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HOMOGENIZED ACOUSTIC EQUATIONS FOR A LAYERED

MEDIUM CONSISTING OF A VISCOELASTIC MATERIAL

AND A VISCOUS COMPRESSIBLE FLUID

V.V. SHUMILOVA

Abstract. We consider homogenized acoustic equations for a two-
phase layered medium with periodic microstructure. The �rst phase of
the medium is an isotropic viscoelastic material and the second one is
a viscous compressible �uid. In addition, we assume that all layers are
parallel to one of the coordinate planes. By means of solutions of auxiliary
cell problems, we show that coe�cients and convolution kernels of the
homogenized equations depend on the volume fraction of the �uid phase
inside the periodicity cell and do not depend on the number of layers
and their geometrical position.

Keywords: homogenization, cell problems, layered media.

1. Introduction

The paper deals with the homogenization of an initial-boundary value problem
for a system of partial di�erential and integro-di�erential equations whose
coe�cients are periodic and rapidly varying in one direction. The stated problem
describes the joint motion of alternating layers of viscoelastic materials and viscous
compressible �uids.

Homogenized acoustic equations for heterogeneous media composed of
periodically repeating solid and �uid phases have been extensively studied by
many authors (for example, see [1�8]). It was shown that the homogenized systems
consist of integro-di�erential equations even if the corresponding original systems
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consist only of di�erential equations. The homogenized coe�cients and kernels
are determined by solutions of several auxiliary problems on the periodicity cell.
However, their explicit calculation is available only for the simplest models of solid-
�uid media, namely for layered media consisting of plane isotropic solid and �uid
layers. This makes it possible to comprehensively study the dynamical behaviour
of such media, which is of great importance in practical applications.

In this paper, we consider a layered medium whose periodicity cell containsM+1
layers of isotropic viscoelastic material and M layers of viscous compressible �uid,
whereM ≥ 1 is a constant. Relying on the techniques outlined in [7�9], we write out
the homogenized acoustic equations and �nd explicit formulas for their coe�cients
and kernels by direct solving auxiliary cell problems. The analysis of these formulas
allows us to discover that the homogenized coe�cients and kernels are independent
of the number of �uid layers M and their locations inside the periodicity cell.

2. Statement of the original and homogenized problems

Let Ω be a bounded domain in R3 with smooth boundary ∂Ω occupied by a
two-phase layered medium with periodic microstructure. For the periodicity cell we
take the cube Yε = εY , where Y = (0, 1)3 is the unite cube and ε is a small positive
parameter. We suppose that all layers are parallel to the Ox2x3-plane and the cell
Yε contains M + 1 layers of isotropic viscoelastic material and M layers of viscous
compressible �uid (M ≥ 1). We de�ne

Y1 =

M⋃
m=0

(q2m, q2m+1)× (0, 1)2, Y2 =

M⋃
m=1

(q2m−1, q2m)× (0, 1)2,

Γ =

2M⋃
m=1

{qm} × (0, 1)2, 0 = q0 < q1 < q2 < ... < q2M < q2M+1 = 1

and assume that the sets Y1ε = εY1 and Y2ε = εY2 represent, respectively, the
�viscoelastic� and ��uid� parts of the cell Yε.

Denote by q the total volume fraction of the �uid in Yε. Then

(1) q =
|Y2ε|
|Yε|

=
|Y2|
|Y |

=

M∑
m=1

(q2m − q2m−1).

The subsets of Ω occupied by the viscoelastic and �uid layers are denoted by
Ω1ε and Ω2ε, respectively. Note that Ωsε = Ω ∩ εEs, where Es is the Y -periodic
continuation of Ys, i.e.,

Es =
⋃

k∈Z3

(Ys ∪ (∂Ys ∩ ∂Y ) + k) , s = 1, 2.

The initial-boundary value problem describing the joint motion of viscoelastic
and �uid layers in Ω has the form

(2)

ρs
∂2uε

i

∂t2
=

∂σε
ij

∂xj
+ fi(x, t) in Ωsε × (0, T ), s = 1, 2,

[uε]|Sε
= 0, [σε

i1]|Sε
= 0, Sε = ∂Ω1ε ∩ ∂Ω2ε,

uε(x, t)|∂Ω = 0, uε(x, 0) =
∂uε

∂t
(x, 0) = 0,
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where ρs = const > 0 is the density in Ωsε, u
ε(x, t) is the displacement vector, σε is

the stress tensor, f(x, t) ∈ H2(0, T ; (L2(Ω))3) is the external force vector, and the
square brackets [·]|Sε mean the jump in the enclosed quantity across the boundary
Sε. Note that in (2) and everywhere below the summation convention over repeated
subscripts is employed.

The components of the stress tensor σε are de�ned by

σε
ij = aijkhekh(u

ε) + b
(1)
ijkhekh

(
∂uε

∂t

)
− dijkh(t) ∗ ekh(uε), x ∈ Ω1ε,

σε
ij = −δijp

ε + b
(2)
ijkhekh

(
∂uε

∂t

)
, pε = −γ div uε, x ∈ Ω2ε,

where ekh(u
ε) = exkh(u

ε) = (∂uε
k/∂xh + ∂uε

h/∂xk)/2 are the components of the
strain tensor, δij is the Kronecker symbol, p

ε(x, t) is the �uid pressure, γ is the bulk

modulus of elasticity, a and b(s) are the positive-de�nite tensors of elasticity and
viscosity coe�cients, respectively, d(t) is the tensor of the regular parts of relaxation
kernels, and the symbol ∗ denotes the convolution operation with respect to t,

g1(t) ∗ g2(t) =
∫ t

0

g1(t− s)g2(s) ds.

The components of the tensors a, b(s), and d(t) are given by

aijkh = λδijδkh + µ(δikδjh + δihδjk),

b
(s)
ijkh = ζsδijδkh + ηs(δikδjh + δihδjk), s = 1, 2,

dijkh(t) =

(
G1(t)−

1

3
G(t)

)
δijδkh +

1

2
G(t)(δikδjh + δihδjk),

where λ and µ are the Lam�e parameters, ζs and ηs are the viscosity coe�cients
in Ωsε, and G(t) and G1(t) are the regular parts of the bulk and shear relaxation
kernels. In what follows, we will assume that G(t) and G1(t) satisfy the following
conditions:

G1(t) = k1G(t), G(t) =

N∑
n=1

vne
−γnt, k1 ≥ 0,

N∑
n=1

vn
γn

≤ K,

where vn, γn ∈ R+ (n = 1, ..., N), K = min{(3λ + 2µ)/(3k1), 2µ} for k1 > 0 and
K = 2µ for k1 = 0.

The asymptotic behaviour as ε → 0 of solutions of problems like (2) was widely
studied in [7�9]. Based on the results of these studies, one can easily deduce that

uε(x, t) → u(x, t) in (L2(Ω))3 for every t ∈ [0, T ],

where u(x, t) is given as the solution of the corresponding homogenized problem,
which is the initial boundary-value problem for a system of integro-di�erential
equations of convolution type. Their coe�cients and convolutions kernels are
explicitly expressed in terms of Y -periodic solutions of auxiliary cell problems. Let
us write down the homogenized and cell problems for our layered medium [7, 8].

Firstly, we de�ne Zkh(y) ∈ (H1
per(Y ))3 as the solutions of the problems

(3)
∂

∂yj

(
σ
(1)
ij (Zkh)

)
= 0 in Y,

∫
Y

Zkhdy = 0, [σ
(1)
i1 (Zkh)]|Γ = 0,
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where H1
per(Y ) is the Sobolev space of Y -periodic functions and

σ
(1)
ij (Zkh) = b

(s)
ijkh + b

(s)
ijlmeylm(Zkh), y ∈ Ys, s = 1, 2.

Next, we de�ne Dkh(y) ∈ (H1
per(Y ))3 as the solutions of the problems

(4)
∂

∂yj

(
σ
(2)
ij (Dkh)

)
= 0 in Y,

∫
Y

Dkhdy = 0, [σ
(2)
i1 (Dkh)]|Γ = 0,

where

σ
(2)
ij (Dkh) = aijkh + aijlmeylm(Zkh) + b

(1)
ijlmeylm(Dkh), y ∈ Y1,

σ
(2)
ij (Dkh) = γδij(δkh + divy Z

kh) + b
(2)
ijlmeylm(Dkh), y ∈ Y2.

Finally, we determine W kh(y, t) ∈ L∞(0, T ; (H1
per(Y ))3) as the solutions of the

evolutionary problems

(5)

∂

∂yj

(
σ
(3)
ij (W kh)

)
= 0 in Y × (0, T ),

∫
Y

W khdy = 0,

W kh(y, 0) = Dkh(y) in Y, [σ
(3)
i1 (W kh)]|Γ = 0,

where

σ
(3)
ij (W kh) = aijlmeylm(W kh) + b

(1)
ijlmeylm

(
∂W kh

∂t

)
−

− dijlm(t) ∗ eylm(W kh)− dijlm(t)eylm(Zkh)− dijkh(t), y ∈ Y1,

σ
(3)
ij (W kh) = γδij divy W

kh + b
(2)
ijlmeylm

(
∂W kh

∂t

)
, y ∈ Y2.

Using the solutions of the above stationary and evolutionary cell problems, we
introduce the tensors α, β, and g(t) as follows:

αijkh = (1− q)aijkh + γqδijδkh +

∫
Y1

aijlmeylm(Zkh)dy+

+ γδij

∫
Y2

divy Z
khdy +

2∑
s=1

∫
Ys

b
(s)
ijlmeylm(Dkh)dy,(6)

βijkh = (1− q)b
(1)
ijkh + qb

(2)
ijkh +

2∑
s=1

∫
Ys

b
(s)
ijlmeylm(Zkh)dy,(7)

gijkh(t) = (1− q)dijkh(t)−
∫
Y1

aijlmeylm(W kh)dy+

+

∫
Y1

(
dijlm(t) ∗ eylm(W kh) + dijlm(t)eylm(Zkh)

)
dy−

− γδij

∫
Y2

divy W
khdy −

2∑
s=1

∫
Ys

b
(s)
ijlmeylm

(
∂W kh

∂t

)
dy.(8)
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Then, the homogenized problem corresponding to (2) takes the form

ρ
∂2ui

∂t2
=

∂σij

∂xj
+ fi(x, t) in Ω× (0, T ),(9)

u(x, t)|∂Ω = 0, u(x, 0) =
∂u

∂t
(x, 0) = 0,

where ρ = ρ1(1− q) + ρ2q and

σij = αijkhekh(u) + βijkhekh

(
∂u

∂t

)
− gijkh(t) ∗ ekh(u).

3. Solutions of the cell problems

We start this section by solving the stationary cell problem (3) for k = h = 1.
We seek its solution in the form

Z11(y) = (z0(y1), 0, 0),

where z0(y1) is a piecewise linear function, which is de�ned by

z0(y1) = Amy1 +Bm, y1 ∈ (qm−1, qm), m = 1, ..., 2M + 1.

It follows from (3) that 4M + 2 coe�cients A1, ..., A2M+1, B1,..., B2M+1 must
be chosen in such a way that the following conditions hold:

z0(0) = z0(1),

1∫
0

z0(y1)dy1 = 0, [z0]|y1=qm = 0, m = 1, ..., 2M,

(
b
(1)
i111 + b

(1)
i111

dz0
dy1

)∣∣∣∣
q2n−1−0

=

(
b
(2)
i111 + b

(2)
i111

dz0
dy1

)∣∣∣∣
q2n−1+0

, n = 1, ...,M,(
b
(1)
i111 + b

(1)
i111

dz0
dy1

)∣∣∣∣
q2n+0

=

(
b
(2)
i111 + b

(2)
i111

dz0
dy1

)∣∣∣∣
q2n−0

, n = 1, ...,M.

These conditions lead to the following linear system of 4M + 2 equations:

(10) B1 = A2M+1 +B2M+1, Amqm +Bm = Am+1qm +Bm+1,

(11) A2n−1b1 + b1 = A2nb2 + b2, A2nb2 + b2 = A2n+1b1 + b1,

(12)

2M+1∑
m=1

(Am(q2m − q2m−1) + 2Bm(qm − qm−1)) = 0,

m = 1, 2, ..., 2M, n = 1, ...,M,

where bs = b
(s)
1111 = ζs + 2ηs, s = 1, 2. It follows immediately from (11) that

A1 = A3 = ... = A2M+1 and A2 = A4 = ... = A2M . Thus, equations (10), (11)
become

A1 −B1 +B2M+1 = 0, A1b1 −A2b2 = b2 − b1,(13)

(A1 −A2)q2m−1 +B2m−1 −B2m = 0, m = 1, ...,M,(14)

(A2 −A1)q2m +B2m −B2m+1 = 0, m = 1, ...,M.(15)

Summing (14) and (15) leads to

(A2 −A1)

M∑
m=1

(q2m − q2m−1) +B1 −B2M+1 = 0.
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Using (1) and the �rst equation in (13), we obtain

A1(1− q) +A2q = 0,

which together with the second equation in (13) gives

A1 = − q

b12
(b1 − b2), A2 =

1− q

b12
(b1 − b2),

where b12 = b1q + b2(1 − q). Substituting these values of A1 and A2 into (14) and
(15), we get

Bm = Bm+1 −
(−1)mqm

b12
(b1 − b2), m = 1, ..., 2M

and consequently

Bm = B2M+1 −
b1 − b2
b12

2M∑
k=m

(−1)kqk =

= B1 +
b1 − b2
b12

(
q −

2M∑
k=m

(−1)kqk

)
, m = 1, ..., 2M.(16)

Further, substituting the expressions

2M+1∑
m=1

(Am(q2m − q2m−1) =
b1 − b2
b12

(
−q +

2M∑
m=1

(−1)mq2m

)
,

2M+1∑
m=1

Bm(qm − qm−1) = B1 +
b1 − b2
b12

(
q −

2M∑
m=1

(qm − qm−1)

2M∑
k=m

(−1)kqk

)
=

= B1 +
b1 − b2
b12

(
q −

2M∑
m=1

(−1)mq2m

)
into (12), we get

B1 =
b1 − b2
2b12

(
−q +

2M∑
m=1

(−1)mq2m

)
.

Finally, it remains to use (13) and (16) to �nd the constants B2,..., B2M+1. As a
result, we obtain

Bm =
b1 − b2
2b12

(
q +

2M∑
k=1

(−1)kq2k − 2

2M∑
k=m

(−1)kqk

)
, m = 2, ...,M,

B2M+1 =
b1 − b2
2b12

(
q +

2M∑
m=1

(−1)mq2m

)
.

The solutions of the remaining stationary cell problems (3) and (4) are found
similarly to what we have just done to �nd Z11(y). In order to write the solutions
of all cell problems in a short way, it is convenient to introduce the notation

z(y1) =
b12z0(y1)

(1− q)(b2 − b1)
, a1 = a1111 = λ+ 2µ,

a12 = a1q + γ(1− q), η12 = η1q + η2(1− q).
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Note that the coe�cients of the piecewise linear function z(y1) depend only on
q, q1, ..., and q2M . More precisely,

z(y1) =


−y1 − C2m, y1 ∈ (q2m−1, q2m), m = 1, ...,M,

qy1
1− q

− C2m+1, y1 ∈ (q2m, q2m+1), m = 0, ...,M,

where

C1 =
1

2(1− q)

(
−q +

2M∑
m=1

(−1)mq2m

)
,

Cm =
1

2(1− q)

(
q +

2M∑
k=1

(−1)kq2k − 2

2M∑
k=m

(−1)kqk

)
, m = 2, ...,M,

C2M+1 =
1

2(1− q)

(
q +

2M∑
m=1

(−1)mq2m

)
.

The next assertion describes the solutions of the stationary cell problems.

Lemma 1. Problems (3) and (4) have the following solutions:

Z11(y) = (c11z(y1), 0, 0), Z22(y) = Z33(y) = (c12z(y1), 0, 0),

D11(y) = (c21z(y1), 0, 0), D22(y) = D33(y) = (c22z(y1), 0, 0),

Z12(y) = Z21(y) = (0, c13z(y1), 0), Z13(y) = Z31(y) = (0, 0, c13z(y1)),

D12(y) = D21(y) = (0, c23z(y1), 0), D13(y) = D31(y) = (0, 0, c23z(y1)),

Z23(y) = Z32(y) = D23(y) = D32(y) = (0, 0, 0),

where

c11 =
1− q

b12
(b2 − b1), c12 =

1− q

b12
(ζ2 − ζ1),

c13 =
1− q

η12
(η2 − η1), c21 =

1− q

b212
(γb1 − a1b2),

c22 =
1− q

b212
((γ − λ)b12 − (ζ2 − ζ1)a12), c23 = − (1− q)µη2

η212
.

Now we turn to the evolutionary cell problems (5). First, we consider problem
(5) for k = h = 1 and seek its solution in the form

W 11(y, t) = (z(y1)p(t), 0, 0), p(0) = c21,

where z(y1) is the piecewise linear function introduced above. It follows from (5)
that the unknown function p(t) must be chosen in such a way that the condition

[σ
(3)
i1 (Z11,W 11)]|y1=qm = 0, m = 1, ..., 2M

is satis�ed. It is easily checked that this leads to the integro-di�erential equation

b12
dp

dt
− qd1(t) ∗ p(t) + a12p(t) =

b2
b12

(1− q)d1(t),(17)

where

d1(t) = d1111(t) =

(
k1 +

2

3

) N∑
n=1

vne
−γnt.
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We claim that

(18) p(t) =

N+1∑
k=1

p1ke
−ξkt,

where p1k and ξk are uniquely determined by some linear system and rational
equation, respectively. Indeed, substituting (18) into (17) yields

(19)

N+1∑
k=1

Akp1ke
−ξkt + q

(
k1 +

2

3

) N∑
n=1

Bnvne
−γnt = 0,

where

Ak = b12ξk − a12 − q

(
k1 +

2

3

) N∑
n=1

vn
ξk − γn

,

Bn =

N+1∑
k=1

p1k
ξk − γn

+
b2(1− q)

b12q
.

It is clear that equality (19) is satis�ed if and only if Ak = 0 and Bn = 0 for all
k = 1, ..., N + 1 and n = 1, ..., N . This means that ξ1,..., ξN+1 are the roots of the
equation

(20) b12ξ − a12 = q

(
k1 +

2

3

) N∑
n=1

vn
ξ − γn

,

whereas p11, ..., p1(N+1) is the solution of the linear system

(21)



N+1∑
k=1

p1k
ξk − γn

+
b2(1− q)

b12q
= 0, n = 1, ..., N,

N+1∑
k=1

p1k =
1− q

b212
(γb1 − a1b2).

By similar arguments as above we solve the evolutionary cell problems (5) for
other values of k and h. In order to formulate the obtained results, we consider the
equation

(22) η12τ − µq =
q

2

N∑
n=1

vn
τ − γn

,

whose roots we denote by τ1, ..., τN+1. In addition, denote by p21, ..., p2(N+1) and
p31,..., p3(N+1) the solutions of the linear systems

(23)



N+1∑
k=1

p2k
ξk − γn

+
1− q

b12
(ζ2 − ζ1) +

(1− q)(3k1 − 1)

q(3k1 + 2)
= 0, n = 1, ..., N,

N+1∑
k=1

p2k =
1− q

b212
((γ − λ)b12 − (ζ2 − ζ1)a12),
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and

(24)



N+1∑
k=1

p3k
τk − γn

+
η2(1− q)

η12q
= 0, n = 1, ..., N + 1,

N+1∑
k=1

p3k = − (1− q)µη2
η212

,

respectively. Note that before solving systems (21), (23), and (24), we need to �nd
the roots of equations (20) and (22).

A simple geometric construction shows that the roots of (20) and (22) are
di�erent positive numbers. Thus, we can assume without loss of generality that

0 < ξ1 < ... < ξN+1, 0 < τ1 < ... < τN+1.

The next assertion describes the solutions of the evolutionary cell problems.

Lemma 2. Problems (5) have the following solutions:

W 11(y, t) =

(
z(y1)

N+1∑
k=1

p1ke
−ξkt, 0, 0

)
, W 23(y, t) = W 32(y, t) = 0,

W 22(y, t) = W 33(y, t) =

(
z(y1)

N+1∑
k=1

p2ke
−ξkt, 0, 0

)
,

W 12(y, t) = W 21(y, t) =

(
0, z(y1)

N+1∑
k=1

p3ke
−τkt, 0

)
,

W 13(y, t) = W 31(y, t) =

(
0, 0, z(y1)

N+1∑
k=1

p3ke
−τkt

)
.

4. Calculation of the homogenized tensor components

Now we are able to �nd explicit expressions for the components of the
homogenized tensors α, β, and g(t). Before stating it let us note that these tensors
satisfy the usual symmetry conditions, and it can be readily seen that αijkh = 0,
βijkh = 0, and gijkh(t) = 0 whenever δijδkh + δikδjh + δihδjk = 0. Besides, it
immediately follows from Lemmas 1 and 2 that

α2323 = µ(1− q), β2323 = η1(1− q) + η2q,

g2323(t) =
1− q

2

N∑
n=1

vne
−γnt.

In addition, it can easily be checked that

α2222 = α3333, α1122 = α1133, α1212 = α1313,

α2222 − α2233 =

∫
Y1

(a2222 − a2233)dy = 2µ(1− q) = 2α2323

and quite similarly for the tensors β and g(t). This means that for our purpose
it is su�ciently to deduce explicit expressions for the components with subscripts
{1111}, {2222}, {1122}, and {1212}.
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Setting i = j = k = h = 1 in (6)�(8) and then using Lemmas 1 and 2, we get

α1111 = a1(1− q) + γq +

M∑
m=0

q2m+1∫
q2m

q

1− q
(a1c11 + b1c21)dy1−

−
M∑

m=1

q2m∫
q2m−1

(γc11 + b2c21)dy1 =
γb21q + a1b

2
2(1− q)

b212
,

β1111 = b1(1− q) + b2q +

M∑
m=0

q2m+1∫
q2m

b1c11q

1− q
dy1 −

M∑
m=1

q2m∫
q2m−1

b2c11dy1 =
b1b2
b12

,

g1111(t) = (1− q)d1(t) +

M∑
m=1

q2m∫
q2m−1

(
γp(t) + b2

dp

dt

)
dy1+

+

M∑
m=0

q2m+1∫
q2m

q

1− q

(
c11d1(t) + d1(t) ∗ p(t)− a1p(t)− b1

dp

dt

)
dy1 =

=

N+1∑
k=1

qc1kp1ke
−ξkt,

where

c1k = γ − a1 + (b1 − b2)ξk −
(
k1 +

2

3

) N∑
n=1

vn
ξk − γn

.

Expressions for the components with subscripts {2222}, {1122}, and {1212} are
obtained similarly. Omitting the detailed calculation, we write them in the following
�nal form:

α1122 =
1

b12
(b1γq + b2λ(1− q)) +

q

b212
(1− q)(ζ1 − ζ2)(γb1 − a1b2),

α2222 = a1(1− q) + γq +
q

b12
(1− q)(ζ1 − ζ2)

(
2γ − 2λ+

a12
b12

(ζ1 − ζ2)

)
,

α1212 =
µη22(1− q)

η212
, β1122 =

1

b12
(b1ζ2q + b2ζ1(1− q)),

β2222 = b1(1− q) + b2q −
q

b12
(1− q)(ζ1 − ζ2)

2, β1212 =
η1η2
η12

,

g2222(t) =

N+1∑
k=1

qc2kp2ke
−ξkt +

(1− q)(6k1 + 1)

3k1 + 2

N∑
n=1

vne
−γnt,

g1122(t) =

N+1∑
k=1

qc1kp2ke
−ξkt, g1212(t) =

N+1∑
k=1

qc3kp3ke
−τkt,

where we have used the notation

c2k = γ − λ+ (ζ1 − ζ2)ξk −
(
k1 −

1

3

) N∑
n=1

vn
ξk − γn

,
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c3k = −µ+ (η1 − η2)τk − 1

2

N∑
n=1

vn
τk − γn

.

It is essential to note that the solutions of the cell problems depend on the number
of layers and their geometrical positions (qk, qk+1) × (0, 1)2 inside the unit cube
Y . However, substituting these solutions into (6)-(8), we obtain sums of ordinary
integrals of various constants over the intervals (qk, qk+1). As a result of the direct
calculations, we found out that the homogenized tensor components depend on q,
but not on M and qk. Thus we arrive at the main result of this paper.

Theorem 1. If the viscoelastic and �uid layers are parallel to one of the coordinate
planes, then the coe�cients and convolution kernels of the homogenized equations
(9) depend on the volume fraction of the �uid inside the periodicity cell Yε and do
not depend on the number of layers and their geometrical position inside Yε.

5. Homogenized tensors for other types of solid phase

Up until now we have been dealing with the case when both tensors b(1) and
d(t) are nonzero. However, using the similar arguments as before, we can deduce
the required explicit formulas if at least one of these two tensors is zero. We now
brie�y review the cell problems and the homogenized tensor components for three
cases described below.

Case 1: b(1) ̸= 0 and d(t) = 0. This case corresponds to a medium whose solid
part is a viscoelastic Kelvin-Voigt material. The cell problems (3) and (4) as well
as the homogenized tensors α and β are exactly the same as above. Further, the
solutions of the cell problems (5), where we set dijkh(t) = 0 for all possible indices,
are as follows:

W 11(y, t) =

(
c21z(y1) exp

(
−a12t

b12

)
, 0, 0

)
, W 23(y, t) = W 32(y, t) = 0,

W 22(y, t) = W 33(y, t) =

(
c22z(y1) exp

(
−a12t

b12

)
, 0, 0

)
,

W 12(y, t) = W 21(y, t) =

(
0, c23z(y1) exp

(
−µqt

η12

)
, 0

)
,

W 13(y, t) = W 31(y, t) =

(
0, 0, c23z(y1) exp

(
−µqt

η12

))
.

Substituting Zkh(y) and W kh(y, t) into (8), we get

g1111(t) =
q(1− q)

b312
(γb1 − a1b2)

2 exp

(
−a12t

b12

)
,

g2222(t) =
q(1− q)

b312
((γ − λ)b12 − (ζ2 − ζ1)a12)

2 exp

(
−a12t

b12

)
,

g1122(t) =
q(1− q)

b312
(γb1 − a1b2)((γ − λ)b12 − (ζ2 − ζ1)a12) exp

(
−a12t

b12

)
,

g1212(t) =
q(1− q)µ2η22

η312
exp

(
−µqt

η12

)
.
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Case 2: b(1) = 0 and d(t) ̸= 0. In this case the cell problems (3) and (4) are
replaced by

∂

∂yj

(
σ
(s)
ij (Zkh)

)
= 0 in Ys (s = 1, 2),∫

Y

Zkhdy = 0, σ
(2)
i1 (Zkh) = 0 on Γ,

and
∂

∂yj

(
σ
(3)
ij (Dkh)

)
= 0 in Y2,∫

Y2

Dkhdy = 0, σ
(3)
i1 (Dkh) = σ

(1)
i1 (Zkh) on Γ,

respectively, where

σ
(1)
ij (Zkh) = aijkh + aijlmeylm(Zkh), y ∈ Y1,

σ
(2)
ij (Zkh) = b

(2)
ijkh + b

(2)
ijlmeylm(Zkh), y ∈ Y2,

σ
(3)
ij (Dkh) = γδij(δkh + divy Z

kh) + b
(2)
ijlmeylm(Dkh), y ∈ Y2.

Further, the initial conditions in the cell problems (5), where we set b
(1)
ijkh = 0

for all possible indices, must be replaced by the same conditions in Y2.
Repeating the above reasoning (with natural modi�cations), we �nd that the

components of α, β, and g(t) are the same as in Section 4, if we put everywhere

b1 = ζ1 = η1 = 0, b12 = b2(1− q).

Case 3: b(1) = 0 and d(t) = 0. This case corresponds to a medium whose solid
part is an elastic material. The cell problems and the tensors α and β are the same
as in Case 2, while the components of g(t) are found by the formulas

g1111(t) =
a21q

b2(1− q)2
exp

(
− a12t

b2(1− q)

)
,

g2222(t) =
q

b2

(
λ− γ +

a12ζ2
b2(1− q)

)2

exp

(
− a12t

b2(1− q)

)
,

g1122(t) =
a1q

b2(1− q)

(
λ− γ +

a12ζ2
b2(1− q)

)
exp

(
− a12t

b2(1− q)

)
,

g1212(t) =
µ2q

η2(1− q)2
exp

(
− µqt

η2(1− q)

)
.

Note that Theorem 1 remains true in all three cases (it is clear that in Case 3
we must write �elastic� instead of �viscoelastic�).
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