �nite de�nably minimal linear order with m + |Z|
elements;

ii) M = ω and elements of Z are situated before, between and/or after elements
of ω obtaining the de�nably minimal order ω+m, wherem > 0 i� there are elements
of Z after all elements of ω;

iii)M = ω∗ and elements of Z are situated before, between and/or after elements
of ω∗ obtaining the de�nably minimal order m + ω∗, where m > 0 i� there are
elements of Z before all elements of ω∗;

iv) M = ω + ω∗ and elements of Z are situated before, between and/or after
elements of ω+ω∗ producing either isomorphic de�nably minimal order ω+ω∗, if Z
does not contain elements greater than all elements of ω and less than all elements
of ω∗, or an order ω+m+ω∗, if Z contains an element a greater than all elements
of ω and less than all elements of ω∗; this element a divides M into two in�nite
parts by the formulae x < a and a ≤ x violating the de�nable minimality;

v) M = ω + m and elements of Z are situated before, between and/or after
elements of ω + m obtaining the de�nably minimal order ω + m′, where m′ ≥ m
and m′ > m i� there are elements of Z after all elements of ω +m;

vi) M = m + ω∗ and elements of Z are situated before, between and/or after
elements of m+ ω∗ obtaining the de�nably minimal order m′ + ω∗, where m′ ≥ m
and m′ > m i� there are elements of Z before all elements of m+ ω∗.

The only case iv) with ω +m+ ω∗ fails the de�nable minimality for N .

Theorem 4. For any linear de�nably minimal order M a linear order N ⊃ M
with countable N \M is de�nably minimal if and only if N does not contain forms
ω∗ + ω, ω∗ + ω∗, ω + ω, ω +m+ ω∗ for some natural m > 0.

Proof. Clearly each type ω∗ + ω, ω∗ + ω∗, ω + ω, ω +m+ ω∗, for some natural
m > 0, fails the de�nable minimality. Indeed, we have the formulae x < a and
a ≤ x with in�nitely many solutions, where a ∈ ω for the type ω∗ +ω, a belongs to
the �rst ω∗ in ω∗ + ω∗, a belongs to the second ω in ω + ω, a ∈ m for ω +m+ ω∗.
Conversely, if N is de�nably minimal then taking an arbitrary element a ∈ N we
have either �nite N < a and countable a < N , or countable N < a and �nite
a < N .

In the �rst case for any b > a either there are �nitely many elements between a
and b and countably many elements greater than b, or there are countably many
elements between a and b and �nitely many elements greater than b. Therefore N
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has the type m + ω∗, if a ∈ m, or ω, for a < b ∈ ω, or ω +m, if a ∈ ω, and b ∈ ω
or b ∈ m, or ω + ω∗, if a ∈ ω, and b ∈ ω or b ∈ ω∗.

In the second case we replace < by > and obtain the following possibilities:
m+ ω∗, ω∗, ω +m, ω + ω∗.

In any case N does not contain forms ω∗ + ω, ω∗ + ω∗, ω + ω, ω +m+ ω∗.

Theorem 5. For any linear de�nably minimal order M each restriction N ⊂ M
is de�nably minimal, too.

Proof. We have the following possibilities for N :
i) M = m ∈ ω and N ≃ m′ for m′ ≤ m;
ii) M = ω, and N ≃ ω, if N is in�nite, or N ≃ m ∈ ω, if N is �nite;
iii) M = ω∗, and N ≃ ω∗, if N is in�nite, or N ≃ m ∈ ω, if N is �nite;
iv) M = ω + ω∗, and N ≃ ω + ω∗, if N has in�nitely many elements of ω and

in�nitely many elements of ω∗; N ≃ ω+m, if N has in�nitely many elements of ω
and �nitely many elements of ω∗; N ≃ m+ ω∗, if N has �nitely many elements of
ω and in�nitely many elements of ω∗; N ≃ m, if N has �nitely many elements of
ω and �nitely many elements of ω∗;

v) M = ω +m, and N ≃ ω +m′ for m′ ≤ m, if N is in�nite, or N ≃ m′ ∈ ω, if
N is �nite;

vi) M = m+ω∗, and N ≃ m′ +ω∗ for m′ ≤ m, if N is in�nite, or N ≃ m′ ∈ ω,
if N is �nite.

Thus all possible restrictions N of M are again de�nably minimal.

Theorems 3, 4, 5 are naturally spread for theories of n-spherical orders, via the
n-spheri�cations.

The following de�nition modi�es the notion of de�nable minimality for n-spherical
theories.

De�nition. A n-spherically ordered structure M is called Kn-minimal if for any
pairwise distinct elements a1, . . . , an−1 ∈ M either Int(a1, . . . , an−1) or Ext(a1, . . . ,
an−1) is �nite, i.e., M is divided by Kn into a �nite and a co�nite parts with respect
to any distinct a1, . . . , an−1.

We say that M produces a limit point, or an accumulation point a, in a model of
Th(M), with respect to Kn if there is a sequence (am)m∈ω, where each am consists
of n− 1 pairwise distinct coordinates, and a sequence (Um)m∈ω of neighbourhoods
of the form Int(am) or Ext(am) such that the sets Vm = U0 ∩ . . . ∩ Um form a
strictly decreasing chain with tp(a/M) ∋ φm(x, am), where φm(x, am) is a formula
K0

n(x, am) or ¬K0
n(x, am) ∧

∧
a′∈am

¬x ≈ a′ with the set Um of solutions, m ∈ ω.

Remark 7. Following [21, 8] K2-minimal structures are exhausted by expansions
of m, ω, ω∗, ω + ω∗, ω + m, m + ω∗ for natural m. In every one of these cases
accumulation points are equivalent: they have the same type over the model, i.e.,
the quotient with respect to the equivalence relation x ≡ y is a singleton. Here the
accumulation points are produced by the neighbourhoods Uint for ω, Uext for ω∗,
Uext ∩ Uint for ω + ω∗, ω +m, m + ω∗. Thus each accumulation point a is a limit
of an increasing or a decreasing sequence.

The same possibilities replacing the linear orders m, ω, ω∗, ω+ω∗, ω+m, m+ω∗

by the circular ones c(·) are valid for K3-minimal structures. In fact we have three
non-isomorphic possibilities c(ω), c(ω∗), and c(ω + ω∗) with accumulation points,
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since c(ω+m) ≃ c(ω) and c(m+ω∗) ≃ c(ω∗). Moreover, c(ω) and c(ω∗) are mutually
dual and connected by an anti-isomorphism between ω and ω∗, and c(ω + ω∗) is
self-dual: it is anti-isomorphic to itself.

Kn-minimal structures have similar possibilities combining interiors and exteriors.
Here for K0

n(a1, . . . , ai−1, x, ai+1, . . . , an) both some elements aj may be �xed and
some ak may be moving producing cases above, if n − 2 elements are �xed, and
additional cases with at least two moving points.

For instance, taking K0
4 (a

0
1, a

0
2, a

0
3, x) we can consider a sequence

(⟨am1 , am2 , am3 ⟩)m∈ω

with am+1
1 , am+1

2 , am+1
3 ∈ Int(am1 , am2 , am3 ) (respectively, with am+1

1 , am+1
2 , am+1

3 ∈
Ext(am1 , am2 , am3 )) and an accumulation point a ∈ Int(am1 , am2 , am3 ) (a′ ∈ Int(am1 , am2 ,
am3 )), m ∈ ω, illustrating the Kn-minimalities.

Applying the correspondence between linear and spherical orders described in
Fact 1 and Hausdor�ness of topology with respect to X Int

Ext(M) in Theorem 1 we
obtain the following possibilities for Kn-minimal structures with n ≥ 2.

Theorem 6. For any in�nite n-spherically ordered structure M = ⟨M,Kn, . . .⟩ the
following conditions are equivalent:

(1) M is Kn-minimal;
(2) M produces unique accumulation point with respect to Kn;
(3) any linearization ≤ of M is ≤-minimal;
(4) any linearization ≤ of M produces unique limit point with respect to ≤.

Proof. (1) ⇒ (2). Since M is in�nite there are in�nitely many neighbourhoods
producing at least one accumulation point. IfM produces at least two accumulation
points a and b with respect to Kn. Since the topology X Int

Ext(M) is Hausdor� by
Theorem 1, there are disjoint in�nite neighbourhoods U1 and U2 separating a and
b. Both the formula Kn(. . .) for U1 and its negation ¬Kn(. . .) have in�nitely many
solutions contradicting the Kn-minimality of M.

(2) ⇒ (1). IfM is notKn-minimal then there are in�nite neighbourhoods U1 and
U2 de�ned by a formula Kn(. . .) and its negation ¬Kn(. . .), respectively. Since the
topology X Int

Ext(M) is Hausdor� both the neighbourhood U1 and the neighbourhood
U2 produce accumulation points a and b. These points are distinct since U1 and U2

are disjoint.
(3) ⇔ (4) follows by (1) ⇔ (2) for n = 2.
(1) ⇒ (3). Let M be Kn-minimal, ≤ be a linearization of M with respect to

Kn(a1, . . . , an−2, x, y).

Taking an arbitrary element b ∈ M \ {a1, . . . , an−2}, by the Kn-minimality of
M, we have �nitely or co�nitely many solutions for Kn(a1, . . . , an−2, b, y) and for
Kn(a1, . . . , an−2, x, b), i.e., for b ≤ y and for x ≤ b con�rming that the linearization
is ≤-minimal.

(3) ⇒ (1). Let any linearization ≤ of M be ≤-minimal. Taking a formula

Kn(a1, . . . , an−2, an−1, y)

and a ≤-minimal linearization ≤ de�ned by the formula Kn(a1, . . . , an−2, x, y)
we have �nitely or co�nitely many solutions for an−1 ≤ y and for x ≤ an−1

implying that Kn(a1, . . . , an−2, an−1, y) has �nitely or co�nitely many solutions
and con�rming that M is Kn-minimal.



612 S.V. SUDOPLATOV

Remark 8. It is essential in Theorem 6 that all linearizations ≤ of M are ≤-
minimal. Indeed, the linear order ω + 1 + ω∗ is not de�nably minimal producing
n-spherical orders Kn which are not Kn-minimal, whereas the linearization ≤′

removing the element 1 becomes ≤′-minimal.
We observe a similar e�ect taking a n-spherical order Kn with m < n accumula-

tion points and transforming it into a ≤-minimal linearization by removing n − 2

elements, say with K̂n(ω + (n− 2) + ω∗).

6. Convexity rank for spherically ordered theories

The following notion of convexity rank generalizes that known one from the class
of linearly ordered theories [38] to the classes of n-spherically ordered theories. It
produces a measure of minimality with respect to convex sets.

De�nition. Let T be a weakly n-spherically minimal theory, M be a su�ciently
saturated model of T, φ(x) be a M -de�nable formula with one free variable. The
convexity rank of the formula φ(x) (RC(φ(x))) is de�ned as follows:

0) RC(φ(x)) = −1 if φ(M) is empty, and RC(φ(x)) ≥ 0 if |φ(M)| ∈ ω \ {0};
1) RC(φ(x)) ≥ 1 if φ(M) is in�nite;
2) RC(φ(x)) ≥ α + 1 if there is a parametrically de�nable equivalence relation

E(x, y) and in�nitely many elements bi, i ∈ ω, such that:

• for any distinct i, j ∈ ω, M |= ¬E(bi, bj);
• for any i ∈ ω, RC(E(x, bi)) ≥ α and E(M, bi) is a convex subset of φ(M);

3) RC(φ(x)) ≥ δ if RC(φ(x)) ≥ α for all α < δ (δ is a limit ordinal).

If RC(φ(x)) = α for some α then we say that RC(φ(x)) is de�ned. Otherwise,
i.e., if RC(φ(x)) ≥ α for all α, we put RC(φ(x)) = ∞.

The convexity rank of 1-type p (RC(p)) is the in�mum of the set {RC(φ(x)) |
φ(x) ∈ p}, i.e., RC(p) := inf{RC(φ(x)) | φ(x) ∈ p}.

For the theory T the convexity rank RC(T ) is the supremum of values RC(p) of
convexity ranks of 1-types p.

Remark 9. The operator L̂ of linearization with respect to elements a1, . . . , an−2

preserves the convexity rank RC(T ) of a theory T , if RC(T ) is de�ned without

these elements. Conversely, under that condition the operator K̂n of n-spheri�cation
preserves the convexity rank, too.

At the same time, extensions of ordered structures by new elements can produce
additional de�nable relations increasing the convexity rank.

Remark 10. Similarly the connection between o-minimality and weak o-minima-
lity, n-spherically minimality of a theory T means that T is weakly n-spherically
minimal with RC(T ) = 1.

Theorem 7. For any natural m ≥ 1 and n ≥ 2 there is a countably categorical
weakly n-spherically minimal theory Tm,n such that RC(Tm,n) = m.

Proof. There are two ways to construct a required theory Tm,n. The �rst one
is based on examples of countably categorical weakly o-minimal theories Tm,2, [39,
Section 2], [40, Example 1.2], being expansions of dense linear orders by re�nements
of de�nable equivalence classes using new binary symbols. The theory Tm,2 is

transformed into Tm,n by n-spheri�cation K̂n preserving the convexity rank in
view of Remark 9.
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Another way is based directly on dense n-spherical order Kn [35]. We introduce
m new symbols E1, . . . , Em for equivalence relations, with E1 ⊃ E2 ⊃ . . . ⊃ Em

having convex equivalence classes only. We divide the universe into countably many
E1-classes, each E1-class is divided into countably many E2-classes, etc., continuing
the process m times and preserving the ω-categoricity for the resulting theory Tm,n.

7. Conclusion

We studied natural modi�cations of o-minimality, weak o-minimality, de�nable
minimality adapted for spherical theories and producing n-spherical minimality,
weak n-spherical minimality, de�nable minimality for the class of n-spherical struc-
tures and their theories. Topological and de�nable properties for various spherical
minimalities are described. The values of convexity rank for countably categorical
weakly n-spherically minimal theories are found. Thus the possibilities of minimality
conditions, of topologies and of ranks are described for the spherical case.

We show that there are links between linear and spherical orders via the operators
of linearization and of spheri�cation. At the same time spherical orders produce
new properties with respect to linear ones. In particular, spherical orders admit
non-trivial algebraic closures which di�er from de�nable one whereas these closures
coincide for linearly ordered structures.

It would be natural to transform the well developed, rich and productive classi-
�cation theory of o-minimality and its variation for linearly and partially ordered
structures to the class of spherically ordered theories using possibilities of minimality
conditions and the convexity rank. Thus the problem arises on a transformation
of the descriptions of linearly and circularly ordered structures with minimality,
topology and rank conditions till spherically ordered ones.
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