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ON PROFINITE POLYADIC GROUPS

M. SHAHRYARI AND M. ROSTAMI

Abstract. We study the structure of pro�nite polyadic groups and we
prove that a polyadic topological group (G, f) is pro�nite, if and only
if, it is compact, Hausdor�, totally disconnected. More generally, for a
pseudo-variety (or a formation) of �nite groups X, we de�ne the class of
X-polyadic groups, and we show that a polyadic group (G, f) is pro-X, if
and only if, it is compact, Hausdor�, totally disconnected and for every
open congruence R, the quotient (G/R, fR) is X-polyadic.

Keywords: Polyadic groups, n-ary groups, Pro�nite groups and polyadic
groups, Post's cover and retract of a polyadic group.

1. Introduction

In this article, we study the structure of pro�nite polyadic groups: polyadic
groups which are the inverse limit of a system of �nite polyadic groups. A polyadic
group is a natural generalization of the concept of group to the case where the binary
operation of group replaced with an n-ary associative operation, one variable linear
equations in which have unique solutions. So, in this article, polyadic group means
an n-ary group for a �xed natural number n ≥ 2. These interesting algebraic objects
are introduced by Kasner and D�ornte ([7] and [2]) and studied extensively by Emil
Post during the �rst decades of the last century, [12]. During decades, many articles
have been published on the structure of polyadic groups. Already, homomorphisms
and automorphisms of polyadic groups are studied in [9]. A characterization of
the simple polyadic groups is obtained by them in [10]. Also, the representation
theory of polyadic groups is studied in [5] and the complex characters of �nite
polyadic groups are also investigated in [13]. The structure of free polyadic groups
is determined in [1], [11], and [8].
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It is easy to de�ne topological polyadic groups, and so, one can ask which
topological polyadic groups are pro�nite. In this paper, we study this problem and
as the main result, we prove that a polyadic topological group (G, f) is pro�nite,
if and only if, it is compact, Hausdor�, totally disconnected. More generally, for
a pseudo-variety (formation) of �nite groups X, we de�ne the class of X-polyadic
groups, and we show that a polyadic group (G, f) is pro-X, if and only if, it is
compact, Hausdor�, totally disconnected and for every open congruence R, the
quotient (G/R, fR) is X-polyadic.

2. Polyadic groups

A polyadic group is a pair (G, f) where G is a non-empty set and f : Gn → G is
an n-ary operation such that

(i) the operation is associative, i.e.

f(xi−1
1 , f(xn+i−1

i ), x2n−1
n+i ) = f(xj−1

1 , f(xn+j−1
j ), x2n−1

n+j )

for any 1 ≤ i < j ≤ n and for all x1, . . . , x2n−1 ∈ G, and

(ii) for all a1, . . . , an, b ∈ G and 1 ≤ i ≤ n, there exists a unique element x ∈ G
such that

f(ai−1
1 , x, ani+1) = b.

Note that here we use the compact notation xji for every sequence

xi, xi+1, . . . , xj

of elements in G, and in the special case when all terms of this sequence are equal

to a �xed x, we denote it by
(t)
x , where t is the number of terms.

Clearly, the case n = 2 is exactly the de�nition of ordinary groups. During this
article, we assume that n is �xed. Note that an n-ary system (G, f) of the form
f(xn1 ) = x1x2 . . . xnb, where (G, ·) is a group and b a �xed element belonging to
the center of (G, ·), is a polyadic group which is called b-derived from the group
(G, ·) and it is denoted by dernb (G, ·). In the case when b is the identity of (G, ·),
we say that such a polyadic group is reduced to the group (G, ·) or derived from
(G, ·) and we use the notation dern(G, ·) for it. For every n > 2, there are n-ary
groups which are not derived from any group. A polyadic group (G, f) is derived
from some group if and only if, it contains an element a (called an n-ary identity)
such that

f(
(i−1)
a , x,

(n−i)
a ) = x

holds for all x ∈ G and for all i = 1, . . . , n, see [3].
From the de�nition of an n-ary group (G, f), we can directly see that for every

x ∈ G, there exists only one y ∈ G, satisfying the equation

f(
(n−1)
x , y) = x.

This element is called skew to x and it is denoted by x. As D�ornte [2] proved, the
following identities hold for all x, y ∈ G, 2 ≤ i ≤ n,

f(
(i−2)
x , x,

(n−i)
x , y) = f(y,

(n−i)
x , x,

(i−2)
x ) = y.
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These identities together with the associativity identities, axiomatize the variety of
polyadic groups in the algebraic language (f,− ).

Suppose (G, f) is a polyadic group and a ∈ G is a �xed element. De�ne a binary
operation

x • y = f(x,
(n−2)
a , y).

Then (G, •) is an ordinary group, called the retract of (G, f) over a. Such a retract
will be denoted by reta(G, f). All retracts of a polyadic group are isomorphic. The
identity of the group (G, •) is a. One can verify that the inverse element to x has
the form

y = f(a,
(n−3)
x , x, a).

One of the most fundamental theorems of polyadic group is the following now
known as Hossz�u -Gloskin's theorem. We will use it frequently in this article and
the reader can use [4], [6] and [14] for detailed discussions.

Theorem 1. Let (G, f) be a polyadic group. Then there exists an ordinary group
(G, •), automorphism θ of (G, •) and element b ∈ G such that

1. θ(b) = b,

2. θn−1(x) = bxb−1, for every x ∈ G,

3. f(xn1 ) = x1θ(x2)θ
2(x3) · · · θn−1(xn)b, for all x1, . . . , xn ∈ G.

According to this theorem, we use the notation derθ,b(G, •) for (G, f) and we
say that (G, f) is (θ, b)-derived from the group (G, •).

There is one more important ordinary group associated to a polyadic group
which we call it the Post's cover. This is the �rst fundamental theorem concerning
polyadic groups. The proof can be �nd in [12].

Theorem 2. Let (G, f) be a polyadic group. Then there exists a unique group
(G∗, ◦) such that

1) G is contained in G∗ as a coset of some normal subgroup K.

2) K is isomorphic to a retract of (G, f).

3) We have G∗/K ∼= Zn−1.

4) Inside G∗, for all x1, . . . , xn ∈ G, we have f(xn1 ) = x1 ◦ x2 ◦ · · · ◦ xn.

5) G∗ is generated by G.

The group G∗ is also universal in the class of all groups having properties 1,
4. More precisely, if β : (G, f) → dern(H, ∗) is a polyadic homomorphism, then
there exists a unique ordinary homomorphism h : G∗ → H such that h|G = β.
This universal property characterizes G∗ uniquely. The explicit construction of the
Post's cover can be �nd in [13].

Finally, we have to mention that the structure of polyadic homomorphisms will
be needed in what follows. The reader can see [9] for details.



ON PROFINITE POLYADIC GROUPS 817

Theorem 3. Suppose (G, f) = derθ,b(G, ·) and (H,h) = derη,c(H, ∗) are two
polyadic groups. Let ψ : (G, f) → (H,h) be a homomorphism. Then there exists
a ∈ H and an ordinary homomorphism ϕ : (G, ·) → (H, ∗) such that ψ = R(a)ϕ,
where R(a) denotes the map x 7→ x ∗ a. Further a and ϕ satisfy the following
conditions;

h(
(n)
a ) = ϕ(b) ∗ a and ϕθ = Iaηϕ,

where Ia denotes the inner automorphism x 7→ a ∗ x ∗ a−1. Conversely, if a and ϕ
satisfy the above two conditions, then ψ = Raϕ is a homomorphism (G, f)→ (H,h).

3. Profinite polyadic groups

A pro�nite polyadic group is the inverse limit of an inverse system of �nite
polyadic groups. More precisely, let (I,≤) be a directed set and suppose

{(Gi, fi), φij , I}
is an inverse system of �nite polyadic groups. This means that for every pair (i, j)
of elements of I with j ≤ i, we are given a polyadic homomorphism

φij : (Gi, fi)→ (Gj , fj)

such that the equality φjkφij = φik holds for all k ≤ j ≤ i. Now, assume that

(G, f) = lim←−
i

(Gi, fi).

Then (G, f) is called a pro�nite polyadic group. From now on, we consider the pair
(G, f) which is the above mentioned inverse limit. A realization of this pair can be
given as follows: Let

∏
i(Gi, fi) be the direct product of the family {(Gi, f)i}i∈I .

This is a polyadic group with the n-ary operation

(
∏

fi)((xi1), (xi2), . . . , (xin)) = (fi(xi1, xi2, . . . , xin))i∈I .

Here of course, we denoted an arbitrary element of the direct product as sequence
(ai)i∈I or simply (ai). Now, we have

G = {(xi)i∈I : ∀j ≤ i φij(xi) = xj},
and hence

f((xi1), (xi2), . . . , (xin)) = (fi(xi1, xi2, . . . , xin))i∈I .

Note that, as each Gi is �nite, being a closed subspace of the direct product
of a family of �nite sets, (G, f) is compact, Hausdor�, and totally disconnected
topological polyadic group, of course, if it has been shown that G is non-empty.
Indeed, using standard topological arguments, we can prove that G ̸= ∅ as every
Gi is compact.

Recall that, according to Hossz�u -Gloskin's theorem, we have

(Gi, fi) = derθi,bi(Gi, •i),
for some ordinary group (Gi, •i), an element bi ∈ Gi, and an automorphism θi,
satisfying the conclusions of Theorem 2.1. We will prove that in some sense, there
exists a binary operation • on G such that

(G, •) = lim←−
i

(Gi, •i),
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and hence (G, •) will be proved to be pro�nite. Consider the polyadic homomor-
phism φij . According to Theorem 2.3, there exist an element aij ∈ Gj , and a group
homomorphism ψij : (Gi, •i)→ (Gj , •j), such that

φij = R(aij)ψij .

Further, we have the following equalities:

1. fj(aij , aij , . . . , aij) = ψij(bi) •j aij ,

2. ψijθi = I(a−1
ij )θjψij .

For any triple of indices k ≤ j ≤ i, we have

φij = R(aij)ψij , φik = R(aik)ψik, φjk = R(ajk)ψjk,

therefore

aij = φij(1), aik = φik(1), ajk = φjk(1).

Note that in each equality, 1 is the identity element of the corresponding group.
Since φik = φjkφij , so we have

aik = φjk(aij).

Now, let Yi be the set of all sequences (xj) (in the direct product) such that for any
j and k ≤ i, we have φjk(xj) = xk. This set is non-empty, because we can consider
a sequence where xj = aij , for j ≤ i, and for all other j, xj is arbitrary. This
sequence will be an element of Yi. The set Yi is closed and if i ≤ s, then Ys ⊆ Yi. As
the direct product is compact, and the family {Yi} has �nite intersection property,
we have ⋂

i

Yi ̸= ∅,

showing that G is not empty.
Our �rst result, shows that the property of being pro�nite is inherited by the

retract and Post's cover:

Proposition 1. Let (G, f) = derθ,b(G, •) be a pro�nite polyadic group. Then the
retract group (G, •) and the Post's cover are also pro�nite.

Proof. We know that (G, •) = reta(G, f) for some a. As we have

x • y = f(x,
(n−2)
a , y),

and

x−1 = f(a,
(n−3)
x , x, a),

so, the group (G, •) is a topological group which is compact, Hausdor�, and totally
disconnected. This shows that the retract is pro�nite. We know that there exists
a normal subgroup K of the Post's cover which has the index n − 1 and K is
isomorphic to the retract (G, •). Hence, K is pro�nite. Now, being a �nite extension
of a pro�nite group, G∗ is also pro�nite. □

The next result shows that, in some sense, the retract is the inverse limit of the
retracts of the polyadic groups (Gi, fi).
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Proposition 2. Let (G, f) = derθ,b(G, •) be a polyadic group and (G, f) = lim←−i
(Gi, fi).

Then there exist elements vi ∈ Gi, such that

(G, •) = lim←−
i

retvi(Gi, fi).

Proof. AsG ̸= ∅, we choose an arbitrary element (vi) ∈ G. We know that all retracts
of a polyadic group are isomorphic to each other. So, we consider the retract

(Gi, •i) = retvi(Gi, fi).

By the construction of Sokolov (see [14]), we have

θi(x) = fi(vi, x,
(n−2)
vi ),

for any x. Also we have

bi = fi(vi, . . . , vi).

Using this special form of the retract, we see that the maps φij are group homomor-
phisms as well, because

φij(x •i y) = φij(fi(x,
(n−2)
vi , y))

= fj(φij(x),
(n−2)

φij(vi), φij(y))

= fj(φij(x),
(n−2)
vj , φij(y))

= φij(x) •j φij(y).

Note that here we use the fact φij(vi) = vj as we assumed that (vi) ∈ G. This
shows that the maps φij : Gi → Gj are in the same time group homomorphisms
and {(Gi, •i), φij , I} is an inverse system of �nite groups. Obviously, (G, •) is the
inverse limit of this system. □

Note that in some sense, the inverse of the above theorem is also true: if we
consider a pro�nite group (G, •) together with a continuous automorphism θ and an
element b satisfying the requirement of 2.1, then the polyadic group derθ,b(G, •) will
be pro�nite. We will see the proof soon. One may ask also about the automorphism
θ in the above proof. The above construction shows that, for any (xi) ∈ G, we have

θ((xi)i∈I) = (θi(xi))i∈I .

As a result, we see that the inverse limit commutes with the functor der:

Corollary 1. Let {(Gi, fi), φij , I} be an inverse system of �nite polyadic groups
and for any i, suppose (Gi, fi) = derθi,bi(Gi, •i). Then

lim←−
i

derθi,bi(Gi, •i) = derθ̂,b̂ lim←−
i

(Gi, •i),

where

b̂ = (bi)i∈I ,

and

θ̂((xi)i∈I) = (θi(xi))i∈I .

We are ready now, to give a characterization of the pro�nite polyadic groups.

Theorem 4. A topological polyadic group is pro�nite, if and only if, it is compact,
Hausdor�, and totally disconnected.
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Proof. We already have seen that a pro�nite polyadic group is compact, Hausdor�
and totally disconnected. Now, assume that (G, f) = derθ,b(G, •) is a topological
polyadic group which is compact, Hausdor�, and totally disconnected. As we saw
before, the retract (G, •) is also a topological group with the same properties, so it
is a pro�nite group. This means that

(G, •) = lim←−{
G

K
: K ⊴G, K = open}.

Let

I = {K ⊴G : K = open, θ(K) ⊆ K}, J = {K ⊴G : K = open}.

We show that I is a co�nal in the directed set J . In other words, we show that for
any L ∈ J , there exists a K ∈ I such that K ⊆ L. So, let L ∈ J and consider

K =

n−1⋂
i=0

θi(L).

As G is compact and θ is continuous, K is an open normal subgroup of (G, •). It
is also θ-invariant, since if u ∈ K, then

∀i∃xi ∈ L : u = θi(xi).

Hence

θ(u) = θi+1(xi) ∈ θi+1(L),

and since θn−1(L) ⊆ L it follows that θ(u) ∈ K. This proves that

(G, •) = lim←−
K∈I

G

K
.

Now, for each K ∈ I, we can de�ne an automorphism

θK :
G

K
→ G

K
, θK(xK) = θ(x)K.

Note that we also have

θK(bK) = bK, θn−1
K (xK) = (bK)(xK)(bK)−1,

therefore, we can consider the �nite polyadic group

(
G

K
, fK) = derθK ,bK(

G

K
, •).

Now, as we have

(G, •) = lim←−
K∈I

G

K
,

the mapping x 7→ (xK)K∈I is an isomorphism, so every element in the right hand
side can be represented as a sequence (xK)K∈I , for a unique x ∈ G. This means
that the automorphism

θ̂((xK)K) = (θ(x)K)K ,
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is the same as θ. Similarly, we have b̂ = b. Therefore, by the previous corollary, we
have

(G, f) = derθ,b(G, •)

= derθ,b( lim←−
K∈I

(
G

K
, •))

= lim←−
K∈I

derθK ,bK(
G

K
, •),

and this shows that (G, f) is pro�nite. □

As a result, we have

Corollary 2. A polyadic group (G, f) = derθ,b(G, •) is pro�nite, if and only if,
(G, •) is pro�nite and θ is continuous.

Now, we consider a more general case, where a class Y of �nite polyadic groups
is given and discuss pro-Y polyadic groups: polyadic groups which are the inverse
limits of inverse systems of elements of Y. Let X be an arbitrary class of groups.
De�ne a new class

Poln(X) = {(G, f) = n− ary : ret(G, f) ∈ X}.
Proposition 3. If the class X is closed under each of the closure operators: subgroup,
direct product, quotient, or subdirect product, then the class Poln(X) is also closed
under the similar operation.

Proof. Let X be closed under taking subgroups and (G, f) ∈ Poln(X). Let (H, f) ≤
(G, f). Then for any a ∈ H, we have

reta(H, f) ≤ reta(G, f) ∈ X,

and so reta(H, f) ∈ X, which shows that (H, f) ∈ Poln(X).
Now, assume that X is closed under taking direct products and (Gi, fi) ∈ Poln(X)

be a family of polyadic groups, where i ∈ I. For any arbitrary sequence (ai)i ∈∏
i(Gi, fi) we have

ret(ai)(
∏
i

(Gi, fi)) =
∏
i

retai(Gi, fi) ∈ X,

and this shows that
∏

i(Gi, fi) ∈ Poln(X).
Let X be closed under taking quotients, (G, f) ∈ Poln(X), and R be a congruence

of (G, f). In the quotient polyadic group (G/R, fR), we have

fR([x1]R, . . . , [xn]R) = [f(x1, . . . , xn)]R,

where [ ]R denotes the congruent class. Let a ∈ G and de�ne a map

λ : reta(G, f)→ ret[a](
G

R
, fR)

by λ(x) = [x]R. We have

λ(x • y) = [x • y]R

= [f(x,
(n−2)
a , y)]R

= fR([x],
(n−2)

[a] , [y])

= [x]R • [y]R.



822 M. SHAHRYARI AND M. ROSTAMI

This shows that λ is a group epimorphism and hence

ret[a](
G

R
, fR) ∼=

reta(G, f)

kerλ
∈ X.

As a result, (G/R, fR) ∈ Poln(X). The case of subdirect product can be proved by
a similar argument. □

Therefore Poln(X) will be a variety, if we begin with a variety of groups X. It
could be a good question if one ask about the set of identities of this variety. We
are not interested in such problems in this work. Recall that a pseudo-variety of
�nite groups, is a class of �nite groups which is closed under subgroup, quotient
and �nite direct product. Similarly, a formation of �nite groups, is a class of �nite
groups which is closed under quotient and �nite subdirect products. Now, we are
ready to prove the next result. In what follows, a polyadic X-group means a polyadic
Poln(X)-group. So, the name X will be used both for the class of groups and its
corresponding class of polyadic groups.

Theorem 5. Let X be a pseudo-variety (formation) of �nite groups. Let (G, f) be
a pro-X polyadic group and R be an open congruence of it. Then

(
G

R
, fR) ∈ Poln(X).

Proof. Here we only consider the case where X is a pseudo-variety. Assume that
(G, f) = derθ,b(G, •). Suppose R ⊆ G × G is an open congruence of the polyadic
group (G, f). In [10], it is proved that in this case, the equivalence relation R is
a subgroup of the ordinary group G × G (the letter G here stands for the group
(G, •)). So we de�ne a map

ψ :
G

R
→ G×G

R
by ψ([x]R) = (x, 1)R. This map is well-de�ned as if we suppose [x]R = [y]R, then
(x, y) ∈ R and so (x, y)R = R. This means that

(x, 1)R = (1, y−1)R,

and as in the quotient we have (1, y−1)R = (y, 1)R, so the map is well-de�ned.
Also, it is injective, since if (x, 1)R = (y, 1)R, then (x−1y, 1) ∈ R, so we have also

(y, x) = (x, x)(x−1y, 1) ∈ R.
Note that

ψ(fR([x1], . . . , [xn])) = ψ([f(x1, . . . , xn)]R)

= (f(x1, . . . , xn), 1)R

= (x1, 1)(θ(x2), 1) · · · (θn−1(xn), 1)(b, 1)R

= fG×G
R

((x1, 1)R, . . . , (xn, 1)R).

This shows that we indeed have a polyadic embedding

ψ : (
G

R
, fR)→ derθ̄,b̄(

G×G
R

, •).

As (G, f) is assumed to be a pro-X polyadic group, (G, •) is a pro-X group, and
hence G×G is so. Now, R⊴G×G is an open subgroup, so the quotient G×G/R
belongs to X. This means that

derθ̄,b̄(
G×G
R

, •) ∈ Poln(X),
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and hence (G/R, fR) ∈ Poln(X). □

The converse of the above theorem is also true. For a proof, one may to proceed
as in the theorem 3.4.

Theorem 6. Let X be a pseudo-variety (formation) of �nite groups. Let (G, f) be
a topological polyadic group which is compact, Hausdor�, and totally disconnected.
Assume that for any open congruence R, the polyadic group (G/R, fR) belongs to
Poln(X). Then (G, f) is pro-X.
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