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RESONANCE IN OSCILLATORS WITH NONLINEARITY

MANIFESTED AT INTERMEDIATE AMPLITUDES

E. PELINOVSKY AND I. MELNIKOV

Abstract. The present paper discusses a method for �nding self-
consistent external in�uences on a nonlinear oscillator that lead to the
phenomenon of resonance as in the linear case. It is shown that for
bounded nonlinear systems it is possible to �nd such a self-consistent
external force. To illustrate the search for self-consistent external in�uen-
ces, the simplest system with a nonlinear term represented by the satura-
tion function is chosen. The resonant solution stability with a small
amplitude deviation of the obtained self-consistent external force is inves-
tigated.

Keywords: Nonlinear resonance, self-consistent source, oscillatory sys-
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1. Introduction

Resonant phenomena in linear oscillatory systems are well studied and described
in all books on general physics and oscillation theory. If the external force frequency
coincides with one of the partial natural frequencies of the linear system, the
oscillation amplitude in the absence of attenuation increases according to the linear
law and can reach signi�cant values, thus, leading to the structure destruction. In
the case of nonlinear systems, the monochromatic e�ect does not lead to a signi�cant
increase in the oscillation amplitude, since their frequency depends on the amplitude
and, consequently, the equality of the frequencies of the external force and natural
oscillations is violated. This problem was encountered during the construction of the
�rst cyclotrons [Veksler, 1945], [McMilan, 1945]. As a result, the resonance curve
becomes limited and asymmetric with respect to the linear oscillation frequency.
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This process in weakly nonlinear systems is also well described in literature; see, for
example, [Andronov, Witt, Khaykin, 1959], [Landau & Lifshitz, 1976], [Kartashova,
2010], [Rajasekar & Sanjuan, 2016].

One of the ways to overcome the movement of the natural frequency of a nonlinear
system from resonance is to control the external force by adjusting its frequency
to the local natural frequency. Such a mechanism is called autoresonance, it has
become widespread in discrete [Fajans & Friedland, 2001] and distributed systems
[Aranson et al, 1992], [Friedland, 2009], [Kalyakin, 2008]. It should be particularly
noted that in this way it is possible to excite solitons and breathers, which are
actively studied in the framework of nonlinear evolution equations, such as the
Korteweg-de Vries equation and the nonlinear Schrodinger equation. In this directi-
on, you can read [Garifullin et al, 2007], [Maslov et al, 2007], [Kiselev, 2016] and
[Kalyakin, 2019]. It is not yet possible to �nd solutions to the forced nonlinear
equations analytically accurately in the general case, therefore, attempts are being
made to modify the external force for it to correspond to certain properties of
the nonlinear system. Such external force is called self-consistent, and here we
will give several references to works where self-consistent versions of the integrable
nonlinear evolutionary equations are studied [Melnikov, 1990], [Zeng et al, 2003],
[Chvartatskyi et al, 2016], [Focas & Lati�, 2022]. This approach is very interesting,
but so far the external force is presented in a rather complex way and the possibility
of its physical implementation has not been studied yet.

Finally, it is important to note that there are nonlinear systems in which the
natural oscillation frequencies do not depend on the amplitude. Such systems are
called isochronous, and here we will refer only to the work [Calogero, 2008], [Caloge-
ro, 2011], [Parkavi et al, 2022]. However, we could not �nd papers devoted to the
resonant phenomena in isochronous systems.

Along with isochronous systems, there are systems with limited nonlinearity,
when the nonlinearity manifests itself only in a certain range of amplitudes [Dancer,
1982], [Krasnosel'skii, 2013], [Benediktsson, 1965], [Walcott & Zak, 1986].

The purpose of this study is to search for self-consistent external in�uences that
make it possible to swing oscillations in nonlinear systems. Here we will limit
ourselves to the simplest nonlinear oscillator model and show that it is possible
to select limited external in�uences that lead to the resonant phenomena similar to
those existing in the linear system.

In Section 2 a general method for �nding self-consistent external in�uences to
excite resonance is given. Further, as an example of this method, in Section 3
we demonstrate this approach by using the example of the nonlinear system with
saturation. The stability of the obtained solution is investigated in Section 4. The
results obtained are summarized in the conclusion.

2. Self-consistent source in a bounded nonlinear oscillator

The oscillations of the nonlinear oscillator in the conservative case are described
by the equation:

(1)
d2u

dt2
+ g(u) = 0
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Let us consider the following nonlinear system in which

(2) g(u) = u+ F (u)

where F (u) is some continuous nonlinear function. We will consider the nonlinearity
bounded by |F (u)| < F0, F0 ∈ R, F (0) = 0 and F (u) → µu2 for u → 0, µ ∈ R, for
the nonlinearity to be in�nitely small of a higher order than u, in order for a linear
resonance to be obtained in this neighborhood with a sinusoidal e�ect with a unit
frequency. Thus, in the limit of small and large amplitudes, the ODE describing
the system will be linear, and nonlinearity will play a role only at intermediate
amplitudes.

Is it possible to �nd such a self-consistent external force in order to excite the
oscillator strongly? The equation of the system is represented as (3), where we
speci�cally identi�ed the harmonic force leading to the linear resonance:

(3)
d2u

dt2
+ u+ F (u) = 2cost+ f(t)

Is it feasible to swing this system? Instead of solving this problem directly, that
is, by the given force f(t) to look for the equation solution (3) and see if our system
enters the resonance state, we will solve the problem from the opposite - assume
that we have the resonant response as in the linear case, that is:

(4) u(t) = tsint

Now from the equation (3) we �nd f(t), which should cause it:

(5) f(t) = F [tsin(t)]

The external force function is de�ned and continuous on R+, it is also bounded.
Therefore, the question whether it is possible to sway such system can be answered
in the a�rmative. It is also worth noting that in our case, the oscillator will be
accelerated by a non-monochromatic external force, as it happens in the linear case,
but by a wide spectrum force. Let us consider a speci�c example of the dynamic
system.

3. The saturation type nonlinearity system

As an example, let us consider the system which motion is described by the
equation:

(6)
d2u

dt2
+ u+

au2

1 + b2u2
= 0

a, b ∈ R, b ̸= 0, a is the positive parameter determining the proximity degree of
the system in question to the harmonic oscillator [Andronov, Witt, Khaykin, 1959].
The saturation nonlinearity systems are very common in technical applications
[Mellodge, 2015]. Also, with the help of the nonlinear function in the left side
of the equation (6), the medium with saturation can be approximated [Vakhitov,
Kolokolov, 1973].

The equilibrium states of the given oscillator are found from the equation:

(7) u+
au2

1 + b2u2
= 0
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The trivial solution u = 0 of the equation (7) corresponds to the center. And
under the condition a > 2b, two more equilibrium states arise

(8) u =
−a±

√
a2 − 4b2

2b2

one of which is a saddle, and the other is also a focus. The phase planes for this
oscillator are shown in the Fig. 1. Therefore, for further study, without limiting
generality, we will consider only two cases (for the parameter values a = b = 1, as
well as for a = 2.5, b = 1).

Analytically, the phase trajectories of the system are given by the following one-
parameter family of functions:

(9)
du

dt
= ±

√
2

(
a

b3
arctanu− a

b2
u− u2

2

)
+ c, c ∈ R

a) a = 2.5, b = 1 b) a = 1, b = 1
Fig. 1. The phase plane of the equation (6)

The nonlinearity for this oscillator plays its role only at intermediate amplitudes
- with su�ciently large amplitudes, phase trajectories are curved ellipses.

To illustrate the above-mentioned method of obtaining resonance in nonlinear
systems, we will swing this oscillator, namely, we will a�ect the system with an
external force 2cost+ f(t), where:

(10) f(t) = F (tsint) =
at2sin2t

1 + b2t2sin2t

With such an impact, the solution to the Cauchy problem with zero initial
conditions will be the function (4).

In order to understand how to implement this impact on the system, we will
study the external force behavior f(t). The maximum value of f(t) will tend to the
ratio a

b2 . At the same time, the jumps from zero to the maximum at the points πk,
k ∈ N become approximately the same over time, which can be seen in the Fig.2.

Let's determine how much energy should be added, in addition to the sinusoidal
action cost, to maintain the system in the resonance state for the �nite time T :

(11) E(T ) =

∫ T

0

f2(t)dt =

∫ T

0

(
at2sin2t

1 + b2t2sin2t

)2

dt
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a) a = 2.5, b = 1 b) a = 1, b = 1
Fig. 2. The external force f(t) in the equation (10)

Fig. 3. Resonant excitation of vibrations. (1) - a = 1, b = 1, (2) -
a = 2.5, b = 1

The external force f(t) takes zero value only at points of the form πn, n ∈ N,
and in the vicinity of these points this function increases sharply to its maximum
value. Therefore, only the maximum value of the function f2(t) can be left under
the integral, which in turn gives the linear growth of the integral with a variable
upper limit. Consequently, the increase in the energy amount is determined by the

value of a2

b4 (Fig. 3). So, the amount of energy entering the (6) system turns out to
be approximately directly proportional to the time it is in resonance.
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4. Stability of the resonant solution with a small change in the

amplitude of a self-consistent external force

It is obvious that resonant conditions can be ful�lled only for self-consistent
conditions for external force. Let us see what happens if the external force di�ers
from the self-consistent one by a small amount. To do this, let us consider the
equation (12), in which the small parameter epsilon is introduced.

(12)
d2u

dt2
+ u+

au2

1 + b2u2
= 2cost+

(a+ ε)t2sin2t

1 + b2t2sin2t

To plot the graphs, we will use the Runge�Kutta numerical method (with a step of
h = 0.0005), implemented in Python. It is worth noting that the nonlinear term in
the left side of the equation (12), having passed intermediate amplitudes, practically
does not change and tends to the value of a

b2 , which, of course, is the speci�cs of
this system with saturation; other nonlinear functions satisfying the conditions on
F (u) may have a more complicated behavior [Pelinovsky & Melnikov, 2022]. Let
us take the parameters a and b so that the oscillator nonlinear e�ect is observed as
long as possible. With a = 10 and b = 1, even with large values of ε, the obtained
solution does not deviate by a large amount, which can be seen in Fig. 4.

Fig. 4. Solutions of the (12) system with the parameters a = 10,
b = 1 and deviation f(t) by (1) ε = −1, (2) ε = −2, (3) ε = 2

With values a = 40 and b = 1, the solution becomes more sensitive to small
deviations, even with the deviation of ε = −0.05, the solution deviates greatly from
what we need (Fig. 5).
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Fig. 5. Solutions of the (12) system with parameters a = 40, b = 1
and deviation f(t) by (1) ε = −0.01, (2) ε = 0.2, (3) ε = −0.05

That is, either with the increase in the parameter a or with the decrease in b, the
system (12) becomes more sensitive to small deviations ε. However, it is also worth
noting that with an increase in the amplitude of the self-consistent external force,
the solution changes slightly, and only the amplitude of the oscillations increases,
whereas a decrease in the amplitude of the external force can cause an unpredictable
sharp change in the solution, as can be seen in Fig. 5.

Next, let us consider the e�ect on the system (6) only by the cosine with the
amplitude ε:

(13)
d2u

dt2
+ u+

au2

1 + b2u2
= εcost

Depending on the amplitude of the cosine e�ect on the oscillator, two di�erent
behaviors of the system can be distinguished. Since only at intermediate amplitudes
the nonlinearity (in the left part of the equation (13)) has strong changes, the cosine
with a small amplitude leads to oscillations with the limited amplitude, which (the
oscillations) look like beats. However, a remarkable feature of this system is that
if the cosine amplitude is su�cient to skip the intermediate oscillation amplitudes
and reach those ones when the system is almost linear, we observe the resonance
(Fig. 6).
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Fig. 6. Solutions of the (13) system with the parameters a = b =
= 1. Line 1 is a graph for the value ε = 0.15, line 2 is a graph for
the value ε = 0.16

It is possible to disperse the system (6) and with an arbitrarily small amplitude
ε of the cosine, if we add to it the self-consistent external force obtained in Section
2. Namely, it is necessary to look for a solution in the form of u(t) = ε

2 tsint. Then,
when the cosine of the unit frequency a�ects the system , as well as the force

(14) f(t) =
a( ε2 tsint)

2

1 + (b ε2 tsint)
2

Fig. 7. Solutions of the (13) system with the parameters a = b =
= 1, ε = 0.14. Line 1 is a graph with the addition of a self-consistent
external force, line 2 is a graph without its addition
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it is possible to excite the resonance (Fig. 7), and after the system jumps the
intermediate amplitudes, the self-consistent source f(t) may be removed, so the
system may be acted upon only with the cosine.

5. Conclusion

To sum up everything mentioned above, the given paper describes the method
obtained to �nd the self-consistent external in�uences on an oscillatory system,
whose oscillations are described by an ODE that is linear in the limit of small and
large amplitudes and nonlinear at intermediate amplitudes, that excite resonant
oscillations like in linear systems. In the analyzed example of the nonlinear oscillator
with saturation, this approach is demonstrated; it is also shown that as the amplitu-
de of the nonlinear saturation function increases, the system becomes more sensitive
to changes in the amplitude of a self-consistent external force. At the same time, in
our opinion, the search and study of resonance in nonlinear isochronous systems,
which are not rare or exceptional examples of nonlinear systems, is an interesting
subject for subsequent research.
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