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STOCHASTIC PROCESS ALGEBRA DTSDPBC
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Abstract. Petri box calculus (PBC) of E. Best, R. Devillers, J.G. Hall
and M. Koutny is a well-known algebra of parallel processes with a
Petri net semantics. Discrete time stochastic and deterministic PBC
(dtsdPBC) of the author extends PBC with discrete time stochastic
and deterministic delays. dtsdPBC has a step operational semantics
via labeled probabilistic transition systems and a Petri net denotational
semantics via dtsd-boxes, a subclass of labeled discrete time stochastic
and deterministic Petri nets (LDTSDPNs). To evaluate performance in
dtsdPBC, the underlying semi-Markov chains (SMCs) and (reduced)
discrete time Markov chains (DTMCs and RDTMCs) of the process
expressions are analyzed. Step stochastic bisimulation equivalence is used
in dtsdPBC as to compare the qualitative and quantitative behaviour, as
to establish consistency of the operational and denotational semantics.

We demonstrate how to apply step stochastic bisimulation equivalence
of the process expressions for quotienting their transition systems, SMCs,
DTMCs and RDTMCs while preserving the stationary behaviour and
residence time properties. We also prove that the quotient behavioural
structures (transition systems, reachability graphs and SMCs) of the pro-
cess expressions and their dtsd-boxes are isomorphic. Since the equivalen-
ce guarantees identity of the functional and performance characteristics
in the equivalence classes, it can be used to simplify performance analysis
within dtsdPBC due to the quotient minimization of the state space.
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1. Introduction

Process calculi, like CSP [47], ACP [8] and CCS [68] are well-known formal
models for speci�cation of computing systems and analysis of their behaviour. In
such process algebras (PAs), formulas describe processes, and veri�cation of the
functionality properties of their behaviour is accomplished at a syntactic level via
equivalences, axioms and inference rules. In order to represent stochastic timing and
analyze the performance properties, stochastic extensions of PAs were proposed, like
MTIPP [45], PEPA [46] and EMPA [18]. Such stochastic process algebras (SPAs)
specify actions which can occur (qualitative features) and associate with the actions
the distribution parameters of their random delays (quantitative characteristics).

1.1. Petri box calculus (PBC). Petri box calculus (PBC) [21, 23, 22] is a �exible
and expressive process algebra developed as a tool for speci�cation of the Petri nets
(PNs) structure and their interrelations. Its goal was also to propose a compositional
semantics for high level constructs of concurrent programming languages in terms
of elementary PNs. Formulas of PBC are combined from multisets of elementary ac-
tions and their conjugates, called multiactions (basic formulas). The empty multiset
of actions is interpreted as the silent multiaction specifying an invisible activity. The
operational semantics of PBC is of step type, since its SOS rules have transitions
with (multi)sets of activities, corresponding to simultaneous executions of activities
(steps). A denotational semantics of PBC was proposed via a subclass of PNs with
an interface and considered up to isomorphism, called Petri boxes. The extensions
of PBC with a deterministic, a nondeterministic or a stochastic model of time exist.

1.2. Time extensions of PBC. A time extension of PBC with a nondeterministic
time model, called time Petri box calculus (tPBC), was proposed in [51]. In tPBC,
timing information is added by associating time intervals with instantaneous ac-
tions. tPBC has a step time operational semantics in terms of labeled transition
systems. Its denotational semantics was de�ned in terms of a subclass of labeled
time Petri nets (LtPNs), based on tPNs [67] and called time Petri boxes (ct-boxes).

Another time enrichment of PBC, called Timed Petri box calculus (TPBC), was
de�ned in [63, 64], it accommodates a deterministic model of time. In contrast to
tPBC, multiactions of TPBC are not instantaneous, but have time durations. TPBC
has a step timed operational semantics in terms of labeled transition systems. The
denotational semantics of TPBC was de�ned in terms of a subclass of labeled Timed
Petri nets (LTPNs), based on TPNs [75] and called Timed Petri boxes (T-boxes).

The third time extension of PBC, called arc time Petri box calculus (atPBC),
was constructed in [71, 72], and it implements a nondeterministic time. In atPBC,
multiactions are associated with time delay intervals. atPBC possesses a step time
operational semantics in terms of labeled transition systems. Its denotational se-
mantics was de�ned on a subclass of labeled arc time Petri nets (atPNs), based of
those from [24, 43], where time restrictions are associated with the arcs, called arc
time Petri boxes (at-boxes). tPBC, TPBC and atPBC, all adapt the discrete time
approach, but TPBC has no immediate (multi)actions (those with zero delays).

1.3. Stochastic extensions of PBC. A stochastic extension of PBC, called sto-
chastic Petri box calculus (sPBC), was proposed in [60, 56, 57]. In sPBC, multiacti-
ons have stochastic delays that follow (negative) exponential distribution. Each mul-
tiaction is equipped with a rate that is a parameter of the corresponding exponential
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distribution. The (instantaneous) execution of a stochastic multiaction is possible
only after the corresponding stochastic time delay. The calculus has an interleaving
operational semantics de�ned via transition systems labeled with multiactions and
their rates. Its denotational semantics was de�ned in terms of a subclass of labeled
continuous time stochastic PNs, based on CTSPNs [65, 4] and called stochastic
Petri boxes (s-boxes). In [57], a number of new equivalence relations were proposed
for regular terms of sPBC to choose later a suitable candidate for a congruence.

sPBC was enriched with immediate multiactions having zero delay in [58, 59].
We call such an extension generalized sPBC (gsPBC). An interleaving operational
semantics of gsPBC was constructed via transition systems labeled with stochastic
or immediate multiactions together with their rates or probabilities. A denotational
semantics of gsPBC was de�ned via a subclass of labeled generalized stochastic PNs,
based on GSPNs [65, 4, 5] and called generalized stochastic Petri boxes (gs-boxes).

In [80, 81, 82, 84], we presented a discrete time stochastic extension dtsPBC of
the algebra PBC. In dtsPBC, the residence time in the process states is geome-
trically distributed. A step operational semantics of dtsPBC was constructed via
labeled probabilistic transition systems. Its denotational semantics was de�ned in
terms of a subclass of labeled discrete time stochastic PNs (LDTSPNs), based on
DTSPNs [69, 70] and called discrete time stochastic Petri boxes (dts-boxes). A
variety of stochastic equivalences were proposed to identify stochastic processes
with similar behaviour which are di�erentiated by the semantic equivalence. The
interrelations of all the introduced equivalences were studied.

In [88, 89, 90, 91, 92], a calculus dtsiPBC was proposed as an extension with im-
mediate multiactions of dtsPBC. Immediate multiactions increase the speci�cation
capability: they can model logical conditions, probabilistic branching, instantaneous
probabilistic choices and activities whose durations are negligible in comparison
with those of others. They are also used to specify urgent activities and the ones
that are not relevant for performance evaluation. The step operational semantics of
dtsiPBC was constructed with the use of labeled probabilistic transition systems.
Its denotational semantics was de�ned in terms of a subclass of labeled discrete
time stochastic and immediate PNs (LDTSIPNs), called dtsi-boxes. Step stochastic
bisimulation equivalence of the expressions was de�ned to compare and reduce their
transition systems and Markov chains, as well as to identify the stationary behaviour.

In [85, 86], we de�ned dtsdPBC, an extension of dtsiPBC with deterministic mul-
tiactions. In dtsdPBC, besides the probabilities from the real-valued interval (0; 1),
applied to calculate discrete time delays of stochastic multiactions, also non-negati-
ve integers are used to specify �xed delays of deterministic multiactions (including
zero delay, which is the case of immediate multiactions). To resolve con�icts among
deterministic multiactions, they are additionally equipped with positive real-valued
weights. As argued in [99, 97, 98], a combination of deterministic and stochastic
delays �ts well to model technical systems with constant (�xed) durations of the
regular non-random activities and probabilistically distributed (stochastic) durati-
ons of the randomly occurring activities. dtsdPBC has a step operational semantics,
de�ned via labeled probabilistic transition systems. The denotational semantics of
dtsdPBC was de�ned in terms of a subclass of labeled discrete time stochastic and
deterministic Petri nets (LDTSDPNs), called dtsd-boxes.

1.4. Equivalence relations. A notion of equivalence is very important in theory
of computing systems. Equivalences are applied both to compare behaviour of
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systems and reduce their structure. There is a wide diversity of behavioural equiva-
lences, and their interrelations are well explored in the literature. The best-known
and widely used one is bisimulation. Typically, the mentioned equivalences take into
account only functional (qualitative) but not performance (quantitative) aspects.
Additionally, the equivalences are usually interleaving ones, i.e. they interpret con-
currency as sequential nondeterminism. Interleaving equivalences permit to imitate
parallel execution of actions via all possible occurrence sequences (interleavings)
of them. Step equivalences require instead simulating such a parallel execution by
simultaneous occurrence (step) of all the involved actions.

To respect quantitative features of behaviour, probabilistic equivalences have
additional requirement on execution probabilities. Two equivalent processes must
be able to execute the same sequences of actions, and for every such sequence, its
execution probabilities within both processes should coincide. In case of probabilistic
bisimulation equivalence, the states from which similar future behaviours start
are grouped into equivalence classes that form elements of the aggregated state
space. From every two bisimilar states, the same actions can be executed, and
the subsequent states resulting from execution of an action belong to the same
equivalence class. In addition, for both states, the cumulative probabilities to move
to the same equivalence class by executing the same action coincide. A di�erent
kind of quantitative relations is called Markovian equivalences, which take rate
(the parameter of exponential distribution that governs time delays) instead of
probability. The probabilistic equivalences can be seen as discrete time analogues
of the Markovian ones, since the latter are de�ned as the continuous time relations.

Interleaving probabilistic weak trace equivalence was introduced in [35] on labeled
probabilistic transition systems. Interleaving probabilistic strong bisimulation equi-
valence was proposed in [54] on the same model. Interleaving probabilistic equivalen-
ces were de�ned for probabilistic processes in [50, 41]. Interleaving Markovian strong
bisimulation equivalence was constructed in [45] for MTIPP, in [46] for PEPA and in
[18, 17, 9] for EMPA. Several variants of interleaving Markovian weak bisimulation
equivalence were considered in [29] on Markovian process algebras, in [31] on labeled
CTSPNs and in [32] on labeled GSPNs. In [33, 34, 83], interleaving and step proba-
bilistic trace and bisimulation equivalences that abstract from silent actions were
de�ned on labeled DTSPNs (LDTSPNs) with invisible transitions, including the
back and back-forth variants of the considered bisimulation relations. In [14, 15],
interleaving probabilistic and Markovian trace, testing and bisimulation equivalen-
ces on the respective sequential probabilistic (PPC) and Markovian (MPC) process
calculi were logically characterized. In [10, 11, 12], a comparison of interleaving
Markovian trace, test, strong and weak bisimulation equivalences was carried out
on sequential (SMPC or MPC) and concurrent (CMPC) Markovian process calculi.
In [36], interleaving strong and branching probabilistic bisimulation equivalences
were de�ned on the calculus of Interactive Probabilistic Chains (IPC).

Next, in [19, 20, 13], a lot of probabilistic and Markovian trace, testing and bi-
simulation equivalences were investigated on Uniform Labeled Transition Systems
(ULTraS) that capture di�erent models of concurrent processes: fully nondetermi-
nistic (labeled transition systems, LTSs), fully probabilistic (labeled DTMCs), fully
stochastic (labeled continuous time Markov chains, CTMCs), nondeterministic and
probabilistic (Markov decision processes, MDPs), nondeterministic and stochastic
(continuous time MDPs, CTMDPs). In [55], the bisimulation equivalences induced
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by some speci�c labeled state-to Function Transition Systems (FuTSs) were shown
to coincide with the equivalences underlying the fragments of PEPA, Interactive
Markov Language (IML) for Interactive Markov Chains (IMC) [44], Timed Process
Calculus (TPC) [2] and Markov Automata Language (MAL) for Markov Automata
Process Algebra (MAPA) [93]. In [61, 62], ordinary bisimulation (strong), quasi-
lumping bisimulation (approximate strong) and proportional bisimulation equi-
valences on the PEPA components were investigated that induce, respectively,
ordinary, quasi- and proportional lumpabilities on the corresponding CTMCs.

Nevertheless, no appropriate equivalence was de�ned for parallel SPAs. The
non-interleaving bisimulation equivalence in Generalized Semi-Markovian Process
Algebra (GSMPA) [28, 27] uses Start-Termination- (ST-) semantics for action par-
ticles while in Stochastic π-calculus (Sπ) [74] it is based on a sophisticated labeling.

1.5. Our contributions. As a basis model, we take discrete time stochastic and
deterministic Petri box calculus (dtsdPBC), presented in [85, 86], featuring a step
operational semantics. Here we do not consider the Petri net denotational semantics
of the calculus, since it was extensively described in [85]. In that paper, a consistency
of the operational and denotational semantics with respect to step stochastic bisimu-
lation equivalence was proved. Hence, all the results established for the former can
be readily transferred to the latter up to that equivalence.

In [86], with the embedding method, based on the embedded DTMC (EDTMC)
specifying the state change probabilities, we constructed and solved the underlying
stochastic process, which is a semi-Markov chain (SMC). The obtained stationary
probability masses and average sojourn times in the states of the SMC were used to
calculate the performance measures (indices) of interest. The alternative solution
techniques were also developed, called abstraction and elimination, that are based
respectively on the corresponding discrete time Markov chain (DTMC) and its re-
duction (RDTMC) by eliminating vanishing states (those with zero sojourn times).

In [85], we proposed step stochastic bisimulation equivalence to identify algebraic
processes with similar behaviour that are however di�erentiated by the semantics of
the calculus. It enhances the corresponding relation from dtsiPBC, in that we now
make di�erence between the states with positive sojourn times (tangible states) and
those with zero sojourn times (vanishing states). Therefore, in the de�nition of the
equivalence, we added a condition that vanishing states may only be related with
vanishing states. We established consistency of the operational and denotational
semantics of dtsdPBC up to step stochastic bisimulation equivalence. We examined
the interrelations of the proposed notion with other equivalences of the algebra.

The main result of this paper is that step stochastic bisimulation equivalence
can be used to reduce (by quotienting) the transition systems, SMCs, DTMCs and
RDTMCs of the process expressions while preserving the qualitative and quantita-
tive characteristics. We demonstrate isomorphism between the quotient transition
systems of the process expressions and quotient reachability graphs of their dtsd-bo-
xes. We also show that the quotient SMCs of the process expressions are isomorphic
to those of their dtsd-boxes. We explore how the quotienting is related to extraction
(of Markov chains from transition systems), embedding and reduction, by analyzing
the transition probability matrices (TPMs) of the quotient DTMCs, EDTMCs and
RDTMCs. In this way, we show that the reduced (by eliminating vanishing states)
quotient transition probability matrices (TPMs) coincide with the quotient reduced
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TPMs for DTMCs of the process expressions. We prove that the mentioned equiva-
lence guarantees identity of the stationary behaviour and residence time properties
in the equivalence classes. This implies coincidence of the performance indices based
on the steady-state probabilities and sojourn time averages for the complete and
quotient behavioural structures. Hence, that performance preserving equivalence
can help to reduce the number of states in the behaviour of a model and simplify
its performance analysis that su�ers from the state space explosion when large and
complex realistic systems are modeled.

Thus, the main contributions of the paper are the following.

• Quotienting transition systems and Markov chains of the process expressions
by step stochastic bisimulation equivalence to reduce the analysis complexity.

• Isomorphism of the quotient transition systems and reachability graphs, as
well as the quotient SMCs, for the expressions and their dtsd-boxes.

• Permutability of the quotienting and reduction operations on DTMCs.
• Preservation of the stationary behaviour and residence time properties in
the classes of step stochastic bisimulation equivalence of the expressions.

• Simpli�cation of the performance evaluation in dtsdPBC by using the equi-
valence quotients of the transition systems, SMCs, DTMCs and RDTMCs.

1.6. Structure of the paper. In Section 2, the syntax of algebra dtsdPBC is pro-
posed. In Section 3, the operational semantics of the calculus in terms of labeled
probabilistic transition systems is presented. Step stochastic bisimulation equivalen-
ce is de�ned and investigated in Section 4. In Section 5, the equivalence quotients of
the transition systems and corresponding Markov chains of the process expressions
are constructed. In Section 6, the introduced equivalence is proved to preserve
the stationary behaviour and residence time properties in the equivalence classes.
Section 7 summarizes the results obtained and outlines research perspectives in this
area. The long and complex proofs are moved to Appendix A.

2. Syntax

In this section, we propose the syntax: activities, operations and expressions.

2.1. Activities and operations. Multiset is a set with allowed identical elements.

De�nition 1. Let X be a set. A �nite multiset (bag) M over X is a mapping
M : X → N with |{x ∈ X |M(x) > 0}| <∞, i.e. it has a �nite number of elements.

We denote the set of all �nite multisets over a set X by NXfin. LetM,M ′ ∈ NXfin.
The cardinality of M is |M | = ∑

x∈XM(x). We write x ∈ M if M(x) > 0 and
M ⊆ M ′ if ∀x ∈ X M(x) ≤ M ′(x). We de�ne (M +M ′)(x) = M(x) +M ′(x) and
(M −M ′)(x) = max{0,M(x)−M ′(x)}. When ∀x ∈ X, M(x) ≤ 1, M can be seen
as a proper set M ⊆ X. The set of all subsets (powerset) of X is denoted by 2X .

Let Act = {a, b, . . .} be the set of elementary actions. Then Âct = {â, b̂, . . .} is the
set of conjugated actions (conjugates) such that â ̸= a and ˆ̂a = a. Let A = Act∪Âct
be the set of all actions, and L = NA

fin be the set of all multiactions. Note that

∅ ∈ L speci�es an internal move, i.e. the execution of a multiaction without visible
action names. The alphabet of α ∈ L is de�ned as A(α) = {x ∈ A | α(x) > 0}.

A stochastic multiaction is a pair (α, ρ), where α ∈ L and ρ ∈ (0; 1) is the
probability of the multiaction α. This probability is interpreted as that of indepen-
dent execution of the stochastic multiaction at the next discrete time moment.
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Such probabilities are used to calculate those to execute (possibly empty) sets of
stochastic multiactions after one time unit delay. The probability 1 is left for (impli-
citly assigned to) waiting multiactions, i.e. positively delayed deterministic multiac-
tions (to be de�ned later), which have weights to resolve con�icts with other waiting
multiactions. We do not have probability 0 of stochastic multiactions, since they
would not be performed in this case. Let SL be the set of all stochastic multiactions.

A deterministic multiaction is a pair (α, ♮θl ), where α ∈ L, θ ∈ N is the non-ne-
gative integer-valued (�xed) delay and l ∈ R>0 = (0;∞) is the positive real-valued
weight of the multiaction α. This weight is interpreted as a measure of importance
(urgency, interest) or a bonus reward associated with execution of the deterministic
multiaction at the moment when the corresponding delay has expired. Such weights
are used to calculate the probabilities to execute sets of deterministic multiactions
after their delays. An immediate multiaction is a deterministic multiaction with the
delay 0 while a waiting multiaction is a deterministic multiaction with a positive
delay. In case of no con�icts among waiting multiactions, whose remaining times
to execute (RTEs) are equal to one time unit, they are executed with probability
1 at the next moment. Deterministic multiactions have a priority over stochastic
ones while immediate multiactions have a priority over waiting ones. Different types
of multiactions cannot participate together in some step (parallel execution). Let
DL be the set of all deterministic multiactions, IL be the set of all immediate
multiactions andWL be the set of all waiting multiactions. We haveDL = IL∪WL.

The same multiaction α ∈ L may have di�erent probabilities, (�xed) delays
and weights in the same speci�cation. An activity is a stochastic or a deterministic
multiaction. Let SDL = SL∪DL = SL∪IL∪WL be the set of all activities. The
alphabet of an activity (α, κ) ∈ SDL is de�ned as A(α, κ) = A(α). The alphabet of
a multiset of activities Υ ∈ NSDL

fin is de�ned as A(Υ) = ∪(α,κ)∈ΥA(α).

Activities are combined into formulas (process expressions) by the following
operations: sequence ;, choice [], parallelism ∥, relabeling [f ] of actions, restriction rs
over a single action, synchronization sy on an action and its conjugate, and iteration
[ ∗ ∗ ] with three arguments: initialization, body and termination.

Sequence (sequential composition) and choice (composition) have a standard
interpretation, like in other process algebras, but parallelism (parallel composition)
does not include synchronization, unlike the corresponding operation in CCS [68].

Relabeling functions f : A → A are bijections preserving conjugates, i.e. ∀x ∈
A f(x̂) = f̂(x). Relabeling is extended to multiactions in the usual way: for α ∈ L
we de�ne f(α) =

∑
x∈α f(x). Relabeling is extended to activities: for (α, κ) ∈ SDL,

we de�ne f(α, κ) = (f(α), κ). Relabeling is extended to the multisets of activities:
for Υ ∈ NSDL

fin we de�ne f(Υ) =
∑

(α,κ)∈Υ(f(α), κ). The sums are considered with

the multiplicity when applied to multisets: f(α) =
∑
x∈α f(x) =

∑
x∈A α(x)f(x).

Restriction over an elementary action a ∈ Act means that, for a given expression,
any process behaviour containing a or its conjugate â is not allowed.

Let α, β ∈ L be two multiactions such that for some elementary action a ∈ Act
we have a ∈ α and â ∈ β, or â ∈ α and a ∈ β. Then, synchronization of α and β

by a is de�ned as (α⊕a β)(x) =
{
α(x) + β(x)− 1, x = a or x = â;
α(x) + β(x), otherwise.

Activities are synchronized via their multiaction parts, i.e. the synchronization by a
of two activities, whose multiaction parts α and β possess the properties mentioned
above, results in the activity with the multiaction part α⊕a β. We may synchronize
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activities of the same type only: either both stochastic multiactions or both determi-
nistic ones with the same delay, since stochastic, waiting and immediate multiactions
have di�erent priorities, and diverse delays of waiting multiactions would contradict
their joint timing. Note that the execution of immediate multiactions takes no time,
unlike that of waiting or stochastic ones. Synchronization by a means that, for a
given expression with a process behaviour containing two concurrent activities that
can be synchronized by a, there exists also the behaviour that di�ers from the former
only in that the two activities are replaced by the result of their synchronization.

In the iteration, the initialization subprocess is executed �rst, then the body is
performed zero or more times, and �nally, the termination subprocess is executed.

2.2. Process expressions. Static expressions specify the structure of processes,
i.e. how activities are combined by operations to construct the composite process-al-
gebraic formulas. As for the PN intuition, static expressions correspond to unmarked
LDTSDPNs [85]. A marking is the allocation of tokens in the places of a PN. Mar-
kings are used to describe dynamic behaviour of PNs in terms of transition �rings.

We assume that every waiting multiaction has a countdown timer associated,
whose value is the time left till the moment when the waiting multiaction can be exe-
cuted. Therefore, besides standard (unstamped) waiting multiactions (α, ♮θl ) ∈ WL,
a special case of the stamped waiting multiactions should be considered in the
de�nition of static expressions. Each (time) stamped waiting multiaction (α, ♮θl )

δ

has an extra superscript δ ∈ {1, . . . , θ} that speci�es a time stamp indicating the
latest value of the timer associated with that multiaction. The standard waiting
multiactions have no time stamps, to demonstrate irrelevance of the timer values
for them (for example, their timers have not yet started or have already �nished).
The notion of the alphabet part for (the multisets of) stamped waiting multiactions
is de�ned like that for (the multisets of) unstamped waiting multiactions.

By reasons of simplicity, we do not assign the timer value superscripts δ to imme-
diate multiactions, a special case of deterministic multiactions (α, ♮θl ) with the delay
θ = 0 in the form of (α, ♮0l ), since their timer values can only be equal to 0.

De�nition 2. Let (α, κ) ∈ SDL, (α, ♮θl ) ∈ WL, δ ∈ {1, . . . , θ} and a ∈ Act. A
static expression of dtsdPBC is

E ::= (α, κ) | (α, ♮θl )δ | E;E | E[]E | E∥E | E[f ] | E rs a | E sy a | [E ∗ E ∗ E].

Let StatExpr denote the set of all static expressions of dtsdPBC.
To avoid technical di�culties with the iteration operator, we should not allow

concurrency at the highest level of the second argument of iteration. This is not a
severe restriction, since we can always pre�x parallel expressions by an activity with
the empty multiaction part. Relaxing the restriction can result in LDTSDPNs [85]
which are not safe, like shown for PNs in [22]. A PN is n-bounded (n ∈ N) if for all its
reachable (from the initial marking by the sequences of transition �rings) markings
there are at most n tokens in every place, and a PN is safe if it is 1-bounded.

De�nition 3. Let (α, κ) ∈ SDL, (α, ♮θl ) ∈ WL, δ ∈ {1, . . . , θ} and a ∈ Act. A
regular static expression of dtsdPBC is

E ::= (α, κ) | (α, ♮θl )δ | E;E | E[]E | E∥E | E[f ] | E rs a | E sy a | [E ∗D ∗ E],
where D ::= (α, κ) | (α, ♮θl )δ | D;E | D[]D | D[f ] | D rs a | D sy a | [D ∗D ∗ E].
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Let RegStatExpr denote the set of all regular static expressions of dtsdPBC.
Let E be a regular static expression. The underlying timer-free regular static

expression ⇃E of E is obtained by removing from it all timer value superscripts.
The set of all stochastic multiactions (from the syntax) of E is SL(E) = {(α, ρ) |

(α, ρ) is a subexpression of E}. The set of all immediate multiactions (from the
syntax) of E is IL(E) = {(α, ♮0l ) | (α, ♮0l ) is a subexpression of E}. The set of all
waiting multiactions (from the syntax) of E isWL(E) = {(α, ♮θl ) | (α, ♮θl ) or (α, ♮θl )δ
is a subexpression of E for δ ∈ {1, . . . , θ}}. Thus, the set of all deterministic multi-
actions (from the syntax) of E is DL(E)=IL(E)∪WL(E) and the set of all activi-
ties (from the syntax) of E is SDL(E)=SL(E)∪DL(E)=SL(E)∪IL(E)∪WL(E).

Dynamic expressions specify the states of processes, i.e. particular stages of the
process behaviour. As for the Petri net intuition, dynamic expressions correspond
to marked LDTSDPNs [85]. Dynamic expressions are obtained from static ones, by
annotating them with upper or lower bars which specify the active components of
the system at the current moment of time. The dynamic expression with upper bar
(the overlined one) E denotes the initial, and that with lower bar (the underlined
one) E denotes the �nal state of the process speci�ed by a static expression E.

For every overlined stamped waiting multiaction (α, ♮θl )
δ, the superscript δ ∈

{1, . . . , θ} speci�es the current value of the running countdown timer associated
with the waiting multiaction. That decreasing discrete timer is started with the
initial value θ (the waiting multiaction delay) at the moment when the waiting
multiaction becomes overlined. Then such a newly overlined stamped waiting mul-

tiaction (α, ♮θl )
θ is similar to the freshly overlined unstamped waiting multiaction

(α, ♮θl ). Such similarity will be captured by the structural equivalence, de�ned later.
While the stamped waiting multiaction stays overlined with the process executi-

on, the timer decrements by one discrete time unit with each global time tick until
the timer value becomes 1. This means that one unit of time remains till execution
of that multiaction (the remaining time to execute, RTE, equals one). Its execution
should follow in the next moment with probability 1, in case there are no con�ic-
ting with it immediate multiactions or con�icting waiting multiactions whose RTEs
equal to one, and it is not a�ected by restriction. An activity is affected by restric-
tion, if it is within the scope of a restriction operation with the argument action,
such that it or its conjugate is contained in the multiaction part of that activity.

De�nition 4. Let E ∈ StatExpr and a ∈ Act. A dynamic expression of dtsdPBC is

G ::= E | E | G;E | E;G | G[]E | E[]G | G∥G | G[f ] | G rs a | G sy a |
[G ∗ E ∗ E] | [E ∗G ∗ E] | [E ∗ E ∗G].

Let DynExpr denote the set of all dynamic expressions of dtsdPBC.
Let G be a dynamic expression. The underlying static (line-free) expression ⌊G⌋

of G is obtained by removing from it all upper and lower bars. If the underlying
static expression of a dynamic one is not regular, the corresponding LDTSDPN can
be non-safe [85] (but it is 2-bounded in the worst case, like shown for PNs in [22]).

De�nition 5. A dynamic expression G is regular if ⌊G⌋ is regular.

Let RegDynExpr denote the set of all regular dynamic expressions of dtsdPBC.
Let G be a regular dynamic expression. The underlying timer-free regular dyna-

mic expression ⇃G of G is obtained by removing from it all timer value superscripts.
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The set of all stochastic (immediate or waiting, respectively) multiactions (from
the syntax) of G is de�ned as SL(G) = SL(⌊G⌋) (IL(G) = IL(⌊G⌋) or WL(G) =
WL(⌊G⌋), respectively). Thus, the set of all deterministic multiactions (from the
syntax) of G is DL(G) = IL(G) ∪ WL(G) and the set of all activities (from the
syntax) of G is SDL(G) = SL(G) ∪ DL(G) = SL(G) ∪ IL(G) ∪WL(G).

3. Operational semantics

In this section, we de�ne the operational semantics via labeled transition systems.

3.1. Inaction rules. The inaction rules for dynamic expressions describe their

structural transformations in the form of G⇒ G̃ which do not change the states of
the speci�ed processes. The goal of those syntactic transformations is to obtain the
well-structured resulting expressions called operative ones to which no inaction rules
can be further applied. The application of an inaction rule to a dynamic expression
does not lead to any discrete time tick or any transition �ring in the corresponding
LDTSDPN [85], hence, its current marking stays unchanged.

Thus, an application of every inaction rule does not require any delay, i.e. the
dynamic expression transformation described by the rule is accomplished instantly.

In Table 1, we de�ne inaction rules for regular dynamic expressions being overli-
ned and underlined static ones. In this table, (α, ♮θl ) ∈ WL, δ ∈ {1, . . . , θ}, E, F,K∈
RegStatExpr and a ∈ Act. The �rst inaction rule suggests that the timer value of
each newly overlined waiting multiaction is set to the delay of it.

Table 1. Inaction rules for overlined and underlined regular static expressions

(α, ♮θl ) ⇒ (α, ♮θl )
θ E;F ⇒ E;F E;F ⇒ E;F

E;F ⇒ E;F E[]F ⇒ E[]F E[]F ⇒ E[]F

E[]F ⇒ E[]F E[]F ⇒ E[]F E∥F ⇒ E∥F
E∥F ⇒ E∥F E[f ] ⇒ E[f ] E[f ] ⇒ E[f ]

E rs a ⇒ E rs a E rs a ⇒ E rs a E sy a ⇒ E sy a

E sy a ⇒ E sy a [E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K]

[E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K]

In Table 2, we introduce inaction rules for regular dynamic expressions in the

arbitrary form. In this table, E,F ∈ RegStatExpr, G,H, G̃, H̃ ∈ RegDynExpr and
a ∈ Act. By reason of brevity, two distinct inaction rules with the same premises
are collated in some cases, resulting in the inaction rules with double conclusion.

Table 2. Inaction rules for arbitrary regular dynamic expressions

G ⇒ G̃, ◦ ∈ {; , []}
G ◦ E ⇒ G̃ ◦ E, E ◦G ⇒ E ◦ G̃

G ⇒ G̃

G∥H ⇒ G̃∥H, H∥G ⇒ H∥G̃

G ⇒ G̃

G[f ] ⇒ G̃[f ]

G ⇒ G̃, ◦ ∈ {rs, sy}
G ◦ a ⇒ G̃ ◦ a

G ⇒ G̃

[G ∗ E ∗ F ] ⇒ [G̃ ∗ E ∗ F ]

G ⇒ G̃

[E ∗G ∗ F ] ⇒ [E ∗ G̃ ∗ F ]

G ⇒ G̃

[E ∗ F ∗G] ⇒ [E ∗ F ∗ G̃]
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De�nition 6. A regular dynamic expression G is operative if no inaction rule can
be applied to it.

Let OpRegDynExpr denote the set of all operative regular dynamic expressions
of dtsdPBC. Note that any dynamic expression can be always transformed into a
(not necessarily unique) operative one by using the inaction rules.

In the following, we consider regular expressions only and omit the word �regular�.

De�nition 7. The relation ≈ = (⇒ ∪ ⇐)∗ is a structural equivalence of dynamic
expressions in dtsdPBC. Thus, two dynamic expressions G and G′ are structurally
equivalent, denoted by G ≈ G′, if they can be reached from each other by applying
the inaction rules in a forward or a backward direction.

Let X be some set. We denote the Cartesian product X×X by X2. Let E ⊆ X2

be an equivalence relation on X. Then the equivalence class (with respect to E) of
an element x ∈ X is de�ned by [x]E = {y ∈ X | (x, y) ∈ E}. The equivalence E
partitions X into the set of equivalence classes X/E = {[x]E | x ∈ X}.

Let G be a dynamic expression. Then [G]≈ = {H | G ≈ H} is the equivalence
class of G with respect to the structural equivalence, called the (corresponding)
state. Next, G is an initial dynamic expression, denoted by init(G), if ∃E ∈
RegStatExpr G ∈ [E]≈. Further, G is a �nal dynamic expression, denoted by
final(G), if ∃E ∈ RegStatExpr G ∈ [E]≈.

Let G be a dynamic expression and s = [G]≈. The set of all enabled stochastic

multiactions of s is EnaSto(s) = {(α, ρ) ∈ SL | ∃H ∈ s∩OpRegDynExpr (α, ρ) is
a subexpression of H}. The set of all enabled immediate multiactions of s is

EnaImm(s) = {(α, ♮0l ) ∈ IL | ∃H ∈ s∩OpRegDynExpr (α, ♮0l ) is a subexpression

of H}. The set of all enabled waiting multiactions of s is EnaWait(s) = {(α, ♮θl ) ∈
WL | ∃H ∈ s∩OpRegDynExpr (α, ♮θl )δ, δ ∈ {1, . . . , θ}, is a subexpression of H}.
The set of all newly enabled waiting multiactions of s is EnaWaitNew(s) =

{(α, ♮θl ) ∈ WL | ∃H ∈ s ∩OpRegDynExpr (α, ♮θl )
θ is a subexpression of H}.

Thus, the set of all enabled deterministic multiactions of s is EnaDet(s) =
EnaImm(s) ∪ EnaWait(s) and the set of all enabled activities of s is Ena(s) =
EnaSto(s)∪EnaDet(s) = EnaSto(s)∪EnaImm(s)∪EnaWait(s). Then Ena(s) =
Ena([G]≈) is an algebraic analogue of the set of all transitions enabled at the initial
marking of the LDTSDPN [85] corresponding to G. The activities, resulted from
synchronization, are not present in the syntax of the dynamic expressions. Their
enabledness status can be recovered by observing that of the pair of synchronized
activities from the syntax (they both should be enabled for enabling their synchro-
nous product), even if they are a�ected by restriction after the synchronization.

De�nition 8. An operative dynamic expression G is saturated (with the values of
timers), if each enabled waiting multiaction of [G]≈, being (certainly) superscribed
with the value of its timer and possibly overlined, is the subexpression of G.

Let SaOpRegDynExpr denote the set of all saturated operative dynamic expres-
sions of dtsdPBC.

Proposition 1. Any operative dynamic expression can be always transformed into
the saturated one by applying the inaction rules in a forward or a backward direction.

Proof. See [85]. □
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Thus, any dynamic expression can be always transformed into a (not necessarily
unique) saturated operative one by (possibly reverse) applying the inaction rules.

Let G be a saturated operative dynamic expression. Then ⟲G denotes the timer
decrement operator ⟲, applied to G. The result is a saturated operative dynamic
expression, obtained from G via decrementing by one all greater than 1 values of the
timers associated with all (if any) stamped waiting multiactions from the syntax of
G. Thus, each such stamped waiting multiaction changes its timer value from δ ∈
N≥1 inG tomax{1, δ−1} in⟲G. The timer decrement operator a�ects the (possibly
overlined or underlined) stamped waiting multiactions being the subexpressions of

G as follows: (α, ♮θl )
δ is replaced with (α, ♮θl )

max{1,δ−1} and (α, ♮θl )
δ is replaced with

(α, ♮θl )
max{1,δ−1} while (α, ♮θl )

δ is replaced with (α, ♮θl )
max{1,δ−1}.

Note that when δ = 1, we have max{1, δ− 1} = max{1, 0} = 1, hence, the timer
value δ = 1 may remain unchanged for a stamped waiting multiaction that is not
executed by some reason at the next time moment, but stays stamped. For example,
that stamped waiting multiaction may be a�ected by restriction. If the timer values
cannot be decremented with a time tick for all stamped waiting multiactions (if any)
from G then ⟲G = G and we obtain so-called empty loop transition, de�ned later.

Observe that the timer decrement operator keeps stamping of the waiting multi-
actions, since it may only decrease their timer values, so that the stamped waiting
multiactions stay stamped (with their timer values, possibly decremented by one).

3.2. Action and empty move rules. The action rules are applied when some
activities are executed. With these rules we capture the prioritization among di�e-
rent types of multiactions. We also have the empty move rule, used to capture
a delay of one discrete time unit when no immediate or waiting multiactions are
executable. In this case, the empty multiset of activities is executed. The action and
empty move rules will be used later to determine all multisets of activities which can
be executed from the structural equivalence class of every dynamic expression (i.e.
from the state of the corresponding process). This information together with that
about probabilities or delays and weights of the activities to be executed from the
current process state will be used to calculate the probabilities of such executions.

The action rules with stochastic (immediate or waiting, respectively) multiactions

describe dynamic expression transformations in the form of G
Γ→ G̃ (G

I→ G̃ or

G
W→ G̃, respectively) due to execution of non-empty multisets Γ of stochastic (I of

immediate or W of waiting, respectively) multiactions. The rules represent possible
state changes of the speci�ed processes when some non-empty multisets of stochastic
(immediate or waiting, respectively) multiactions are executed. The application of
an action rule with stochastic (immediate or waiting, respectively) multiactions to
a dynamic expression leads in the corresponding LDTSDPN [85] to a discrete time
tick at which some stochastic or waiting transitions �re (or to the instantaneous
�ring of some immediate transitions) and possible change of the current marking.
The current marking stays unchanged only if there is a self-loop produced by the
iterative execution of a non-empty multiset, which must be one-element, since we
allow no concurrency at the highest level of the second argument of iteration.

The empty move rule (applicable only when no immediate or waiting multiactions
can be executed from the current state) describes dynamic expression transformati-

ons in the form of G
∅→⟲G, called the empty moves, due to execution of the empty

multiset of activities at a discrete time tick. When no timer values are decremented
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within G with the empty multiset execution at the next moment (for example, if
G contains no stamped waiting multiactions), we have ⟲G = G. In such a case,

the empty move from G is in the form of G
∅→ G, called the empty loop. The

application of the empty move rule to a dynamic expression leads to a discrete
time tick in the corresponding LDTSDPN [85] at which no transitions �re and the
current marking is not changed, but the timer values of the waiting transitions
enabled at the marking (if any) are decremented by one. This is a new rule that
has no prototype among inaction rules of PBC, since it represents a time delay.

Thus, an application of every action rule with stochastic or waiting multiactions
or the empty move rule requires one discrete time unit delay, i.e. the execution of
a (possibly empty) multiset of stochastic or (non-empty) multiset of waiting multi-
actions leading to the dynamic expression transformation described by the rule is
accomplished instantly after one time unit. An application of every action rule with
immediate multiactions does not take any time, i.e. the execution of a (non-empty)
multiset of immediate multiactions is accomplished instantly at the current moment.

The expressions of dtsdPBC can contain identical activities. To avoid technical
dif�culties, such as calculation of the probabilities for multiple transitions, we can
enumerate coinciding activities from left to right in the syntax of expressions. The
new activities, resulted from synchronization, will be annotated with concatenation
of numberings of the activities they come from, hence, the numbering should have
a tree structure to re�ect the e�ect of multiple synchronizations. We now de�ne the
numbering which encodes a binary tree with the leaves labeled by natural numbers.

De�nition 9. The numbering of expressions is ι ::= n | (ι)(ι), where n ∈ N.
Let Num denote the set of all numberings of expressions.
The new activities resulting from synchronizations in di�erent orders should be

considered up to permutation of their numbering. In this way, we shall recognize
di�erent instances of the same activity. If we compare the contents of di�erent
numberings, i.e. the sets of natural numbers in them, we shall identify the mentioned
instances. The content of a numbering ι ∈ Num is

Cont(ι) =

{
{ι}, ι ∈ N;
Cont(ι1) ∪ Cont(ι2), ι = (ι1)(ι2).

After the enumeration, the multisets of activities from the expressions become the
proper sets. In the following, we suppose that the identical activities are enumerated
when needed to avoid ambiguity. This enumeration is considered to be implicit.

De�nition 10. Let G ∈ OpRegDynExpr. We de�ne the set of all non-empty mul-
tisets of activities which can be potentially executed from G, denoted by Can(G).
Let (α, κ) ∈ SDL, E, F ∈ RegStatExpr, H ∈ OpRegDynExpr and a ∈ Act.

(1) If final(G) then Can(G) = ∅.
(2) If G=(α, κ)δ and κ=♮θl , θ∈N≥2, l∈R>0, δ∈{2, . . . , θ}, then Can(G)=∅.
(3) If G = (α, κ) and κ ∈ (0; 1) or κ = ♮0l , l ∈ R>0, then Can(G) = {{(α, κ)}}.
(4) If G = (α, κ)1 and κ = ♮θl , θ ∈ N≥1, l ∈ R>0, then Can(G) = {{(α, κ)}}.
(5) If Υ ∈ Can(G) then Υ ∈ Can(G ◦ E), Υ ∈ Can(E ◦G) (◦ ∈ {; , []}),

Υ ∈ Can(G∥H), Υ ∈ Can(H∥G), f(Υ) ∈ Can(G[f ]), Υ ∈ Can(G rs a)
(when a, â ̸∈ A(Υ)), Υ ∈ Can(G sy a), Υ ∈ Can([G ∗ E ∗ F ]),
Υ ∈ Can([E ∗G ∗ F ]), Υ ∈ Can([E ∗ F ∗G]).

(6) If Υ ∈ Can(G) and Ξ ∈ Can(H) then Υ+ Ξ ∈ Can(G∥H).
(7) If Υ ∈ Can(G sy a) and (α, κ), (β, λ) ∈ Υ are di�erent, a ∈ α, â ∈ β, then
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(a) Υ− {(α, κ), (β, λ)}+ {(α⊕a β, κ · λ)} ∈ Can(G sy a) if κ, λ ∈ (0; 1);
(b) Υ− {(α, κ), (β, λ)}+ {(α⊕a β, ♮θl+m)} ∈ Can(G sy a) if κ = ♮θl ,

λ = ♮θm, θ ∈ N, l,m ∈ R>0.
When we synchronize the same multiset of activities in di�erent orders,
we obtain several activities with the same multiaction and probability or
delay and weight parts, but with di�erent numberings having the same
content. Then we only consider a single one of the resulting activities.

If Υ ∈ Can(G) then by de�nition of Can(G), ∀Ξ ⊆ Υ, Ξ ̸= ∅, we have Ξ ∈ Can(G).
LetG ∈ OpRegDynExpr and Can(G) ̸= ∅. Obviously, if there are only stochastic

(immediate or waiting, respectively) multiactions in the multisets from Can(G)
then these stochastic (immediate or waiting, respectively) multiactions can be
executed from G. Otherwise, besides stochastic ones, there are also deterministic
(immediate and/or waiting) multiactions in the multisets from Can(G). By the
note above, there are non-empty multisets of deterministic multiactions in Can(G)
as well, i.e. ∃Υ ∈ Can(G) Υ ∈ NDL

fin \ {∅}. In this case, no stochastic multiactions

can be executed from G, even if Can(G) contains non-empty multisets of stochastic
multiactions, since deterministic multiactions have a priority over stochastic ones,
and should be executed �rst. Further, if there are no stochastic, but both waiting
and immediate multiactions in the multisets from Can(G), then, analogously, no
waiting multiactions can be executed from G, since immediate multiactions have a
priority over waiting ones (besides that over stochastic ones).

When there are only waiting and, possibly, stochastic multiactions in the multi-
sets from Can(G) then only waiting ones can be executed from G. Then just maxi-
mal non-empty multisets of waiting multiactions can be executed from G, since all
non-con�icting waiting multiactions cannot wait and they should occur at the next
time moment with probability 1. The next de�nition formalizes these requirements.

De�nition 11. Let G ∈ OpRegDynExpr. The set of all non-empty multisets of
activities which can be executed from G is

Now(G)=


Can(G) ∩ NIL

fin, Can(G) ∩ NIL
fin ̸= ∅;

{W ∈Can(G) ∩ NWL
fin | (Can(G) ∩ NIL

fin=∅)∧
∀V ∈Can(G) ∩ NWL

fin W ⊆V ⇒ V =W}, (Can(G) ∩ NWL
fin ̸=∅);

Can(G), otherwise.

LetG ∈ OpRegDynExpr. The expressionG is s-tangible (stochastically tangible),
denoted by stang(G), if Now(G) ⊆ NSL

fin \ {∅}. In particular, we have stang(G),

if Now(G) = ∅. The expression G is w-tangible (waitingly tangible), denoted by
wtang(G), if ∅ ̸= Now(G) ⊆ NWL

fin \ {∅}. The expression G is tangible, denoted by

tang(G), if stang(G) or wtang(G), i.e. Now(G) ⊆ (NSL
fin ∪ NWL

fin ) \ {∅}. Again, we
particularly have tang(G), ifNow(G) = ∅. Otherwise, the expressionG is vanishing,
denoted by vanish(G), and in this case ∅ ≠ Now(G) ⊆ NIL

fin \ {∅}. Note that the

operative dynamic expressions from [G]≈ may have di�erent types in general.
Let G ∈ RegDynExpr. We write stang([G]≈), if ∀H ∈ [G]≈ ∩OpRegDynExpr

stang(H). We write wtang([G]≈), if ∃H ∈ [G]≈ ∩OpRegDynExpr wtang(H) and
∀H ′ ∈ [G]≈ ∩ OpRegDynExpr tang(H ′). We write tang([G]≈), if stang([G]≈) or
wtang([G]≈). Otherwise, we write vanish([G]≈), and in this case ∃H ∈ [G]≈ ∩
OpRegDynExpr vanish(H).
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In Table 3, we de�ne the action and empty move rules. In the table, (α, ρ), (β, χ)∈
SL, (α, ♮0l ), (β, ♮0m) ∈ IL and (α, ♮θl ), (β, ♮

θ
m) ∈ WL. Further, E,F ∈ RegStatExpr,

G,H ∈ SatOpRegDynExpr, G̃, H̃ ∈ RegDynExpr and a ∈ Act. Next, Γ,∆ ∈
NSL
fin \ {∅}, Γ′ ∈ NSL

fin, I, J ∈ NIL
fin \ {∅}, I ′ ∈ NIL

fin, V,W ∈ NWL
fin \ {∅}, V ′ ∈ NWL

fin

and Υ ∈ NSDL
fin \ {∅}. We denote Υa = {(α, κ) ∈ Υ | (a ∈ α) ∨ (â ∈ α)}.

We use the following abbreviations in the names of the rules from the table:
�E� for �Empty move�, �B� for �Basis case�, �S� for �Sequence�, �C� for �Choice�,
�P� for �Parallel�, �L� for �reLabeling�, �R� for �Restriction�, �I� for �Iteraton�
and �Sy� for �Synchronization�. The �rst rule in the table is the empty move rule
E. The other rules are the action rules, describing transformations of dynamic
expressions, which are built using particular algebraic operations. If we cannot
merge the rules with stochastic, immediate ans waiting multiactions in one rule for
some operation then we get the coupled action rules. In such cases, the names of
the action rules with stochastic multiactions have a su�x `s', those with immediate
multiactions have a su�x `i', and those with waiting multiactions have a su�x `w'.
For explanation of the rules in Table 3, see [85].

Notice that the timers of all waiting multiactions that lose their enabledness
when a state change occurs become inactive (turned o�) and their values become
irrelevant while the timers of all those preserving their enabledness continue running
with their stored values. Hence, we adapt the enabling memory policy [66, 1,
4, 5] when the process states are changed and the enabledness of deterministic
multiactions is possibly modi�ed (immediate multiactions may be seen as those with
the timers displaying a single value 0, so we do not need to store their values). Then
the timer values of waiting multiactions are taken as the enabling memory variables.

Similar in [51], we are mainly interested in the dynamic expressions, inferred by
applying the inaction rules (also in the reverse direction) and action rules from the
overlined static expressions, such that no stamped (i.e. superscribed with the timer
values) waiting multiaction is a subexpression of them. The reason is to ensure
that time proceeds uniformly and only enabled waiting multiactions are stamped.
We call such dynamic expressions reachable, by analogy with the reachable states
of LDTSDPNs [85]. Formally, a dynamic expression G is reachable, if there exists
a static expression E without timer value superscripts, such that E ≈ G or E ≈
G0

Υ1→ H1 ≈ G1
Υ2→ . . .

Υn→ Hn ≈ G for some Υ1, . . . ,Υn ∈ NSDL
fin .

Therefore, we consider a dynamic expression G = ({a}, ♮21)1[]({b}, ♮32)1 as �illegal�
and that H = ({a}, ♮21)1[]({b}, ♮32)2 as �legal�, since the latter is obtained from the

overlined static expression without timer value superscripts E = ({a}, ♮21)[]({b}, ♮32)
after one time tick. On the other hand, G is �illegal� only when it is intended to
specify a complete process, but it may become �legal� as a part of some complete
speci�cation, like G rs a, since after two time ticks from E rs a, the timer values
cannot be decreased further when the value 1 is approached. Thus, we should allow
the dynamic expressions likeG, by assuming that they are incomplete speci�cations,

to be further composed. Further, a dynamic expression G = ({a}, 12 ); ({b}, ♮21)1 is

�illegal�, since the waiting multiaction ({b}, ♮21) is not enabled in [G]≈ and its timer
cannot start before the stochastic multiaction ({a}, 12 ) is executed. Enabledness of
the stamped waiting multiactions is considered in the next proposition.

Proposition 2. Let G be a reachable dynamic expression. Then only waiting
multiactions from EnaWait([G]≈) are stamped in G.
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Table 3. Action and empty move rules

E
stang([G]≈)

G
∅→⟲G

Bs (α, ρ)
{(α,ρ)}−→ (α, ρ) Bi (α, ♮0l )

{(α,♮0l )}−→ (α, ♮0l ) Bw (α, ♮θl )
1

{(α,♮θl )}−→ (α, ♮θl )

S
G

Υ→ G̃

G;E
Υ→ G̃;E, E;G

Υ→ E; G̃
Cs

G
Γ→ G̃, ¬init(G) ∨ (init(G) ∧ stang([E]≈))

G[]E
Γ→ G̃[]⇃E, E[]G

Γ→⇃E[]G̃

Ci
G

I→ G̃

G[]E
I→ G̃[]⇃E, E[]G

I→⇃E[]G̃
Cw

G
V→ G̃, ¬init(G) ∨ (init(G) ∧ tang([E]≈))

G[]E
V→ G̃[]⇃E, E[]G

V→⇃E[]G̃

P1s
G

Γ→ G̃, stang([H]≈)

G∥H Γ→ G̃∥ ⟲H, H∥G Γ→⟲H∥G̃
P1i

G
I→ G̃

G∥H I→ G̃∥H, H∥G I→ H∥G̃

P1w
G

V→ G̃, stang([H]≈)

G∥H V→ G̃∥ ⟲H, H∥G V→⟲H∥G̃
P2s

G
Γ→ G̃, H

∆→ H̃

G∥H Γ+∆−→ G̃∥H̃
P2i

G
I→ G̃, H

J→ H̃

G∥H I+J−→ G̃∥H̃

P2w
G

V→ G̃, H
W→ H̃

G∥H V +W−→ G̃∥H̃
L

G
Υ→ G̃

G[f ]
f(Υ)−→ G̃[f ]

R
G

Υ→ G̃

G rs a
Υ−Υa−→ G̃ rs a

I1
G

Υ→ G̃

[G ∗ E ∗ F ]
Υ→ [G̃ ∗ E ∗ F ]

I2s
G

Γ→ G̃, ¬init(G) ∨ (init(G) ∧ stang([F ]≈))

[E ∗G ∗ F ]
Γ→ [E ∗ G̃∗⇃F ], [E ∗ F ∗G]

Γ→ [E∗⇃F ∗ G̃]

I2i
G

I→ G̃

[E ∗G ∗ F ]
I→ [E ∗ G̃∗⇃F ], [E ∗ F ∗G]

I→ [E∗⇃F ∗ G̃]

I2w
G

V→ G̃, ¬init(G) ∨ (init(G) ∧ tang([F ]≈))

[E ∗G ∗ F ]
V→ [E ∗ G̃∗⇃F ], [E ∗ F ∗G]

V→ [E∗⇃F ∗ G̃]

Sy1
G

Υ→ G̃

G sy a
Υ→ G̃ sy a

Sy2s
G sy a

Γ′+{(α,ρ)}+{(β,χ)}−−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
Γ′+{(α⊕aβ,ρ·χ)}−−−−−−−−−−−→ G̃ sy a

Sy2i
G sy a

I′+{(α,♮0l )}+{(β,♮0m)}
−−−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
I′+{(α⊕aβ,♮

0
l+m

)}
−−−−−−−−−−−−→ G̃ sy a

Sy2w
G sy a

V ′+{(α,♮θl )}+{(β,♮θm)}
−−−−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
V ′+{(α⊕aβ,♮

θ
l+m

)}
−−−−−−−−−−−−−→ G̃ sy a

Proof. See [85]. □

3.3. Transition systems. We now construct labeled probabilistic transition sys-
tems associated with dynamic expressions. The transition systems are used to de�ne
the operational semantics of dynamic expressions.

Let G be a dynamic expression and s = [G]≈. The set of all multisets of activities

executable in s is de�ned as Exec(s) = {Υ | ∃H ∈ s ∃H̃ H
Υ→ H̃}. Here H Υ→ H̃

is an inference by the rules from Table 3. It can be proved by induction on the
structure of expressions that Υ ∈ Exec(s) \ {∅} implies ∃H ∈ s Υ ∈ Now(H). The
reverse statement does not hold, since the preconditions in the action rules disable
executions of the activities with the lower-priority types from every H ∈ s, see [85].

The state s is s-tangible (stochastically tangible), denoted by stang(s), if
Exec(s) ⊆ NSL

fin. For an s-tangible state s we always have ∅ ∈ Exec(s) by rule E,

hence, we may have Exec(s) = {∅}. The state s is w-tangible (waitingly tangible),
denoted by wtang(s), if Exec(s) ⊆ NWL

fin \ {∅}. The state s is tangible, denoted by

tang(s), if stang(s) or wtang(s), i.e. Exec(s) ⊆ NSL
fin ∪NWL

fin . Again, for a tangible
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state s we may have ∅ ∈ Exec(s) and Exec(s) = {∅}. Otherwise, the state s is
vanishing, denoted by vanish(s), and in this case Exec(s) ⊆ NIL

fin \ {∅}.
If Υ ∈ Exec(s) and Υ ∈ NSL

fin ∪ NIL
fin then by rules P2s, P2i, Sy2s, Sy2i and

de�nition of Exec(s) ∀Ξ ⊆ Υ, Ξ ̸= ∅, we have Ξ ∈ Exec(s), i.e. 2Υ \{∅} ⊆ Exec(s).

De�nition 12. The derivation set of a dynamic expression G, denoted by DR(G),
is the minimal set such that

• [G]≈ ∈ DR(G);

• if [H]≈ ∈ DR(G) and ∃Υ H
Υ→ H̃ then [H̃]≈ ∈ DR(G).

The set of all s-tangible states from DR(G) is denoted by DRST (G), and the
set of all w-tangible states from DR(G) is denoted by DRWT (G). The set of all
tangible states from DR(G) is denoted by DRT (G) = DRST (G)∪DRWT (G). The
set of all vanishing states from DR(G) is denoted by DRV (G). Then DR(G) =
DRT (G)⊎DRV (G) = DRST (G)⊎DRWT (G)⊎DRV (G) (⊎ denotes disjoint union).

Let now G be a dynamic expression and s, s̃ ∈ DR(G).
Let Υ ∈ Exec(s)\{∅}. The probability that the multiset of stochastic multiactions

Υ is ready for execution in s or the weight of the multiset of deterministic multiacti-
ons Υ which is ready for execution in s is

PF (Υ, s)=


∏

(α,ρ)∈Υ

ρ ·
∏

{{(β,χ)}∈Exec(s)|(β,χ)̸∈Υ}
(1− χ), s∈DRST (G);∑

(α,♮θl )∈Υ

l, s∈DRWT (G)∪DRV (G).

In the case Υ = ∅ and s ∈ DRST (G) we de�ne

PF (∅, s) =


∏

{(β,χ)}∈Exec(s)
(1− χ), Exec(s) ̸= {∅};

1, Exec(s) = {∅}.
Note that the de�nition of PF (Υ, s) (and those of other probability functions we

shall present) is based on the enumeration of activities which is considered implicit.
Let Υ ∈ Exec(s). Besides Υ, some other multisets of activities may be ready

for execution in s, hence, a normalization is needed to calculate the execution
probability. The probability to execute the multiset of activities Υ in s is

PT (Υ, s) =
PF (Υ, s)∑

Ξ∈Exec(s) PF (Ξ, s)
.

The sum of outgoing probabilities for the expressions from the derivations of G
is equal to 1, i.e. ∀s ∈ DR(G)

∑
Υ∈Exec(s) PT (Υ, s) = 1. This fact follows from the

de�nition of PT (Υ, s) and guarantees that it de�nes a probability distribution.
The probability to move from s to s̃ by executing any multiset of activities is

PM(s, s̃) =
∑

{Υ|∃H∈s ∃H̃∈s̃ H Υ→H̃}

PT (Υ, s).

Note that ∀s ∈ DR(G)
∑

{s̃|∃H∈s ∃H̃∈s̃ ∃Υ H
Υ→H̃} PM(s, s̃) =∑

{s̃|∃H∈s ∃H̃∈s̃ ∃Υ H
Υ→H̃}

∑
{Υ|∃H∈s ∃H̃∈s̃ H Υ→H̃}PT (Υ, s)=

∑
Υ∈Exec(s)PT (Υ, s)=1.
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De�nition 13. Let G be a dynamic expression. The (labeled probabilistic) transi-
tion system of G is a quadruple TS(G) = (SG, LG, TG, sG), where

• the set of states is SG = DR(G);
• the set of labels is LG = NSDL

fin × (0; 1];

• the set of transitions is TG = {(s, (Υ, PT (Υ, s)), s̃) | s, s̃ ∈ DR(G), ∃H∈s
∃H̃ ∈ s̃ H

Υ→ H̃};
• the initial state is sG = [G]≈.

The de�nition of TS(G) is correct, i.e. for every state, the sum of the probabilities
of all the transitions starting from it is 1, by the note after the de�nition of PT (Υ, s).

The transition system TS(G) associated with a dynamic expression G describes
all the steps (parallel executions) that occur at discrete time moments with some
(one-step) probability and consist of multisets of activities. Every step consisting of
stochastic (waiting, respectively) multiactions or the empty step (i.e. that consisting
of the empty multiset of activities) occurs instantly after one discrete time unit
delay. Each step consisting of immediate multiactions occurs instantly without any
delay. The step can change the current state to a di�erent one. The states are the
structural equivalence classes of dynamic expressions obtained by application of
action rules starting from the expressions belonging to [G]≈. A transition

(s, (Υ,P), s̃) ∈ TG will be written as s
Υ→P s̃. It is interpreted as follows: the

probability to change from state s to s̃ as a result of executing Υ is P.
From every s-tangible state the empty multiset of activities can always be exe-

cuted by rule E. Hence, for s-tangible states, Υ may be the empty multiset, and its
execution only decrements by one the timer values (if any) of the current state. Then

we have a transition s
∅→P⟲s from an s-tangible state s to the tangible state ⟲s =

[⟲H]≈ for H ∈ s ∩ SatOpRegDynExpr. Since structurally equivalent saturated
operative dynamic expressions remain so after decreasing by one their timers, ⟲ s
is unique for each s and the de�nition is correct. Thus, ⟲s corresponds to applying
the empty move rule to an arbitrary saturated operative dynamic expression from
s, followed by taking the structural equivalence class of the result. We have to keep
track of such executions, called the empty moves, since they a�ect the timers and
have non-zero probabilities. This follows from the de�nition of PF (∅, s) and the fact
that the probabilities of stochastic multiactions belong to the interval (0; 1). When
it holds ⟲H = H for H ∈ s ∩ SatOpRegDynExpr, we obtain ⟲ s = s. Then the

empty move from s is in the form of s
∅→P s, called the empty loop. For w-tangible

and vanishing states Υ cannot be the empty multiset, since we must execute some
immediate (waiting) multiactions from them at the current (next) moment.

The step probabilities belong to the interval (0; 1], being 1 in the case when we
cannot leave an s-tangible state s and the only transition leaving it is the empty

move one s
∅→1⟲s, or if there is a single transition from a w-tangible or a vanishing

state to any other one. We write s
Υ→ s̃ if ∃P s

Υ→P s̃ and s→ s̃ if ∃Υ s
Υ→ s̃.

Isomorphism is a coincidence of systems up to renaming of their components.

De�nition 14. Let G,G′ be dynamic expressions and TS(G)=(SG, LG, TG, sG),
TS(G′)=(SG′ , LG′ , TG′ , sG′) be their transition systems. A mapping β : SG → SG′

is an isomorphism between TS(G) and TS(G′), denoted by β : TS(G) ≃ TS(G′), if

(1) β is a bijection such that β(sG) = sG′ ;

(2) ∀s, s̃ ∈ SG ∀Υ s
Υ→P s̃ ⇔ β(s)

Υ→P β(s̃).
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TS(E)

☛✡ ✟✠✞✝ ☎✆
☛✡ ✟✠☛✡ ✟✠

❄

✚
✚❂ ❅❅❘

✏

✑

✓

✒

✲ ✛

✑ ✒

s2

s4 s5

☛✡ ✟✠
❄

s1
({a},ρ),ρ

({b},♮1k),1

({c},♮0l ),1
l

l+m

({e},♮0m),
m

l+m

({d},θ),
θ

({f},φ),
φ

s3

✞✝ ✲

✂ ✁✂ ✁✻ ✻

∅,1−ρ

∅,1−θ ∅,1−φ

Fig. 1. The transition system of E for E = [({a}, ρ) ∗ (({b}, ♮1k);
((({c}, ♮0l ); ({d}, θ))[](({e}, ♮0m); ({f}, ϕ)))) ∗ Stop]

Two transition systems TS(G) and TS(G′) are isomorphic, denoted by TS(G)≃
TS(G′), if ∃β :TS(G)≃TS(G′).

De�nition 15. Two dynamic expressions G and G′ are equivalent with respect to
transition systems, denoted by G =ts G

′, if TS(G) ≃ TS(G′).

Example 1. The expression Stop = ({g}, 12 ) rs g speci�es the non-terminating
process that performs only empty loops with probability 1.

Let E = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮0l ); ({d}, θ))[](({e}, ♮0m); ({f}, ϕ)))) ∗ Stop],

where ρ, θ, ϕ ∈ (0; 1) and k, l,m ∈ R>0. DR(E) consists of the elements

s1 = [[({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮0l ); ({d}, θ))[](({e}, ♮0m); ({f}, ϕ)))) ∗ Stop]]≈,
s2 = [[({a}, ρ) ∗ (({b}, ♮1k)1; ((({c}, ♮0l ); ({d}, θ))[](({e}, ♮0m); ({f}, ϕ)))) ∗ Stop]]≈,
s3 = [[({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮0l ); ({d}, θ))[](({e}, ♮0m); ({f}, ϕ)))) ∗ Stop]]≈ =

[[({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮0l ); ({d}, θ))[](({e}, ♮0m); ({f}, ϕ)))) ∗ Stop]]≈,
s4 = [[({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮0l ); ({d}, θ))[](({e}, ♮0m); ({f}, ϕ)))) ∗ Stop]]≈,
s5 = [[({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮0l ); ({d}, θ))[](({e}, ♮0m); ({f}, ϕ)))) ∗ Stop]]≈.
We have DRST (E) = {s1, s4, s5}, DRWT (E) = {s2} and DRV (E) = {s3}.
In Figure 1, the transition system TS(E) is presented. The s-tangible and w-

tangible states are depicted in ordinary and double ovals, respectively, and the
vanishing ones are depicted in boxes.

Example 2. Let us interpret E from Example 1 as a speci�cation of the travel
system. A tourist visits regularly new cities. After seeing the sights of the current
city, he goes to the next city by the nearest train or bus available at the city station.
Buses depart less frequently than trains, but the next city is quicker reached by bus
than by train. We suppose that the stay duration in every city (being a constant),
the departure numbers of trains and buses, as well as their speeds do not depend
on a particular city, bus or train. The travel route has been planned so that the
distances between successive cities coincide.

The meaning of actions and activities from the syntax of E is as follows. The ac-
tion a corresponds to the system activation after planning the travel route that takes
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a time, geometrically distributed with a parameter ρ, the probability of the corres-
ponding stochastic multiaction ({a}, ρ). The action b represents coming to the city
station after completion of looking round the current city that takes (for every city) a
�xed time equal to 1 (hour), the time delay of the corresponding waiting multiaction
({b}, ♮1k) with (resolving no choice) weight k. The actions c and e correspond to the
urgent (in zero time) getting on bus and train, respectively, and thus model the
choice between these two transport facilities. The weights of the two corresponding
immediate multiactions ({c}, ♮0l ) and ({e}, ♮0m) suggest that every l departures of
buses take the same time as m departures of trains (l < m), hence, a bus departs
with the probability l

l+m while a train departs with the probability m
l+m . The actions

d and f correspond to coming in a city by bus and train, respectively, that takes a
time, geometrically distributed with the parameters θ and ϕ, respectively (θ > ϕ),
the probabilities of the corresponding stochastic multiactions ({d}, θ) and ({f}, ϕ).

The meaning of states from DR(E) is the following. The s-tangible state s1
corresponds to staying at home and planning the future travel. The w-tangible state
s2 means residence in a city for exactly one time unit (hour). The vanishing state s3
with zero residence time represents instantaneous stay at the city station, signifying
that the tourist does not wait there for departure of the transport. The s-tangible
states s4 and s5 correspond to going by bus and train, respectively.

In Example 3 from [86], we calculated the following performance indices, based
on the steady-state probability mass function (PMF) for the underlying SMC of E
SMC(E) φ = 1

θϕ(l+m)+ϕl+θm (0, θϕ(l+m), 0, ϕl, θm) and the average sojourn time

vector of E SJ =
(

1
ρ , 1, 0,

1
θ ,

1
ϕ

)
.

• The average time between comings to the successive cities (mean sightseeing

and travel time) is ReturnT ime(s2) =
1

φ(s2)
= 1 + ϕl+θm

θϕ(l+m) .

• The fraction of time spent in a city (sightseeing time fraction) is

TimeFract(s2) = φ(s2) =
θϕ(l+m)

θϕ(l+m)+ϕl+θm .

• The fraction of time spent in a transport (travel time fraction) is

TimeFract({s4, s5}) = φ(s4) + φ(s5) =
ϕl+θm

θϕ(l+m)+ϕl+θm .

• The relative fraction of time spent in a city with respect to that spent in
transport (sightseeing relative to travel time fraction) is

RltT imeFract({s2}, {s4, s5}) = φ(s2)
φ(s4)+φ(s5)

= θϕ(l+m)
ϕl+θm .

• The rate of leaving/entering a city (departure/arrival rate) is

ExitFreq(s2) =
φ(s2)
SJ(s2)

= θϕ(l+m)
θϕ(l+m)+ϕl+θm .

Let N = (PN , TN ,WN , DN ,ΩN ,LN , QN ) be a LDTSDPN [85] and Q, Q̃ be its
states. Then the average sojourn time SJ(Q), sojourn time variance V AR(Q),

probabilities PM∗(Q, Q̃), transition relation Q ↠P Q̃, EDTMC EDTMC(N),
underlying SMC SMC(N) and steady-state PMF for it are de�ned like the corres-
ponding notions for dynamic expressions in [86]. Every marked and clocked plain
dtsd-box [85] can be interpreted as an LDTSDPN. Therefore, we can evaluate
performance with the LDTSDPNs corresponding to dtsd-boxes and then transfer
the results to the latter.

Example 3. Let E be from Example 1 and N be the marked and clocked dtsd-box
of E, denoted by N = Boxdtsd(E) [85]. In Figure 2, the underlying SMC SMC(N)
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SMC(N)

☛✡ ✟✠✞✝ ☎✆
☛✡ ✟✠☛✡ ✟✠

❄

✚
✚❂ ❅❅❘

✏

✑

✓

✒

✲ ✛

✑ ✒

010000,
1

000100,
∞

000010,
∞

☛✡ ✟✠
❄

100000,
∞

1

1

l
l+m

m
l+m

1 1

001000,
∞

1
ρ

1

0

1
θ

1
φ

Fig. 2. The underlying SMC of N=Boxdtsd(E) for E=[({a}, ρ)∗
(({b}, ♮1k); ((({c}, ♮0l ); ({d}, θ))[](({e}, ♮0m); ({f}, ϕ)))) ∗ Stop]

is presented. Note that SMC(E) [86] and SMC(N) are isomorphic. Thus, both the
transient and steady-state PMFs for SMC(N) and SMC(E) coincide.

4. Stochastic equivalences

The semantic equivalence =ts is too discriminating in many cases, hence, we
need weaker equivalence notions. These equivalences should possess the following
necessary properties. First, any two equivalent processes must have the same se-
quences of multisets of multiactions, which are the multiaction parts of the activities
executed in steps starting from the initial states of the processes. Second, for every
such sequence, its execution probabilities within both processes must coincide.
Third, the desired equivalence should preserve the branching structure of compu-
tations, i.e. the points of choice of an external observer between several extensions
of a particular computation should be taken into account. In this section, we de�ne
one such notion: step stochastic bisimulation equivalence.

Bisimulation equivalences respect the particular points of choice in the behavior
of a system. To de�ne stochastic bisimulation equivalences, we have to consider a
bisimulation as an equivalence relation that partitions the states of the union of the
transition systems TS(G) and TS(G′) of two dynamic expressions G and G′ to be
compared. For G and G′ to be bisimulation equivalent, the initial states [G]≈ and
[G′]≈ of their transition systems should be related by a bisimulation having the
following transfer property: if two states are related then in each of them the same
multisets of multiactions can occur, leading with the identical overall probability
from each of the two states to the same equivalence class for every such multiset.

We follow the approaches of [50, 54, 45, 46, 18, 10, 11], but we implement step
semantics instead of interleaving one considered in these papers. Recall also that
we use the generative probabilistic transition systems, like in [50], in contrast to
the reactive model, treated in [54], and we take transition probabilities instead
of transition rates from [45, 46, 18, 10, 11]. Thus, step stochastic bisimulation
equivalence that we de�ne further is (in the probabilistic sense) comparable only
with interleaving probabilistic bisimulation equivalence from [50], and our relation
is obviously stronger.
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In the de�nition below, we consider L(Υ) ∈ NL
fin for Υ ∈ NSIL

fin , i.e. (possibly

empty) multisets of multiactions. The multiactions can be empty as well. In this
case, L(Υ) contains the elements ∅, but it is not empty itself.

Let G be a dynamic expression and H ⊆ DR(G). Then, for any s ∈ DR(G) and

A ∈ NL
fin, we write s

A→P H, where P = PMA(s,H) is the overall probability to
move from s into the set of states H via steps with the multiaction part A de�ned as

PMA(s,H) =
∑

{Υ|∃s̃∈H s
Υ→s̃, L(Υ)=A}

PT (Υ, s).

We write s
A→ H if ∃P s

A→P H. Further, we write s→P H if ∃A s
A→ H, where

P = PM(s,H) is the overall probability to move from s into the set of states H via
any steps de�ned as

PM(s,H) =
∑

{Υ|∃s̃∈H s
Υ→s̃}

PT (Υ, s).

For s̃ ∈ DR(G), we write s
A→P s̃ if s

A→P {s̃} and s
A→ s̃ if ∃P s

A→P s̃.

De�nition 16. Let G and G′ be dynamic expressions. An equivalence relation
R ⊆ (DR(G) ∪ DR(G′))2 is a step stochastic bisimulation between G and G′,
denoted by R : G↔ssG

′, if:

(1) ([G]≈, [G′]≈) ∈ R.
(2) (s1, s2) ∈ R implies SJ(s1) = 0 ⇔ SJ(s2) = 0 and

∀H ∈ (DR(G) ∪DR(G′))/R ∀A ∈ NL
fin s1

A→P H ⇔ s2
A→P H.

Two dynamic expressions G and G′ are step stochastic bisimulation equivalent,
denoted by G↔ssG

′, if ∃R : G↔ssG
′.

The condition SJ(s1) = 0 ⇔ SJ(s2) = 0 in item 2 of the de�nition above is
needed to make di�erence between w-tangible states (all having at least one time
unit sojourn times) and vanishing states (all having zero sojourn times). Both from
w-tangible and vanishing states, no empty moves can be made, unlike s-tangible
states, from which empty moves are always possible. When comparing dynamic ex-
pressions for step stochastic bisimulation equivalence, we can use empty moves only
to make di�erence between s-tangible and other (w-tangible or vanishing) states.

We now de�ne the multiaction transition systems, whose transitions are labeled
with the multisets of multiactions, extracted from the corresponding activities.

De�nition 17. Let G be a dynamic expression. The (labeled probabilistic) multi-
action transition system of G is a quadruple TSL(G) = (SL, LL, TL, sL), where

• SL = DR(G);
• LL = NL

fin × (0; 1];

• TL = {(s, (A,PMA(s, {s̃})), s̃) | s, s̃ ∈ DR(G), s
A→ s̃};

• sL = [G]≈.

The transition (s, (A,P), s̃) ∈ TL will be written as s
A→P s̃.

Let G and G′ be dynamic expressions and R : G↔ssG
′. Then the relation R

can be interpreted as a step stochastic bisimulation between the transition systems
TSL(G) and TSL(G′), denoted by R : TSL(G)↔ssTSL(G′), which is de�ned by
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TSL(F )

☛✡ ✟✠✞✝ ☎✆
☛✡ ✟✠☛✡ ✟✠

❄

✚
✚❂ ❅❅❘

✏

✑

✓

✒

✲ ✛

✑ ✒

s′2

s′4 s′5

☛✡ ✟✠
❄

s′1
{a},ρ

{b},1

{c}, l
l+m

{c}, m
l+m

{d},θ {d},θ

s′3

✞✝ ✲

✂ ✁✂ ✁✻ ✻

∅,1−ρ

∅,1−θ ∅,1−θ

Fig. 3. The multiaction transition system of F for F = [({a}, ρ) ∗
(({b}, ♮1k); ((({c}, ♮0l ); ({d}, θ)1)[](({c}, ♮0m); ({d}, θ)2))) ∗ Stop]

analogy (excepting step semantics) with interleaving probabilistic bisimulation on
generative probabilistic transition systems from [50].

Example 4. Let us consider an abstraction F of the static expression E from
Example 1, such that c = e, d = f, θ = ϕ, i.e. F = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮0l );
({d}, θ)1)[](({c}, ♮0m); ({d}, θ)2)))∗Stop]. Then DR(F ) = {s′1, s′2, s′3, s′4, s′5} is obtai-
ned from DR(E) via substitution of the symbols e, f, ϕ by c, d, θ, respectively, in
the speci�cations of the corresponding states from the latter set. We have DRST (F )=
{s′1, s′4, s′5}, DRWT (F ) = {s′2} and DRV (F ) = {s′3}. In Figure 3, the multiaction
transition system TSL(F ) is presented. To simplify the presentation, the singleton
multisets of multiactions are written without outer braces.

Example 5. Let us interpret F from Example 4 as an abstraction of the travel
system from Example 2. In such an abstract travel system, we do not di�erentiate
between the transport facilities (trains or buses) that always have the same speed,
but every l departures of the transport from the �rst platform take the same time as
m departures of the transport from the second platform, and the traveler can choose
between the two platforms.

By taking θ = ϕ in Example 2, we now calculate the following performance

indices, based on the steady-state PMF for SMC(F ) φ = 1
1+θ

(
0, θ, 0, l

l+m ,
m
l+m

)
and the average sojourn time vector of F SJ =

(
1
ρ , 1, 0,

1
θ ,

1
θ

)
.

• The average time between comings to the successive cities (mean sightseeing
and travel time) is ReturnT ime(s′2) =

1
φ(s′2)

= 1 + θl+θm
θ2(l+m) = 1 + 1

θ .

• The fraction of time spent in a city (sightseeing time fraction) is

TimeFract(s′2) = φ(s′2) =
θ2(l+m)

θ2(l+m)+θl+θm = θ
1+θ .

• The fraction of time spent in a transport (travel time fraction) is
TimeFract({s′4, s′5}) = φ(s′4) + φ(s′5) =

θl+θm
θ2(l+m)+θl+θm = 1

1+θ .

• The relative fraction of time spent in a city with respect to that spent in
transport (sightseeing relative to travel time fraction) is

RltT imeFract({s′2}, {s′4, s′5}) = φ(s′2)
φ(s′4)+φ(s

′
5)

= θ2(l+m)
θl+θm = θ.
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• The rate of leaving/entering a city (departure/arrival rate) is

ExitFreq(s′2) =
φ(s′2)
SJ(s′2)

= θ2(l+m)
θ2(l+m)+θl+θm = θ

1+θ .

The following proposition states that every step stochastic bisimulation binds
s-tangible states only with s-tangible ones, and the same is valid for w-tangible
states, as well as for vanishing states.

Proposition 3. Let G and G′ be dynamic expressions and R : G↔ssG
′. Then

R⊆(DRST (G)∪DRST (G′))2⊎(DRWT (G)∪DRWT (G
′))2⊎(DRV (G)∪DRV (G′))2.

Proof. See [85]. □

Proposition 3 implies R ⊆ (DRT (G) ∪ DRT (G
′))2 ⊎ (DRV (G) ∪ DRV (G

′))2,
since DRT (G) = DRST (G)⊎DRWT (G) and DRT (G

′) = DRST (G
′)⊎DRWT (G

′).
Let Rss(G,G

′) =
⋃{R | R : G↔ssG

′} be the union of all step stochastic
bisimulations between G and G′. The following proposition proves that Rss(G,G

′)
is also an equivalence and Rss(G,G

′) : G↔ssG
′.

Proposition 4. Let G and G′ be dynamic expressions and G↔ssG
′. Then

Rss(G,G
′) is the largest step stochastic bisimulation between G and G′.

Proof. See [85]. □

The following theorem shows that both the semantics are bisimulation equivalent.

Theorem 1. For any static expression E, TS(E)↔ssRG(Boxdtsd(E)).

Proof. See [85]. □

We now compare the discrimination power of the stochastic equivalences.

Theorem 2. For dynamic expressions G and G′ the next strict implications hold:

G ≈ G′ ⇒ G =ts G
′ ⇒ G↔ssG

′.

Proof. See [85]. □

5. Reduction modulo equivalences

The equivalences which we proposed can be used to reduce transition systems and
SMCs of expressions (reachability graphs and SMCs of dtsd-boxes). Reductions of
graph-based models, like transition systems, reachability graphs and SMCs, result
in those with less states (the graph nodes). The goal of the reduction is to decrease
the number of states in the semantic representation of the modeled system while
preserving its important qualitative and quantitative behavioural properties. Thus,
the reduction allows one to simplify the functional and performance analysis.

5.1. Quotients of the transition systems and Markov chains. We now consi-
der the quotient transition systems and Markov chains (SMCs, DTMCs, RDTMCs).

An autobisimulation is a bisimulation between an expression and itself. For a
dynamic expression G and a step stochastic autobisimulation on it R : G↔ssG, let

K ∈ DR(G)/R and s1, s2 ∈ K. We have ∀K̃ ∈ DR(G)/R ∀A ∈ NL
fin s1

A→P K̃ ⇔
s2

A→P K̃. The previous equality is valid for all s1, s2 ∈ K, hence, we can rewrite it

as K A→P K̃, where P = PMA(K, K̃) = PMA(s1, K̃) = PMA(s2, K̃).
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We write K A→ K̃ if ∃P K A→P K̃ and K → K̃ if ∃A K A→ K̃. The similar arguments

allow us to write K →P K̃, where P = PM(K, K̃) = PM(s1, K̃) = PM(s2, K̃).
By the note after Proposition 3, R ⊆ (DRT (G))

2 ⊎ (DRV (G))
2. Hence, ∀K ∈

DR(G)/R, all states from K are tangible, when K ∈ DRT (G)/R, or all of them are
vanishing, when K ∈ DRV (G)/R.
The average sojourn time in the equivalence class (with respect to R) of states K is

SJR(K) =

{ 1
1−PM(K,K) , K ∈ DRT (G)/R;

0, K ∈ DRV (G)/R.

The average sojourn time vector for the equivalence classes (with respect to R)
of states of G, denoted by SJR, has the elements SJR(K), K ∈ DR(G)/R.
The sojourn time variance in the equivalence class (with respect to R) of states K is

V ARR(K) =

{
PM(K,K)

(1−PM(K,K))2 , K ∈ DRT (G)/R;

0, K ∈ DRV (G)/R.

The sojourn time variance vector for the equivalence classes (with respect to R)
of states of G, denoted by V ARR, has the elements V ARR(K), K ∈ DR(G)/R.

Let Rss(G) =
⋃{R | R : G↔ssG} be the union of all step stochastic autobisimu-

lations on G. By Proposition 4, Rss(G) is the largest step stochastic autobisimulati-
on on G. Based on the equivalence classes with respect to Rss(G), the quotient (by
↔ss) transition systems and the quotient (by ↔ss) underlying SMCs of expressions
can be de�ned. The mentioned equivalence classes become the quotient states. The
average sojourn time in a quotient state is that in the corresponding equivalence
class. Every quotient transition between two such composite states represents all
steps (having the same multiaction part in case of the transition system quotient)
from the �rst state to the second one.

De�nition 18. Let G be a dynamic expression. The quotient (by ↔ss) (labeled
probabilistic) transition system of G is a quadruple TS↔ss

(G) =
(S↔ss

, L↔ss
, T↔ss

, s↔ss
), where

• S↔ss
= DR(G)/Rss(G);

• L↔ss
= NL

fin × (0; 1];

• T↔ss
= {(K, (A,PMA(K, K̃)), K̃) | K, K̃ ∈ DR(G)/Rss(G), K A→ K̃};

• s↔ss
= [[G]≈]Rss(G).

The transition (K, (A,P), K̃) ∈ T↔ss
will be written as K A→P K̃.

Let G be a dynamic expression. We de�ne the relationRLss(G) = {(s,K), (K, s) |
s ∈ K ∈ DR(G)/Rss(G)}+, where + is the transitive closure operation. One can see

that RLss(G) ⊆ (DR(G)∪DR(G)/Rss(G))
2 is an equivalence relation that partiti-

ons the set DR(G) ∪DR(G)/Rss(G) to the equivalence classes L1, . . . ,Ln, de�ned
as Li = Ki ∪ {Ki} (1 ≤ i ≤ n), where DR(G)/Rss(G) = {K1, . . . ,Kn}. The relation
RLss(G) can be interpreted as a step stochastic bisimulation between the transition
systems TSL(G) and TS↔ss

(G), denoted by RLss(G) : TSL(G)↔ssTS↔ss
(G),

which is de�ned by analogy (excepting step semantics) with interleaving proba-
bilistic bisimulation on generative probabilistic transition systems from [50]. It is
clear that from this viewpoint, RLss(G) is also the union of all step stochastic bisi-
mulations and largest step stochastic bisimulation between TSL(G) and TS↔ss

(G).
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TS↔ss
(F )

☛✡ ✟✠✞✝ ☎✆
☛✡ ✟✠

❄

K2

K4

☛✡ ✟✠
❄

K1

{a},ρ

{b},1

{d},θ

K3

✞✝ ✲
∅,1−ρ

❄✞✝ ✲
∅,1−θ

☞

✌

✛

{c},1

✚
Fig. 4. The quotient transition system of F for F = [({a}, ρ) ∗
(({b}, ♮1k); ((({c}, ♮0l ); ({d}, θ)1)[](({c}, ♮0m); ({d}, θ)2))) ∗ Stop]

Example 6. Let F be from Example 4. Then DR(F )/Rss(F ) = {K1,K2,K3,K4},
where K1={s′1}, K2={s′2}, K3={s′3}, K4={s′4, s′5}. We have DRST (F )/Rss(F ) =

{K1,K4}, DRWT (F )/Rss(F ) = {K2} and DRV (F )/Rss(F ) = {K3}. Thus, Rss

merges the states with the same �futures� from the di�erent branches. In Figure 4,
the quotient transition system TS↔ss

(F ) is presented.

The quotient (by ↔ss) reachability graphs are de�ned similarly to the quotient
transition systems. Let ≃ denote isomorphism between quotient transition systems
and quotient reachability graphs that binds their initial states. The following propo-
sition establishes a connection between quotient (by ↔ss) transition systems of the
overlined static expressions and quotient reachability graphs of their dtsd-boxes.

Proposition 5. For any static expression E,

TS↔ss
(E) ≃ RG↔ss

(Boxdtsd(E)).

Proof. By de�nitions of the quotient (by ↔ss) transition systems and quotient
reachability graphs, their uniqueness up to isomorphism and Theorem 1. □

Example 7. Let F be from Example 4 and N ′ = Boxdtsd(F ). Then
RS(N ′)/Rss(N ′) = {L1,L2,L3,L4}, where L1 = {Q′

1}, L2 = {Q′
2}, L3 = {Q′

3},
L4 = {Q′

4, Q
′
5} for Q′

1 = ((1, 0, 0, 0, 0, 0),∞), Q′
2 = ((0, 1, 0, 0, 0, 0), 1), Q′

3 =
((0, 0, 1, 0, 0, 0),∞), Q′

4 = ((0, 0, 0, 1, 0, 0),∞), Q′
5 = ((0, 0, 0, 0, 1, 0),∞). We have

RSST (N
′)/Rss(N ′)={L1,L4}, RSWT (N

′)/Rss(N ′)={L2} and RSV (N
′)/Rss(N ′)=

{L3}. In Figure 5, the quotient reachability graph RG↔ss
(N ′) is presented. Note

that TS↔ss
(F ) and RG↔ss

(N ′) are isomorphic.

The quotient (by ↔ss) average sojourn time vector of G is SJ↔ss
= SJRss(G).

The quotient (by↔ss) sojourn time variance vector ofG is V AR↔ss
=V ARRss(G).

Let G be a dynamic expression and K, K̃ ∈ DR(G)/Rss(G). The transition system
TS↔ss

(G) can have self-loops going from an equivalence class to itself which have a
non-zero probability. The current equivalence class remains unchanged in this case.

Let K → K. The probability to stay in K due to k (k ≥ 1) self-loops is

PM(K,K)k.
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RG↔ss
(N ′)

☛✡ ✟✠✞✝ ☎✆
☛✡ ✟✠

❄

L2

L4

☛✡ ✟✠
❄

L1

{a},ρ

{b},1

{d},θ

L3

✞✝ ✲
∅,1−ρ

❄✞✝ ✲
∅,1−θ

☞

✌

✛

{c},1

✚
Fig. 5. The quotient reachability graph of N ′ = Boxdtsd(F ) for F =
[({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮0l ); ({d}, θ)1)[](({c}, ♮0m); ({d}, θ)2))) ∗ Stop]

The quotient (by ↔ss) self-loops abstraction factor in the equivalence class K is

SL↔ss
(K) =

{ 1
1−PM(K,K) , K → K;

1, otherwise.

The quotient (by ↔ss) self-loops abstraction vector of G, denoted by SL↔ss
, has

the elements SL↔ss
(K), K ∈ DR(G)/Rss(G).

Let K → K̃ and K ̸= K̃, i.e. PM(K,K) < 1. The probability to move from K to

K̃ by executing any multiset of activities after possible self-loops is

PM∗(K, K̃) =

{
PM(K, K̃)

∑∞
k=0 PM(K,K)k = PM(K,K̃)

1−PM(K,K) , K → K;

PM(K, K̃), otherwise;

}
=

SL↔ss
(K)PM(K, K̃).

The value k = 0 in the summation corresponds to the case when no self-loops occur.
Let K ∈ DRT (G)/Rss(G). If there exist self-loops from K (i.e. if K → K) then

PM(K,K) > 0 and SL↔ss
(K) = 1

1−PM(K,K) = SJ↔ss
(K). Otherwise, if there exist

no self-loops from K then PM(K,K) = 0 and SL↔ss
(K) = 1 = 1

1−PM(K,K) =

SJ↔ss
(K). Thus, ∀K ∈ DRT (G)/Rss(G) SL↔ss

(K) = SJ↔ss
(K), hence, ∀K ∈

DRT (G)/Rss(G) with PM(K,K) < 1 it holds PM∗(K, K̃) = SJ↔ss
(K)PM(K, K̃).

Note that the self-loops from the equivalence classes of tangible states are of the
empty or non-empty type, the latter produced by iteration, since empty loops are
not possible from the equivalence classes of w-tangible states, but they are possible
from the equivalence classes of s-tangible states, while non-empty loops are possible
from the equivalence classes of both s-tangible and w-tangible states.

LetK∈DRV (G)/Rss(G). We have ∀K∈DRV (G)/Rss(G) SL↔ss
(K) ̸=SJ↔ss

(K)=

0 and ∀K ∈ DRV (G)/Rss(G) with PM(K,K) < 1 it holds PM∗(K, K̃) =

SL↔ss
(K)PM(K, K̃). If there exist self-loops from K then PM∗(K, K̃)= PM(K,K̃)

1−PM(K,K)

when PM(K,K) < 1. Otherwise, if there exist no self-loops from K then

PM∗(K, K̃) = PM(K, K̃). Note that the self-loops from the equivalence classes of
vanishing states are always of the non-empty type, produced by iteration, since
empty loops are not possible from the equivalence classes of vanishing states.



PERFORMANCE EQUIVALENCE FOR STOCHASTIC PROCESS ALGEBRA DTSDPBC 673

De�nition 19. Let G be a dynamic expression. The quotient (by ↔ss) EDTMC
of G, denoted by EDTMC↔ss

(G), has the state space DR(G)/Rss(G), the initial

state [[G]≈]Rss(G) and the transitions K ↠P K̃, if K → K̃ and K ̸= K̃, where
P = PM∗(K, K̃); or K ↠1 K, if PM(K,K) = 1.

The quotient (by ↔ss) underlying SMC of G, denoted by SMC↔ss
(G), has the

EDTMC EDTMC↔ss
(G) and the sojourn time in every K ∈ DRT (G)/Rss(G) is

geometrically distributed with the parameter 1− PM(K,K) while the sojourn time
in every K ∈ DRV (G)/Rss(G) is equal to zero.

The steady-state probability mass functions (PMFs) ψ∗
↔ss

for EDTMC↔ss
(G)

and φ↔ss
for SMC↔ss

(G) are de�ned like the respective notions ψ∗ for EDTMC(G)
and φ for SMC(G) [86].

Example 8. Let F be from Example 6. In Figure 6, the quotient underlying SMC
SMC↔ss

(F ) is presented. The average sojourn times in the states of the underlying
quotient SMC are written next to them in bold font.

The quotient average sojourn time vector of E is

SJ↔ss
=

(
1

ρ
, 1, 0,

1

θ

)
.

The quotient sojourn time variance vector of E is

V AR↔ss
=

(
1− ρ

ρ2
, 0, 0,

1− θ

θ2

)
.

The transition probability matrix (TPM) for EDTMC↔ss
(F ) is

P∗
↔ss

=


0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 .

The steady-state PMF for EDTMC↔ss
(F ) is

ψ∗
↔ss

=

(
0,

1

3
,
1

3
,
1

3

)
.

The steady-state PMF ψ∗
↔ss

weighted by SJ↔ss
is(

0,
1

3
, 0,

l

3θ

)
.

It remains to normalize the steady-state weighted PMF by dividing it by the sum
of its components

ψ∗
↔ss

SJT↔ss
=

1 + θ

3θ
.

Thus, the steady-state PMF for SMC↔ss
(F ) is

φ↔ss
=

1

1 + θ
(0, θ, 0, 1).
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SMC↔ss
(F )

☛✡ ✟✠✞✝ ☎✆
☛✡ ✟✠

❄

K2

K4

☛✡ ✟✠
❄

K1

1

1

1

K3

❄

☞

✌

✛

1

✚

1
ρ

1

0

1
θ

Fig. 6. The quotient underlying SMC of F for F = [({a}, ρ) ∗
(({b}, ♮1k); ((({c}, ♮0l ); ({d}, θ)1)[](({c}, ♮0m); ({d}, θ)2))) ∗ Stop]

Example 9. Let F be from Example 4. We now calculate the following performance
indices, based on the steady-state PMF for SMC↔ss

(F ) φ↔ss
= 1

1+θ (0, θ, 0, 1) and

the quotient average sojourn time vector of F SJ↔ss
=

(
1
ρ , 1, 0,

1
θ

)
.

• The average time between comings to the successive cities (mean sightseeing
and travel time) is ReturnT ime(K2) =

1
φ(K2)

= 1 + 1
θ .

• The fraction of time spent in a city (sightseeing time fraction) is
TimeFract(K2) = φ(K2) =

θ
1+θ .

• The fraction of time spent in a transport (travel time fraction) is
TimeFract(K4) = φ(K4) =

1
1+θ .

• The relative fraction of time spent in a city with respect to that spent in
transport (sightseeing relative to travel time fraction) is

RltT imeFract({K2}, {K4}) = φ(K2)
φ(K4)

= θ.

• The rate of leaving/entering a city (departure/arrival rate) is

ExitFreq(K2) =
φ(K2)
SJ(K2)

= θ
1+θ .

The performance indices are the same for the �complete� and the �quotient� abstract
travel systems. The coincidence of the indices will illustrate the results of the forth-
coming Proposition 10 and Proposition 11 (both modi�ed for RLss(F )).

Let ≃ denote isomorphism between SMCs that binds their initial states, where
two SMCs are isomorphic if their EDTMCs are so and the sojourn times in the
isomorphic states of the EDTMCs are identically distributed. The following propo-
sition establishes a connection between quotient (by ↔ss) SMCs of the overlined
static expressions and quotient SMCs of their dtsd-boxes.

Proposition 6. For any static expression E

SMC↔ss
(E) ≃ SMC↔ss

(Boxdtsd(E)).

Proof. By de�nitions of the quotient (by ↔ss) underlying SMCs for dynamic exp-
ressions and LDTSDPNs and Proposition 5, taking into account the following.
First, for the associated SMCs, the average sojourn time in the states is the same,
since it is de�ned via the analogous probability functions. Second, the transition
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SMC↔ss
(N ′)

☛✡ ✟✠✞✝ ☎✆
☛✡ ✟✠

❄

L2

L4

☛✡ ✟✠
❄

L1

1

1

1

L3

❄

☞

✌

✛

1

✚

1
ρ

1

0

1
θ

Fig. 7. The quotient underlying SMC of N ′ = Boxdtsd(F ) for F =
[({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮0l ); ({d}, θ)1)[](({c}, ♮0m); ({d}, θ)2))) ∗ Stop]

probabilities of the associated SMCs are the sums of those belonging to the quotient
transition systems or the quotient reachability graphs.

For instance, observe that the probability functions PM(K, K̃) and PM∗(K, K̃)

can be respectively de�ned in the same way as PM(L, L̃) and PM∗(L, L̃), for the
corresponding equivalence classes of the process states and net states K and L, as
well as K̃ and L̃. □

Example 10. Let F be from Example 4 and N ′ = Boxdtsd(F ). In Figure 7, the
quotient underlying SMC SMC↔ss

(N ′) is presented. Note that SMC↔ss
(F ) and

SMC↔ss
(N ′) are isomorphic. Thus, both the transient and steady-state PMFs for

SMC↔ss
(N ′) and SMC↔ss

(F ) coincide.

The quotients of both transition systems and underlying SMCs are the minimal
reductions of the mentioned objects modulo step stochastic bisimulations. The
quotients can be used to simplify analysis of system properties which are preserved
by ↔ss, since potentially less states should be examined for it. Such reduction
method resembles that from [3] based on place bisimulation equivalence for PNs,
excepting that the former method merges states, while the latter one merges places.

Moreover, the algorithms exist to construct the quotients of transition systems
by an equivalence (like bisimulation one) [73] and those of (discrete or continuous
time) Markov chains by ordinary lumping [38]. The algorithms have time complexity
O(m log n) and space complexity O(m + n), where n is the number of states
and m is the number of transitions. As mentioned in [96], the algorithm from
[38] can be easily adjusted to produce quotients of labeled probabilistic transition
systems by the probabilistic bisimulation equivalence. In [96], the symbolic partition
re�nement algorithm on state space of CTMCs was proposed. The algorithm can
be straightforwardly accommodated to DTMCs, interactive Markov chains (IMCs),
Markov reward models, Markov decision processes (MDPs), Kripke structures and
labeled probabilistic transition systems. Such a symbolic lumping uses memory
e�ciently due to compact representation of the state space partition. The symbolic
lumping is time e�cient, since fast algorithm of the partition representation and
re�nement is applied. In [39], a polynomial-time algorithm for minimizing behaviour
of probabilistic automata by probabilistic bisimulation equivalence was outlined
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that results in the canonical quotient structures. One can adapt the above algo-
rithms for our framework of transition systems, (reduced) DTMCs and SMCs.

Let us consider quotient (by ↔ss) DTMCs of expressions based on the state

change probabilities PM(K, K̃).

De�nition 20. Let G be a dynamic expression. The quotient (by ↔ss) DTMC of
G, denoted by DTMC↔ss

(G), has the state space DR(G)/Rss(G), the initial state

[[G]≈]Rss(G) and the transitions K →P K̃, where P = PM(K, K̃).

The steady-state PMF ψ↔ss
for DTMC↔ss

(G) is de�ned like the corresponding
notion ψ for DTMC(G) [86].

Example 11. Let F be from Example 6. In Figure 8, the quotient DTMC
DTMC↔ss

(F ) is presented.

The TPM for DTMC↔ss
(F ) is

P↔ss
=


1− ρ ρ 0 0
0 0 1 0
0 0 0 1
0 θ 0 1− θ

 .

The steady-state PMF for DTMC↔ss
(F ) is

ψ↔ss
=

1

1 + 2θ
(0, θ, θ, 1).

Remember that DRT (F )/Rss(F ) = DRST (F )/Rss(F ) ∪DRWT (F )/Rss(F ) =

{K1,K2,K4} and DRV (F )/Rss(F ) = {K3}. Hence,∑
K∈DRT (F )/Rss(F )

ψ(K) = ψ(K1) + ψ(K2) + ψ(K4) =
1 + θ

1 + 2θ
.

By the �quotient� analogue of Proposition 4 from [86], we have

φ↔ss
(K1) = 0 · 1+2θ

1+θ = 0,

φ↔ss
(K2) =

θ
1+2θ · 1+2θ

1+θ = θ
1+θ ,

φ↔ss
(K3) = 0,

φ↔ss
(K4) =

1
1+2θ · 1+2θ

1+θ = 1
1+θ .

Thus, the steady-state PMF for SMC↔ss
(F ) is

φ↔ss
=

1

1 + θ
(0, θ, 0, 1).

This coincides with the result obtained in Example 8 with the use of ψ∗
↔ss

and SJ↔ss
.

Eliminating equivalence classes (with respect to Rss(G)) of vanishing states from
the quotient (by↔ss) DTMCs of expressions results in the reductions of the DTMCs.

De�nition 21. The reduced quotient (by ↔ss) DTMC of G, denoted by
RDTMC↔ss

(G), is de�ned like RDTMC(G) in [86], but it is constructed from
DTMC↔ss

(G) instead of DTMC(G).
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DTMC↔ss
(F )

☛✡ ✟✠✞✝ ☎✆
☛✡ ✟✠

❄

K2

K4

☛✡ ✟✠
❄

K1

ρ

1

θ

K3

✞✝ ✲

1− ρ

❄✞✝ ✲

1− θ

☞

✌

✛

1

✚
Fig. 8. The quotient DTMC of F for F = [({a}, ρ) ∗ (({b}, ♮1k);
((({c}, ♮0l ); ({d}, θ)1)[](({c}, ♮0m); ({d}, θ)2))) ∗ Stop]

The steady-state PMF ψ⋄
↔ss

for RDTMC↔ss
(G) is de�ned like the correspon-

ding notion ψ⋄ for RDTMC(G) [86].

Example 12. Let F be from Example 6. Remember that DRT (F )/Rss(F ) =

DRST (F )/Rss(F )∪DRWT (F )/Rss(F ) = {K1,K2,K4} and DRV (F )/Rss(F ) = {K3}.
We reorder the states from DR(F )/Rss(F ), by moving vanishing states to the �rst
positions: K3,K1,K2,K4.

The reordered TPM for DTMC↔ss
(F ) is

Pr↔ss
=


0 0 0 1
0 1− ρ ρ 0
1 0 0 0
0 0 θ 1− θ

 .

The result of the decomposing Pr↔ss
are the matrices

C↔ss
= 0, D↔ss

= (0, 0, 1), E↔ss
=

 0
1
0

 , F↔ss
=

 1− ρ ρ 0
0 0 0
0 θ 1− θ

 .

Since C1
↔ss

= 0, we have ∀k > 0 Ck
↔ss

= 0, hence, l = 0 and there are no loops

among vanishing states. Then

G↔ss
=

l∑
k=0

Ck
↔ss

= C0
↔ss

= I.

Further, the TPM for RDTMC↔ss
(F ) is P⋄

↔ss
= F↔ss

+E↔ss
G↔ss

D↔ss
=

F↔ss
+E↔ss

ID↔ss
= F↔ss

+E↔ss
D↔ss

=

 1− ρ ρ 0
0 0 1
0 θ 1− θ

 .

In Figure 9, the reduced quotient DTMC RDTMC↔ss
(F ) is presented. The

steady-state PMF for RDTMC↔ss
(F ) is

ψ⋄
↔ss

=
1

1 + θ
(0, θ, 1).
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RDTMC↔ss
(F )

☛✡ ✟✠✞✝ ☎✆☛✡ ✟✠❄

K2

K4

☛✡ ✟✠
❄

K1

ρ

1

θ

✞✝ ✲

1− ρ

✞✝ ✲

1− θ

✛

✚

✏

✑
Fig. 9. The reduced quotient DTMC of F for F = [({a}, ρ) ∗
(({b}, ♮1k); ((({c}, ♮0l ); ({d}, θ)1)[](({c}, ♮0m); ({d}, θ)2))) ∗ Stop]

Note that ψ⋄
↔ss

= (ψ⋄
↔ss

(K1), ψ
⋄
↔ss

(K2), ψ
⋄
↔ss

(K4)). By the �quotient� analogue

of Proposition 5 from [86], we have

φ↔ss
(K1) = 0,

φ↔ss
(K2) =

θ
1+θ ,

φ↔ss
(K3) = 0,

φ↔ss
(K4) =

1
1+θ .

Thus, the steady-state PMF for SMC↔ss
(F ) is

φ↔ss
=

1

1 + θ
(0, θ, 0, 1).

This coincides with the result obtained in Example 8 with the use of ψ∗
↔ss

and SJ↔ss
.

Example 13. Let F be from Example 6. In Figure 10, the reduced quotient SMC
RSMC↔ss

(F ) is depicted. The average sojourn times in the states of the reduced
quotient SMC are written next to them in bold font. In spite of the equality
RSMC↔ss

(F ) = RDTMC↔ss
(F ), the graphical representation of RSMC↔ss

(F )

di�ers from that of RDTMC↔ss
(F ), since the former is based on the

REDTMC↔ss
(F ), where each state is decorated with the positive average sojourn

time of RSMC↔ss
(F ) in it. REDTMC↔ss

(F ) can be constructed from

EDTMC↔ss
(F ) in the similar way as RDTMC↔ss

(F ) can be obtained from

DTMC↔ss
(F ). By construction, the residence time in each state of RSMC↔ss

(F )
is geometrically distributed. Hence, the associated parameter of geometrical distri-
bution is uniquely recovered from the average sojourn time in the state.

The relationships between the steady-state PMFs ψ↔ss
and ψ∗

↔ss
, φ↔ss

and

ψ↔ss
, as well as φ↔ss

and ψ⋄
↔ss

, are the same as those between their �non-quotient�

versions in Proposition 3, Proposition 4 and Proposition 5 from [86], respectively.

5.2. Interrelations of the standard and quotient behavioural structures.
In Figure 11, the cube of interconnections by the relation �constructed from� is
depicted for both the standard and quotient transition systems and Markov chains
(SMCs, DTMCs and RDTMCs) of the process expressions. The relations between
SMC and SMC↔ss

, betweenDTMC andDTMC↔ss
, as well as between RDTMC
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RSMC↔ss
(F )

☛✡ ✟✠✞✝ ☎✆☛✡ ✟✠❄

K2

K4

☛✡ ✟✠
❄

K1

1

1

1

✛

✚

✏

✑

1
ρ

1

1
θ

Fig. 10. The reduced quotient SMC of F for F = [({a}, ρ) ∗
(({b}, ♮1k); ((({c}, ♮0l ); ({d}, θ)1)[](({c}, ♮0m); ({d}, θ)2))) ∗ Stop]

TS SMC

DTMC RDTMC

TS↔ss
SMC↔ss

DTMC↔ss
RDTMC↔ss

✻ ✻

✻ ✻✲

✲

✲

✲

�
�✒

�
�✒

�
�✒

�
�✒

Fig. 11. The cube of interrelations for the standard and quotient
transition systems and Markov chains of the process expressions

and RDTMC↔ss
, can be obtained using the following corresponding transition

functions, de�ned by analogy with those already introduced: PM∗(K, K̃), based on

PM∗(s, s̃), then PM(K, K̃), based on PM(s, s̃), as well as PM⋄(K, K̃), based on
PM⋄(s, s̃) (all that to be proved below).

The relations between SMC andRDTMC, between SMC↔ss
andRDTMC↔ss

,
can be obtained using the next corresponding transition functions: PM⋄(s, s̃), based
on PM∗(s, s̃), through (PM⋄)∗(s, s̃), as well as PM⋄(K, K̃), based on PM∗(K, K̃),

through (PM⋄)∗(K, K̃) (by Theorem 5.2 from [87] and its �quotient� analogue).
In Figure 11, the relation (arrow) between DTMC and DTMC↔ss

is obtained

using the transition function PM(K, K̃), based on PM(s, s̃). Let G be a dynamic
expression. We shall prove that the (quotient) TPM P↔ss

for DTMC↔ss
(G),

(forwardly) constructed by quotienting (by ↔ss) TS(G), followed by extracting
DTMC↔ss

(G) from TS↔ss
(G), coincides with the TPM (P)↔ss

, (reversely) con-
structed by extractingDTMC(G) from TS(G), followed by quotientingDTMC(G).
The next proposition relates those quotient extracted TPM (P)↔ss

and extracted
quotient TPM P↔ss

.

Proposition 7. Let G be a dynamic expression, P↔ss
be the TPM for

DTMC↔ss
(G) and (P)↔ss

results from quotienting (by ↔ss) the TPM P for
DTMC(G). Then

(P)↔ss
= P↔ss

.

Proof. Let K, K̃ ∈ DR(G)/Rss(G) and s ∈ K.
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In DTMC↔ss
(G), we have

∑
A∈NL

fin
PMA(K, K̃) =

∑
A∈NL

fin
PMA(s, K̃) =∑

A∈NL
fin

∑
{Υ|∃s̃∈K̃ s

Υ→s̃, L(Υ)=A} PT (Υ, s) =
∑

{Υ|∃s̃∈K̃ s
Υ→s̃} PT (Υ, s) =

PM(s, K̃) = PM(K, K̃).
In the quotient of DTMC(G), we have

∑
s̃∈K̃ PM(s, s̃) =∑

s̃∈K̃
∑

{Υ|sΥ→s̃} PT (Υ, s) =
∑

{Υ|∃s̃∈K̃ s
Υ→s̃} PT (Υ, s) = PM(s, K̃) = PM(K, K̃).

Thus, (P)↔ss
= P↔ss

. □

Hence, the quotienting and extraction are permutable for transition systems of
the process expressions. Applying extraction before the quotienting is useful to start
from the level of Markov chains in the proofs.

Example 14. Let F be from Example 4. The TPMs for DTMC(F ) and
DTMC↔ss

(F ) are

P =


1− ρ ρ 0 0 0
0 0 1 0 0
0 0 0 l

l+m
m
l+m

0 θ 0 1− θ 0
0 θ 0 0 1− θ

 , P↔ss
=


1− ρ ρ 0 0
0 0 1 0
0 0 0 1
0 θ 0 1− θ

 .

The TPM for the quotient of DTMC(F ) is

(P)↔ss
=


1− ρ ρ 0 0
0 0 1 0
0 0 0 1
0 θ 0 1− θ

 .

Then it is clear that

(P)↔ss
= P↔ss

.

In Figure 11, the relation (depicted by arrow) between SMC and SMC↔ss

is obtained using the transition function PM∗(K, K̃), based on PM∗(s, s̃). Let
G be a dynamic expression. We shall prove that the (quotient) TPM P∗

↔ss
for

EDTMC↔ss
(G), (forwardly) constructed by quotienting (by ↔ss) DTMC(G), fol-

lowed by embedding EDTMC↔ss
(G) into SMC↔ss

(G), coincides with the (�nal-
ly) embedded TPM (P∗)∗↔ss

, (reversely) constructed by embedding EDTMC(G)

into SMC(G), followed by quotienting EDTMC(G), and �nal embedding a new
EDTMC EDTMC ′(G) into the quotient of EDTMC(G). The �nal embedding in
the reverse construction is needed, since new self-loops may arise after quotienting
EDTMC(G), i.e. it may become not an EDTMC, but a DTMC featuring self-loops
with probability less than 1. Note that for K ∈ DR(G)/Rss(G) and s ∈ K, we have
PM∗(K, K̃) = SL↔ss

(K)PM(K, K̃) = SL↔ss
(K)PM(s, K̃) in EDTMC↔ss

(G).
This corresponds to a different expression

∑
s̃∈K̃ PM

∗(s, s̃)=
∑
s̃∈K̃ SL(s)PM(s, s̃)=

SL(s)
∑
s̃∈K̃ PM(s, s̃) = SL(s)PM(s, K̃) in the quotient of EDTMC(G). In parti-

cular, SL↔ss
(K) > SL(s) when PM(s,K \ {s}) > 0, which is the reason for a new

self-loop associated with s in the quotient of EDTMC(G). The next proposition
relates those �nally embedded quotient embedded TPM (P∗)∗↔ss

(the TPM for

EDTMC ′(G)) and embedded quotient TPM P∗
↔ss

.



PERFORMANCE EQUIVALENCE FOR STOCHASTIC PROCESS ALGEBRA DTSDPBC 681

Proposition 8. Let G be a dynamic expression, P∗
↔ss

be the TPM for

EDTMC↔ss
(G) and (P∗)∗↔ss

results from quotienting (by ↔ss) and �nal

embedding the TPM P∗ for EDTMC(G). Then

(P∗)∗↔ss
= P∗

↔ss
.

Proof. See Appendix A.1. □

Thus, the quotienting before embedding is more optimal computationally for
DTMCs of the process expressions.

By Proposition 8, EDTMC ′(G) = EDTMC↔ss
(G). The sojourn time in every

K ∈ DRT (G)/Rss(G) is geometrically distributed with the parameter 1
SL(s)SL′(s,K) =

1
SL↔ss

(K) , where SL
′(s,K) = 1

1−SL(s)PM(s,K\{s}) , while the sojourn time in every

K∈DRV (G)/Rss(G) is equal to 0. Here SL′(s,K) is the self-loops abstraction factor
in the equivalence class K with respect to the state s ∈ K for the quotient of
EDTMC(G). Hence, SMC ′(G)=SMC↔ss

(G), where SMC ′(G) is the SMC with

the EDTMC EDTMC ′(G), such that 1
SL(s)SL′(s,K) is the geometrical distribution

parameter of the sojourn time in every K ∈ DRT (G)/Rss(G) while the sojourn time
is zero in every K ∈ DRV (G)/Rss(G).

Example 15. Let F be from Example 4. The TPMs for EDTMC(F ) and
EDTMC↔ss

(F ) are

P∗ =


0 1 0 0 0
0 0 1 0 0
0 0 0 l

l+m
m
l+m

0 1 0 0 0
0 1 0 0 0

 , P∗
↔ss

=


0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 .

The TPMs for the quotient of EDTMC(F ) and EDTMC of the quotient of
EDTMC(F ) (EDTMC ′(F )), are

(P∗)↔ss
=


0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 , (P∗)∗↔ss
=


0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 .

Then it is clear that

(P∗)∗↔ss
= P∗

↔ss
.

Let G be a dynamic expression. We now construct the quotient (by ↔ss) of the
TPM for DTMC(G) using special collector and distributor matrices. Let DR(G) =
{s1, . . . , sn} and DR(G)/Rss(G) = {K1, . . . ,Kl}.

The elements (P↔ss
)rs (1 ≤ r, s ≤ l) of the TPM P↔ss

for DTMC↔ss
(G) are

de�ned as

(P↔ss
)rs =

{
PM(Kr,Ks), Kr → Ks;
0, otherwise.

Like it has been done for strong performance bisimulation on labeled CTSPNs in
[31], the l×l TPM P↔ss

for DTMC↔ss
(G) can be constructed from the n×n TPM
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P for DTMC(G) using the n× l collector matrix V for the largest step stochastic
autobisimulation Rss(G) on G and the l× n distributor matrix W for V. Then W
should be a non-negative matrix (i.e. all its elements must be non-negative) with the
elements of each its row summed to one, such that WV = I, where I is the identity
matrix of order l, i.e. W is a left-inverse matrix for V. It is known that for each
collector matrix there is at least one distributor matrix, in particular, the matrix
obtained by transposing V and subsequent normalizing its rows, to guarantee that
the elements of each row of the transposed matrix are summed to one. We now
present the formal de�nitions.

The elements Vir (1 ≤ i ≤ n, 1 ≤ r ≤ l) of the collector matrix V for the largest
step stochastic autobisimulation Rss(G) on G are de�ned as

Vir =
{

1, si ∈ Kr;
0, otherwise.

Thus, all the elements of V are non-negative, as required. The row elements
of V are summed to one, since for each si (1 ≤ i ≤ n) there exists exactly one
Kr (1 ≤ r ≤ l) such that si ∈ Kr. Hence,

V1T = 1T ,

where 1 on the left side is the row vector of l values 1 while 1 on the right side is
the row vector of n values 1.

The distributor matrix W for the collector matrix V is de�ned as

W = (Diag(VT1T ))−1VT ,

where 1 is the row vector of n values 1. One can check that WV = I, where I is
the identity matrix of order l.

The elements (PV)is (1 ≤ i ≤ n, 1 ≤ s ≤ l) of the matrix PV are

(PV)is =
n∑
j=1

PijVjs =
∑

{j|1≤j≤n, sj∈Ks}
PM(si, sj) = PM(si,Ks).

For each si (1 ≤ i ≤ n) there exists exactly one Kr (1 ≤ r ≤ l) such that si ∈ Kr.
For all si ∈ Kr we have PM(Kr,Ks) = PM(si,Ks) (1 ≤ i ≤ n, 1 ≤ r, s ≤ l). Then
the elements (VP↔ss

)is (1 ≤ i ≤ n, 1 ≤ s ≤ l) of the matrix VP↔ss
are

(VP↔ss
)is =

l∑
r=1

Vir(P↔ss
)rs =

∑
{r|1≤r≤l, si∈Kr}

PM(Kr,Ks) = PM(si,Ks).

Therefore, we have

PV = VP↔ss
, WPV = P↔ss

.

Example 16. Let F be from Example 4. The TPMs for DTMC(F ) and
DTMC↔ss

(F ) are
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P =


1− ρ ρ 0 0 0
0 0 1 0 0
0 0 0 l

l+m
m
l+m

0 θ 0 1− θ 0
0 θ 0 0 1− θ

 , P↔ss
=


1− ρ ρ 0 0
0 0 1 0
0 0 0 1
0 θ 0 1− θ

 .

The collector matrix V for Rss(F ) and the distributor matrix W for V are

V =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1

 , W =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1

2
1
2

 .

Then it is easy to check that

WPV = P↔ss
.

In Figure 11, the relation (arrow) betweenRDTMC andRDTMC↔ss
is obtained

using the transition function PM⋄(K, K̃), based on PM⋄(s, s̃). Let G be a dynamic
expression. We shall prove that the TPM P⋄

↔ss
, (forwardly) constructed by quoti-

enting (by ↔ss) DTMC(G), followed by reduction (eliminating vanishing states)
of DTMC↔ss

(G), coincides with the TPM (P⋄)↔ss
, (reversely) constructed by

reduction of DTMC(G), followed by quotienting RDTMC(G). The next proposi-
tion relates those quotient reduced TPM (P⋄)↔ss

and reduced quotient TPM P⋄
↔ss

.

Proposition 9. Let G be a dynamic expression, P⋄
↔ss

be the TPM for

RDTMC↔ss
(G) and (P⋄)↔ss

results from quotienting (by ↔ss) the TPM P⋄ for
RDTMC(G). Then

(P⋄)↔ss
= P⋄

↔ss
.

Proof. See Appendix A.2. □

Thus, the quotienting and reduction are permutable for DTMCs of the process
expressions. This may simplify the performance evaluation when eliminating vani-
shing states makes the subsequent quotienting more e�cient. The reverse construc-
tion (reduction �rst) is particularly preferable in case of small equivalence classes of
vanishing states when quotienting does not merge many of them before eliminating.

Example 17. Let F be from Example 4. The reordered TPMs for DTMC(F ) and
DTMC↔ss

(F ) are

Pr =


0 0 0 l

l+m
m
l+m

0 1− ρ ρ 0 0
1 0 0 0 0
0 0 θ 1− θ 0
0 0 θ 0 1− θ

 , Pr↔ss
=


0 0 0 1
0 1− ρ ρ 0
1 0 0 0
0 0 θ 1− θ

 .

The reordered collector matrixVr for Rss(F ) and the reordered distributor matrix
Wr for Vr are
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Vr =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1

 , Wr =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1

2
1
2

 .

Then it is easy to check that

WrPrVr = Pr↔ss
.

Example 18. Let F be from Example 4. The TPMs for RDTMC(F ) and
RDTMC↔ss

(F ) are

P⋄ =


1− ρ ρ 0 0
0 0 l

l+m
m
l+m

0 θ 1− θ 0
0 θ 0 1− θ

 , P⋄
↔ss

=

 1− ρ ρ 0
0 0 1
0 θ 1− θ

 .

The result of the decomposing the reordered collector matrix Vr for Rss(F ) and
the reordered distributor matrix Wr for Vr are the matrices

VC = 1, VF =


1 0 0
0 1 0
0 0 1
0 0 1

 , WC = 1, WF =

 1 0 0 0
0 1 0 0
0 0 1

2
1
2

 .

Then it is easy to check that

(P⋄)↔ss
= WFP

⋄VF = P⋄
↔ss

.

In [30], the ordinary, exact and strict lumpability relations on �nite DTMCs are
explored. It is investigated which properties of transient and stationary behaviour
of DTMCs are preserved by aggregation with respect to the three mentioned kinds
of lumping and their approximate �nearly� versions. It is proved that irreducibility
is preserved by aggregation with respect to any partition (or equivalence relation)
on the states of DTMCs. Since only �nite irreducible DTMCs are considered (with
a �nite number of states), these all are positive recurrent. Aggregation can only
decrease the number of states, hence, the aggregated DTMCs are also �nite and
positive recurrence is preserved by every aggregation. It is known [76, 79, 52, 26, 94,
53, 77, 78] that irreducible and positive recurrent DTMCs have a single stationary
PMF. Note that the original and aggregated DTMCs may be periodic, thus having
a unique stationary distribution, but no steady-state (limiting) one. For example,
it may happen that the original DTMC is aperiodic while the aggregated DTMC
is periodic due to merging some states of the former. Thus, both �nite irreducible
DTMCs and their arbitrary aggregates have a single stationary PMF. Then the
relationship between stationary probabilities of DTMCs and their aggregates with
respect to ordinary, exact and strict lumpability is established in [30]. In particular,
it is shown that for every DTMC aggregated by ordinary lumpability, the stationary
probability of each aggregate state is a sum of the stationary probabilities of all
its constituent states from the original DTMC. The information about individual
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stationary probabilities of the original DTMC is lost after such a summation, but
in many cases, the stationary probabilities of the aggregated DTMC are enough to
calculate performance measures of the high-level model, from which the original
DTMC is extracted. As mentioned in [30], in some practical applications, the
aggregated DTMC can be extracted directly from the high-level model. Thus, the
aggregation techniques based on lumping are of practical importance, since they
allow one to reduce the state space of the modeled systems, hence, the computational
costs for evaluating their performance.

Let G be a dynamic expression. By de�nition of ↔ss, the relation Rss(G) on
TS(G) induces ordinary lumping on SMC(G), i.e. if the states of TS(G) are related
by Rss(G) then the same states in SMC(G) are related by ordinary lumping. The
quotient (maximal aggregate) of SMC(G) by such an induced ordinary lumping is
SMC↔ss

(G). Since we consider only �nite SMCs, irreducibility of SMC(G) will
imply irreducibility of SMC↔ss

(G) and they both are positive recurrent. Then a
unique quotient stationary PMF of SMC↔ss

(G) can be calculated from a unique
original stationary PMF of SMC(G) by summing some elements of the latter, as
described in [30]. Similar arguments demonstrate that the same results hold for
DTMC(G) and DTMC↔ss

(G), as well as for RDTMC(G) and RDTMC↔ss
(G).

6. Stationary behaviour

Let us examine how the proposed equivalences can be used to compare the
behaviour of stochastic processes in their steady states. We shall consider only
formulas specifying stochastic processes with in�nite behavior, i.e. expressions with
the iteration operator. Note that the iteration operator does not guarantee in�nite-
ness of behaviour, since there can exist a deadlock (blocking) within the body (the
second argument) of iteration when the corresponding subprocess does not reach its
�nal state by some reasons. In particular, if the body of iteration contains the Stop
expression then the iteration will be �broken�. On the other hand, the iteration body
can be left after a �nite number of its repeated executions and then the iteration
termination is started. To avoid executing any activities after the iteration body,
we take Stop as the termination argument of iteration.

Like in the framework of SMCs, in LDTSDPNs the most common systems for
performance analysis are ergodic (irreducible, positive recurrent and aperiodic) ones.
For ergodic LDTSDPNs, the steady-state marking probabilities exist and can be
determined. In [69, 70], the following su�cient (but not necessary) conditions for
ergodicity of DTSPNs are stated: liveness (for each transition and any reachable
marking there exists a sequence of markings from it leading to the marking enabling
that transition), boundedness (for any reachable marking the number of tokens
in every place is not greater than some �xed number) and nondeterminism (the
transition probabilities are strictly less than 1). However, it has been shown in [7]
that even live, safe and nondeterministic DTSPNs (as well as live and safe CTSPNs
and GSPNs) may be non-ergodic.

We consider only the process expressions such that their underlying SMCs con-
tain exactly one closed communication class of states, and this class should be er-
godic to ensure uniqueness of the stationary distribution, which is also the limiting
one. The states not belonging to that class do not disturb the uniqueness, since the
closed communication class is single, hence, they all are transient. Then, for each
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transient state, the steady-state probability to be in it is zero while the steady-state
probability to enter into the ergodic class starting from that state is equal to one.

6.1. Steady state, residence time and equivalences. The following propositi-
on demonstrates that, for two dynamic expressions related by ↔ss, the steady-state
probabilities to enter into an equivalence class coincide. Therefore, the mean recur-
rence time for an equivalence class is the same for both expressions.

Proposition 10. Let G,G′ be dynamic expressions with R : G↔ssG
′ and φ be the

steady-state PMF for SMC(G), φ′ be the steady-state PMF for SMC(G′). Then
∀H ∈ (DR(G) ∪DR(G′))/R∑

s∈H∩DR(G)

φ(s) =
∑

s′∈H∩DR(G′)

φ′(s′).

Proof. The standard proof is analogous to that of Proposition 6 from [92]. For the
alternative proof, see Appendix A.3. □

Let G be a dynamic expression and φ be the steady-state PMF for SMC(G),
φ↔ss

be the steady-state PMF for SMC↔ss
(G). By Proposition 10 (modi�ed for

RLss(G)), we have ∀K ∈ DR(G)/Rss(G)

φ↔ss
(K) =

∑
s∈K

φ(s).

Thus, for every equivalence class K ∈ DR(G)/Rss(G), the value of φ↔ss
for K is the

sum of all values of φ corresponding to the states from K.
Let V be the collector matrix for Rss(G). One can see that

φV = φ↔ss
.

Hence, using SMC↔ss
(G) instead of SMC(G) may simplify the analytical solution,

since we may have less states, but constructing the TPM for EDTMC↔ss
(G),

denoted by P∗
↔ss

, also requires some e�orts, including determining Rss(G) and

calculating the probabilities to move from one equivalence class to other. The
behaviour of EDTMC↔ss

(G) may stabilize quicker than that of EDTMC(G) (if
each of them has a single steady state), since P∗

↔ss
is generally denser matrix than

P∗ (the TPM for EDTMC(G)), since the former matrix is usually smaller and the
transitions between the equivalence classes �include� all the transitions between the
states belonging to these equivalence classes.

By Proposition 10, ↔ss preserves the quantitative properties of the stationary
behaviour (the level of SMCs). We now intend to demonstrate that the qualitative
properties of the stationary behaviour based on the multiaction labels are preserved
as well (the level of transition systems).

De�nition 22. A derived step trace of a dynamic expression G is a chain Σ =

A1 · · ·An ∈ (NL
fin)

∗, where ∃s ∈ DR(G) s
Υ1→ s1

Υ2→ · · · Υn→ sn, L(Υi) = Ai (1 ≤ i ≤
n). Then the probability to execute the derived step trace Σ in s is

PT (Σ, s) =
∑

{Υ1,...,Υn|s=s0
Υ1→s1

Υ2→···Υn→sn, L(Υi)=Ai (1≤i≤n)}

n∏
i=1

PT (Υi, si−1).
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The following theorem demonstrates that, for two dynamic expressions related
by ↔ss, the steady-state probabilities to enter into an equivalence class and start
a derived step trace from it coincide.

Theorem 3. Let G,G′ be dynamic expressions with R : G↔ssG
′ and φ be the

steady-state PMF for SMC(G), φ′ be the steady-state PMF for SMC(G′) and Σ
be a derived step trace of G and G′. Then ∀H ∈ (DR(G) ∪DR(G′))/R∑

s∈H∩DR(G)

φ(s)PT (Σ, s) =
∑

s′∈H∩DR(G′)

φ′(s′)PT (Σ, s′).

Proof. The proof is analogous to that of Theorem 4 from [92]. □

Let G be a dynamic expression, φ be the steady-state PMF for SMC(G), φ↔ss

be the steady-state PMF for SMC↔ss
(G) and Σ be a derived step trace of G. By

Theorem 3 (modi�ed for RLss(G)), we get ∀K∈DR(G)/Rss(G)

φ↔ss
(K)PT (Σ,K)=

∑
s∈K

φ(s)PT (Σ, s),

where ∀s ∈ K PT (Σ,K) = PT (Σ, s).
Let DR(G) = {s1, . . . , sn} and DR(G)/Rss(G) = {K1, . . . ,Kl} while V be the

collector matrix for Rss(G) and W be the distributor matrix for V. We denote
PT (Σ)=(PT (Σ, s1), . . . , PT (Σ, sn)) and PT↔ss

(Σ)=(PT (Σ,K1), . . . , PT (Σ,Kl)).
One can see that Diag(PT (Σ))V = VDiag(PT↔ss

(Σ)) and WDiag(PT (Σ))V =
Diag(PT↔ss

(Σ)). Then we have

φDiag(PT (Σ))V = φVDiag(PT↔ss
(Σ)) = φ↔ss

Diag(PT↔ss
(Σ)).

We now present a result that does not concern the steady-state probabilities,
but it reveals two very important properties of residence time in the equivalence
classes. The following proposition demonstrates that, for two dynamic expressions
related by ↔ss, the sojourn time averages in an equivalence class coincide, as well
as the sojourn time variances in it.

Proposition 11. Let G,G′ be dynamic expressions with R : G↔ssG
′. Then ∀H ∈

(DR(G) ∪DR(G′))/R

SJR∩(DR(G))2(H ∩DR(G)) = SJR∩(DR(G′))2(H ∩DR(G′)),

V ARR∩(DR(G))2(H ∩DR(G)) = V ARR∩(DR(G′))2(H ∩DR(G′)).

Proof. The proof is analogous to that of Proposition 7 from [92]. □

Example 19. Let F be from Example 6. Consider the equivalence class (with res-
pect to Rss(F )) K4 = {s4, s5}. Then the value of φ↔ss

corresponding to K4 is the

sum of all values of φ corresponding to the states from K4 : φ↔ss
(K4) = 1

1+θ =
l

(l+m)(1+θ) +
m

(l+m)(1+θ) = φ(s4) + φ(s5) =
∑
s∈K4

φ(s).

Let Σ = {{d}}. We have φ↔ss
(K4)PT (Σ,K4) =

1
1+θ · θ = θ

1+θ = l
(l+m)(1+θ) · θ+

m
(l+m)(1+θ) · θ = φ(s4)PT ({({d}, θ)1}, s4) + φ(s5)PT ({({d}, θ)2}, s5) =
φ(s4)PT (Σ, s4) + φ(s5)PT (Σ, s5) =

∑
s∈K4

φ(s)PT (Σ, s), where PT (Σ,K4) =

PT (Σ, s4) = PT (Σ, s5) = θ.
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The sojourn time average in K4 is SJ↔ss
(K4) =

1
1−PM(K4,K4)

= 1
1−(1−θ) = 1

θ =
1

1−(1−θ) =
1

1−PM(s4,s4)
= 1

1−PM(s5,s5)
= 1

1−PM({s4,s5},{s4,s5}) = SJ↔ss
({s4, s5}).

The sojourn time variance in K4 is V AR↔ss
(K4) =

PM(K4,K4)
(1−PM(K4,K4))2

=
1−θ

(1−(1−θ))2 = 1−θ
θ2 = 1−θ

(1−(1−θ))2 = PM(s4,s4)
(1−PM(s4,s4))2

= PM(s5,s5)
(1−PM(s5,s5))2

=
PM({s4,s5}

(1−PM({s4,s5},{s4,s5}))2 = V AR↔ss
({s4, s5}).

6.2. Preservation of performance and simpli�cation of its analysis. Many
performance indices are based on the steady-state probabilities to enter into a set
of similar states or, after coming in it, to start a derived step trace from this set.
Some of the indices are calculated using the average or the variance of sojourn time
in a set of similar states. The similarity of states is captured by an equivalence
relation, hence, the sets are the equivalence classes. Proposition 10, Theorem 3 and
Proposition 11 guarantee coincidence of the mentioned indices for the expressions
related by↔ss. Thus,↔ss (hence, all the stronger equivalences we have considered)
preserves performance of stochastic systems modeled by expressions of dtsdPBC.

Next, it is easier to evaluate performance using an SMC with less states, since in
this case the size of the transition probability matrix will be smaller, and we shall
solve systems of less equations to calculate steady-state probabilities. The reasoning
above validates the following method of performance analysis simpli�cation.

(1) The investigated system is speci�ed by a static expression of dtsdPBC.
(2) The transition system of the expression is constructed.
(3) After treating the transition system for self-similarity, a step stochastic

autobisimulation equivalence for the expression is determined.
(4) The quotient underlying SMC is derived from the quotient transition system.
(5) Stationary probabilities and performance indices are obtained from the SMC.

The limitation of the method above is its applicability only to the expressions
such that their underlying SMCs contain exactly one closed communication class of
states, and this class should also be ergodic to ensure uniqueness of the stationary
distribution. If an SMC contains several closed communication classes of states that
are all ergodic then several stationary distributions may exist, which depend on the
initial PMF. There is an analytical method to determine stationary probabilities for
SMCs of this kind as well [52]. The underlying SMC of every process expression has
only one initial PMF (that at the time moment 0), hence, the stationary distribution
will be unique in this case too. The general steady-state probabilities are then
calculated as the sum of the stationary probabilities of all the ergodic classes of
states, weighted by the probabilities to enter into these classes, starting from the
initial state and passing through some transient states. In addition, it is worth
applying the method only to the systems with similar subprocesses.

Before calculating stationary probabilities, we can further reduce the quotient
underlying SMC, using an analogue of the deterministic barrier partitioning method
described in [42] for semi-Markov processes (SMPs), which allows one to perform
quicker the �rst passage-time analysis. Another option is the method of stochastic
state classes proposed in [48, 49] for generalized SMPs (GSMPs) reduction, which
allows one to simplify transient performance analysis (the analysis based on the
transient probabilities of being in the states of GSMPs).

Alternatively, the results at the end of Section 5 allow us to simplify the steps 4
and 5 of the method above by constructing the reduced quotient DTMC (instead
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E TS(E) TS↔ss
(E) SMC↔ss

(E)

RDTMC↔ss
(E)

ϕ↔ss

ψ⋄
↔ss

✲ ✲ ✲

✲
✻❆

❆
❆❯

✲ Performance✲

Fig. 12. Equivalence-based simpli�cation of performance evaluation

of the quotient underlying SMC) from the quotient transition system, followed by
calculating the stationary probabilities of the quotient underlying SMC using that
DTMC, and then obtaining the performance indices. In more detail, the quotient
transition system TS↔ss

(E) provides the information both about the probabili-

ties to move between the equivalence classes of states PM(K, K̃) and about the
equivalence classes of vanishing states DRV (E)/Rss(E). That information is used

to construct the reordered quotient TPM Pr↔ss
, from which the TPM P⋄

↔ss
for

RDTMC↔ss
(E) is further obtained.

We �rst merge the equivalent states in transition systems and then eliminate the
vanishing states in Markov chains. The reason is that transition systems, being a
higher-level formalism than Markov chains, describe both functional (qualitative)
and performance (quantitative) aspects of behaviour while Markov chains represent
only performance ones. Eliminating vanishing states �rst would destroy the functi-
onal behaviour (respected by the equivalence used for quotienting), since the steps
with di�erent multiaction parts may lead to or start from di�erent vanishing states.

Figure 12 presents the main stages of the standard and alternative equivalence-
based simpli�cation of performance evaluation described above.

7. Conclusion

In this paper, we have considered dtsdPBC, an extension with discrete stochastic
and deterministic time of Petri box calculus (PBC) [21, 23, 22]. Stochastic process
algebra dtsdPBC has a parallel step operational semantics, based on labeled pro-
babilistic transition systems, and a Petri net denotational semantics in terms of
dtsd-boxes, a special subclass of LDTSDPNs [85]. Step stochastic bisimulation equi-
valence of the process expressions has been used to reduce their transition systems
and Markov chains (SMCs, DTMCs and RDTMCs) with the quotienting. We have
established isomorphism between the quotient transition systems of the process ex-
pressions and quotient reachability graphs of the corresponding dtsd-boxes, as well
as between the quotient SMCs of the process expressions and quotient SMCs of the
corresponding dtsd-boxes.

We have studied an e�ect of the quotienting to extraction, embedding and reduc-
tion, in terms of the transition probability matrices (TPMs) of the quotient DTMCs,
EDTMCs and RDTMCs. We have demonstrated that for DTMCs of the process ex-
pressions, the quotienting is permutable (commute) with both extraction and reduc-
tion, whereas an additional embedding of the quotient embedded DTMC is needed
to coincide with the embedded quotient DTMC. Thus, making extraction before the
quotienting permits to start reasoning from the Markov chain level. Applying reduc-
tion before the quotienting simpli�es quantitative analysis with many non-equiva-
lent vanishing states. The quotienting before embedding diminishes computations.

We have proved that the mentioned equivalence guarantees identity of the steady-
state probabilities, sojourn time averages and variances in the equivalence classes.
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Hence, the equivalence preserves the stationary performance measures and can be
used for minimization of the state space. Therefore, quotienting by that performance
preserving equivalence makes easier both the qualitative (functional) and quantita-
tive (performance) analysis within dtsdPBC. Thus, we have outlined in dtsdPBC
a novel method of modeling (system speci�cation by a process expression and con-
struction of its transition system), equivalence reduction (quotienting the transi-
tion system and possible elimination of vanishing states in the derived quotient
SMC or DTMC) and simpli�ed performance evaluation (calculation of the perfor-
mance indices using the quotient SMC, DTMC or RDTMC). The advantage of the
dtsdPBC framework is that the semantic parallelism level exhibited by the transiti-
on systems is maintained in the extracted performance models (SMCs, DTMCs and
RDTMCs) through the state changes corresponding to the simultaneous executions.

Our method can be suitably applied to the stochastically and deterministically
timed concurrent systems that adapt a discrete time concept. The examples of such
systems are many industrial, manufacturing, queueing, computing and network sys-
tems with �xed durations of the typical activities and stochastic durations of the
randomly occurring activities. Further examples include business processes, neural
and transportation networks, computer and communication systems and timed web
services [95] with discrete time, as well as highly distributed or massively parallel
systems, such as genetic regulatory and cellular signalling networks in biology [37,
25, 6]. In [40], biological networks were jointly modeled by (standard, qualitative)
PNs, CTSPNs and continuous PNs (CPNs), to demonstrate their complementarity
that makes necessary adding deterministic time to stochastic models, as well as
combining stochastic and continuous (deterministic) aspects into one model (such
as stochastic rates of reactions and continuous amounts of species).

In future, we plan to construct the case studies demonstrating expressiveness of
the calculus and application of the functional analysis and performance evaluation,
both simpli�ed using quotienting by step stochastic bisimulation. Future work could
also consist in constructing a congruence relation for dtsdPBC, i.e. the equivalence
that withstands application of all operations of the algebra. The �rst possible
candidate is a stronger version of the equivalence with respect to transition systems,
with two extra transitions skip and redo, like in sPBC [57]. Moreover, recursion
operation could be added to dtsdPBC to increase speci�cation power of the algebra.

Appendix A. Proofs

A.1. Proof of Proposition 8. LetK, K̃ ∈ DR(G)/Rss(G) and s ∈ K. The EDTMC
for the quotient of EDTMC(G) is denoted by EDTMC ′(G) and has the probabi-

lities PM ′(K, K̃) to change from K to K̃.
• Let PM(s, s) + PM(s,K \ {s}) = PM(s,K) < 1 and PM(s, s), PM(s,K \
{s}) > 0, i.e. s,K are non-absorbing and there exist self-loops associated
with s in DTMC(G) and with K in the quotient of EDTMC(G).

In EDTMC↔ss
(G), we have PM∗(K, K̃) = SL↔ss

(K)PM(K, K̃) =

PM(K,K̃)
1−PM(K,K) = PM(s,K̃)

1−PM(s,K) = PM(s,K̃)
1−PM(s,s)−PM(s,K\{s}) =

PM(s,K̃)
1−PM(s,s)

1−PM(s,K\{s})
1−PM(s,s)

=

SL(s)PM(s,K̃)
1−SL(s)PM(s,K\{s}) . Then SL↔ss

(K) = SL(s)
1−SL(s)PM(s,K\{s}) =
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SL(s)SL′(s,K), where SL′(s,K) = 1
1−SL(s)PM(s,K\{s}) is the self-loops ab-

straction factor in the equivalence class K with respect to the state s ∈ K
for the quotient of EDTMC(G).

In EDTMC ′(G), we have PM ′(K, K̃) =
∑

s̃∈K̃ PM
∗(s,s̃)

1−∑
s′∈K\{s} PM

∗(s,s′) =∑
s̃∈K̃ SL(s)PM(s,s̃)

1−∑
s′∈K\{s} SL(s)PM(s,s′) =

SL(s)
∑

s̃∈K̃ PM(s,s̃)

1−SL(s)∑s′∈K\{s} PM(s,s′) =

SL(s)PM(s,K̃)
1−SL(s)PM(s,K\{s}) = PM∗(K, K̃).

The other three cases (no self-loops associated with s inDTMC(G), with
K in the quotient of EDTMC(G), or with both) are treated analogously,
by replacing PM(s, s) or/and PM(s,K \ {s}) with zeros.

• Let PM(s, s) + PM(s,K \ {s}) = PM(s,K) = 1 and PM(s, s), PM(s,K \
{s}) > 0, i.e. K is absorbing in DTMC↔ss

(G) and there exist self-loops
associated with s inDTMC(G) and with K in the quotient of EDTMC(G).

In EDTMC↔ss
(G), we have PM∗(K,K) = 1 by de�nition of the

EDTMC, since PM(K,K) = PM(s,K) = 1.
In the quotient of EDTMC(G), the probability of a self-loop associated

with K is
∑
s′∈K\{s} PM

∗(s, s′) =
∑
s′∈K\{s} SL(s)PM(s, s′) =

SL(s)
∑
s′∈K\{s} PM(s, s′)=SL(s)PM(s,K\{s})=SL(s)(1−PM(s, s))=

1−PM(s,s)
1−PM(s,s) = 1. In EDTMC ′(G), we have PM ′(K, K̃) = 1 = PM∗(K,K)

by de�nition of the EDTMC, since in the quotient of EDTMC(G), the
probability of a self-loop associated with K is 1.

The other two cases (no self-loops associated with s in DTMC(G) or
withK in the quotient of EDTMC(G)) are treated analogously, by replacing
PM(s, s) with zero or taking K = {s} when PM(s,K \ {s}) = 0.

Thus, (P∗)∗↔ss
= P∗

↔ss
and EDTMC ′(G) = EDTMC↔ss

(G). □

A.2. Proof of Proposition 9. Let Pr be the reordered (by moving vanishing
states to the �rst positions) TPM for DTMC(G). Like in [86], we reorder the
states from DR(G) so that the �rst rows and columns of Pr will correspond to the
states from DRV (G) and the last ones will correspond to the states from DRT (G).
Let |DR(G)| = n and |DRT (G)| = m. Then the reordered TPM for DTMC(G)
can be decomposed as

Pr =

(
C D
E F

)
.

The elements of the (n−m)× (n−m) submatrix C are the probabilities to move
from vanishing to vanishing states, and those of the (n−m)×m submatrix D are
the probabilities to move from vanishing to tangible states. The elements of the
m× (n−m) submatrix E are the probabilities to move from tangible to vanishing
states, and those of the m × m submatrix F are the probabilities to move from
tangible to tangible states.

The TPM P⋄ for RDTMC(G) is the m×m matrix, calculated as

P⋄ = F+EGD,

where the elements of the matrix G =
∑∞
k=0 C

k are the probabilities to move from
vanishing to vanishing states in any number of state changes, without traversal of
tangible states.
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By the note after Proposition 3, Rss(G) ⊆ (DRT (G))
2 ⊎ (DRV (G))

2. Hence,
∀K ∈ DR(G)/Rss(G), all states from K are tangible, when K ∈ DRT (G)/Rss(G), or
all of them are vanishing, when K ∈ DRV (G)/R.

LetVr be the reordered (by moving vanishing states and their equivalence classes
to the �rst positions) collector matrix for Rss(F ) and Wr be the (accordingly)
reordered distributor matrix for Vr. We reorder the states from DR(G) and the
equivalence classes from DR(G)/Rss(G) as follows. The �rst rows of Vr will cor-
respond to the states from DRV (G) and the �rst columns of Vr will correspond
to the equivalence classes from DRV (G)/Rss(G), whereas the last rows of Vr will
correspond to the states fromDRT (G) and the last columns ofVr will correspond to
the equivalence classes from DRT (G)/Rss(G). The �rst rows of Wr will correspond
to the equivalence classes from DRV (G)/Rss(G) and the �rst columns of Wr will
correspond to the states fromDRV (G), whereas the last rows ofWr will correspond
to the equivalence classes from DRT (G)/Rss(G) and the last columns of Wr will
correspond to the states from DRT (G).

Let |DR(G)/Rss(G)| = l and |DRT (G)/Rss(G)| = k. Note that tangible (va-
nishing) states can only belong to the equivalence classes of tangible (vanishing)
states. Then the reordered collector and distributor matrices can be decomposed as

Vr =

(
VC 0
0 VF

)
, Wr =

(
WC 0
0 WF

)
,

where 0 are the matrices consisting only of zeros, all those matrices of the appropri-
ate sizes. The elements of the (n−m)×(l−k) submatrixVC are the probabilities to
move from vanishing states to the equivalence classes of vanishing states, and those
of the m×k submatrix VF are the probabilities to move from tangible states to the
equivalence classes of tangible states. The elements of the (l−k)×(n−m) submatrix
WC are the probabilities to move from the equivalence classes of vanishing states
to vanishing states, and those of the k ×m submatrix WF are the probabilities to
move from the equivalence classes of tangible states to tangible states. We have

WrVr =

(
WCVC 0

0 WFVF

)
= I,

hence, WCVC = I and WFVF = I.
Since tangible and vanishing states always belong to the equivalence classes of

the same kind, the quotienting (by↔ss) and reordering (by moving vanishing states
and their equivalence classes to the �rst positions) are permutable. The quotiented
reordered TPM may only di�er from the reordered quotiented TPM up to the order
of the equivalence classes of tangible states and the order of the equivalence classes
of vanishing states. To avoid such a di�erence, we rearrange the equivalence classes
of the same kind in increasing order of the smallest indices of the states from them
while keeping the equivalence classes of vanishing states at the �rst positions.

Then PrVr = VrPr↔ss
and Pr↔ss

= WrPrVr. We have

PrVr =

(
C D
E F

)(
VC 0
0 VF

)
=

(
CVC DVF

EVC FVF

)
,

VrPr↔ss
=

(
VC 0
0 VF

)(
C↔ss

D↔ss

E↔ss
F↔ss

)
=

(
VCC↔ss

VCD↔ss

VFE↔ss
VFF↔ss

)
.

Hence, CVC=VCC↔ss
, DVF =VCD↔ss

, EVC=VFE↔ss
, FVF =VFF↔ss

.
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Let us show that GVC=VCG↔ss
. Since G=

∑∞
k=0 C

k, it is su�cient to prove(∑l
k=0 C

k
)
VC=VC

∑l
k=0 C

k
↔ss

by induction on l∈N and then take a limit l→∞.

• l = 0

We have
(∑0

k=0 C
k
)
VC = IVC = VC = VCI = VC

∑0
k=0 C

k
↔ss

.

• l → l + 1

Suppose that
(∑l

k=0 C
k
)
VC = VC

∑l
k=0 C

k
↔ss

. Then we have(∑l+1
k=0 C

k
)
VC =

(
I+C

∑l
k=0 C

k
)
VC = VC +CVC

∑l
k=0 C

k
↔ss

=

VC+VCC↔ss

∑l
k=0 C

k
↔ss

=VC

(
I+C↔ss

∑l
k=0 C

k
↔ss

)
=VC

∑l+1
k=0 C

k
↔ss

.

Next, P⋄VF = (F+EGD)VF = FVF +EGDVF = VFF↔ss
+EGVCD↔ss

=
VFF↔ss

+ EVCG↔ss
D↔ss

= VFF↔ss
+ VFE↔ss

G↔ss
D↔ss

= VF (F↔ss
+

E↔ss
G↔ss

D↔ss
) = VFP

⋄
↔ss

. After left-multiplying by WF the resulting equality

P⋄VF = VFP
⋄
↔ss

, we �nally get

(P⋄)↔ss
= WFP

⋄VF = P⋄
↔ss

.

□

A.3. Proof of Proposition 10. By Proposition 3, (DR(G) ∪DR(G′))/R =
((DRT (G) ∪DRT (G′))/R) ⊎ ((DRV (G) ∪DRV (G′))/R). Hence, ∀H ∈ (DR(G) ∪
DR(G′))/R, all states from H are tangible, when H ∈ (DRT (G)∪DRT (G′))/R, or
all of them are vanishing, when H ∈ (DRV (G) ∪DRV (G′))/R.

By de�nition of the steady-state PMFs for SMCs, ∀s ∈ DRV (G), φ(s) = 0 and
∀s′∈DRV (G′), φ′(s′)=0. Thus, ∀H∈(DRV (G)∪DRV (G′))/R,

∑
s∈H∩DR(G)φ(s)=∑

s∈H∩DRV (G) φ(s) = 0 =
∑
s′∈H∩DRV (G′) φ

′(s′) =
∑
s′∈H∩DR(G′) φ

′(s′).

By Proposition 4 from [86], ∀s ∈ DRT (G), φ(s) = ψ(s)∑
s̃∈DRT (G) ψ(s̃)

and ∀s′ ∈
DRT (G

′), φ′(s′) = ψ′(s′)∑
s̃′∈DRT (G′) ψ

′(s̃′) , where ψ and ψ′ are the steady-state PMFs for

DTMC(G) andDTMC(G′), respectively. Thus, ∀H, H̃ ∈ (DRT (G)∪DRT (G′))/R,∑
s∈H∩DR(G) φ(s) =

∑
s∈H∩DRT (G) φ(s) =

∑
s∈H∩DRT (G)

(
ψ(s)∑

s̃∈DRT (G) ψ(s̃)

)
=∑

s∈H∩DRT (G) ψ(s)∑
s̃∈DRT (G) ψ(s̃)

=
∑

s∈H∩DRT (G) ψ(s)∑
H̃

∑
s̃∈H̃∩DRT (G)

ψ(s̃) and
∑
s′∈H∩DR(G′) φ

′(s′) =∑
s′∈H∩DRT (G′) φ

′(s′) =
∑
s′∈H∩DRT (G′)

(
ψ′(s′)∑

s̃′∈DRT (G′) ψ
′(s̃′)

)
=∑

s′∈H∩DRT (G′) ψ
′(s′)∑

s̃′∈DRT (G′) ψ
′(s̃′) =

∑
s′∈H∩DRT (G′) ψ

′(s′)∑
H̃

∑
s̃′∈H̃∩DRT (G′) ψ

′(s̃′) .

It remains to prove that ∀H ∈ (DRT (G)∪DRT (G′))/R,
∑
s∈H∩DRT (G) ψ(s) =∑

s′∈H∩DRT (G′) ψ
′(s′). Since (DR(G)∪DR(G′))/R = ((DRT (G)∪DRT (G′))/R)⊎

((DRV (G)∪DRV (G′))/R), the previous equality is a consequence of the following:
∀H ∈ (DR(G) ∪DR(G′))/R,

∑
s∈H∩DR(G) ψ(s) =

∑
s′∈H∩DR(G′) ψ

′(s′).
Thus, we should prove that ∀H ∈ (DR(G) ∪DR(G′))/R

∑
{i|si∈H∩DR(G)} ψi =∑

{j|s′j∈H∩DR(G′)} ψ
′
j .

The steady-state PMF ψ = (ψ1, . . . , ψn) for DTMC(G) is a solution of the linear
equation system {

ψP = ψ
ψ1T = 1

.
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Then, for all i (1 ≤ i ≤ n), we have{ ∑n
j=1 Pjiψj = ψi∑n
j=1 ψj = 1

.

By de�nition of Pij (1 ≤ i, j ≤ n) we have{ ∑n
j=1 PM(sj , si)ψj = ψi∑n
j=1 ψj = 1

.

Let H ∈ (DR(G) ∪ DR(G′))/R and s1, s2 ∈ H. We have ∀H̃ ∈ (DR(G) ∪
DR(G′))/R ∀A ∈ NL

fin s1
A→P H̃ ⇔ s2

A→P H̃. Therefore, PM(s1, H̃) =∑
{Υ|∃s̃1∈H̃ s1

Υ→s̃1}
PT (Υ, s1) =

∑
A∈NL

fin

∑
{Υ|∃s̃1∈H̃ s1

Υ→s̃1, L(Υ)=A} PT (Υ, s1) =∑
A∈NL

fin
PMA(s1, H̃) =

∑
A∈NL

fin
PMA(s2, H̃) =∑

A∈NL
fin

∑
{Υ|∃s̃2∈H̃ s2

Υ→s̃2, L(Υ)=A} PT (Υ, s2) =
∑

{Υ|∃s̃2∈H̃ s2
Υ→s̃2}

PT (Υ, s2) =

PM(s2, H̃). Since we have the previous equality for all s1, s2 ∈ H, we can denote

PM(H, H̃) = PM(s1, H̃) = PM(s2, H̃). Note that transitions from the states of

DR(G) always lead to those from the same set, hence, ∀s ∈ DR(G) PM(s, H̃) =

PM(s, H̃ ∩DR(G)). The same is true for DR(G′).
Let H ∈ (DR(G) ∪ DR(G′))/R. We sum the left and right parts of the �rst

equation from the system above for all i such that si ∈ H ∩DR(G). The result is∑
{i|si∈H∩DR(G)}

n∑
j=1

PM(sj , si)ψj =
∑

{i|si∈H∩DR(G)}
ψi.

Let us denote the aggregate steady-state PMF for DTMC(G) by ψH∩DR(G) =∑
{i|si∈H∩DR(G)} ψi. Then, for the left part of the equation above, we get∑
{i|si∈H∩DR(G)}

∑n
j=1 PM(sj , si)ψj =

∑n
j=1 ψj

∑
{i|si∈H∩DR(G)} PM(sj , si) =∑n

j=1 PM(sj ,H)ψj =
∑

H̃∈(DR(G)∪DR(G′))/R

∑
{j|sj∈H̃∩DR(G)} PM(sj ,H)ψj =∑

H̃∈(DR(G)∪DR(G′))/R

∑
{j|sj∈H̃∩DR(G)} PM(H̃,H)ψj =∑

H̃∈(DR(G)∪DR(G′))/R
PM(H̃,H)

∑
{j|sj∈H̃∩DR(G)} ψj =∑

H̃∈(DR(G)∪DR(G′))/R
PM(H̃,H)ψH̃∩DR(G).

For the left part of the second equation from the system above, we get
∑n
j=1ψj=∑

H̃∈(DR(G)∪DR(G′))/R

∑
{j|sj∈H̃∩DR(G)} ψj =

∑
H̃∈(DR(G)∪DR(G′))/R

ψH̃∩DR(G).

Thus, the aggregate linear equation system for DTMC(G) is{ ∑
H̃∈(DR(G)∪DR(G′))/R

PM(H̃,H)ψH̃∩DR(G) = ψH∩DR(G)∑
H̃∈(DR(G)∪DR(G′))/R

ψH̃∩DR(G) = 1
.

Let us denote the aggregate steady-state PMFs for DTMC(G′) by ψ′
H∩DR(G′) =∑

{j|s′j∈H∩DR(G′)} ψ
′
j . Then the aggregate linear equation system for DTMC(G′) is{ ∑

H̃∈(DR(G)∪DR(G′))/R
PM(H̃,H)ψ′

H̃∩DR(G′)
= ψ′

H∩DR(G′)∑
H̃∈(DR(G)∪DR(G′))/R

ψ′
H̃∩DR(G′)

= 1
.

Let (DR(G) ∪ DR(G′))/R = {H1, . . . ,Hl}. Then the aggregate steady-state
PMFs ψHk∩DR(G) and ψ

′
Hk∩DR(G′) (1 ≤ k ≤ l) satisfy the same aggregate system

of l+1 linear equations with l independent equations and l unknowns. The aggregate
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linear equation system has a unique solution, when a single aggregate steady-
state PMF exists. This is the case here, since in [86] we have demonstrated that
DTMC(G) has a single steady state i� SMC(G) has, and aggregation preserves
this property [30]. Hence, ψHk∩DR(G) = ψ′

Hk∩DR(G′) (1 ≤ k ≤ l). □
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