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Abstract:We consider systems of semigroup equations with cons-
tants. A semigroup S is called equationally Noetherian if any
system of equations is equivalent over S to a �nite subsystem. In
the current paper we describe all semigroup varieties that consist of
equationally Noetherian semigroups. Our result solves the problem
of B.Plotkin for semigroup varieties.

Keywords: semigroups, varieties, universal algebraic geometry.

1 Introduction

The universal algebraic geometry is the subject on the edge of algebra and
model theory and it deals with equations over arbitrary algebraic structures.
Obviously, algebraic structures of the same variety have common equational
properties. It allows us to develop a uniform algebraic geometry for all
algebraic structures of a �xed variety.

An atomic formula of a semigroup language L = {·} is called an L-equation
(examples of L-equations are: x1x2 = x2x1, x21 = x1, x1x

n
2x1 = x2). A

semigroup S is equationally Noetherian if any system of L-equations in a
�nite number of variables is equivalent over S to its �nite subsystem.
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The following general problem for varieties of equationally Noetherian
algebraic structures was posed by B. Plotkin in [5].

Problem 1. Describe all varieties V of algebraic structures such that every
A ∈ V is equationally Noetherian?

Problem 1 admits positive solution in certain varieties. For example, any
abelian variety of groups consists of equationally Noetherian elements (see [2]
for more details). In the class of semigroups, the following varieties

• the variety of semigroups with zero multiplication,
• the variety of left (right) zero semigroups

satisfy the statement of Problem 1.
We see above that the language L de�nes the class of equations with no

constants. One can reformulate Problem 1 for equations with constants.

Problem 2. Describe all varieties V of L-algebras such that each A ∈ V
is equationally Noetherian with respect to equations with constants from A
(i.e. A is equationally Noetherian in the language L(A) = L ∪ {a | a ∈ A})?

In the current paper we completely solve Problem 2 for semigroup varieties.
The description of such varieties V is given in Theorem 2.

2 Basic notions

Let S be a semigroup, and E(S) = {e ∈ S | ee = e} be the set of its
idempotents. A set J ⊆ S is called an ideal if sJ ⊆ J and Js ⊆ J for any
s ∈ S. A semigroup S is simple if it has a unique ideal J = S. By ⟨a⟩S we
denote the ideal of S generated by an element a ∈ S.

An element s ∈ S is reducible if there exist a, b ∈ S with s = ab. The set
of all reducible elements of a semigroup S is denoted by Red(S). Obviously,
Red(S) is an ideal of S, and E(S) ⊆ Red(S).

An idempotent e is primitive if for any f ∈ E(S) \ {0} the equalities
fe = ef = f imply f = e. A simple semigroup S is completely simple if it
contains a primitive idempotent.

The next classic theorem describes completely simple semigroups (see
e.g. [1]).

Theorem 1. For any completely simple semigroup S there exists a group G
and sets I,Λ such that S is isomorphic to the set of triples (λ, g, i), g ∈ G,
λ ∈ Λ, i ∈ I with the multiplication

(λ, g, i)(µ, h, j) = (λ, gpiµh, j),

where piµ ∈ G is an element of a matrix P such that

(1) P consists of |I| rows and |Λ| columns;
(2) the �rst index of the sets Λ, I is denoted by 1;
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(3) the matrix P is (1, 1)-normalised, i.e.

pi1 = p1λ = 1 ∈ G for all λ ∈ Λ, i ∈ I.

Following Theorem 1, we denote any completely simple semigroup S by
S = (Λ, G, I,P). The group G and the matrix P are called the structural
group and sandwich-matrix, respectively. If the sandwich-matrix P consists
of 1 ∈ G we will use the short denotation (Λ, G, I) instead of (Λ, G, I,P).

Suppose a semigroup S has an ideal J . Then the factor-semigroup H =
S/J is called the Rees factor semigroup. The semigroup H always contains
the zero (the ideal J is mapped into the zero of H).

An in�nite direct power S∞ of a semigroup S is the set of all sequences

(a1, a2, . . . , an, . . .), ai ∈ S,

and with the element-wise multiplication.
Let L = {·} be the semigroup language. An equation over L (L-equation)

is an equality of two L-terms: τ(X) = σ(X). The examples of L-equations
are the following: xy = yx, x2 = x, xyx = yxy.

A system S of L-equations (L-system for shortness) is an arbitrary set of
L-equations. The set of all solutions of S in variables X = {x1, x2, . . . , xn}
over a semigroup S is denoted by VS(S(X)) ⊆ Sn.

A semigroup S is equationally Noetherian if any in�nite L-system S in
variables X = {x1, x2, . . . , xn} is equivalent to a �nite subsystem S′ ⊆ S
over S (the equivalence of S,S′ means VS(S

′) = VS(S)).
By L(S) we denote the language L∪{s | s ∈ S} extended by new constant

symbols. The language extension allows us to use constants in equations.
The examples of equations in the extended language L(S) are the following:
x2 = s, xs = sx, s1x = s2x, where s, s1, s2 ∈ S. Obviously, the class of
L(S)-equations is wider than the class of L-equations, so an equationally
Noetherian (in the language L) semigroup S may lose this property in the
language L(S). To avoid the ambiguity, we say that S is S-equationally
Noetherian if S is equationally Noetherian in the language L(S).

Let

τ(X) = u1 . . . um

be an L(S)-term, ui ∈ S⊔X, X = {x1, . . . , xn} and ui+1 /∈ S if ui ∈ S. Each
ui is said to be a literal of the term τ(X). Moreover, the number m is called
the length of τ(X) and denoted by |τ |. For example, if S is the free semigroup
generated by elements a, b then the length of the L(S)-term x1abx2x3b

3 is 5.
Let S be a semigroup, and τ(X), σ(X) be L-terms. We say that S satis�es

the identity τ(X) = σ(X) (and denote S |= [τ(X) = σ(X)]) if for any n-tuple
(s1, s2, . . . , sn) ∈ Sn it holds τ(s1, s2, . . . , sn) = σ(s1, s2, . . . , sn). The class
of semigroups V = {S | S |= [τ(X) = σ(X)] for all τ(X) = σ(X) ∈ I} is
called the variety de�ned by a set of identities I. Indeed, any variety is closed
under the taking direct products, homomorphic images and subsemigroups.

Let var(S) denote the variety generated by a semigroup S, i.e. var(S)
consists of all semigroups which satisfy all identities τ(X) = σ(X) such that
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S |= [τ(X) = σ(X)]. The variety var(K) generated by a class of semigroups
K consists of all semigroups S such that S |= [τ(X) = σ(X)] for any identity
τ(X) = σ(X) with T |= τ(X) = σ(X) for each T ∈ K.

3 Main result: structure

Since any variety is closed under direct powers, one should study semig-
roups that de�ne equationally Noetherian direct powers.

Lemma 1. Let S be a semigroup such that the direct power S∞ is S∞-
equationally Noetherian. Then the solution set Y = VS(xa = xb) (respecti-
vely, Y = VS(ax = bx)) is either ∅ or S.

Proof. Let us consider an equation xa = xb, a, b ∈ S. If Y /∈ {∅, S}, there
exists c, d such that ca = cb, da ̸= db. Let us consider the following system
of L(S∞)-equations

S =



x(a, a, a, . . .) = x(a, a, a, . . .),

x(a, a, a, . . .) = x(b, a, a, . . .),

x(a, a, a, . . .) = x(b, b, a, . . .),

x(a, a, a, . . .) = x(b, b, b, . . .),

. . .

An element x = (x1, x2, x3, . . .) from the solution set of S has xi ̸= d for all
i. However, the solution set of the �rst n-equations of S contains the point

( c, c, . . . , c︸ ︷︷ ︸
n− 1 times

, d, d, d, . . .).

Thus, S is not equivalent to its �nite subsystems, and S∞ is not S∞-
equationally Noetherian. □

Corollary 1. Let S be a semigroup with a zero 0 such that S∞ is S∞-
equationally Noetherian. Then S has a zero multiplication.

Proof. Let a, b ∈ S and consider an equation ax = 0x. Since the given
equation is consistent over S (0 ∈ VS(ax = 0x)), Lemma 1 provides that
b ∈ VS(ax = 0x). Thus, ab = 0b = 0. □

One can consider any group G in the semigroup language L. For direct
powers of groups we have the following result.

Lemma 2. For any non-abelian group G the direct power G∞ is not G∞-
equationally Noetherian.
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Proof. Let us consider the following system of L(G∞)-equations

S =



x(1, 1, 1, . . .) = (1, 1, 1, . . .)x,

x(a, 1, 1, . . .) = (a, 1, 1, . . .)x,

x(a, a, 1, . . .) = (a, a, 1, . . .)x,

x(a, a, a, . . .) = (a, a, a, . . .)x,

. . .

where an element a ∈ G does not commute with some b ∈ G.
An element x = (x1, x2, x3, . . .) from the solution set of S has xi ̸= b for

all i. However, the solution set of the �rst n-equations of S contains the point

( 1, 1, . . . , 1︸ ︷︷ ︸
n− 1 times

, b, b, b, . . .).

Thus, G∞ is not G∞-equationally Noetherian. □

On the other hand, every abelian group G is G-equationally Noetherian
(see [2]).

In Lemmas 3�11 we assume that a semigroup variety V satis�es the
following statement:

�every S ∈ V is S-equationally Noetherian�.

Lemma 3. Let I be an ideal of S ∈ V. Then Red(S) ⊆ I.

Proof. The Rees factor semigroup S/I belongs to V and contains a zero.
By Corollary 1, S/I has zero multiplication. Hence for all a, b ∈ S it holds
ab ∈ I. Thus, Red(S) ⊆ I. □

Lemma 4. The set of all reducible elements Red(S) of a semigroup S ∈ V
is a simple semigroup.

Proof. Assume there exists an element x ∈ R = Red(S) such that ⟨x⟩R ⊂ R.
Consider an ideal

I = ⟨x5⟩S = {axxxxxb | a, b ∈ S1}
of the semigroup S. By Lemma 3, we obtain the contradiction:

R ⊆ I = {axxxxxb | a, b ∈ S1}
= {r1xr2 | r1 ∈ S1xx ⊆ R, r2 ∈ xxS1 ⊆ R}
⊆ {r1xr2 | r1, r2 ∈ R}
= ⟨x⟩R.

□

Lemma 5. Any element of a semigroup S ∈ V has �nite order.

Proof. Assume that s ∈ S generates an in�nite cyclic semigroup C∞. Further
in this lemma we consider the semigroup C∞ in the additive form with the
natural linear order ≤.
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Then C∞ ⊕ C∞ ∈ V. Let us show that the two-element idempotent
semigroup L2 = {0, 1} is a factor of a subsemigroup of C∞ × C∞. Indeed,
one can decompose the subsemigroup {(a, b) | a ≤ b} ⊆ C∞ × C∞ into the
union of the equivalence classes A1 = {(a, a) | a ∈ C∞}, A0 = {(a, b) | a <
b, a, b ∈ C∞}.

The multiplication over A1, A0 is given by AiAi = Ai, A0A1 = A1A0 = A0,
and therefore {A1, A0} is isomorphic to L2. Thus, L2 ∈ V and L∞

2 ∈ V, but
L∞
2 is not L∞

2 -equationally Noetherian (Corollary 1). □

Let us give some facts about the bicyclic semigroup B = ⟨a, b | ab = 1⟩

Proposition 1. ( [1], Theorem 2.54) The bicyclic semigroup B is embedded
into a simple but not completely simple semigroup S if S has at least one
idempotent.

Proposition 2. ( [3], Theorem 4.1) The bicyclic semigroup B is not B-
equationally Noetherian.

Lemma 6. Let S ∈ V then R = Red(S) is a completely simple semigroup.

Proof. By Lemma 4, R is simple. By Lemma 5, any element of R ∈ V has a
�nite order. Hence, R contains idempotents.

If R is not completely simple, it contains the bicyclic semigroup B (Propo-
sition 1), and therefore B ∈ V. Since B is not equationally Noetherian
(Proposition 2), we obtain a contradiction with the choice of V. □

Lemma 6 provides that Red(S) has the form (Λ, G, I,P).

Lemma 7. For a variety V there exists a number n ≥ 1 such that any group
G ∈ V is abelian and of the period n (i.e. gn = 1 for all g ∈ G).

Proof. By Lemma 2, any group G is abelian. Assume that for any number n
there exists a group G ∈ V and g ∈ G with gn ̸= 1.

Let G ⊆ V be all groups from the variety V. The class G is not empty,
since any semigroup from V contains a subgroup (Lemma 6).

Let us consider the semigroup variety var(G) and take an arbitrary identity
τ(X) = σ(X) which holds in var(G).

First, we prove that the identity τ(X) = σ(X) is balanced, i.e. for any
letter xi ∈ X the number of occurrences of xi in τ(X) coincides with the
number of occurrences in σ(X).

Assume the converse: the number of occurrences of xi in τ(X) (respectively,
σ(X)) equals k (respectively, l) and k ̸= l. If we assign xj = 1 for all j ̸= i

we obtain the identity xki = xli. Equivalently, the identity xk−l
i = 1 holds

for any group G ∈ var(G). It follows that any group from V has the period
k − l.

Thus, all identities of var(G) are balanced. Hence, the in�nite cyclic
group Z belongs to this variety. The last fact contradicts Lemma 5, since
all nontrivial elements of Z have in�nite order. □
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Lemma 8. Let S ∈ V then Red(S) is isomorphic to (Λ, G, I,P) with piλ = 1
for all i ∈ I, λ ∈ Λ.

Proof. Recall that the sandwich-matrixP is (1, 1)-normalized. Let us consider
an equation:

x(λ, 1, 1) = x(1, 1, 1).

Obviously, this equation satis�es the point x = (1, 1, 1). According to Lem-
ma 1, this equation should be satis�ed by any x ∈ S. In particular, we have

(1, piλ, 1) = (1, 1, i)(λ, 1, 1) = (1, 1, i)(1, 1, 1) = (1, 1, 1).

Thus, piλ = 1. □

Lemma 9. Let S ∈ V and R = Red(S) = (Λ, G, I). Then for the any a ∈ S
there exist ga ∈ G, λa ∈ Λ, ia ∈ I such that the multiplication in S is de�ned
as follows:

a(µ, g, i) = (λa, gag, i), (µ, g, i)a = (µ, gga, ia) (1)

for all µ ∈ Λ, g ∈ G, i ∈ I.

Proof. If a = (λa, ga, ia) ∈ R, we immediately obtain (1). Assume below
a ∈ S \R.

Since a(1, 1, 1) ∈ R, there exists λa, ga, i
′
a such that a(1, 1, 1) = (λa, ga, i

′
a).

We have:

(λa, ga, 1) = (λa, ga, i
′
a)(1, 1, 1) = a(1, 1, 1)(1, 1, 1) = a(1, 1, 1) = (λa, ga, i

′
a),

hence i′a = 1.
Since the equation x(µ, 1, 1) = x(1, 1, 1) has a solution (1, 1, 1), Lemma 1

provides

a(µ, 1, 1) = a(1, 1, 1) = (λa, ga, 1). (2)

Therefore,

a(µ, g, i) = a(µ, 1, 1)(1, g, i) = (λa, ga, 1)(1, g, i) = (λa, gag, i)

for all µ ∈ Λ, g ∈ G, i ∈ I. Similarly, one can prove

(µ, g, i)a = (µ, gg′a, ia)

for all µ, g, i. Let us prove g′a = ga. Namely,

(1, g′a, 1) = (1, g′a, ia)(1, 1, 1) = (1, 1, 1)a(1, 1, 1) = (1, 1, 1)(λa, ga, 1) = (1, ga, 1).

Thus, we proved (1). □

Lemma 10. Let S ∈ V, and Red(S) = (Λ, G, I), then

ab = (λa, gagb, ib) (3)

for any a, b ∈ S.
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Proof. The product ab belongs to R = Red(S), so ab = (µ, g, i) for some
µ ∈ Λ, g ∈ G, i ∈ I.

Using (1), we have

(1, gagb, ib) = (1, ga, ia)b = (1, 1, 1)ab = (1, 1, 1)(µ, g, i) = (1, g, i),

hence g = gagb, i = ib. On the other hand,

(µ, gagb, 1) = (µ, gagb, ib)(1, 1, 1) = ab(1, 1, 1) = a(λb, gb, 1) = (λa, gagb, 1),

Thus, µ = λa, and (3) holds. □

Lemma 11. Any S ∈ V satis�es

aeb = afb for all a, b ∈ S, e, f ∈ E(S). (4)

Proof. Since any idempotent belongs to Red(S), and any entry of the sand-
wich-matrix of Red(S) equals 1 (Lemma 8), arbitrary idempotents of S have
the form: e = (λe, 1, ie), f = (λf , 1, if ) for some λe, λf ∈ Λ, ie, if ∈ I.
Using (3), we have

aeb = (λa, ga, ie)b = (λa, gagb, ib) = (λa, ga, if )b = afb.

□

Lemma 12. Suppose a semigroup S satis�es (4), and Red(S) = (Λ, G, I,P)
is completely simple. Then

(1) any entry of P equals 1,
(2) for any a, b ∈ S the equality (3) holds.

Proof. Let e, f ∈ E(S) ⊆ Red(S). The equality (4) gives fef = fff = f .
Let f = (1, 1, 1) and e has the indexes λ ∈ Λ, i ∈ I. According to the
multiplication if Red(S), e is the triple e = (λ, p−1

iλ , i). The equality fef = f
gives

(1, 1, 1)(λ, p−1
iλ , i)(1, 1, 1) = (1, 1, 1) ⇒ (1, p−1

iλ , 1) = (1, 1, 1) ⇒ piλ = 1.

Let us prove (3). If e = (λ, 1, i), f = (µ, 1, j), b = (1, 1, 1) then (4) gives

a(λ, 1, 1) = a(µ, 1, 1).

Hence, the exists λa, ga, i
′
a with a(λ, 1, 1) = (λa, ga, i

′
a) for any λ ∈ Λ. The

further proof coincides with Lemmas 9 and 10. □

Suppose a semigroup satis�es (3) and Red(S) is completely simple. One
can de�ne a mapping:

ϕ : S → Red(S), ϕ(s) = (λs, gs, is).

Moreover, the equality (3) implies that ϕ is a homomorphism of semigroups.
Let P = (p1, . . . , pn) ∈ Sn, then ϕ(P ) denotes the point (ϕ(p1), . . . , ϕ(pn)) ∈

Red(S)n.
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Let τ(X) = u1 . . . um be an L(S)-term with literals ui ∈ S ⊔X. One can
de�ne the L(R)-term τϕ(X) = (u1)ϕ . . . (um)ϕ as follows:

(ui)ϕ =

{
ϕ(ui) if ui ∈ S,

ui if ui ∈ X

For example, if τ(X) = x1ax2b then τϕ(X) = x1(λa, ga, ia)x2(λb, gb, ib).

Lemma 13. Let τ(X) be an L(S)-term with |τ | ≥ 2 and a semigroup S
satis�es (3). Then for any P ∈ Sn we have the equalities:

τ(P ) = τ(ϕ(P )) = τϕ(P ) = τϕ(ϕ(P )). (5)

Proof. It is su�cient to prove the equalities for any term of length 2 (the
proof for longer terms can be done by the induction). Thus, we have the
following types of L(S)-terms of length 2 (here x, y ∈ X, s ∈ S):

(1) τ(X) = xy,
(2) τ(X) = xs,
(3) τ(X) = sx.

Let us consider the �rst case. For a point P = (a, b) we have τϕ(X) = xy,
ϕ(P ) = ((λa, ga, ia), (λb, gb, ib)). One can directly prove that

τ(P ) = τ(ϕ(P )) = τϕ(P ) = τϕ(ϕ(P )) = (λa, gagb, ib),

and (5) holds.
For the second case we have (here P = a): ϕ(P ) = (λa, ga, ia), τϕ(X) =

xσϕ = x(λs, gs, is), and

τ(P ) = τ(ϕ(P )) = τϕ(P ) = τϕ(ϕ(P )) = (λa, gags, is).

The third case is similar to the previous one. □

In [4] it was proved the following criterion of the Noetherian property for
completely simple semigroups.

Proposition 3. ([4], Theorem 8) Let S = (Λ, G, I,P) be a completely
simple semigroup. The semigroup is S-equationally Noetherian i� G is G-
equationally Noetherian.

In particular, if G is abelian, any semigroup S = (Λ, G, I,P) is S-equatio-
nally Noetherian.

Theorem 2. A variety V completely consists of S-equationally Noetherian
semigroups i� there exists a number n such that every S ∈ V satis�es the
following conditions:

(1) the set of reducible elements R = Red(S) is isomorphic to a complete-
ly simple semigroup (Λ, G, I,P);

(2) the group G is abelian and of the period n;
(3) S satis�es (4).
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Proof. The �only if� part of the theorem directly follows from Lemmas 6, 7, 11.
Let us prove the �if� part of the theorem. By Lemma 12, we obtain that

any entry of the sandwich-matrix P equals 1 and (3) holds.
Let us consider a system of L(S)-equations S = {tj(X) = sj(X) | j ∈ J}

over a semigroup S in variables X = {x1, . . . , xn}.
Applying the map ϕ : S → R, we obtain the system ϕ(S) = {(tj)ϕ(X) =

(sj)ϕ(X) | j ∈ J} of L(R)-equations. By Proposition 3, the system ϕ(S) is
equivalent to a �nite subsystem Sϕ ⊆ ϕ(S) over the semigroup R.

For every equation from Sϕ we choose a pre-image in S to collect a �nite
subsystem S′ ⊆ S. Let

S1 = {τ(X) = σ(X) | |τ(X)| = 1 or |σ(X)| = 1} ⊆ S.

Obviously, S1 is a union

S1 = S11 ∪
n⋃

i=1

S1
i ,

where

(1) S11 ⊆ S is the set of all equations π(X) = ρ(X) ∈ S with |π| = |ρ| =
1;

(2) S1
i ⊆ S is the set of all equations π(X) = ρ(X) ∈ S \ S11 such that

either π(X) or ρ(X) equals xi ∈ X.

Let us choose an arbitrary equation Eqi from each system S1
i and denote

S′′ = S′ ∪
⋃
i

Eqi ∪ S11 ⊆ S.

Let us prove that the �nite subsystem S′′ is equivalent to S over S.
Assume there exists a point P = (p1, . . . , pn) with P ∈ VS(S

′′) \ VS(S).
In other words, there exists an equation τ(X) = σ(X) ∈ S \ S′′ and τ(P ) ̸=
σ(P ).

Since ϕ is a homomorphism, we have ϕ(P ) ∈ VR(ϕ(S
′′)). By the choice of

the system S′, we have ϕ(P ) ∈ VR(ϕ(S)), in particular

ϕ(P ) ∈ VR(τϕ(X) = σϕ(X)). (6)

By (5), P ∈ VS(τ(X) = σ(X)) if |τ |, |σ| ≥ 2. Since τ(P ) ̸= σ(P ), at least
one length of terms τ, σ equals 1. The case |τ | = |σ| = 1 is impossible, since
the system S11 is included into S′′.

Thus, we may assume that τ(X) = xi and |σ| ≥ 2. The choice of the
equation xi = σ(X) gives pi ̸= σ(P ). By (5), (6), ϕ(pi) = σϕ(ϕ(P )) = σ(P ).

Hence, pi ̸= ϕ(pi) and the de�nition of ϕ gives pi ∈ S \ R. However,
the system S′′ contains an equation of the form xi = σ(X), |σ| ≥ 2 with
pi = σ(P ). Since |σ| ≥ 2, we have pi = σ(P ) ∈ R, a contradiction. □

Example 1. Let V be the variety of rectangular bands, i.e. V is de�ned by
the identities xx = x, xyz = xz. It is well-known fact that any semigroup
from V is isomorphic to ({1},Λ, I) for some index sets Λ, I.
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Let us check the conditions of Theorem 2 for V. Namely, for S ∈ V we
have S = Red(S) = (Λ, {1}, I), and n = 1. The property (4) follows from
the identity xyz = xz.

Thus, V completely consists of equationally Noetherian semigroups.
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