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A RADON TYPE TRANSFORM RELATED TO THE EULER

EQUATIONS FOR IDEAL FLUID

V.A. SHARAFUTDINOV

Abstract. We study the Nadirashvili � Vladuts transform N that
integrates second rank tensor �elds f on Rn over hyperplanes. More
precisely, for a hyperplane P and vector η parallel to P , Nf(P, η) is the
integral of the function fij(x)ξ

iηj over P , where ξ is the unit normal
vector to P . We prove that, given a vector �eld v, the tensor �eld f =
v ⊗ v belongs to the kernel of N if and only if there exists a function p
such that (v, p) is a solution to the Euler equations. Then we study the
Nadirashvili � Vladuts potential w(x, ξ) determined by a solution to the
Euler equations. The function w solves some 4th order PDE. We describe
all solutions to the latter equation.

Keywords: Euler equations, Nadirashvili � Vladuts transform, tensor
tomography.

1. Introduction

In dimensions 2 and 3, the Euler equations

(1)

n∑
j=1

vj
∂vi
∂xj

+
∂p

∂xi
= 0 (i = 1, . . . , n),

(2) div v =

n∑
i=1

∂vi
∂xi

= 0
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describe steady �ows of ideal incompressible �uid. The equations are also of some
mathematical interest in an arbitrary dimension. Here v =

(
v1(x), . . . , vn(x)

)
is a

vector �eld on Rn (the �uid velocity) and p is a scalar function on Rn (the pressure).
Only real solutions (v, p) are physically sensible. Nevertheless, all our results are
valid for solutions with complex-valued functions vi and p. We have to consider
complex-valued functions and vector �elds since we use the Fourier transform.

We consider only solutions (v, p) to the Euler equations (1)�(2) which are de�ned
on the whole of Rn, are su�ciently smooth, and satisfy some decay conditions at
in�nity. The reader can easily �nd minimal regularity and decay conditions for every
statement below. To simplify the presentation, we will always assume the functions
vi (i = 1, . . . , n) and p to belong to the Schwartz space S(Rn) of smooth functions
fast decaying at in�nity together with all derivatives (the term �smooth� is used as
a synonym of �C∞-smooth�).

One can ask: Do there exist non-trivial (i.e., not identically equal to zero)
solutions to the Euler equations such that vi and p belong to S(Rn)? The answer
to the question is �yes�. Moreover, there exist non-trivial solutions such that vi and
p belong to the space C∞

0 (Rn) of smooth compactly supported functions. In the
case of any even dimension n, an example of such a solution is presented in [2, 7].
In the case of n = 3, the existence of such a solution is proved in the breakthrough
article [3] by Gavrilov, see also [1, 7]. We guess (although have not proven) such a
solution exists in any odd dimension.

Let ⟨·, ·⟩ be the standard dot-product on Rn and | · |, the corresponding norm.
Let Sn−1 = {ξ ∈ Rn | |ξ| = 1} be the unit sphere. To our knowledge, the following
observation belongs to Nadirasvili � Vladuts [5]. Let (v, p) be a solution to the Euler
equations (1)�(2) such that the functions vi (i = 1, . . . , n) and p belong to S(Rn).
Then, for every (ξ, q) ∈ Sn−1 ×R and for every vector η ∈ Rn satisfying ⟨ξ, η⟩ = 0,

(3)

∫
⟨ξ,x⟩=q

⟨v(x), ξ⟩⟨v(x), η⟩ dx = 0,

where dx is the (n−1)-dimensional Lebesgue measure on the hyperplane ⟨ξ, x⟩ = p.
For a �xed (ξ, q) ∈ Sn−1×R, (3) involves n−1 linearly independent equations since
η belongs to the (n−1)-dimensional space ξ⊥ = {η ∈ Rn | ⟨ξ, η⟩ = 0}. An easy proof
of (3) is presented at the beginning of the next section for the sake of completeness.

For ξ ∈ Sn−1, let Pξ : Rn → ξ⊥ be the orthogonal projection, it is expressed by
Pξη = η − ⟨ξ, η⟩ξ. In (3), we can replace η ∈ ξ⊥ with Pξη for an arbitrary η ∈ Rn

(4)

∫
⟨ξ,x⟩=q

⟨v(x), ξ⟩⟨v(x), Pξη⟩ dx = 0
(
(ξ, η, q) ∈ Sn−1 × Rn × R

)
.

We will treat this equation for |η| = 1 since we are going to integrate with respect
to η.

Let S(Rn;Cn) be the Schwartz space of (complex-valued) vector �elds v : Rn →
Cn and S(Rn;Cn ⊗ Cn) be the Schwartz space of functions f : Rn → Cn ⊗ Cn.
Elements of the latter space are called second rank (smooth fast decaying) tensor
�elds on Rn. More generally, for a smooth vector bundle E → M over a smooth
compact manifold, the Schwartz space S(E) of functions on E can be de�ned with
the help of a �nite atlas and partition of unity subordinate to the atlas. In particular,
for the trivial vector bundle Sn−1 × Sn−1 × R → Sn−1 × Sn−1, we have the well
de�ned Schwartz space S(Sn−1×Sn−1×R) of functions φ(ξ, η, q) fast decaying in q.
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The Schwartz spaces S(Rn;Cn ⊗ Cn) and S(Sn−1 × Sn−1 × R) are furnished with
corresponding topologies.

Introducing the tensor �eld f ∈ S(Rn;Cn ⊗ Cn) by fij = vivj , we write (4) as

(5)

∫
⟨ξ,x⟩=q

fij(x)ξ
i(Pξη)

j dx = 0
(
(ξ, η, q) ∈ Sn−1 × Sn−1 × R

)
.

We use the Einstein summation rule: the summation from 1 to n is assumed over
every index repeated in lower and upper positions in a monomial. To adopt our
formulas to the summation rule, we use either lower or upper indices for denoting
coordinates of vectors and tensors. For instance, ξi = ξi in (5). There is no di�erence
between covariant and contravariant tensors since we use Cartesian coordinates
only.

De�nition 1. The linear continuous operator

(6) N : S(Rn;Cn ⊗ Cn) → S(Sn−1 × Sn−1 × R)

de�ned by

(7) (N f)(ξ, η, q) =

∫
⟨ξ,x⟩=q

fij(x)ξ
i(Pξη)

j dx

will be called the Nadirashvili � Vladuts transform.

Thus, given a solution (v, p) ∈ S(Rn;Cn)×S(Rn) to the Euler equations (1)�(2),
the tensor �eld f = v ⊗ v ∈ S(Rn;Cn ⊗ Cn) belongs to the kernel of the operator
N . Our �rst main result is the converse statement.

Theorem 1. Given a divergence-free vector �eld v ∈ S(Rn;Cn), the tensor �eld
f = v ⊗ v satis�es N f = 0 if and only if there exists a function p ∈ S(Rn) such
that (v, p) is a solution to the Euler equations (1).

By the de�nition (7), the operator N integrates fij(x)ξ
i(Pξη)

j over hyperplanes.
Therefore N is called �a Radon type transform� in the title of our article. But
actually, at least in the 3D case, N is closely related to the ray transform that
integrates symmetric tensor �elds over lines. The relationship is encoded in some
function w(x, ξ) that will be called the Nadirashvili � Vladuts potential. It was
introduced in [5]. We give an alternative de�nition of w in Proposition 2 below. In
our opinion, Proposition 2 gives a better understanding of the relationship between
the Nadirashvili � Vladuts transform and ray transform.

The Nadirashvili � Vladuts potential satis�es some 4th order PDE [5, equation
(4.5)]. We write the equation in a little bit di�erent form (see the equation (71)
below) and present an alternative proof. Our second main result is Theorem 3 below
which describes all solutions of the equation (71). The general solution depends on
two arbitrary functions.

To author's knowledge, only one example of a solution (v, p) of the Euler equti-
ons (1)�(2) is known so far such that the functions vi (i = 1, 2, 3) and p belong to
S(R3) [3]. Probably such solutions can be classi�ed. Theorem 3 can be considered
as the �rst step toward such a classi�cation.
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2. Proof of Theorem 1

We �rst prove the statement �if� of Theorem 1. Let (v, p) ∈ S(Rn;Cn)× S(Rn)
be a solution to the Euler equations (1)�(2). It su�ces to prove (3) in the case
when the hyperplane ⟨ξ, x⟩ = q coincides with the coordinate hyperplane xn = 0.
Indeed, the Euler equations are invariant under a change of Cartesian coordinates
while the equation (3) is independent of the coordinate choice. Given a hyperplane
P , we can choose Cartesian coordinates so that P coincides with the coordinate
hyperplane xn = 0.

In virtue of the incompressibility equation (3) the Euler equations (1) can be
written in the divergent form

(8)

n∑
j=1

∂(vivj)

∂xj
+

∂p

∂xi
= 0 (i = 1, . . . , n),

Distinguishing the last summand of the sum, we rewrite (8) in the form

n−1∑
j=1

∂(vivj)

∂xj
+
∂(vivn)

∂xn
+

∂p

∂xi
= 0 (i = 1, . . . , n− 1).

Integrating this equation with respect to x1, . . . , xn−1, we obtain

d

dxn

∫
Rn−1

vi(x)vn(x) dx1 . . . dxn−1 = 0 (i = 1, . . . , n− 1).

The function φ(xn) =
∫
Rn−1 vi(x)vn(x) dx1 . . . dxn−1 belongs to S(R). The deriva-

tive of such a function is identically equal to zero i� the function itself is identically
equal to zero. Hence∫

Rn−1

vi(x)vn(x) dx1 . . . dxn−1 = 0 (i = 1, . . . , n− 1).

This is equivalent to (3) for the hyperplane ⟨ξ, x⟩ = q coincident with the coordinate
hyperplane xn = 0.

Observe that a tensor �eld of the form fij = gδij , where g ∈ S(Rn) and (δij) is
the Kronecker tensor, belongs to the kernel of N because the integrand of (7) is
identically equal to zero for such a �eld. Therefore it makes sense to consider the
restriction of N to the subspace of trace-free tensor �elds. We will do the restriction
later but not right now.

To prove the �only if� statement of Theorem 1, we will �rst �nd the adjoint N ∗

of the Nadirashvili � Vladuts transform and then will compute the product N ∗N .
We use the Hilbert space L2(Rn;Cn ⊗ Cn) with the L2-product

(f, g) = (f, g)L2(Rn;Cn⊗Cn) =

∫
Rn

f ij(x)gij(x) dx.

The Hilbert space L2(Sn−1 × Sn−1 × R) of functions is de�ned by

(φ,ψ) = (φ,ψ)L2(Sn−1×Sn−1×R) =

∫
Sn−1

∫
Sn−1

∞∫
−∞

φ(ξ, η, p)ψ(ξ, η, q) dqdξdη,

where dξ (and dη) is the standard volume form on Sn−1.
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By (7), for f ∈ S(Rn;Cn ⊗ Cn) and φ ∈ S(Sn−1 × Sn−1 × R),

(N f, φ) =

∫
Sn−1

∫
Sn−1

 ∞∫
−∞

∫
⟨ξ,x⟩=q

fij(x) ξ
i (Pξη)

j φ(ξ, η, q) dxdq

 dξdη.

After changing integration variables as x = y + qξ, this becomes

(N f, φ) =

∫
Rn

fij(y)

 ∫
Sn−1

∫
Sn−1

φ(ξ, η, ⟨y, ξ⟩) ξi(Pξη)j dξdη

 dy.

This means that

(9) (N ∗φ)ij(x) =

∫
Sn−1

∫
Sn−1

φ(ξ, η, ⟨x, ξ⟩) ξi (Pξη)j dξdη.

Next, we compute the product N ∗N . By (7) and (9),

(N ∗N f)ij(x) =

∫
Sn−1

∫
Sn−1

∫
⟨y,ξ⟩=⟨x,ξ⟩

fkℓ(y) ξ
k (Pξη)

ℓ ξi (Pξη)j dydξdη.

After changing integration variables as z = y − x, this becomes

(10) (N ∗N f)ij(x) =

∫
Sn−1

∫
ξ⊥

fkℓ(x+ z) ξiξ
k

 ∫
Sn−1

(Pξη)j(Pξη)
ℓ dη

 dzdξ.
The inner integral on (10) can be easily calculated. Indeed, since

(Pξη)j(Pξη)
ℓ = (ηj − ⟨ξ, η⟩ξj)(ηℓ − ⟨ξ, η⟩ξℓ),

we have

(11)

∫
Sn−1

(Pξη)j(Pξη)
ℓ dη =

∫
Sn−1

ηjη
ℓ dη − ξj

∫
Sn−1

⟨ξ, η⟩ηℓ dη

− ξℓ
∫

Sn−1

⟨ξ, η⟩ηj dη + ξjξ
ℓ

∫
Sn−1

⟨ξ, η⟩2 dη.

Obviously, ∫
Sn−1

ηjη
ℓ dη = δℓj

∫
Sn−1

η21 dη =
ωn
n
δℓj ,

where (δℓj) is the Kronecker tensor and

(12) ωn =
2πn/2

Γ(n/2)

is the volume of the unit sphere Sn−1. We have also∫
Sn−1

⟨ξ, η⟩ηj dη = ξk

∫
Sn−1

ηkηj dη =
ωn
n
ξj

and ∫
Sn−1

⟨ξ, η⟩2 dη =
ωn
n

(|ξ| = 1).
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Substitute last three values into (11) to obtain∫
Sn−1

(Pξη)j(Pξη)
ℓ dη =

ωn
n

(δℓj − ξjξ
ℓ).

With the help of this, (10) takes the form
(13)

(N ∗N f)ij(x) =
ωn
n

∫
Sn−1

∫
ξ⊥

fkj(x+z) ξiξ
k dzdξ− ωn

n

∫
Sn−1

∫
ξ⊥

fkℓ(x+z) ξiξjξ
kξℓ dzdξ.

Observe that the second integral on (13) depends on the symmetric part of the
tensor f only.

For further transformations of (13), we use the following three formulas. For
every function g(z, ξ),∫

Sn−1

∫
ξ⊥

g(z, ξ) dzdξ =

∫
Rn

1

|z|

∫
Sn−1∩z⊥

g(z, ξ) dn−2ξ dz,

where dn−2ξ is the volume form of the sphere Sn−1 ∩ ξ⊥, see [8, Lemma 2.15.3].
Besides this, ∫

Sn−1∩z⊥

ξiξj d
n−2ξ =

π(n−1)/2

Γ
(
(n+ 1)/2)

) εij(z),
where the symmetric tensor �eld ε ∈ C∞(Rn \ {0};Rn ⊗ Rn) is de�ned by

(14) εij(z) = δij − zizj/|z|2,

see [8, Lemma 2.15.4]. By the same Lemma,∫
Sn−1∩z⊥

ξiξjξkξℓ d
n−2ξ =

3π(n−1)/2

2Γ
(
(n+ 3)/2)

) ε2ijkℓ(z),
where ε2 is the symmetrized square of ε. On using these formulas, we calculate the
integrals participating in (13):

∫
Sn−1

∫
ξ⊥

fkj(x+ z) ξiξ
k dzdξ =

∫
Rn

fkj(x+ z)

|z|

 ∫
Sn−1∩z⊥

ξiξ
k ds(ξ)

 dz
=

π(n−1)/2

Γ
(
(n+ 1)/2)

) ∫
Rn

fkj(x+ z)

|z|
εki (z) dz;

∫
Sn−1

∫
ξ⊥

fkℓ(x+ z) ξiξjξ
kξℓ dzdξ =

∫
Rn

fkℓ(x+ z)

|z|

 ∫
Sn−1∩z⊥

ξiξjξ
kξℓ dn−2ξ

 dz
=

3π(n−1)/2

2Γ
(
(n+ 3)/2)

) ∫
Rn

fkℓ(x+ z)

|z|
(ε2)kℓij (z) dz.
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Substituting these values into (13) and inserting the value (12) of ωn, we obtain

(N ∗N f)ij(x) =
2πn−1/2

nΓ
(
n
2

)
Γ
(
n+1
2

) ∫
Rn

fkj(x+ z)

|z|
εki (z) dz

− 3πn−1/2

nΓ
(
n
2

)
Γ
(
n+3
2

) ∫
Rn

fkℓ(x+ z)

|z|
(ε2)kℓij (z) dz.

This can be written as

(15) (N ∗N f)ij(x) =

∫
Rn

Nijkℓ(z) f
kℓ(x+ z) dz

with the kernel

(16) Nijlℓ(z) =
6πn−1/2

n(n+ 1)Γ
(
n
2

)
Γ
(
n+1
2

) 1

|z|

(n+ 1

3
δjℓεik(z)− (ε2)ijkℓ(z)

)
.

We remember that the Kronecker tensor belongs to the null-space ofN . Therefore
the kernel must satisfy Nijp

p = 0. Let us check this in order to control our
calculations. By (16)

(17)
n(n+ 1)Γ

(
n
2

)
Γ
(
n+1
2

)
6πn−1/2

|z|Nijpp =
n+ 1

3
δpj εip − (ε2)ijp

p
.

By the de�nition of the symmetrized square,

(ε2)ijkℓ =
1

3

(
εijεkℓ + εikεjℓ + εiℓεjk

)
.

Therefore

(ε2)ijp
p
=

1

3

(
εijε

p
p + 2εipε

p
j

)
.

By (14),

εpp = δpp −
zpz

p

|z|2
= n− 1.

Substitute this into the previous formula

(ε2)ijp
p
=

1

3

(
(n− 1)εij + 2εipε

p
j

)
.

Then we calculate

εipε
p
j =

(
δip −

zizp
|z|2

)(
δpj −

zjz
p

|z|2
)

= δipδ
p
j − δip

zjz
p

|z|2
− δpj

zizp
|z|2

+
zizjzpz

p

|z|4
= δij −

zizj
|z|2

= εij .

Substitute this into the previous formula to obtain (ε2)ijp
p
= n+1

3 εij . Together with
(17), this gives Nijp

p = 0.
On using the convolution, formula (15) is written as

(18) (N ∗N f)ij = fkℓ ∗Nijkℓ.
We are going to �nd all tensor �elds f satisfying N f = 0. In order to get a system
of algebraic equations, we are going to apply the Fourier transform to (18).

The Fourier transform of a tempered distribution g ∈ S ′(Rn) is denoted either
by F [g] or by ĝ(y). The Fourier transform acts component-wise on tensor �elds,
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i.e., (f̂)ij = f̂ij . Recall that λ 7→ |x|λ is the meromorphic S ′(Rn)-valued function of
λ ∈ C with simple poles at points −n,−n − 2,−n − 4, . . . . The Fourier transform
of |x|λ is expressed by

(19) F [|x|λ] =
2λ+n/2Γ

(
λ+n
2

)
Γ(−λ/2)

|y|−λ−n (λ,−λ− n /∈ 2Z+),

F [|x|2k] = (2π)n/2(−∆)kδ (k ∈ Z+),

where δ is the Dirac function.
As is seen from (16), functions Nijkℓ(x) are locally integrable on Rn and decay

at in�nity (because εij(x) are bounded functions). Therefore Nijkℓ(x) can be consi-
dered as tempered distributions. Applying the Fourier transform to (18), we obtain

(20) (N̂ ∗N f)ij = (2π)n/2f̂kℓ F [Nijkℓ].

The product on the right-hand side is now understood as a product of a function in
S(Rn) and of a tempered distribution. We shall soon see that the second factor is
continuous on Rn\{0} and hence the product can be understood in the conventional
sense.

We proceed to computing F [Nijkℓ]. By (16),
(21)

F [Nijlℓ] =
6πn−1/2

n(n+ 1)Γ
(
n
2

)
Γ
(
n+1
2

) (n+ 1

3
δjℓF [|x|−1εik(x)]− F [|x|−1(ε2)ijkℓ(x)]

)
.

Both Fourier transforms on the right-hand side of (21) can be easily found on the
base of the equalities (see Lemma 2.11.1 of [8])

|x|−1εik(x) =
∂2|x|
∂xi∂xk

, |x|−1(ε2)ijkℓ(x) =
1

9

∂4|x|3

∂xi∂xj∂xk∂xℓ
.

Applying the Fourier transform to these equalities and using the standard property
of the Fourier transform, we get

F [|x|−1εik(x)] = −yiykF [|x|], F [|x|−1(ε2)ijkℓ(x)] =
1

9
yiyjykyℓF [|x|3].

By (19),

F [|x|] = −
2n/2Γ

(
n+1
2

)
√
π

|y|−n−1, F [|x|3] =
3 · 2n/2+1Γ

(
n+3
2

)
√
π

|y|−n−3.

Substitute these values into previous formulas

F [|x|−1εik(x)] =
2n/2Γ

(
n+1
2

)
√
π

yiyk
|y|n+1

,

F [|x|−1(ε2)ijkℓ(x)] =
2n/2+1Γ

(
n+3
2

)
3
√
π

yiyjykyℓ
|y|n+3

.

Insert these values into (21)

F [Nijlℓ] =
2n/2+1πn−1

nΓ(n/2)

1

|y|n+3

(
|y|2yiykδjℓ − yiyjykyℓ

)
.
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Now, (20) takes the form

(N̂ ∗N f)ij(y) =
2n+1π(3n−2)/2

nΓ(n/2)

1

|y|n+3

(
|y|2yiykδjℓ − yiyjykyℓ

)
f̂kℓ(y).

Equation N f = 0 is thus equivalent to the system(
|y|2yiykδjℓ − yiyjykyℓ

)
f̂kℓ(y) = 0 (1 ≤ i, j ≤ 3).

The system can be simpli�ed. To this end we �rst rewrite it in the form

(22) yℓ εij(y)
(
ykf̂

kj(y)
)
= 0 (0 ̸= y ∈ Rn; 1 ≤ i, ℓ ≤ n),

where εij(y) is de�ned by (14). On assuming f̂ ∈ S(Rn;Cn ⊗ Cn), the system can
be equivalently written as

(23) εij(y)
(
ykf̂

kj(y)
)
= 0 (0 ̸= y ∈ Rn, 1 ≤ i ≤ n).

Indeed, (22) and (23) are equivalent for y satisfying y1y2 . . . yn ̸= 0. This implies
the validity of (23) by continuity.

Introduce the vector �eld ĝ ∈ S(Rn;Cn) by (i is the imaginary unit)

(24) ĝj(y) = i ykf̂
kj(y).

Then the system (23) is written as

(25) εjk(y) ĝ
k(y) = 0 (0 ̸= y ∈ Rn, 1 ≤ j ≤ n).

The geometric meaning of (25) is obvious: for 0 ̸= y ∈ Rn, the vector ĝ(y) must be a
scalar multiple of y. Indeed, let us remind the orthogonal projection Py : Rn → y⊥

which is de�ned by Py ĝ = ĝ − ⟨ĝ,y⟩
|y|2 y. Equations (25) are equivalent to Py ĝ(y) = 0.

Thus, system (25) is equivalent to the existence of a function p̂ ∈ C∞(Rn \ {0})
such that

(26) ĝ(y) + i p̂(y)y = 0 (0 ̸= y ∈ Rn).

As follows from (24) and (26), p̂ is expressed through f̂ by

(27) p̂(y) = −y
iyj

|y|2
f̂ij(y) (0 ̸= y ∈ Rn).

This implies that the function p̂(y) is bounded, belongs to C∞(Rn \ {0}) and fast
decays together with all derivatives as |y| → ∞. But a priori p̂(y) can have a
singularity at y = 0. Therefore the inverse Fourier transform p(x) of the function
p̂(y) belongs to C∞(Rn).

Let f ∈ S(Rn;Cn ⊗ Cn). As is seen from (24), the inverse Fourier transform
g ∈ S(Rn;Cn) of the vector �eld ĝ satis�es

gi =

n∑
j=1

∂fji
∂xj

.

Applying the inverse Fourier transform to the equation (26), we obtain

(28)

n∑
j=1

∂fji
∂xj

+
∂p

∂xi
= 0 (1 ≤ i ≤ n).

We see from (28) that �rst order derivatives ∂p
∂xi

of the function p fast decay at
in�nity together with all their derivatives. This easily implies that the function p
itself fast decays at in�nity, i.e. p ∈ S(Rn). We have thus proved
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Proposition 1. A tensor �eld f = (fij) ∈ S(Rn;Cn⊗Cn) satis�es N f = 0 if and
only if equations (28) hold with some function p ∈ S(Rn).

We can now prove the �only if� statement of Theorem 1. Given a divergence-free
vector �eld v ∈ S(Rn;Cn), we set fij = vivj and see that (28) coincides with the
Euler equations (8). This �nishes the proof of Theorem 1.

The incompressibility equation (2) was used in our arguments for the passage
from (1) to (8) only. We have thus proven a little bit more general statement.

Theorem 2. A vector �eld v ∈ S(Rn;Cn) satis�es N (v⊗v) = 0 if and only if there
exists a function p ∈ S(Rn) such that (v, p) is a solution to the Euler equations (8).

We �nally observe that Proposition 1 implies

Corollary 1. Under hypotheses of Proposition 1 Fourier transforms of f and p
satisfy

(29) f̂ij(0) = −p̂(0) δij ,

where δij is the Kronecker tensor.

Remark. In the case of f = v ⊗ v, (29) is equivalent to one of so called
orthogonality relations, see [9, formulas (1.10)�(1.11)].

3. The Nadirashvili � Vladuts potential

From now on we consider the three-dimensional case only. Some our statements
can be generalized to the case of an arbitrary dimension but proofs become more
complicated.

For ξ ∈ R3, by jξ : C3 ⊗ C3 → C3 we denote the operator of contraction with
the vector ξ in the �rst index; it is expressed by (jξf)j = fijξ

i in coordinates.
For 0 ̸= ξ ∈ R3, let Pξ : R3 → ξ⊥ = {x ∈ R3 | ⟨ξ, x⟩ = 0} be the orthogonal

projection. We consider ξ⊥ as an oriented two-dimensional vector space. The ori-
entation is de�ned by the rule: if (e1, e2) is a positive basis of ξ⊥, then (e1, e2, ξ)
should be positive basis of R3. Let Rξ : ξ

⊥ → ξ⊥ be the rotation through the right
angle in the positive direction.

For 0 ̸= ξ ∈ R3, we will also use the two-dimensional complex vector space
C ⊗ ξ⊥ = {x ∈ C3 | ⟨ξ, x⟩ = xiξ

i = 0}. The operators Pξ and Rξ are uniquely
extended to linear operators between complex vector spaces Pξ : C3 → C⊗ ξ⊥ and
Rξ : C⊗ ξ⊥ → C⊗ ξ⊥ respectively.

Introduce the 4-dimensional submanifold

TS2 = {(x, ξ) | |ξ| = 1, ⟨ξ, x⟩ = 0}

of R3× (R3 \{0}. It is the total space of the tangent bundle TS2 → S2 of the sphere
S2. By the remark presented after (4), the Schwartz space S(TS2) of functions is
well de�ned.

Proposition 2. Given a tensor �eld f ∈ S(R3;C3 ⊗ C3) satisfying

(30) N f = 0,

there exists a unique function w ∈ C∞(
R3 × (R3 \ {0})

)
such that

(1) the function satis�es

(31) w(x, tξ) = |t|−1w(x, ξ) for 0 ̸= t ∈ R, w(x+ tξ, ξ) = w(x, ξ) for t ∈ R;
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(2) the restriction of w to the manifold TS2 belongs to S(TS2);
(3) the equation

(32) ∇xw(x, ξ) = |ξ|−1

∞∫
−∞

RξPξjξf(x+ tξ) dt

holds on R3×(R3\{0}), where ∇xw is the gradient of w with respect to the variable x.

We call w the Nadirashvili � Vladuts potential determined by the tensor �eld
f ∈ S(R3;S2R3) satisfying (30). It was introduced in a di�erent way in [5, De�nition
3.2].

Proof. Fix a unit vector ξ ∈ S2 and de�ne a vector �eld g on the plane P = ξ⊥ by

g(x) =

∞∫
−∞

RξPξjξf(x+ tξ) dt (x ∈ P = ξ⊥).

Obviously, g ∈ S(P ; ξ⊥). Let us demonstrate that

(33) Ig = 0,

where I is the ray transform on the plane P (see the de�nition of the operator I in
[8, Section 2.1]). Indeed, for x ∈ P, η ∈ ξ⊥, |η| = 1,

(34) (Ig)(x, η) =

∞∫
−∞

⟨g(x+ sη), η⟩ ds =
∞∫

−∞

∞∫
−∞

⟨RξPξjξf(x+ tξ + sη), η⟩ dsdt.

The operator Pξ is self-adjoint while Rξ satis�es R
∗
ξ = R−1

ξ . Therefore

⟨RξPξjξf(x+ tξ+ sη), η⟩ = ⟨jξf(x+ tξ+ sη), PξR
−1
ξ η⟩ = ⟨jξf(x+ tξ+ sη), R−1

ξ η⟩.

The last equality holds because R−1
ξ η ∈ ξ⊥. Equation (34) takes now the form

(35) (Ig)(x, η) =

∞∫
−∞

∞∫
−∞

⟨jξf(x+ tξ + sη), R−1
ξ η⟩ dsdt.

Change integration variables in the latter integral by the formula y = x+ tξ + sη.
The point y runs over the plane {y ∈ R3 | ⟨R−1

ξ η, y⟩ = q} with q = ⟨R−1
ξ η, x⟩.

Equation (35) takes now the form

(Ig)(x, ξ) =

∫
⟨R−1

ξ η,y⟩=q

fij(y)ξ
i(R−1

ξ η)j dy.

By (30), the integral on the right-hand side is equal to zero. This proves (33).
By (33), the vector �eld g ∈ S(P ; ξ⊥) must be a potential vector �eld, i.e., there

exists a function w0,ξ ∈ S(P ) on the plane P = ξ⊥ such that g = ∇w0,ξ. Both g
and w0,ξ depend smoothly on ξ ∈ S2. We can de�ne the function w0 ∈ S(TS2) by
w0(x, ξ) = w0,ξ(x). The function satisfy

(36) ∇xw0(x, ξ) = g(x) =

∞∫
−∞

RξPξjξf(x+ tξ) dt for (x, ξ) ∈ TS2.
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The function w0(x, ξ) is even in ξ

(37) w0(x,−ξ) = w0(x, ξ).

Indeed, by (36)

∇xw0(x,−ξ) =
∞∫

−∞

R−ξP−ξj−ξf(x− tξ) dt.

Since j−ξ = −jξ, P−ξ = Pξ, R−ξ = −Rξ, the previous formula takes the form

∇xw0(x,−ξ) =
∞∫

−∞

RξPξjξf(x− tξ) dt.

After the change t = −τ of the integration variable, we obtain ∇xw0(x,−ξ) =
∇xw0(x, ξ). This is equivalent to (37).

There exists a unique extension of w0 to a function w ∈ C∞(
R3 × (R3 \ {0})

)
satisfying (31). Let us prove that the extension satis�es (32) on the whole of R3 ×
(R3 \ {0}). Indeed, the function w is expressed through w0 by the explicit formula

w(x, ξ) = |ξ|−1w0

(
x− ⟨ξ, x⟩

|ξ|2
ξ,

ξ

|ξ|

)
.

Di�erentiate this equality to obtain

∂w

∂xi
(x, ξ) = |ξ|−1

(
δji −

ξiξ
j

|ξ|2
)∂w0

∂xj

(
x− ⟨ξ, x⟩

|ξ|2
ξ,

ξ

|ξ|

)
.

This can be written in the coordinate free form

∇xw(x, ξ) = |ξ|−1Pξ∇xw0(Pξx, ξ/|ξ|).

By (36), ∇xw0(Pξx, ξ/|ξ|) ∈ ξ⊥, hence Pξ∇xw0(Pξx, ξ/|ξ|) = ∇xw0(Pξx, ξ/|ξ|) and
the previous formula is simpli�ed to the following one:

(38) ∇xw(x, ξ) = |ξ|−1∇xw0(Pξx, ξ/|ξ|).
On using (36) and (38), we derive

∇xw(x, ξ) = |ξ|−1

∞∫
−∞

Rξ/|ξ|Pξ/|ξ| jξ/|ξ|f(Pξx+ tξ/|ξ|) dt.

Obviously,

Rξ/|ξ| = Rξ, Pξ/|ξ| = Pξ, jξ/|ξ| = |ξ|−1jξ.

The previous formula takes the form

∇xw(x, ξ) = |ξ|−2

∞∫
−∞

RξPξjξf
(
x+

( 1

|ξ|
t− ⟨ξ, x⟩

|ξ|2
)
ξ
)
dt.

After the change τ = 1
|ξ| t−

⟨ξ,x⟩
|ξ|2 of the integration variable, this becomes

∇xw(x, ξ) = |ξ|−1

∞∫
−∞

RξPξjξf(x+ τξ) dτ.

This proves (32).
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We have thus proved the existence statement of the proposition. The uniqueness
statement obviously follows from (31)�(32). □

Corollary 2. Under hypotheses of Proposition 2, the potential w can be explicitly
expressed through the tensor �eld f as follows. Given (x, ξ) ∈ R3×(R3\{0}), choose
a vector η ∈ S2 such that η ̸= ±ξ/|ξ|. Then

(39) w(x, ξ) = −|ξ|−1

∞∫
0

∞∫
−∞

⟨RξPξjξf(x+ tξ + sη), η⟩ dtds.

Proof. By the second statement of Proposition 2, w(x + sη, ξ) → 0 as s → ∞.
Therefore

w(x, ξ) = −
∞∫
0

∂w(x+ sη, ξ)

∂s
ds = −

∞∫
0

⟨(∇xw)(x+ sη, ξ), η⟩ ds.

Substituting the expression (32) for the gradient, we arrive to (39). □

The operator RξPξ is expressed by RξPξv = |ξ|−1ξ×v for a vector v ∈ R3, where
× stands for the vector product. The operator v 7→ ξ × v is well de�ned for v ∈ C3

too. Therefore

⟨RξPξjξf, η⟩ =
1

|ξ|
[ξ, jξf, η],

where [a, b, c] = ⟨a× b, c⟩. Formula (39) takes the form

(40) w(x, ξ) = −|ξ|−2

∞∫
0

∞∫
−∞

[ξ, jξf(x+ tξ + sη), η] dtds,

Recall that η in (40) is an arbitrary unit vector subordinate the only condition
η ̸= ±ξ/|ξ|. Assume for a moment that ξ3 ̸= 0. In such a case, we can choose either
η = (1, 0, 0) or η = (0, 1, 0). In this way, we obtain two partial cases of (40):

w(x, ξ) = |ξ|−2

∞∫
0

∞∫
−∞

(
ξ3(jξf)2 − ξ2(jξf)3

)
(x1 + tξ1 + s, x2 + tξ2, x3 + tξ3) dtds,

w(x, ξ) = |ξ|−2

∞∫
0

∞∫
−∞

(
− ξ3(jξf)1 + ξ1(jξf)3

)
(x1 + tξ1, x2 + tξ2 + s, x3 + tξ3) dtds.

After obvious changes of integration variables, these formulas take the form

(41) w(x, ξ) = |ξ|−2

∞∫
x1+tξ1

∞∫
−∞

(
ξ3(jξf)2 − ξ2(jξf)3

)
(s, x2 + tξ2, x3 + tξ3) dtds,

(42) w(x, ξ) = |ξ|−2

∞∫
x2+tξ2

∞∫
−∞

(
− ξ3(jξf)1 + ξ1(jξf)3

)
(x1 + tξ1, s, x3 + tξ3) dtds.
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Di�erentiating equations (41) and (42) with respect to x1 and x2 respectively,
we obtain

(43)
∂w

∂x1
(x, ξ) = |ξ|−2

∞∫
−∞

(
ξ3(jξf)2 − ξ2(jξf)3

)
(x+ tξ) dt,

(44)
∂w

∂x2
(x, ξ) = |ξ|−2

∞∫
−∞

(
− ξ3(jξf)1 + ξ1(jξf)3

)
(x+ tξ) dt.

Formulas (43)�(44) imply a similar formula for ∂w/∂x3. Indeed, as is seen from
(31),

(45) ξ1
∂w

∂x1
+ ξ2

∂w

∂x2
+ ξ3

∂w

∂x3
= 0,

i.e.,
∂w

∂x3
= − 1

ξ3

(
ξ1
∂w

∂x1
+ ξ2

∂w

∂x2

)
.

Substituting values (43)�(44) into this equality, we obtain

(46)
∂w

∂x3
(x, ξ) = |ξ|−2

∞∫
−∞

(
ξ2(jξf)1 − ξ1(jξf)2

)
(x+ tξ) dt.

Formulas (43)�(44), (46) have been proven for ξ3 ̸= 0. Nevertheless, these for-
mulas are valid on the whole of R3 × (R3 \ {0}) because they have no singularity
at ξ3 = 0. These formulas can be united as follows:

(47) ∇xw(x, ξ) = −|ξ|−2 ξ ×
∞∫

−∞

jξf(x+ tξ) dt.

The potential w can be eliminated from (47) by applying the operator curlx to
this equation. On using the identity

curl(ξ × v) = (div v)ξ − ⟨ξ, ∂x⟩v, where ⟨ξ, ∂x⟩ = ξi
∂

∂xi
,

which is valid for a constant vector ξ, we obtain( ∞∫
−∞

(div jξf)(x+ tξ) dt
)
ξ −

∞∫
−∞

(
ξ1
∂(jξf)

∂x1
+ ξ2

∂(jξf)

∂x2
+ ξ3

∂(jξf)

∂x3

)
(x+ tξ) dt = 0.

The second integral is identically equal to zero. Indeed,

∞∫
−∞

(
ξ1
∂(jξf)

∂x1
+ ξ2

∂(jξf)

∂x2
+ ξ3

∂(jξf)

∂x3

)
(x+ tξ) dt =

∞∫
−∞

d

dt

(
(jξf)(x+ tξ)

)
dt = 0.

We have thus obtained

(48)

∞∫
−∞

(div jξf)(x+ tξ) dt = 0.
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Thus, (48) is a corollary of (30), i.e., the equation (48) holds for every tensor �eld
f ∈ S(R3;S2R3) satisfying (30). The corollary is not obvious because (30) involves
a two-dimensional integral while (48) contains a one-dimensional integral.

Let us separately consider the case of f = v⊗v, where a vector �eld v ∈ S(R3;R3)
satis�es the Euler equations (1)�(2). In such a case, jξf = ⟨ξ, v⟩v and

(49) div (jξf) = ⟨ξ, v⟩div v +
3∑

i,j=1

ξivj
∂vi
∂xj

= −⟨ξ,∇p⟩.

This implies the validity of (48). Thus, (48) follows from the Euler equations in the
case of f = v ⊗ v.

Now, following [5], we are going to compute values of some higher order di�e-
rential operators on the potential w.

The vertical (or �ber-wise) Laplacian

∆v : C∞(
R3 × (R3 \ {0})

)
→ C∞(

R3 × (R3 \ {0})
)

is de�ned by

(50)

∆v =
1

|ξ|2
(
(ξ22 + ξ23)

∂2

∂x21
+ (ξ21 + ξ23)

∂2

∂x22
+ (ξ21 + ξ22)

∂2

∂x23

− 2ξ1ξ2
∂2

∂x1∂x2
− 2ξ1ξ3

∂2

∂x1∂x3
− 2ξ2ξ3

∂2

∂x2∂x3

)
.

If a function w ∈ C∞(
R3 × (R3 \ {0})

)
satis�es (31), then ∆vw satis�es (31) too.

Let us give a motivation of the de�nition (50). We �rst recall some standard
facts of analysis on Riemannian manifolds.

Given a Riemannian manifold (M, g), let π : TM →M be the tangent bundle. If
(U ;x1, . . . , xn) is a local coordinate system onM , then the corresponding coordinate
system

(
π−1(U);x1, . . . , xn, X1, . . . , Xn) on TM is de�ned by X = Xi ∂

∂xi for
X ∈ TxM, x ∈ U . Every tangent space TxM is furnished by the dot product
gx, hence the Euclidean Laplacian ∆x : C∞(TxM) → C∞(TxM) is well de�ned.
The Laplacian smoothly depends on x and de�nes the vertical Laplacian ∆v :
C∞(TM) → C∞(TM). It is expressed in local coordinates by

∆v = gij(x)
∂2

∂Xi∂Xj
.

Now, we apply this to the unit sphere S2 = {(ξ1, ξ2, ξ3) ∈ R3 |
∑3
i=1 ξ

2
i = 1}

which is considered as a two-dimensional Riemannian manifold with the metric
induced from R3. Let (φ,ψ) be the geographic coordinates on S2 such that

ξ1 = cosφ cosψ, ξ2 = cosφ sinψ, ξ3 = sinφ.

The metric tensor is(
g11 g12
g21 g22

)
=

(
1 0
0 cos2 φ

)
,

(
g11 g12

g21 g22

)
=

(
1 0
0 cos−2 φ

)
.

Let (φ,ψ,Φ,Ψ) be corresponding coordinates on TS2. The vertical Laplacian on
TS2 is expressed in geographic coordinates by

(51) ∆v =
∂2

∂Φ2
+

1

cos2 φ

∂2

∂Ψ2
.
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The Cartesian coordinate (x1, x2, x3) of a vector X ∈ T(φ,ψ)S2 are related to the
geographic coordinates by

x1 = − sinφ cosψΦ−cosφ sinψΨ, x2 = − sinφ sinψΦ+cosφ cosψΨ, x3 = cosφΦ.

This implies

∂

∂Φ
= − sinφ cosψ

∂

∂x1
− sinφ sinψ

∂

∂x2
+ cosφ

∂

∂x3
,

∂

∂Ψ
= − cosφ sinψ

∂

∂x1
+ cosφ cosψ

∂

∂x2
.

Substituting these values into (51), we obtain (50) for (x, ξ) ∈ TS2. Then we extend
the Laplacian to the whole of R3 × (R3 \ {0}) so that it preserves the homogeneity
(31). The extension is given by (50) for an arbitrary point (x, ξ) ∈ R3 × (R3 \ {0}).

Let us compute ∆vw. To this end we observe that the de�nition (50) can be
written in the form

(52) ∆v =
∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23
− 1

|ξ|2
(
ξ1

∂

∂x1
+ ξ2

∂

∂x2
+ ξ3

∂

∂x3

)2

.

In view of (45), this gives

(53) ∆vw =
( ∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23

)
w.

Di�erentiating equations (43), (44) and (46) with respect to x1, x2 and x3 respectively
and substituting the results into (53), we obtain

∆vw = |ξ|−2

∞∫
−∞

⟨ξ, curlx(jξf)(x+ tξ)⟩ dt.

In the case of f = v ⊗ v, this becomes

(54) ∆vw = |ξ|−2

∞∫
−∞

(
⟨ξ, v⟩⟨ξ, curl v⟩+ [ξ,∇x⟨ξ, v⟩, v]

)
(x+ tξ) dt.

Substituting the values

⟨ξ, curl v⟩ = ξ1

( ∂v3
∂x2

− ∂v2
∂x3

)
+ ξ2

( ∂v1
∂x3

− ∂v3
∂x1

)
+ ξ3

( ∂v2
∂x1

− ∂v1
∂x2

)
and

[ξ,∇x⟨ξ, v⟩, v] = (ξ3v2 − ξ2v3)
∂⟨ξ, v⟩
∂x1

+ (ξ1v3 − ξ3v1)
∂⟨ξ, v⟩
∂x2

+ (ξ2v1 − ξ1v2)
∂⟨ξ, v⟩
∂x3

,

we write (54) in the coordinate form
(55)

∆vw =
1

|ξ|2

∞∫
−∞

[
⟨ξ, v⟩

(
ξ1
∂v3
∂x2

− ξ1
∂v2
∂x3

+ ξ2
∂v1
∂x3

− ξ2
∂v3
∂x1

+ ξ3
∂v2
∂x1

− ξ3
∂v1
∂x2

)
+ (ξ3v2 − ξ2v3)

∂⟨ξ, v⟩
∂x1

+ (ξ1v3 − ξ3v1)
∂⟨ξ, v⟩
∂x2

+ (ξ2v1 − ξ1v2)
∂⟨ξ, v⟩
∂x3

]
(x+ tξ) dt.
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Following [6, formula (2.1)], we introduce three second order di�erential operators
on C∞(

R3 × (R3 \ {0})
)

J1 =
∂2

∂x2∂ξ3
− ∂2

∂x3∂ξ2
, J2 =

∂2

∂x3∂ξ1
− ∂2

∂x1∂ξ3
, J3 =

∂2

∂x1∂ξ2
− ∂2

∂x2∂ξ1
.

They are called John's operators. We are going to compute the values of John's
operators on the Nadirashvili � Vladuts potential w. We will present calculations
for J3w and then will write corresponding formulas for J1w and for J2w by analogy.

Di�erentiate (43) with respect to ξ2

∂2w

∂x1∂ξ2
(x, ξ) = |ξ|−2

∞∫
∞

t
(
ξ3
∂(jξf)2
∂x2

− ξ2
∂(jξf)3
∂x2

)
(x+ tξ) dt

+ |ξ|−2

∞∫
−∞

(
ξ3
∂(jξf)2
∂ξ2

− ξ2
∂(jξf)3
∂ξ2

)
(x+ tξ) dt

− |ξ|−2

∞∫
−∞

(jξf)3(x+ tξ) dt

− 2|ξ|−4ξ2

∞∫
−∞

(
ξ3(jξf)2 − ξ2(jξf)3

)
(x+ tξ) dt.

Then di�erentiate (44) with respect to ξ1

∂2w

∂x2∂ξ1
(x, ξ) = |ξ|−2

∞∫
−∞

t
(
− ξ3

∂(jξf)1
∂x1

+ ξ1
∂(jξf)3
∂x1

)
(x+ tξ) dt

+ |ξ|−2

∞∫
−∞

(
− ξ3

∂(jξf)1
∂ξ1

+ ξ1
∂(jξf)3
∂ξ1

)
(x+ tξ) dt

+ |ξ|−2

∞∫
−∞

(jξf)3(x+ tξ) dt

− 2|ξ|−4ξ1

∞∫
−∞

(
− ξ3(jξf)1 + ξ1(jξf)3

)
(x+ tξ) dt.
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Take the di�erence of two last equations (for brevity, we do not write arguments)

(56)

J3w = |ξ|−2

∞∫
−∞

t
(
ξ3
∂(jξf)1
∂x1

+ ξ3
∂(jξf)2
∂x2

− ξ1
∂(jξf)3
∂x1

− ξ2
∂(jξf)3
∂x2

)
dt

+ |ξ|−2

∞∫
−∞

(
ξ3
∂(jξf)1
∂ξ1

+ ξ3
∂(jξf)2
∂ξ2

− ξ1
∂(jξf)3
∂ξ1

− ξ2
∂(jξf)3
∂ξ2

)
dt

− 2|ξ|−2

∞∫
−∞

(jξf)3 dt

− 2|ξ|−4

∞∫
−∞

(
ξ1ξ3(jξf)1 + ξ2ξ3(jξf)2 − ξ21(jξf)3 − ξ22(jξf)3

)
dt.

First of all we have to treat the �rst integral on the right-hand side of (56)
containing the factor t in the integrand. We transform the integral as follows

∞∫
−∞

t
(
ξ3
∂(jξf)1
∂x1

+ ξ3
∂(jξf)2
∂x2

− ξ1
∂(jξf)3
∂x1

− ξ2
∂(jξf)3
∂x2

)
(x+ tξ) dt

=

∞∫
−∞

t
(
ξ3 div(jξf)− ξ1

∂(jξf)3
∂x1

− ξ2
∂(jξf)3
∂x2

− ξ3
∂(jξf)3
∂x3

)
(x+ tξ) dt

= ξ3

∞∫
−∞

t div(jξf)(x+ tξ) dt−
∞∫

−∞

t
d

dt

(
(jξf)3(x+ tξ)

)
dt.

After transforming the second integral on the right-hand side with the help of
integration by parts, this gives

∞∫
−∞

t
(
ξ3
∂(jξf)1
∂x1

+ ξ3
∂(jξf)2
∂x2

− ξ1
∂(jξf)3
∂x1

− ξ2
∂(jξf)3
∂x2

)
dt

= ξ3

∞∫
−∞

t div(jξf) dt+

∞∫
−∞

(jξf)3 dt.
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Substitute this value into (56)

(57)

J3w = |ξ|−2ξ3

∞∫
−∞

t div(jξf) dt

+ |ξ|−2

∞∫
−∞

(
ξ3
∂(jξf)1
∂ξ1

+ ξ3
∂(jξf)2
∂ξ2

− ξ1
∂(jξf)3
∂ξ1

− ξ2
∂(jξf)3
∂ξ2

)
dt

− |ξ|−2

∞∫
−∞

(jξf)3 dt

− 2|ξ|−4

∞∫
−∞

(
ξ1ξ3(jξf)1 + ξ2ξ3(jξf)2 − ξ21(jξf)3 − ξ22(jξf)3

)
dt.

Thus, in the general case, we cannot eliminate the integral with the factor t in
the integrand. Because of the di�culty, we continue the calculation for f = v ⊗ v,
where a vector �eld v ∈ S(R3;C3) satis�es the Euler equations (1)�(2). By (49),

∞∫
−∞

t div(jξf)(x+ tξ) dt = −
∞∫

−∞

t ⟨ξ, (∇p)(x+ tξ)⟩ dt = −
∞∫

−∞

t
dp(x+ tξ)

dt
dt.

Transforming the last integral with the help of integration by parts, we obtain

∞∫
−∞

t div(jξf)(x+ tξ) dt = (Ip)(x, ξ),

where Ip is the ray transform of the pressure p. Substitute this and jξf = ⟨ξ, v⟩v
into (57)

J3w = |ξ|−2ξ3Ip

+ |ξ|−2

∞∫
−∞

(
ξ3
∂(⟨ξ, v⟩v1)

∂ξ1
+ ξ3

∂(⟨ξ, v⟩v2)
∂ξ2

− ξ1
∂(⟨ξ, v⟩v3)

∂ξ1
− ξ2

∂(⟨ξ, v⟩v)3
∂ξ2

)
dt

− |ξ|−2

∞∫
−∞

⟨ξ, v⟩v3 dt− 2|ξ|−4

∞∫
−∞

⟨ξ, v⟩
(
ξ1ξ3v1 + ξ2ξ3v2 − ξ21v3 − ξ22v3

)
dt.

We emphasize that derivatives on the integrand are understood in the following
sense:

∂(⟨ξ, v⟩vi)
∂ξj

=
∂
(
⟨ξ, v⟩vi(y))
∂ξj

∣∣∣
y=x+tξ

= (vivj)(x+ tξ)
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because the derivatives ∂vi(x+tξ)
∂ξj

have been already taken into account in the �rst

integral on the right-hand side of (56). We thus obtain

J3w = |ξ|−2ξ3Ip+ |ξ|λ−1

∞∫
−∞

(
ξ3v

2
1 + ξ3v

2
2 − ξ1v1v3 − ξ2v2v3

)
dt

− |ξ|−2

∞∫
−∞

⟨ξ, v⟩v3 dt− 2|ξ|−4

∞∫
−∞

⟨ξ, v⟩
(
ξ1ξ3v1 + ξ2ξ3v2 − ξ21v3 − ξ22v3

)
dt.

After grouping similar terms, we obtain

(J3w)(x, ξ) =
ξ3
|ξ|2

(Ip)(x, ξ) +
ξ3
|ξ|2

∞∫
−∞

|v(x+ tξ)|2 dt− 2
ξ3
|ξ|4

∞∫
−∞

⟨ξ, v(x+ tξ)⟩2 dt.

This can be written in the form

J3w =
ξ3
|ξ|2

I0(p) +
ξ3
|ξ|2

I0(|v|2)− 2
ξ3
|ξ|4

I2(v ⊗ v).

For de�niteness, the notation Im is used here for the ray transform of symmetric
tensor �elds of rank m. Let δ be the Kronecker tensor. Since I2(aδ) = |ξ|2I0(a) for
a scalar function a, the previous formula can be written as

J3w =
ξ3
|ξ|4

I
(
(p+ |v|2)δ − 2v ⊗ v

)
.

Formulas for J1w and J2w are obtained from this in an obvious way. We can write
the �nal formula:

(58) Jjw =
ξj
|ξ|4

I
(
(p+ |v|2)δ − 2v ⊗ v

)
, (j = 1, 2, 3).

Formula (58) generalizes Nadirashvili�Valaduts's formula [5, formula (4.2)] in the
following sence: Nadirashvili�Valaduts's formula makes sense only for (x, ξ) ∈ TS2

while formula (58) holds on the whole of R3 × (R3 \ {0}). The factor
ξj
|ξ|4 on the

right-hand side of (58) is very essential.

Next, we are going to compute J2
i w (1 ≤ i ≤ 3). We start with computing J2

3w.
By (58),

J2
3w = J3

( ξ3
|ξ|4

I
(
(p+ |v|2)δ − 2v ⊗ v

))
.

Since the operator J3 does not contain the derivative ∂/∂ξ3,

(59) J2
3w = ξ3J3

( 1

|ξ|4
I
(
(p+ |v|2)δ − 2v ⊗ v

))
.

Next, using I
(
(p+ |v|2)δ

)
= |ξ|2I(p+ |v|2), we calculate

(60)

J3

( 1

|ξ|4
I
(
(p+ |v|2)δ − 2v ⊗ v

))
= J3

( 1

|ξ|2
I(p+ |v|2)

)
− 2J3

( 1

|ξ|4
I(v ⊗ v)

)
=

1

|ξ|2
J3I(p+ |v|2)− 2

|ξ|4
J3I(v ⊗ v)

− 2

|ξ|4
(
ξ2

∂

∂x1
− ξ1

∂

∂x2

)
I(p+ |v|2) + 8

|ξ|6
(
ξ2

∂

∂x1
− ξ1

∂

∂x2

)
I(v ⊗ v).
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The �rst term on the right-hand side is equal to zero because J3Ia = 0 for any
scalar function a [8, Theorem 2.10.1]. Thus, (59) and (60) give

(61)

J2
3w =− 2ξ3

|ξ|4
(
ξ2

∂

∂x1
− ξ1

∂

∂x2

)
I(p+ |v|2)− 2ξ3

|ξ|4
J3I(v ⊗ v)

+
8ξ3
|ξ|6

(
ξ2

∂

∂x1
− ξ1

∂

∂x2

)
I(v ⊗ v).

The �rst term on the right-hand side of (61) can be easily computed. Indeed, by
the de�nition of the ray transform,

I(p+ |v|2) =
∞∫

−∞

(p+ |v|2)(x+ tξ) dt.

From this

(62)
(
ξ2

∂

∂x1
−ξ1

∂

∂x2

)
I(p+ |v|2) =

∞∫
−∞

(
ξ2
∂(p+ |v|2)

∂x1
−ξ1

∂(p+ |v|2)
∂x2

)
(x+ tξ) dt.

Now, we compute two last terms on the right-hand side of (61). By the de�nition
of the ray transform,

I(v ⊗ v) =

∞∫
−∞

⟨ξ, v⟩2(x+ tξ) dt.

From this,

(63)
∂I(v ⊗ v)

∂xi
=

∞∫
−∞

∂⟨ξ, v⟩2

∂xi
(x+ tξ) dt.

In particular,

(64)
(
ξ2

∂

∂x1
− ξ1

∂

∂x2

)
I(v ⊗ v) = 2

∞∫
−∞

[
⟨ξ, v⟩

(
ξ2
∂⟨ξ, v⟩
∂x1

− ξ1
∂⟨ξ, v⟩
∂x2

)]
(x+ tξ) dt.

Di�erentiate (63) with respect to ξk

∂2I(v ⊗ v)

∂xi∂ξk
=

∞∫
−∞

t
∂2⟨ξ, v⟩2

∂xi∂xk
(x+ tξ) dt+

∞∫
−∞

∂2⟨ξ, v⟩2

∂xi∂ξk
(x+ tξ) dt.

The �rst integral on the right-hand side is symmetric in (i, k). It will disappear
after the alternation in these indices. We thus obtain

(65)

J3I(v ⊗ v) =

∞∫
−∞

(∂2⟨ξ, v⟩2
∂x1∂ξ2

− ∂2⟨ξ, v⟩2

∂x2∂ξ1

)
(x+ tξ) dt

= 2

∞∫
−∞

[
v2
∂⟨ξ, v⟩
∂x1

− v1
∂⟨ξ, v⟩
∂x2

+ ⟨ξ, v⟩
( ∂v2
∂x1

− ∂v1
∂x2

)]
(x+ tξ) dt.
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Substituting values (62), (64)�(65) into (61), we obtain

(66)

J2
3w = − 2ξ3

|ξ|4

∞∫
−∞

(
ξ2
∂(p+ |v|2)

∂x1
− ξ1

∂(p+ |v|2)
∂x2

)
(x+ tξ) dt

− 4ξ3
|ξ|4

∞∫
−∞

[
v2
∂⟨ξ, v⟩
∂x1

− v1
∂⟨ξ, v⟩
∂x2

+ ⟨ξ, v⟩
( ∂v2
∂x1

− ∂v1
∂x2

)]
(x+ tξ) dt

+
16ξ3
|ξ|6

∞∫
−∞

[
⟨ξ, v⟩

(
ξ2
∂⟨ξ, v⟩
∂x1

− ξ1
∂⟨ξ, v⟩
∂x2

)]
(x+ tξ) dt.

Let us eliminate p from (66) with the help of the Euler equations. To this end
we rewrite (66) in the form

J2
3w = − 2ξ3

|ξ|4

∞∫
−∞

(
ξ2
∂p

∂x1
− ξ1

∂p

∂x2

)
(x+ tξ) dt

− 2ξ3
|ξ|4

∞∫
−∞

(
ξ2
∂|v|2

∂x1
− ξ1

∂|v|2

∂x2

)
(x+ tξ) dt

− 4ξ3
|ξ|4

∞∫
−∞

[
v2
∂⟨ξ, v⟩
∂x1

− v1
∂⟨ξ, v⟩
∂x2

+ ⟨ξ, v⟩
( ∂v2
∂x1

− ∂v1
∂x2

)]
(x+ tξ) dt

+
16ξ3
|ξ|6

∞∫
−∞

[
⟨ξ, v⟩

(
ξ2
∂⟨ξ, v⟩
∂x1

− ξ1
∂⟨ξ, v⟩
∂x2

)]
(x+ tξ) dt.

By the Euler equations (1),

∂p

∂xi
= −⟨v,∇vi⟩.

Substitute these values into the previous equation

(67)

J2
3w =

2ξ3
|ξ|6

∞∫
−∞

[
|ξ|2

(
ξ2⟨v,∇v1⟩ − ξ1⟨v,∇v2⟩ − ξ2

∂|v|2

∂x1
+ ξ1

∂|v|2

∂x2

)
− 2|ξ|2

(
v2
∂⟨ξ, v⟩
∂x1

− v1
∂⟨ξ, v⟩
∂x2

+ ⟨ξ, v⟩ ∂v2
∂x1

− ⟨ξ, v⟩ ∂v1
∂x2

)
+ 8⟨ξ, v⟩

(
ξ2
∂⟨ξ, v⟩
∂x1

− ξ1
∂⟨ξ, v⟩
∂x2

)]
(x+ tξ) dt.
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The corresponding formulas for J2
1w and for J2

2w are obtained from (67) by the
cyclic permutation of indices

(68)

J2
1w =

2ξ1
|ξ|6

∞∫
−∞

[
|ξ|2

(
ξ3⟨v,∇v2⟩ − ξ2⟨v,∇v3⟩ − ξ3

∂|v|2

∂x2
+ ξ2

∂|v|2

∂x3

)
− 2|ξ|2

(
v3
∂⟨ξ, v⟩
∂x2

− v2
∂⟨ξ, v⟩
∂x3

+ ⟨ξ, v⟩ ∂v3
∂x2

− ⟨ξ, v⟩ ∂v2
∂x3

)
+ 8⟨ξ, v⟩

(
ξ3
∂⟨ξ, v⟩
∂x2

− ξ2
∂⟨ξ, v⟩
∂x3

)]
(x+ tξ) dt,

(69)

J2
2w =

2ξ2
|ξ|6

∞∫
−∞

[
|ξ|2

(
ξ1⟨v,∇v3⟩ − ξ3⟨v,∇v1⟩ − ξ1

∂|v|2

∂x3
+ ξ3

∂|v|2

∂x1

)
− 2|ξ|2

(
v1
∂⟨ξ, v⟩
∂x3

− v3
∂⟨ξ, v⟩
∂x1

+ ⟨ξ, v⟩ ∂v1
∂x3

− ⟨ξ, v⟩ ∂v3
∂x1

)
+ 8⟨ξ, v⟩

(
ξ1
∂⟨ξ, v⟩
∂x3

− ξ3
∂⟨ξ, v⟩
∂x1

)]
(x+ tξ) dt.

Take the sum of equations (67), (68) and (69). Many terms cancel each other in
the sum and the result is as follows:
(70)
(J2

1 + J2
2 + J2

3 )w =

= − 4

|ξ|4

∞∫
−∞

[
⟨ξ, v⟩

(
ξ1
∂v3
∂x2

− ξ1
∂v2
∂x3

+ ξ2
∂v1
∂x3

− ξ2
∂v3
∂x1

+ ξ3
∂v2
∂x1

− ξ3
∂v1
∂x2

)
+ (ξ3v2 − ξ2v3)

∂⟨ξ, v⟩
∂x1

+ (ξ1v3 − ξ3v1)
∂⟨ξ, v⟩
∂x2

+ (ξ2v1 − ξ1v2)
∂⟨ξ, v⟩
∂x3

]
(x+ tξ) dt.

Comparing (55) and (70), we see that

(71)
(
J2
1 + J2

2 + J2
3 +

4

|ξ|2
∆v

)
w = 0.

We have thus proved

Proposition 3. Given a solution (v, p) ∈ S(R3;C3)×S(R3) to the Euler equations
(1)�(2), let w be the Nadirashvili � Vladuts potential for f = v ⊗ v. The function
w solves the equation (71).

The equation (71) is the right extension of Nadirasvili�Vladuts's equation [5,
formula (4.5)] to the whole of R3 × (R3 \ {0}).

The operator H = J2
1 + J2

2 + J2
3 + 4

|ξ|2∆
v is a 4th order di�erential operator

on R3 × (R3 \ {0}). Its principal part J2
1 + J2

2 + J2
3 is a di�erential operator with

constant coe�cients. Observe that the operator H is �almost elliptic�. Indeed, let
y and η be Fourier dual variables for x and ξ respectively. The principle symbol of
H is −|y× η|2. The symbol vanishes if and only if y = tη (t ∈ R). This property of
the symbol is well agreed with the property (31) of the function w.
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4. Solutions of the equation (71)

We are looking for solutions w ∈ C∞(
R3 × (R3 \ {0})

)
to the equation (71)

satisfying (31) and such that w|TS2 belongs to S(TS2). All solutions of such kind
are described by the following

Theorem 3. If w ∈ C∞(
R3×(R3\{0})

)
is a solution to the equation (71) satisfying

(31) and such that w|TS2 belongs to S(TS2), then there exists a symmetric tensor
�eld â ∈ S(R3;C3 ⊗ C3) satisfying the equation

(72) |y|2tr â(y)− yiyj âij(y) = 0

and such that

(73) w(x, ξ) =
ξiξj

2π|ξ|3

∫
ξ⊥

ei⟨x,y⟩âij(y) dy.

Conversely, if a symmetric tensor �eld â ∈ S(R3;C3 ⊗ C3) solves the equation
(72) then, being de�ned by (73), the function w ∈ C∞(

R3×(R3 \{0})
)
is a solution

to the equation (71) satisfying (31) and such that w|TS2 belongs to S(TS2).
A general solution w ∈ C∞(

R3 × (R3 \ {0})
)
to the equation (71) depends on

two arbitrary functions belonging to C∞(R3 \ {0}).

The rest of the Section is devoted to the pretty long proof of Theorem 3. We
start with repeating arguments from the proof of [8, Theorem 2.10.1].

Let w ∈ C∞(
R3 × (R3 \ {0})

)
be a solution to the equation (71) satisfying (31)

and such that w0 = w|TS2 ∈ S(TS2). Let ŵ0 ∈ S(TS2) be the Fourier transform of
w0 (see [8, Section 2.2] for the de�nition of the Fourier transform F : S(TS2) →
S(TS2)). De�ne the function ŵ ∈ C∞(

Rn × (Rn \ {0})
)
by

ŵ(y, ξ) = ŵ0

(
y − ⟨y, ξ⟩

|ξ|2
ξ,

ξ

|ξ|

)
.

Then

(74) ŵ|TS2 = ŵ0, ŵ(y, tξ) = ŵ(y, ξ) (0 ̸= t ∈ R), ŵ(y+ tξ, ξ) = ŵ(y, ξ) (t ∈ R)

and w is expressed through ŵ by

(75) w(x, ξ) = (2π)−1|ξ|−1

∫
ξ⊥

ei⟨x,y⟩ŵ(y, ξ) dy.

Let us derive a di�erential equation for ŵ which follows from (71). To this end
we rewrite (75) in the form

w(x, ξ) = (2π)−1

∫
R3

ei⟨x,y⟩δ(⟨ξ, y⟩)ŵ(y, ξ) dy,

where δ is the Dirac function. Di�erentiating this equality, we obtain

∂2w(x, ξ)

∂xj∂ξk
= i(2π)−1

∫
R3

yje
i⟨x,y⟩δ(⟨ξ, y⟩)∂ŵ(y, ξ)

∂ξk
dy

+ i(2π)−1

∫
R3

yjyke
i⟨x,y⟩δ′(⟨ξ, y⟩)ŵ(y, ξ) dy.
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The second integral is symmetric in (j, k), it will disappear after the alternation in
these indices. The result can be written as( ∂2

∂xj∂ξk
− ∂2

∂xk∂ξj

)
w(x, ξ) = i(2π)−1|ξ|−1

∫
ξ⊥

ei⟨x,y⟩
(
yj

∂

∂ξk
− yk

∂

∂ξj

)
ŵ(y, ξ) dy.

Repeating this procedure, we obtain( ∂2

∂xj∂ξk
− ∂2

∂xk∂ξj

)2

w(x, ξ) = −(2π)−1|ξ|−1

∫
ξ⊥

ei⟨x,y⟩
(
yj

∂

∂ξk
− yk

∂

∂ξj

)2

ŵ(y, ξ) dy.

Therefore

(76) (J2
1 + J2

2 + J2
3 )w(x, ξ) = −(2π)−1|ξ|−1

∫
ξ⊥

ei⟨x,y⟩Lŵ(y, ξ) dy,

where L is the second order di�erential operator on R3 × (R3 \ {0}) de�ned by

(77) L =
(
y1

∂

∂ξ2
− y2

∂

∂ξ1

)2

+
(
y2

∂

∂ξ3
− y3

∂

∂ξ2

)2

+
(
y3

∂

∂ξ1
− y1

∂

∂ξ3

)2

.

One easily derives from (75) with the help of (53)
(78)

(∆vw)(x, ξ) =
( ∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23

)
w(x, ξ) = −(2π)−1|ξ|−1

∫
ξ⊥

ei⟨x,y⟩|y|2ŵ(y, ξ) dy.

Substituting (76) and (78) into (71), we obtain

(79)

∫
ξ⊥

ei⟨x,y⟩
(
L+ 4

|y|2

|ξ|2
)
ŵ(y, ξ) dy = 0.

Being valid for every (x, ξ) ∈ Rn × (Rn \ {0}), equation (79) implies

(80)
(
L+ 4

|y|2

|ξ|2
)
ŵ(y, ξ) = 0 for y ∈ ξ⊥.

One easily derives from the de�nition (77) the following property of the operator L:

(81) L(|ξ|2φ) = |ξ|2Lφ+ 4|y|2⟨ξ, ∂ξ⟩φ− 4⟨y, ξ⟩⟨y, ∂ξ⟩φ+ 4|y|2φ

for any function φ ∈ C∞(
R3 × (R3 \ {0})

)
, where

⟨ξ, ∂ξ⟩ = ξ1
∂

∂ξ1
+ ξ2

∂

∂ξ2
+ ξ3

∂

∂ξ3
, ⟨y, ∂ξ⟩ = y1

∂

∂ξ1
+ y2

∂

∂ξ2
+ y3

∂

∂ξ3
.

By (74), the function ŵ(y, ξ) is positively homogeneous of zero degree in ξ, hence
⟨ξ, ∂ξ⟩ŵ = 0. The formula (81) is simpli�ed for φ = ŵ = 0 as follows:

L(|ξ|2ŵ) = |ξ|2Lŵ − 4⟨y, ξ⟩⟨y, ∂ξ⟩ŵ + 4|y|2ŵ.

Together with (80), this gives

L(|ξ|2ŵ) = −4⟨y, ξ⟩⟨y, ∂ξ⟩ŵ.

In particular,

(82)
(
L(|ξ|2ŵ)

)∣∣
TS2 = 0.
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Lemma 1. Let a function φ ∈ C∞(
R3 × (R3 \ {0})

)
satisfy

(83) φ(y, tξ) = t2φ(y, ξ) (0 ̸= t ∈ R).

Assume that φ|TS2 ∈ S(TS2) and (Lφ)|TS2 = 0. Then there exists a symmetric
tensor �eld â ∈ S(R3;C3 ⊗ C3) satisfying the equation (72) and such that

(84) φ(y, ξ) = âij(y)ξ
iξj for (y, ξ) ∈ R3 × (R3 \ {0}) satisfying ⟨y, ξ⟩ = 0.

We �nish the proof of Theorem 3 with the help of the lemma. The proof of
Lemma 1 is presented at the end of the section.

By (74) and (82), the function φ = |ξ|2ŵ satis�es hypotheses of Lemma 1.
Applying the lemma, we obtain

ŵ(y, ξ) = |ξ|−2âij(y)ξ
iξj for (y, ξ) ∈ R3 × (R3 \ {0}) satisfying ⟨y, ξ⟩ = 0

with a symmetric tensor �eld â ∈ S(R3;C3 ⊗ C3) satisfying the equation (72).
Substituting this expression into (75), we arrive to (73). This proves the �rst
statement of Theorem 3.

We prove now the second statement of Theorem 3. Given a symmetric tensor �eld
â ∈ S(R3;C3⊗C3) satisfying (72), we de�ne the function w ∈ C∞(

R3× (R3 \{0})
)

by (73). The following properties of the function follow obviously from (73):

(85) w(y, tξ) = |t|−1w(y, ξ) (0 ̸= t ∈ R), w(y + tξ, ξ) = w(y, ξ) (t ∈ R).

We rewrite (73) in the form

(86) w(x, ξ) =
1

|ξ|3
aij(x, ξ)ξ

iξj ,

where

(87) aij(x, ξ) = (2π)−1

∫
ξ⊥

ei⟨x,y⟩âij(y) dy.

It is clear now from (86)�(87) that w0 = w|S2 ∈ S(TS2). It remains to prove that
the function w solves the equation (71).

First of all we compute ∆vw. By (52),

∆v = ∆x − |ξ|−2⟨ξ, ∂x⟩,

where

∆x =
∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23
, ⟨ξ, ∂x⟩ = ξ1

∂

∂x1
+ ξ2

∂

∂x2
+ ξ3

∂

∂x3
.

As easily follows from (85), ⟨ξ, ∂x⟩w = 0. Therefore ∆vw = ∆xw. Together with
(86), this gives

(88) (∆v)w(x, ξ) =
1

|ξ|3
(∆xaij)(x, ξ)ξ

iξj .

From (87)

(∆xaij)(x, ξ) = −(2π)−1

∫
ξ⊥

ei⟨x,y⟩|y|2âij(y) dy.
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Substitute this expression into (88) to obtain

(89) (∆v)w(x, ξ) = − 1

2π|ξ|3

∫
ξ⊥

ei⟨x,y⟩|y|2 âij(y) dy.

Next, we compute (J2
1 +J

2
2 +J

2
3 )w. The computation is similar to the arguments

presented after (75). We will compute J2
3w and then write down the corresponding

formulas for J2
1w and J2

2w by analogy. First of all we rewrite (73) in the form

w(x, ξ) =
ξpξq

2π|ξ|2

∫
R3

ei⟨x,y⟩δ(⟨ξ, y⟩) âpq(y) dy,

where δ is the Dirac function. Di�erentiate this equation to obtain

∂2w(x, ξ)

∂x1∂ξ2
= i

ξpξq

2π|ξ|2

∫
R3

ei⟨x,y⟩y1y2δ
′(⟨ξ, y⟩) âpq(y) dy

+ 2i
ξp

2π|ξ|2

∫
R3

ei⟨x,y⟩y1δ(⟨ξ, y⟩) âpk(y) dy

− 2i
ξkξ

pξq

2π|ξ|4

∫
R3

ei⟨x,y⟩y1δ(⟨ξ, y⟩) âpq(y) dy.

The �rst integral on the right-hand side disappears after alternating with respect
to the indices 1 and 2. Hence

J3w(x, ξ) = 2i
ξp

2π|ξ|3

∫
ξ⊥

ei⟨x,y⟩(yj âpk(y)− ykâpj(y)
)
dy

− 2i
ξpξq

2π|ξ|5

∫
ξ⊥

ei⟨x,y⟩(yjξk − ykξj)âpq(y) dy.

Repeating this procedure, we obtain

J2
3w(x, ξ) = −2

1

2π|ξ|3

∫
ξ⊥

ei⟨x,y⟩(y22 â11(y)− 2y1y2â12(y) + y22 â33(y)(y)
)
dy

+ 8
ξp

2π|ξ|5

∫
ξ⊥

ei⟨x,y⟩(y1ξ2 − y2ξ1)
(
y1â2p(y)− y2â1p(y)

)
dy

− 8
ξpξq

2π|ξ|7

∫
ξ⊥

ei⟨x,y⟩(y1ξ2 − y2ξ1)
2âpq(y) dy

+ 2
ξpξq

2π|ξ|5

∫
ξ⊥

ei⟨x,y⟩(y21 + y22)âpq(y) dy.
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The corresponding formulas for J2
1w and for J2

2w are obtained by the cyclic per-
mutation of indices

J2
1w(x, ξ) = −2

1

2π|ξ|3

∫
ξ⊥

ei⟨x,y⟩(y23 â22(y)− 2y2y3â23(y) + y22 â33(y)(y)
)
dy

+ 8
ξp

2π|ξ|5

∫
ξ⊥

ei⟨x,y⟩(y2ξ3 − y3ξ2)
(
y2â3p(y)− y3â2p(y)

)
dy

− 8
ξpξq

2π|ξ|7

∫
ξ⊥

ei⟨x,y⟩(y2ξ3 − y3ξ2)
2âpq(y) dy

+ 2
ξpξq

2π|ξ|5

∫
ξ⊥

ei⟨x,y⟩(y22 + y23)âpq(y) dy,

J2
2w(x, ξ) = −2

1

2π|ξ|3

∫
ξ⊥

ei⟨x,y⟩(y23 â11(y)− 2y1y3â13(y) + y21 â33(y)(y)
)
dy

+ 8
ξp

2π|ξ|5

∫
ξ⊥

ei⟨x,y⟩(y3ξ1 − y1ξ3)
(
y3â1p(y)− y1â3p(y)

)
dy

− 8
ξpξq

2π|ξ|7

∫
ξ⊥

ei⟨x,y⟩(y3ξ1 − y1ξ3)
2âpq(y) dy

+ 2
ξpξq

2π|ξ|5

∫
ξ⊥

ei⟨x,y⟩(y21 + y23)âpq(y) dy.

Take the sum of three last equalities

(90)

(J2
1 + J2

2 + J2
3 )w(x, ξ) =

= −2
1

2π|ξ|3

∫
ξ⊥

ei⟨x,y⟩
[
(y22 + y23)â11 + (y21 + y23)â22 + (y21 + y22)â33

− 2y1y2â12 − 2y1y3â13 − 2y2y3â23

]
dy

+8
ξp

2π|ξ|5

∫
ξ⊥

ei⟨x,y⟩
[(
(y22+y

2
3)ξ1−y1y2ξ2−y1y3ξ3

)
â1p

+
(
(y21+y

2
3)ξ2−y1y2ξ1−y2y3ξ3

)
â2p

+
(
(y21 + y22)ξ3 − y1y3ξ1 − y2y3ξ2

)
â3p

]
dy

−8
ξpξq

2π|ξ|7

∫
ξ⊥

ei⟨x,y⟩|y × ξ|2 âpq(y) dy + 4
ξpξq

2π|ξ|5

∫
ξ⊥

ei⟨x,y⟩|y|2 âpq(y) dy.

Recall that the tensor �eld âij is assumed to satisfy (72). The �rst integrand on
the right-hand side of (90) is equal to zero in virtue of the latter equation. Indeed,

(y22 + y23)â11 + (y21 + y23)â22 + (y21 + y22)â33 − 2y1y2â12 − 2y1y3â13 − 2y2y3â23

= |y|2tr â− âijy
iyj = 0.
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The fourth integrand on the right-hand side of (90) can be simpli�ed since |y×ξ|2 =
|y|2|ξ|2 for y ∈ ξ⊥. We write the result in the preliminary form

(91) (J2
1 + J2

2 + J2
3 )w(x, ξ) = −4

ξpξq

2π|ξ|5

∫
ξ⊥

ei⟨x,y⟩|y|2 âpq(y) dy + (Kâ)(x, ξ),

where

(Kâ)(x, ξ) = 8
1

2π|ξ|5

∫
ξ⊥

ei⟨x,y⟩ξp
[(
(y22+y

2
3)ξ1−y1y2ξ2−y1y3ξ3

)
â1p

+
(
(y21+y

2
3)ξ2−y1y2ξ1−y2y3ξ3

)
â2p +

(
(y21 + y22)ξ3 − y1y3ξ1 − y2y3ξ2

)
â3p

]
dy.

The last integrand can be also simpli�ed with the help of the relation ⟨ξ, y⟩ = 0:

ξp
[(
(y22+y

2
3)ξ1−y1y2ξ2−y1y3ξ3

)
â1p +

(
(y21+y

2
3)ξ2−y1y2ξ1−y2y3ξ3

)
â2p

+
(
(y21 + y22)ξ3 − y1y3ξ1 − y2y3ξ2

)
â3p

]
= ξp

[(
(y22+y

2
3)ξ1−y1(y2ξ2+y3ξ3)

)
â1p +

(
(y21+y

2
3)ξ2−y2(y1ξ1+y3ξ3)

)
â2p

+
(
(y21 + y22)ξ3 − y3(y1ξ1 + y2ξ2)

)
â3p

]
= ξp

[(
(y22+y

2
3)ξ1+y

2
1ξ1

)
â1p +

(
(y21+y

2
3)ξ2+y

2
2ξ2

)
â2p +

(
(y21 + y22)ξ3 + y23ξ3

)
â3p

]
= |y|2ξpξqâpq.

Substituting this value into (91), we obtain the �nal formula

(92) (J2
1 + J2

2 + J2
3 )w(x, ξ) = 4

ξpξq

2π|ξ|5

∫
ξ⊥

ei⟨x,y⟩|y|2 âpq(y) dy.

By (89) and (92),
(
J2
1+J

2
2+J

2
3+

4
|ξ|2∆

v
)
w = 0. This proves the second statement

of Theorem 3.
The last statement of Theorem 3 (dependence of a general solution on two

arbitrary functions) will be explained after the proof of Lemma 1.

Proof of Lemma 1. For 0 ̸= y ∈ R3, set y⊥ = {ξ ∈ R3 | ⟨ξ, y⟩ = 0}. Let ∆y⊥ :

C∞(y⊥) → C∞(y⊥) be the Euclidean Laplacian on the plane y⊥. Given a function
φ ∈ C∞(

R3 × (R3 \ {0})
)
and vector 0 ̸= y ∈ R3, de�ne the function φy ∈

C∞(y⊥ \ {0}) by φy(ξ) = φ(y, ξ). Then the equality

(93) (Lφ)(y) = |y|2∆y⊥φy

holds for every function φ ∈ C∞(
R3 × (R3 \ {0})

)
and every vector 0 ̸= y ∈ R3.

Indeed, for 0 ̸= y = (0, 0, |y|), the equality obviously follows from the de�nition
(77) of the operator L. It remains to observe that both sides of (93) are invariant
under the action of the orthogonal group O(3).

Let a function φ ∈ C∞(
R3 × (R3 \ {0})

)
satisfy hypotheses of Lemma 1. By

(83), φ(x, ξ) is positively homogeneous of second degree in ξ. Therefore φ can be
extended to a continuous function on R3 × R3 by setting φ(y, 0) = 0. We denote
the extension by φ again.
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Let us introduce the 5-dimensional submanifold M ⊂ R3 × R3 by

M = {(y, ξ) | y ̸= 0, ⟨y, ξ⟩ = 0}.

Then

(94) M → R3 \ {0}, (y, ξ) 7→ y

is the two-dimensional vector bundle with the �ber y⊥ over a point 0 ̸= y ∈ R3. Let
ψ ∈ C(M) be the restriction of φ toM . We will see soon that actually ψ ∈ C∞(M).

In virtue of (93), the hypothesis (Lφ)|TS2 = 0 of Lemma 1 means that, for every
0 ̸= y ∈ R3, the restriction ψy of the function ψ to the �ber y⊥ of the bundle (94)
satis�es

(∆y⊥ψy)(ξ) = 0 for ξ ̸= 0.

This equality must hold at ξ = 0 as well since ψy is a continuous function on y⊥.
Thus,

(95) ∆y⊥ψy = 0,

i.e. ψy is a harmonic function on y⊥. Besides this, ψy(ξ) is a positively homogeneous
function of second degree by (83). As well known (and can be easily proved) a
harmonic second degree positively homogeneous function is a homogeneous polyno-
mial of second degree. Thus, given an orthonormal basis (f1, f2) of y⊥, the function
ψy can be represented in the form

(96) ψy(ξ1f
1 + ξ2f

2) = ĉ′11ξ
2
1 + 2ĉ′12ξ1ξ2 + ĉ′22ξ

2
2

with uniquely determined coe�cients ĉ′ij = ĉ′ji ∈ C (1 ≤ i, j ≤ 2). The equation
(95) is equivalent to the equality

(97) ĉ′11 + ĉ′22 = 0.

We can now prove smoothness of the function ψ. For a �xed 0 ̸= y0 ∈ R3, we
can choose an orthonormal basis (f1y , f

2
y ) of the space y

⊥ smoothly depending on a

point y belonging to some neighborhood U ⊂ R3 \ {0} of the point y0. By (96),
(98)

ψ(y, ξ1f
1
y+ξ2f

2
y ) = φ(y, ξ1f

1
y+ξ2f

2
y ) = ĉ′11(y)ξ

2
1+2ĉ′12(y)ξ1ξ2+ ĉ′22(y)ξ

2
2 (y ∈ U)

with uniquely determined coe�cients ĉ′ij ∈ C(U). The right hand side of (98)
smoothly depends on (y; ξ1, ξ2) ∈ U × R2, at least for ξ21 + ξ22 ̸= 0, since φ ∈
C∞(

R3 × (R3 \ {0})
)
. This implies that ĉ′ij ∈ C∞(U) and hence ψ ∈ C∞(M).

We cannot write (98) for all points y ∈ R3 \ {0} simultaneously. Instead of that,
we will write some coordinate-free formula equivalent to (98). To this end we have
to use so called tangential tensor �elds introduced in [4, Section 4].

We think on R3 \ {0} as the disjoint union (= foliation) of spheres centered at
the origin

R3 \ {0} =
⋃
ρ>0

S2ρ, S2ρ = {y ∈ R3 | |y| = ρ}.

The manifold M is also presented as the disjoint union

M =
⋃
ρ>0

TS2ρ, TS2ρ = {(y, ξ) ∈ R3 × R3 | |y| = ρ, ξ ∈ y⊥}.
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Introduce the operator

iy : C∞(R3 \ {0};C3) → C∞(R3 \ {0};C3 ⊗ C3)

of symmetric multiplication by y and operator

jy : C∞(R3 \ {0};C3 ⊗ C3) → C∞(R3 \ {0};C3)

of contraction with the vector y by the formulas

(iyv)kℓ =
1

2
(ykvℓ + yℓvk), (jyf)k = yℓfkℓ.

We emphasize that iy and jy are invariant operators (independent of coordinate
choice) although last formulas are written in Cartesian coordinates. The same is
true for the operator tr : C∞(R3 \ {0};C3 ⊗C3) → C∞(R3), tr f = f11 + f22 + f33.

We say that v ∈ C∞(R3 \ {0};C3) is a tangential vector �eld if ⟨y, v(y)⟩ = 0 for
all 0 ̸= y ∈ R3. In other words, the vector v(y) is tangent to the sphere S2|y|. Quite
similarly, a symmetric f ∈ C∞(R3 \ {0};C3 ⊗C3) is called a tangential tensor �eld
if jyf(y) = 0 for all 0 ̸= y ∈ R3.

We can now present an invariant version of (97)�(98). Under hypotheses of
Lemma 1, there exists a symmetric tangential tensor �eld ĉ ∈ C∞(R3\{0};C3⊗C3)
satisfying

(99) tr ĉ = 0

and such that

(100) φ(y, ξ) = ĉij(y)ξ
iξj (0 ̸= y ∈ R3, ξ ∈ y⊥).

Indeed, choosing an orthonormal basis (f1y , f
2
y ) of y⊥ smoothly depending on a

point y belonging to some neighborhood U of a �xed point 0 ̸= y0 ∈ R3, one easily
checks that formulas (99)�(100) are equivalent to (97)�(98) for y ∈ U .

Recall [8, Lemma 2.6.1] that every symmetric tensor �eld a ∈ C∞(R3;C3 ⊗ C3)
can be uniquely represented in the form

aij(y) =
taij(y) +

1

2

(
yibj(y) + yjbi(y)

)
(y ̸= 0)

with a vector �eld b ∈ C∞(R3 \ {0};C3) and symmetric tensor �eld ta ∈ C∞(R3 \
{0};C3 ⊗ C3) satisfying

(101) yj taij(y) = 0 (i = 1, 2, 3).

In terminology of [8], ta is the tangential component and 1
2 (yibj + yjbi) is the

radial component of the tensor �eld a. In our terminology, (101) means that ta
is a tangential tensor �eld.

Recall also the important theorem on the tangential component [8, Theorem
2.7.1]. It states that a symmetric tangential tensor �eld c ∈ C∞(R3 \ {0};C3 ⊗C3)
serves as the tangential component of some symmetric tensor �eld a ∈ C∞(R3;C3⊗
C3) if and only if the restriction of the function cij(y)ξ

iξj to TS2 belongs to
C∞(TS2). The most important (and di�cult to prove) part of this statement is
the smoothness of a(y) at y = 0.

Returning to the proof of Lemma 1, we apply the theorem on the tangential
component to the symmetric tangential tensor �eld ĉ ∈ C∞(R3 \ {0};C3 ⊗ C3)
satisfying (99)�(100). The hypothesis φ|TS2 ∈ S(TS2) of Lemma 1 means that the
restriction of the function ĉij(y)ξ

iξj to TS2 belongs to S(TS2). The theorem on the
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tangential component gives us a smooth symmetric tensor �eld â ∈ C∞(R3;C3⊗C3)
such that

(102) âij(y) = ĉij(y) +
1

2

(
yibj(y) + yjbi(y)

)
(y ̸= 0)

with some vector �eld b. Moreover, we can state that â ∈ S(R3;C3 ⊗C3) since the
restriction of the function âij(y)ξ

iξj to TS2 belongs to S(TS2).
Comparing (100) and (102), we obtain the statement (84) of Lemma 1.
Since ĉ is a symmetric tangential tensor �eld, it satis�es

(103) yj ĉij(y) = 0 (i = 1, 2, 3).

Together with (102), this gives

yiyj âij(y) = |y|2⟨y, b(y)⟩.
On the other hand, (99) and (101) give

tr â(y) = ⟨y, b(y)⟩.
From two last formulas

|y|2tr â(y)− yiyj âij(y) = 0,

i.e., â solves the equation (72). □

We still have to justify the last statement of Theorem 3. We emphasize that
the tensor �eld â in Theorem 3 and Lemma 1 is not unique. Only its tangential
component ĉ = tâ is unique. In principle, Theorem 3 can be formulated in terms
of a tensor �eld ĉ with the equation (72) replaced by (99). Nevertheless, we prefer
to formulate Theorem 3 in terms of the �eld â because the tangential component
of a smooth symmetric tensor �eld has a speci�c singularity at the origin. Six
components of the tensor �eld ĉ are subordinated to four linear equations (99)
and (103). Therefore ĉ(y) is determined by two arbitrary functions belonging to
C∞(R3 \ {0}).

5. Some open question

For a tensor �eld f ∈ S(R3;C3 ⊗C3) belonging to the kernel of the operator N ,
we de�ned the Nadirasvili � Valaduts potential w, see Proposition 2. Let us write
w[f ] instead of w to emphasize the dependence on f . As is seen from the proof of
Proposition 2, w[f ] depends linearly on f . The following question is still open:

Problem 1. Does the equality w[f ] = 0 imply f = 0 for a tensor �eld f ∈
S(R3;C3⊗C3) belonging to the kernel of N? More generally, is it possible to describe
explicitly the subspace of S(R3;C3 ⊗ C3) consisting of tensor �elds f satisfying
N f = 0 and w[f ] = 0?

Then after (57), we discussed the Nadirasvili � Valaduts potential w[v ⊗ v] for
a vector �eld v ∈ S(R3;C3) satisfying the Euler equations (1)�(2). Since w[v ⊗ v]
depends quadratically on v, the corresponding question takes the form:

Problem 2. Does the equality w[v⊗ v] = w[ṽ⊗ ṽ] imply v = ṽ for two vector �elds
v, ṽ ∈ S(R3;C3) satisfying the Euler equations? More generally, given a solution
(v, p) ∈ S(R3;C3) × S(R3) to the Euler equations, is it possible to describe all
solution (ṽ, p̃) ∈ S(R3;C3) × S(R3) to the Euler equations satisfying w[ṽ ⊗ ṽ] =
w[v ⊗ v]?
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Nadirasvili and Valaduts [5] proved that w[v ⊗ v] = 0 implies v = 0 in the case
of a real v. But this does not answer Problem 2. If the �rst question of Problem
2 was answered �yes�, Theorem 3 would imply that a general solution (v, p) ∈
S(R3;C3)×S(R3) to the Euler equations is determined by two arbitrary functions
of y ∈ R3 \ {0}. In this way we hope to answer the following question:

Problem 3. Is it possible to classify all solutions (v, p) to the Euler equations such
that v1, v2, v3, p ∈ S(R3)?
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