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ABSTRACT. We study the Nadirashvili — Vladuts transform N that
integrates second rank tensor fields f on R™ over hyperplanes. More
precisely, for a hyperplane P and vector n parallel to P, N'f(P,n) is the
integral of the function f;;(2)¢'n’ over P, where ¢ is the unit normal
vector to P. We prove that, given a vector field v, the tensor field f =
v ® v belongs to the kernel of A/ if and only if there exists a function p
such that (v,p) is a solution to the Euler equations. Then we study the
Nadirashvili — Vladuts potential w(z, &) determined by a solution to the
Euler equations. The function w solves some 4th order PDE. We describe
all solutions to the latter equation.

Keywords: Euler equations, Nadirashvili — Vladuts transform, tensor
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1. INTRODUCTION

In dimensions 2 and 3, the Euler equations

1 i = =1,...

1) 3 gy + g =0 (=1
. ;.

(2) dive = 2 B, =0
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describe steady flows of ideal incompressible fluid. The equations are also of some
mathematical interest in an arbitrary dimension. Here v = (vi(x),...,v,(2)) is a
vector field on R™ (the fluid velocity) and p is a scalar function on R™ (the pressure).
Only real solutions (v,p) are physically sensible. Nevertheless, all our results are
valid for solutions with complex-valued functions v; and p. We have to consider
complex-valued functions and vector fields since we use the Fourier transform.

We consider only solutions (v, p) to the Euler equations (1)—(2) which are defined
on the whole of R", are sufficiently smooth, and satisfy some decay conditions at
infinity. The reader can easily find minimal regularity and decay conditions for every
statement below. To simplify the presentation, we will always assume the functions
v; (i=1,...,n) and p to belong to the Schwartz space S(R™) of smooth functions
fast decaying at infinity together with all derivatives (the term “smooth” is used as
a synonym of “C'*°-smooth”).

One can ask: Do there exist non-trivial (i.e., not identically equal to zero)
solutions to the Euler equations such that v; and p belong to S(R™)? The answer
to the question is “yes”. Moreover, there exist non-trivial solutions such that v; and
p belong to the space C§°(R™) of smooth compactly supported functions. In the
case of any even dimension n, an example of such a solution is presented in [2, 7].
In the case of n = 3, the existence of such a solution is proved in the breakthrough
article [3] by Gavrilov, see also [1, 7]. We guess (although have not proven) such a
solution exists in any odd dimension.

Let (-,-) be the standard dot-product on R™ and | - |, the corresponding norm.
Let S"~! = {¢ € R" | [¢| = 1} be the unit sphere. To our knowledge, the following
observation belongs to Nadirasvili — Vladuts [5]. Let (v, p) be a solution to the Euler
equations (1)—(2) such that the functions v; (¢ =1,...,n) and p belong to S(R™).
Then, for every (£,q) € S*~! x R and for every vector n € R" satisfying (£,7) = 0,

3) [ @9 @) ds =0,
(€,x)=q

where dx is the (n— 1)-dimensional Lebesgue measure on the hyperplane (£, x) = p.
For a fixed (¢, q) € S"~! xR, (3) involves n— 1 linearly independent equations since
7 belongs to the (n—1)-dimensional space £+ = {n € R™ | (£, 1) = 0}. An easy proof
of (3) is presented at the beginning of the next section for the sake of completeness.

For £ € S"71, let P¢ : R — &+ be the orthogonal projection, it is expressed by
Pen=n—(£,n)€ In (3), we can replace n) € £ with Pen for an arbitrary n € R"

() | @80, Payde =0 ((€n0) €8 xR xR).

(§:x)=q
We will treat this equation for |n| = 1 since we are going to integrate with respect
to n.

Let S(R™; C™) be the Schwartz space of (complex-valued) vector fields v : R™ —
C™ and S(R™;C™ ® C") be the Schwartz space of functions f : R* — C" ® C".
Elements of the latter space are called second rank (smooth fast decaying) tensor
fields on R™. More generally, for a smooth vector bundle £ — M over a smooth
compact manifold, the Schwartz space S(E) of functions on F can be defined with
the help of a finite atlas and partition of unity subordinate to the atlas. In particular,
for the trivial vector bundle S*~! x S*~! x R — S"! x S*!, we have the well
defined Schwartz space S(S"~! x S"~! x R) of functions (&, 1, q) fast decaying in q.
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The Schwartz spaces S(R™;C" ® C") and S(S"~! x S"~! x R) are furnished with
corresponding topologies.
Introducing the tensor field f € S(R™;C" @ C") by fi; = v;v;, we write (4) as

(5) / i @E Py de =0 ((6,m,q) €S x "L x R).
(&,x)=¢q

We use the Einstein summation rule: the summation from 1 to n is assumed over
every index repeated in lower and upper positions in a monomial. To adopt our
formulas to the summation rule, we use either lower or upper indices for denoting
coordinates of vectors and tensors. For instance, ¢ = &; in (5). There is no difference
between covariant and contravariant tensors since we use Cartesian coordinates
only.

Definition 1. The linear continuous operator

(6) N S(R™;C"®C") — S(S™ ! x S"! x R)

defined by

(7) WA= [ Fi P de
(&,x)=q

will be called the Nadirashvili — Vladuts transform.

Thus, given a solution (v, p) € S(R™; C") x S(R™) to the Euler equations (1)—(2),
the tensor field f = v ® v € S(R™; C™ ® C™) belongs to the kernel of the operator
N. Our first main result is the converse statement.

Theorem 1. Given a divergence-free vector field v € S(R™;C"™), the tensor field
f = v®wv satisfies Nf = 0 if and only if there exists a function p € S(R™) such
that (v, p) is a solution to the Euler equations (1).

By the definition (7), the operator N integrates f;;(z)¢*(Pen)’ over hyperplanes.
Therefore N is called “a Radon type transform” in the title of our article. But
actually, at least in the 3D case, N is closely related to the ray transform that
integrates symmetric tensor fields over lines. The relationship is encoded in some
function w(z, ) that will be called the Nadirashvili — Vladuts potential. It was
introduced in [5]. We give an alternative definition of w in Proposition 2 below. In
our opinion, Proposition 2 gives a better understanding of the relationship between
the Nadirashvili — Vladuts transform and ray transform.

The Nadirashvili — Vladuts potential satisfies some 4th order PDE [5, equation
(4.5)]. We write the equation in a little bit different form (see the equation (71)
below) and present an alternative proof. Our second main result is Theorem 3 below
which describes all solutions of the equation (71). The general solution depends on
two arbitrary functions.

To author’s knowledge, only one example of a solution (v, p) of the Euler equti-
ons (1)—(2) is known so far such that the functions v; (i = 1,2, 3) and p belong to
S(R?) [3]. Probably such solutions can be classified. Theorem 3 can be considered
as the first step toward such a classification.
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2. PROOF OF THEOREM 1

We first prove the statement “if” of Theorem 1. Let (v,p) € S(R™;C"™) x S(R"™)
be a solution to the Euler equations (1)—(2). It suffices to prove (3) in the case
when the hyperplane (£, z) = ¢ coincides with the coordinate hyperplane z,, = 0.
Indeed, the Euler equations are invariant under a change of Cartesian coordinates
while the equation (3) is independent of the coordinate choice. Given a hyperplane
P, we can choose Cartesian coordinates so that P coincides with the coordinate
hyperplane z,, = 0.

In virtue of the incompressibility equation (3) the Euler equations (1) can be
written in the divergent form

—~ d(viv;)  Op .
(8) ZT% +8mi_0 (i=1,...,n),

j=1

Distinguishing the last summand of the sum, we rewrite (8) in the form

n—1
3 Oiy) | o) | Op o (j_y 1),
= (9$j

oz, dx;
Integrating this equation with respect to z1,...,z,_1, we obtain
d
— vi(@)op(z)dxy ... dep—1 =0 (i=1,...,n—1).
dz,
Rnr—1

The function ¢(z,) = [ga_1 vi(x)vn () dey ... dr,—; belongs to S(R). The deriva-
tive of such a function is identically equal to zero iff the function itself is identically
equal to zero. Hence

vi(@)op(z)dey .. .dep,—1 =0 (i=1,...,n—1).
Rnfl
This is equivalent to (3) for the hyperplane (€, 2) = ¢ coincident with the coordinate
hyperplane x,, = 0.

Observe that a tensor field of the form f;; = gd;;, where g € S(R™) and (d;;) is
the Kronecker tensor, belongs to the kernel of ' because the integrand of (7) is
identically equal to zero for such a field. Therefore it makes sense to consider the
restriction of A to the subspace of trace-free tensor fields. We will do the restriction
later but not right now.

To prove the “only if” statement of Theorem 1, we will first find the adjoint A/*
of the Nadirashvili — Vladuts transform and then will compute the product N*N.

We use the Hilbert space L?(R"; C" @ C") with the L?-product

(f,9) = (f,9)L2@rscrecn) = /fij(x)gij(x) dx.
Rn
The Hilbert space L?(S"~! x S»~1 x R) of functions is defined by

oo

(307 1/)) = (‘pa Z/))Lr‘-’(S"*1 xSP—1xR) — / / / 90(57 nap) 7/’(5, UB Q) dngdn’

§n—-1§n—1 —oco

where d¢ (and dn) is the standard volume form on S™~!,



884 V.A. SHARAFUTDINOV

By (7), for f € S(R*;C" ®C") and ¢ € S(S"~! x S~ x R),

wro= [ f / / Fi5(2) € (Pen)? 9l& m, @) dadq | dedn,

§n—1§n—1 |—oo (¢£,x)=

After changing integration variables as © = y + ¢&, this becomes

N, ) / fii(y [ || FEn e e ey den| ay
Sn—lSn—l
This means that

Q W)= [ [ elente.6) & e, dedn
Sn—l gn—l
Next, we compute the product N*N. By (7) and (9),

W*Nf)ij(x):/ / / Frely) € (Pen)' & (Pen); dydédn,
§7-187-1 (y,€)=(a,6)

After changing integration variables as z = y — z, this becomes

(1) (WNf)is) = / / feol + 2) €i6*

Sn—l EL

/ (Pen) (Pen)’ dn] dzde.
STL— 1

The inner integral on (10) can be easily calculated. Indeed, since

(Pen); (Pen)® = (m; — (€, m)&)(n" — (& m)€b),

we have
/ (Pen); (Pen)” dn = / - dn — €, / (&)’ dn
(11) gn—1 sn—1 sn—1
e / (&, myy dn + &5€° / & md
gn—1 sn—1
Obviously,

Wn,
/mnedn=5f / 0 dn = =5,

Sn—l Sn—l
where (6%) is the Kronecker tensor and

2m"/2
I'(n/2)

is the volume of the unit sphere S*~1. We have also

/ (& mym; dn = & / n*n; dn = %éj

Snfl Sﬂ,—l

(12) Wp, =

and

[ emran="=2 g =1,

Sn—1



A RADON TYPE TRANSFORM RELATED TO THE EULER EQUATIONS 885

Substitute last three values into (11) to obtain

[ PemsPen’ d = 22455 - g€,

Sn—l
With the help of this, (10) takes the form
(13)
WND@ =22 [ [ ot dsag==2 [ [ futara)seret due.
Sn 1 SL Sn— 1£L

Observe that the second integral on (13) depends on the symmetric part of the
tensor f only.

For further transformations of (13), we use the following three formulas. For
every function ¢(z,€),

/ / €) dzdé = / 7 / 2,€)d" %€ dz,

Sn—1¢l §n—1nyL

where d"~2¢ is the volume form of the sphere S"~! N &4, see [8, Lemma 2.15.3|.
Besides this,
(n—1)/2

€z€j d"- 25 = m ij(z)y

Sn—1nzL

where the symmetric tensor field ¢ € C°(R™ \ {0}; R" @ R") is defined by
(14) eij(2) = 8ij — 25 /|2,
see [8, Lemma 2.15.4]. By the same Lemma,

3r(n=1)/2

/ Ei&i€r€d" 2 = m e5ne(2),

§n—1nyL

where €2 is the symmetrized square of €. On using these formulas, we calculate the
integrals participating in (13):

/fkj(x-i-z)fifk dzdgz/W

Sn—1 gl R §n—1nyL

w2 (et o)
/ J E 55(2) dz;

g ds(€) | dz

T((+1)/2) J

/ﬁwmzm@&ﬁw@/ﬁ“j”)

Sn-1gl R §n—1nyL

(n—1)/2 fkf $+Z y p
2F n+3 /2 |2

&Rt dn 3| dz
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Substituting these values into (13) and inserting the value (12) of w,,, we obtain

o= 1/2
(NN )iy () = /7 Jult “z H(2) dz
nI‘ "+1 Rn
e 1/2 fké QL‘—|-Z .
Car(3)r (=) A e

This can be written as

(15) (NN )i ( / Nijre(2) f*(x + 2) dz

with the kernel

(16) Nijie(z) =

an—1/2 n )
n(n + Sr(g)r(n;ﬂ) %( ;15#5%(3) — (e )ijke(Z)).

We remember that the Kronecker tensor belongs to the null-space of A'. Therefore

the kernel must satisfy N;;,’ = 0. Let us check this in order to control our
calculations. By (16)

n(n + 1)1‘(%)1‘("7“) o + )
(17) |2 Nijp"” = 55 ip (52)ijpp-

6rn—1/2
By the definition of the symmetrized square,

1
(52)1'ij =3 (€ij5kz + Eik€je + €ie€jk)~

Therefore )
(€)ign” = g(fzaf + 26567
By (14),
2p2P
sgzég— FE =n—1.

Substitute this into the previous formula

1
()igp’ = 3 (0= Degj +2e527).

Then we calculate
)

P
EipEj = (
oo oD .y
- 220 pZiZp | ZiZj%pZ 2%
wp Zp | ‘2

T T T e T T T

Substitute this into the previous formula to obtain (¢?);;," = "Fle;;. Together with

(17), this gives N;;,” = 0.
On using the convolution, formula (15) is written as
(18) (N*Nf)ij = f* % Nije.
We are going to find all tensor fields f satisfying N f = 0. In order to get a system
of algebraic equations, we are going to apply the Fourier transform to (18).

The Fourier transform of a tempered distribution g € §’'(R") is denoted either
by F[g] or by §(y). The Fourier transform acts component-wise on tensor fields,
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ie., (f)” = J/”; Recall that A — |z|* is the meromorphic S'(R™)-valued function of
A € C with simple poles at points —n, —n — 2, —n — 4,.... The Fourier transform
of |z|* is expressed by

s,

Flle[*] = 2m)"?(=A)*6 (ke Z7),

Flla]] = T (A=A =g 227,

(19)

where J is the Dirac function.

As is seen from (16), functions N, ;xe(x) are locally integrable on R™ and decay
at infinity (because ¢;;(x) are bounded functions). Therefore N;;i¢(x) can be consi-
dered as tempered distributions. Applying the Fourier transform to (18), we obtain

(20) (N*NF)ij = (2m)"2 F* F [ Nijie].

The product on the right-hand side is now understood as a product of a function in
S(R™) and of a tempered distribution. We shall soon see that the second factor is
continuous on R™\ {0} and hence the product can be understood in the conventional
sense.

We proceed to computing F[N;jre]. By (16),
(21)

F[Niju] =

6 —1/2 (n +1
nn+1r(3)0(=52) 3
Both Fourier transforms on the right-hand side of (21) can be easily found on the

base of the equalities (see Lemma 2.11.1 of [8])
. 02| x| 1 o3
|x| €Zk<$) = ) = - T A s -
Ox;0xy, 9 0x;0xj0x1,0x,
Applying the Fourier transform to these equalities and using the standard property
of the Fourier transform, we get

8jeF [l e (@)] - F[le’l(Ez)ijke(x)])

||~ (€%)ijne ()

Fllz| ei(2)] = —yiuiFllzl],  Fllz|7 (%)ijre(x)] = %yz'yjykyeFHl’m-

By (19),
3. 2"/2+1F("—+3

2v/2r (5 )
" Fllaf) = ———

7 lyl 7

Substitute these values into previous formulas

Fllal] = -

2n/2F(n+1>
_ 2 YiYk
Fllz| tep(z)] = )
el eula)) = ——— L
2n/2+1r<n+3)
_ 2 YiY5iYrye
F 1(g2),; — J )
H.’E| (5 ) ka(x)] 3\/% |y‘n+3

Insert these values into (21)

n/24+1,.n—1
2 ! (lyyiykbie — viviyrye)
nL(n/2)  [yfrds W7 SRS R

F[Nijie] =
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Now, (20) takes the form

2n+1ﬂ_(3n—2)/2 1 ~
T (IyPyiyidse — viysynye) F5 ().

Equation NV f = 0 is thus equivalent to the system

(Jy|yiynbje — yiyjykyé)fld(y) =0 (1<14,57<3).
The system can be simplified. To this end we first rewrite it in the form
(22) veeis () (uefM () =0 (0#y eRY1<i 0 <n),
where ¢;;(y) is defined by (14). On assuming f e S(R*;C" @ C"), the system can
be equivalently written as
(23) e () (e f(y) =0 (0#yeR"1<i<n).
Indeed, (22) and (23) are equivalent for y satisfying y1ys ...y, # 0. This implies

the validity of (23) by continuity.
Introduce the vector field § € S(R™; C™) by (i is the imaginary unit)

(NN F)ij(y) =

(29) 7 () = iy ().
Then the system (23) is written as
(25) ein() 3" (y) =0 (0£yeR™1<j<n).

The geometric meaning of (25) is obvious: for 0 # y € R™, the vector §(y) must be a
scalar multiple of y. Indeed, let us remind the orthogonal projection P, : R" — Yt

which is defined by Pyg =g — <‘q’|y2> y. Equations (25) are equivalent to P,g(y) = 0.
Thus, system (25) is equivalent to the existence of a function p € C*°(R™\ {0})

such that

(26) 9(y) +ip(y)y =0 (0#yeR").

As follows from (24) and (26), ;6 is expressed through f by

(27) py) = | |2 fm( ) (0#yeR").

This implies that the function p(y) is bounded, belongs to C°°(R™ \ {0}) and fast
decays together with all derivatives as |y| — oo. But a priori p(y) can have a
singularity at y = 0. Therefore the inverse Fourier transform p(x) of the function
p(y) belongs to C°(R™).

Let f € S(R™;C™ ® C™). As is seen from (24), the inverse Fourier transform
g € S(R™; C™) of the vector field § satisfies

O
Z o,

Applying the inverse Fourier transform to the equation (26), we obtain

Ofji .
(28) Z 8‘:;] 81}1 =0 (1<i<n).

We see from (28) that first order derivatives 6— of the function p fast decay at
infinity together with all their derivatives. This easily implies that the function p
itself fast decays at infinity, i.e. p € S(R™). We have thus proved
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Proposition 1. A tensor field f = (fi;) € S(R";C" @ C") satisfies N f =0 if and
only if equations (28) hold with some function p € S(R™).

We can now prove the “only if” statement of Theorem 1. Given a divergence-free
vector field v € S(R™;C"), we set f;; = v;v; and see that (28) coincides with the
Euler equations (8). This finishes the proof of Theorem 1.

The incompressibility equation (2) was used in our arguments for the passage
from (1) to (8) only. We have thus proven a little bit more general statement.

Theorem 2. A vector field v € S(R™; C™) satisfies N (v®v) = 0 if and only if there
exists a function p € S(R™) such that (v, p) is a solution to the Euler equations (8).

We finally observe that Proposition 1 implies

Corollary 1. Under hypotheses of Proposition 1 Fourier transforms of f and p
satisfy

(29) £i3(0) = —p(0) 3;5,
where §;; is the Kronecker tensor.

Remark. In the case of f = v ® v, (29) is equivalent to one of so called
orthogonality relations, see [9, formulas (1.10)—(1.11)].

3. THE NADIRASHVILI — VLADUTS POTENTIAL

From now on we consider the three-dimensional case only. Some our statements
can be generalized to the case of an arbitrary dimension but proofs become more
complicated.

For £ € R3, by j¢ : C* @ C* — C3? we denote the operator of contraction with
the vector £ in the first index; it is expressed by (jef); = fi;€" in coordinates.

For 0 # & € R3, let P : R® — ¢ = {x € R® | ({,2) = 0} be the orthogonal
projection. We consider £+ as an oriented two-dimensional vector space. The ori-
entation is defined by the rule: if (e, ez) is a positive basis of £1, then (eq, ez, €)
should be positive basis of R3. Let Re : €+ — ¢+ be the rotation through the right
angle in the positive direction.

For 0 # ¢ € R3, we will also use the two-dimensional complex vector space
Coét ={zeC®| (£x) = ;& = 0}. The operators P and Re are uniquely
extended to linear operators between complex vector spaces P : C? - C®&t and
Re : C® &L — C® &L respectively.

Introduce the 4-dimensional submanifold

TS? = {(2,€) | [¢] = 1, (& 2) = 0}

of R3 x (R?\ {0}. It is the total space of the tangent bundle TS? — S? of the sphere
S2. By the remark presented after (4), the Schwartz space S(T'S?) of functions is
well defined.

Proposition 2. Given a tensor field f € S(R3;C3 ® C?) satisfying
(30) Nf=0,

there ezists a unique function w € C*(R? x (R3\ {0})) such that
(1) the function satisfies

(81)  w(x,té) = [t| " w(x,&) for 0 £t €R, w(z+t€,&) = w(x,§) fort € R;
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(2) the restriction of w to the manifold TS? belongs to S(TS?);
(3) the equation

(oo}

(32) Vyw(e, €) = ¢! / RePejef(a + 1€) di

holds on R3x (R3\{0}), where V,w is the gradient of w with respect to the variable x.

We call w the Nadirashvili — Viaduts potential determined by the tensor field
[ € S(R?; S?R3) satisfying (30). It was introduced in a different way in [5, Definition
3.2].

Proof. Fix a unit vector ¢ € S? and define a vector field g on the plane P = ¢+ by
o@) = [ RePies(o+t9)dt (v P =)

Obviously, g € S(P;£1). Let us demonstrate that
(33) Ig=0,

where [ is the ray transform on the plane P (see the definition of the operator I in
[8, Section 2.1]). Indeed, for z € P,n € ¢+, |n| =1,

B (9 = [torsmapds= [ [ RePicsto+ 6+ sm).n) dsat

The operator P is self-adjoint while R satisfies Rf = Rgl. Therefore

(RePeje f(x +t&+sm),m) = (ef (x + &+ sn), PeRe ') = (je f (w+t€ + sn), R 'n).

The last equality holds because Rgln € ¢+, Equation (34) takes now the form

(35) (9w = [ [ Geslo+ e+ sm), B ) dsd

Change integration variables in the latter integral by the formula y = x + t£ + sn.
The point y runs over the plane {y € R? | (Rgln,y> = ¢} with ¢ = (Rglr],x>.
Equation (35) takes now the form

@)= [ BweE
(R 'n,y)=q

By (30), the integral on the right-hand side is equal to zero. This proves (33).

By (33), the vector field g € S(P;&+) must be a potential vector field, i.e., there
exists a function wo¢ € S(P) on the plane P = ¢+ such that g = Vwge. Both g
and wp ¢ depend smoothly on ¢ € S2. We can define the function wy € S(T'S?) by
wo(z,§) = wo¢(z). The function satisfy

(36)  Viwo(,€) = g(z) = / RePejef(z+1€)dt for (2,€) € TS
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The function wq(z, ) is even in &

(37) wo(x, _5) :U}o(I,f).
Indeed, by (36)

Voo, ~6) = [ ReePoej-ef(o 1) de
Since j_¢ = —je, P—¢ = Pe, R_¢ = 1010%5, the previous formula takes the form
Vaewo(z, — /Rngjgfx—tf)
After the change ¢ = —7 of the integration variable, we obtain V,wq(z, —§) =

Vewo(z, &). This is equivalent to (37).

There exists a unique extension of wy to a function w € C*(R? x (R*\ {0}))
satisfying (31). Let us prove that the extension satisfies (32) on the whole of R? x
(R3\ {0}). Indeed, the function w is expressed through wg by the explicit formula

_ §x), &
w(z,§) = [¢] 1’11}0( <|£2>£7 ‘€|>
Differentiate this equality to obtain

Jw -1 j fzf awO <€> > E
v — & —
5o 0.6 = 117 (& mg) ]( s |£\>
This can be written in the coordinate free form
Vew(x, §) = [€| 7' PeVywo (Pew, £/1€]).

By (36), Vowo(Pez,&/|€]) € €4, hence PeVywo(Pex,&/|€]) = Vowo(Pex, &/|€]) and
the previous formula is simplified to the following one:

(38) Vew(z, &) = [€] Vawo (Pex, £/[€]).-
On using (36) and (38), we derive

Vaw(z,€) = €7 / Re ¢ Pe i) Je i) f (Pew + t€/1€]) dt
Obviously,

. -1
Rejie) = Rey Pejje) = Pey Jegiel = €17 Je
The previous formula takes the form

o0

_ : 1. &=
w(zx,§) = 2 / R¢P, x4+ (=t — 22 dt
w0 =l [ R eief (2 + (gt = S )6)
After the change 7 = I%It — <‘ ’ﬁ,) of the integration variable, this becomes
Vow(@,§) = 6| [ RePief(a + 1) dr

This proves (32).
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We have thus proved the existence statement of the proposition. The uniqueness
statement obviously follows from (31)—(32). O

Corollary 2. Under hypotheses of Proposition 2, the potential w can be explicitly
expressed through the tensor field f as follows. Given (z,£) € R3 x (R3*\{0}), choose
a vector n € S? such that n # +£/|¢|. Then

(39) wa, €) = — €] / / (Re Pejef(a + 1€ + sn).n) dids.

0 —oo

Proof. By the second statement of Proposition 2, w(z + sn,§) — 0 as s — oc.
Therefore

Vi ow(x + sn, T
wia§) = — [ LI 4y - [(00) o+ 50.0).0) ds.
0 0
Substituting the expression (32) for the gradient, we arrive to (39). O

The operator Re P is expressed by Re Pev = || 71¢ x v for a vector v € R?, where
x stands for the vector product. The operator v — £ x v is well defined for v € C3

too. Therefore
1

(RePejef,m) = €] VIR
where [a,b,c] = (a X b, ¢). Formula (39) takes the form
(40) w(e &) =~ [ [ leudes o 16+ on). s,
0 —oo

Recall that n in (40) is an arbitrary unit vector subordinate the only condition
1 # ££/|€|]. Assume for a moment that £5 # 0. In such a case, we can choose either
n=(1,0,0) or n = (0,1,0). In this way, we obtain two partial cases of (40):

w(z,€) = ¢ / / (€aie )2 — E2(jef)s) (w1 + 161 + 5,23 + ta, @3 + 1€s) dtds,

0 —oo

w(z,§) = |§|_2/ / (= &(jef)1 + &(Jef)s) (w1 + &1, w0 + t&o + 5, w3 + t£3) dids.

0 —oo

After obvious changes of integration variables, these formulas take the form

(1) w(z,€) = ]2 / / (€ e F)o — E2je )3) (5, 2 + t€a, a5 + 1€5) dids,

z1+t§; —o0

(42) wie,€) = ]2 / / (= &l + &1 (ef)a) (a1 + 161, 5,3 + t6s) dids.

T2+t —00
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Differentiating equations (41) and (42) with respect to x; and zo respectively,
we obtain

o0

(43) @& =16 [ (@leh)s — aliehs) o + 1) d,
ow _9 T . .
@) g =l [ (- Glehn +alel) @+ t6)dt.

Formulas (43)—(44) imply a similar formula for Ow/dz3. Indeed, as is seen from
(31),

ow ow ow

(45) 5187371 +£267x2+£387x370’
ie.,

Jw 1 ow ow

ors =5 0,
Substituting values (43)—(44) into this equality, we obtain

ow 9 T . .

(46) 8753(3375) = [¢] (&2(e )1 — &(Jef)2) (2 + t€) dt.

Formulas (43)—(44), (46) have been proven for {5 # 0. Nevertheless, these for-
mulas are valid on the whole of R3 x (R3 \ {0}) because they have no singularity
at & = 0. These formulas can be united as follows:

(47) Vow(r,£) = —[€] 72 € x / Jef (1 1€) dt.

The potential w can be eliminated from (47) by applying the operator curl, to
this equation. On using the identity

curl(§ x v) = (divw)€ — (§,0,)v, where (& 0,) = I3 9

8%1'7
which is valid for a constant vector &£, we obtain
I [ (0 0Geh) ., 0Gef) . dGel) _
(/(dwkfxxﬂs)dt)f—/(51 R R B e [CRR LT
The second integral is identically equal to zero. Indeed,
[ (. 06e) |, 0Geh) ., 0lel) _ 7 d.. _
[ (0% v &P 0% N @ v igyit = [ L (Geh+19) dt =0,

We have thus obtained

(48) / (div je ) (x + £€) dt = 0.
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Thus, (48) is a corollary of (30), i.e., the equation (48) holds for every tensor field
f € S(R3; S?R3) satisfying (30). The corollary is not obvious because (30) involves
a two-dimensional integral while (48) contains a one-dimensional integral.

Let us separately consider the case of f = v®uv, where a vector field v € S(R3; R3)
satisfies the Euler equations (1)—(2). In such a case, jef = (£, v)v and

3
ov;
(49) div (je f) = (&, v)divo + Z ’f“jjaTU- = —(£, Vp).
J

4,j=1

This implies the validity of (48). Thus, (48) follows from the Euler equations in the
case of f =v® .

Now, following [5], we are going to compute values of some higher order diffe-
rential operators on the potential w.
The vertical (or fiber-wise) Laplacian

A" C=(R? x (R*\ {0})) — C=(R® x (R*\ {0}))
is defined by

— i 2 2 672 2 2 872 2 2 372

A = BE <(52 + 63)8.’[}% + (& + 53)(%% + (&1 + 52)633?))

(50) 62 82 82
— 206 011079 20183 01013 26283 333261'3)'

If a function w € C*(R? x (R3\ {0})) satisfies (31), then A"w satisfies (31) too.
Let us give a motivation of the definition (50). We first recall some standard
facts of analysis on Riemannian manifolds.
Given a Riemannian manifold (M, g), let 7 : TM — M be the tangent bundle. If

(U;x!, ..., 2™)isalocal coordinate system on M, then the corresponding coordinate
system (W’l(U);:El, cona™ X X)) on TM is defined by X = Xiagi for

X € T,M, z € U. Every tangent space T, M is furnished by the dot product
gz, hence the Euclidean Laplacian A, : C®°(T,M) — C*(T,M) is well defined.
The Laplacian smoothly depends on x and defines the wvertical Laplacian A" :
C>®(TM) — C>(TM). It is expressed in local coordinates by

82
0X19X7"
Now, we apply this to the unit sphere §? = {(&;,&,&) € R? | 320, €2 = 1}

which is considered as a two-dimensional Riemannian manifold with the metric
induced from R3. Let (i, ) be the geographic coordinates on S? such that

A = gV ()

& =cospcosty, & =cospsiny, &3 =sine.

The metric tensor is

g g2\ _ (1 0 gt g\ _ (1 0
g21 922 0 cos?yp )’ g ¢*? 0 cos™2¢p |-

Let (p,9,®,¥) be corresponding coordinates on T'S?. The vertical Laplacian on
TS? is expressed in geographic coordinates by
0? 1 0?

1 A= —— + ——— ——,
(51) 0P2 + cos2 p OU2
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The Cartesian coordinate (z1, 22, x3) of a vector X € T(%w)SQ are related to the
geographic coordinates by

x1 = —sinpcosyy P—cos psinyY ¥, x9 = —sinpsiny ®+cospcosy ¥, x3 = cosp P.
This implies

i——sin Coswi—sin sinwi—l—cos i

a0 e e e, T Y oy
0

70 = cos<psm1p——|—cosgocosw

Substituting these values into (51), we obtain (50) for (x, €) € TS?. Then we extend
the Laplacian to the whole of R? x (R?\ {0}) so that it preserves the homogeneity
(31). The extension is given by (50) for an arbitrary point (z,&) € R? x (R?\ {0}).

Let us compute A’w. To this end we observe that the definition (50) can be
written in the form

02 0? 02 1 0 0 0 \2
52 =y (—7 = ).
( ) a 2 + axz + 8(1}% |§|2 {1 +§2 +§3

In view of (45), this gives

02 o? 02

(971'% + 67.%'% + (T’L‘%)w

Differentiating equations (43), (44) and (46) with respect to 1, z2 and x3 respectively
and substituting the results into (53), we obtain

(53) Ay = (

oo

Nwzgr{/@mmmkﬁu+g»m

— 00

In the case of f = v ® v, this becomes

o0

60 wu=lg? [ (6o curle) + 6 Val6o)ol) o+ 1) de

— 00

Substituting the values
(€, curlv) = 51(% _ %) §2<8U1 61)3) £3(% _ %)

6‘z2 8’133 ox I3 5301 8901 8$2
and
0 0 0

[€, V(&  v),v] = (§3v2 — &au3) éfx’lw + (&1vs — E31) éi’? + (€a2v1 — &102) i,)i;?,
we write (54) in the coordinate form

(55)

| Ovs 81)3 duy  Our
AV = IGE / |:<£v >(§1 §1 52 o 52 5383:1 5383:2)

9(&,v)
8$1

9(¢, v)

+ (&3v2 — &3) + ({2v1 — &102) 8:;3 } (v +t&)dt

+ (&g — §3U1)6§x’;>
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Following [6, formula (2.1)], we introduce three second order differential operators
on C>(R?® x (R3\ {0}))

02 0? 9? 0? 0? 0?
- 6%‘2853 - 8.1338&27 J2 - 6333861 - 8%‘1853’ J3 - 8$18§2 B 6%‘28{1.

N

They are called John’s operators. We are going to compute the values of John’s

operators on the Nadirashvili — Vladuts potential w. We will present calculations

for Jsw and then will write corresponding formulas for J;w and for Jow by analogy.
Differentiate (43) with respect to &2

o0

35352 @0 =l [o(e el g 2elh)(, y gy
¥ |§|—QZ (6282 Dy oy iy
— €72 7(j§f)3(96 +t€) dt
—2[¢]7 7 (&3(jef)2 — E2(je f)s) (x + ) dt.

Then differentiate (44) with respect to &;

oo

Pw_ oy el e ., Aef)s

ax28£1(ﬂ%§)—‘§| 2/2?(—53 o1, +& 91 )(J;—|—t§)dt
] (o2 ) g
e [ Gelate+ 9

oo

ol / (= &Gef) + & Gef)s) (@ + 1€) dt.

— 00
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Take the difference of two last equations (for brevity, we do not write arguments)

o0

s AR 0
e / (635%56{)1 +£35(ng)2 _&3(22{)3 s (gg) ) it
(56) T
=2 [ Gefade
— 2~ / (E1€3(jff)1 + &&3(jef)2 — & (jef)s — fg(jgf):s) dt

First of all we have to treat the first integral on the right-hand side of (56)
containing the factor ¢ in the integrand. We transform the integral as follows

[0 0GP . 0Gef)2 . 0Gef)s . 0Gief)s
/t(§3 01 + &3 Oirg & Ot —& Dis )(m‘f't@dt

T ; a(j a(j
/ t 53 div(jef) — & a(gi{)s — & (ggxé)s —&3 (gié)g)(x +t€) dt
& [ tantentr it — [ o5 (Gehao +19) de

After transforming the second integral on the right-hand side with the help of
integration by parts, this gives

[0 0Geh)r . 0Gef)s . 0Gef)s . 0Gef)s
/t<£3 63:1 53 8$2 751 81‘1 5 81‘2 )

(o} oo

=&/um%ﬂﬁ+/mﬁwt

— 00 —0o0
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Substitute this value into (56)

(oo}

Jaw= ] %6 [ tdivef) a
T a6 a(j a(j a(j
12 / (53 ((.;55{)1+£3 %2?2_51 (?)2{)3_52 %Z)3>dt
(57) -
16 [ Geae
2 [ (a%aliels + Gtalied)s - Elieh — Eieha) .

Thus, in the general case, we cannot eliminate the integral with the factor ¢ in
the integrand. Because of the difficulty, we continue the calculation for f = v ® v,
where a vector field v € S(R?; C?) satisfies the Euler equations (1)-(2). By (49),

o0 oo o0

[ rantien+ya=— [ e @neriga=— [P g

— 00 —oo —o0
Transforming the last integral with the help of integration by parts, we obtain

oo

/ tdiv(je f)(z + t&) dt = (Ip)(, &),

—0o0

where Ip is the ray transform of the pressure p. Substitute this and jef = (£, v)v
into (57)

Jsw = [£| & 0p

oo

2 9({¢, v)v1) 9({&, v)v2) 9((&; v)vs) (& v)v)3
+ ¢ / (53 % +&3 9% &1 9% &2 9% ) dt
—l¢I7? / (&, v)vsdt — 2/¢|~* / (&, v) (&1&301 + E2&302 — Evg — EGug) dL.

We emphasize that derivatives on the integrand are understood in the following
sense:

O((& vyvs) _ O((& v)vi(y))

8§j 8§J ’y:z—l—tf

= (viv;)(z + 1)
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because the derivatives %;’tf) have been already taken into account in the first
J

integral on the right-hand side of (56). We thus obtain

Jsw = [¢] "¢ Ip + ¢ / (&30 + &303 — Gorvs — Souovs) di
—l¢I7? / (&, v)vgdt —2[¢]~* / (€, v) (&1&3v1 + E2€3v2 — Evs — Evg) dt.

After grouping similar terms, we obtain

¢ & [
(w)(@.€) = (S5 (Ip)(a. 0 |£|2 / e+ 1)t =22 / (€ vo(a + 16))? dt
This can be written in the form
&
Jow = g lo®) + g DolloP) - \s|412(”®“)

For definiteness, the notation I, is used here for the ray transform of symmetric
tensor fields of rank m. Let & be the Kronecker tensor. Since Iy(ad) = |£|2Iy(a) for
a scalar function a, the previous formula can be written as

=I((p+v]*)§ — 20 ®v).

Formulas for Jyw and Jow are obtained from this in an obvious way. We can write
the final formula:

(58) Jw = |§T4I((p+|v\2)5—2v®v), (G=1,23).

Formula (58) generalizes Nadirashvili-Valaduts’s formula [5, formula (4.2)] in the
following sence: Nadirashvili-Valaduts’s formula makes sense only for (z,¢) € T'S?

while formula (58) holds on the whole of R3 x (R?\ {0}). The factor Igﬁ on the
right-hand side of (58) is very essential.

Next, we are going to compute J2w (1 < i < 3). We start with computing J2w.
By (58),
Jiw = J3(|€|4 ((p+ [v[*)6 — 2v ®v)>.

Since the operator J3 does not contain the derivative 9/9¢s,

(59) J2w = §3J3<|§|4 ((p+|v|2)5—2v®v)).

Next, using I ((p + |[v]|?)8) = |£[*I(p + |v|?), we calculate
1 1
Js (@1(@ 1020 —20® v)) — Js (@I(p + W)) 2.5 ( lve v))

(60) ——JsI(p+ |v|?) — I(v®v)

2
m’z e
0 0
e (g 65 ) T+l + o (e —ap) M@ ).
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The first term on the right-hand side is equal to zero because J3la = 0 for any
scalar function a [8, Theorem 2.10.1]. Thus, (59) and (60) give

0
B == 2 (e — 1T )+ ) - 4RI 00)
(61) 3
€3 0
‘€|6(€2 513732)](“@”)-

The first term on the right-hand side of (61) can be easily computed. Indeed, by
the definition of the ray transform,

T(p+ o) = / (0 + [0)(x + 1€) dt
From this
©) () +?) = [ (@22 g 0D iy

Now, we compute two last terms on the right-hand side of (61). By the definition
of the ray transform,

o0

I0e)= [ (6o
From this,
s 2
(63) 81(;;? v) _ / a(g;) (z + t€) dt

In particular,

69 (g0 — i) o) =2 [ [ (62 -6 5 ) ]+ i)

—0o0

Differentiate (63) with respect to &

0%(&, v)?

Plwev) [ 06 )2
axiafk

006, ) oniom, E )T

— 0 —o00

(x +t&)dt

The first integral on the right-hand side is symmetric in (i, k). It will disappear
after the alternation in these indices. We thus obtain

LT e 02 )
JgI(U@’U)— / ( 81‘18§2 B 8$28§1 )(:L'+tf)dt

— 00

:2/ [”282217])_ v ifx’j <§,v>(g—:j—g—2)](x+t§)dt.

(65)

— 00
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Substituting values (62), (64)—(65) into (61), we obtain

fu=-2 [ (a22H1E) ¢ 2o tit)

e T )(x ) dt
A [ 1 O , vy 0
(66) _g€|i/ {vz éilw— v ;iz>+<£ >(8—2—8—j)](x+t§)dt

+ 1|§|€33 / [(fa@ (fzaéilw -& 8<aif>)}(m+t§) dt

—0o0

Let us eliminate p from (66) with the help of the Euler equations. To this end
we rewrite (66) in the form

283 dp
ng——‘£|4 / (52 5187372)(954'%)6%

T op? . o
o LG rair o CRRSY

—@/ {Uzaéif>—v1a<8i;;}>+< ’v>(87x1_87::2)}(x+t§)dt

(I CE )

By the Euler equations (1),

op
8zi o

— (v, Vuy).

Substitute these values into the previous equation

- O|v)? Ilvl2
J?? |§|2 / [|§| <§2<U,VU1> — & (v, Vug) — & 8| | +§1 |v] )
67 5 ; ;
" () 2 o2 )
0

+8(6,0) (&

<6£ >_§1 <£, >)}(x+t£)dt
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The corresponding formulas for J2w and for J2w are obtained from (67) by the
cyclic permutation of indices

2 dlv|? Ilvl2

J12’lU |§|é / {|£| <£3<'U,VU2>_§2<,U,VUS> £ |U| 52 |’U| )
(68) o&v) 06 ) Ovs Doy
L R R Rty

9 9
+8(¢,0) (& gfm> " éﬁ;?)]wﬂg)dt
282 dlv? 8lv|?
J22'w |§|6 Zo {lﬂ (£1<U,VU3> —§3<’U,Vf1)1> _5187333—‘[_53873:1)
(69) > . >

— 22 (i 2 — 0y S8 g ) 2 g0 20
(€

+8(¢,v ><€ g v) — &3 gil>)](x—+t§)dt

Take the sum of equations (67), (68) and (69). Many terms cancel each other in
the sum and the result is as follows:
(70)
(JT 4+ J5 + J5)w =

- / [<§,v>(§18”3 6o 4ot 5o 532—2 &)

€t Oy
+(6vva — €)oo (6avs - 53v1>8<6§;;> +en - | @ )
Comparing (55) and (70), we see that
(71) (JP+J3+J5 + WAv)w—o

We have thus proved

Proposition 3. Given a solution (v,p) € S(R3;C3) x S(R3) to the Euler equations
(1)~(2), let w be the Nadirashvili — Viaduts potential for f = v ® v. The function
w solves the equation (71).

The equation (71) is the right extension of Nadirasvili-Vladuts’s equation [5,
formula (4.5)] to the whole of R? x (R?\ {0}).

The operator H = J? + J2 + J2 + IE%AU is a 4th order differential operator
on R3 x (R3\ {0}). Its principal part JZ + J3 + J3 is a differential operator with
constant coefficients. Observe that the operator H is “almost elliptic”. Indeed, let
y and 1 be Fourier dual variables for x and £ respectively. The principle symbol of
H is —|y x n|?. The symbol vanishes if and only if y = tn (t € R). This property of
the symbol is well agreed with the property (31) of the function w.
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4. SOLUTIONS OF THE EQUATION (71)

We are looking for solutions w € C*°(R?® x (R*\ {0})) to the equation (71)
satisfying (31) and such that w|ps2 belongs to S(T'S?). All solutions of such kind
are described by the following

Theorem 3. Ifw € C*(R3x (R3\{0})) is a solution to the equation (71) satisfying
(31) and such that w|rs: belongs to S(TS?), then there exists a symmetric tensor
field @ € S(R3; C? @ C3) satisfying the equation

(72) ly[*tra(y) — y'yas; (y) =0
and such that
gigj i{x,y)~
(73) w(z, &) = W el ’y>aij(y) dy.
gL

Conversely, if a symmetric tensor field a € S(R?;C3 @ C3) solves the equation
(72) then, being defined by (73), the function w € C>(R? x (R*\{0})) is a solution
to the equation (71) satisfying (31) and such that w|rge belongs to S(T'S?).

A general solution w € C>(R® x (R*\ {0})) to the equation (71) depends on
two arbitrary functions belonging to C°°(R3 \ {0}).

The rest of the Section is devoted to the pretty long proof of Theorem 3. We
start with repeating arguments from the proof of [8, Theorem 2.10.1].

Let w € C*(R3 x (R3\ {0})) be a solution to the equation (71) satisfying (31)
and such that wy = w|ps: € S(TS?). Let Wy € S(TS?) be the Fourier transform of
wo (see [8, Section 2.2| for the definition of the Fourier transform F : S(T'S?) —
S(T'S?)). Define the function @ € C*°(R™ x (R™ \ {0})) by

i = . <ya€> i
(y,6) = o(y G £, |£‘>~

Then
(74) Wlrg2 = wo, w(y,t§) =w(y,§) (0F#t€R), w(y+t, &) =w(y,§) (t €R)

and w is expressed through @ by

(75) wl§) = 2r) el [ D a,6) dy
é‘L
Let us derive a differential equation for @ which follows from (71). To this end
we rewrite (75) in the form

w(e, €) = (2m)"! / D 5((E, )y, ) dy,
RS

where § is the Dirac function. Differentiating this equality, we obtain

M — -1 i{z,y) 8@(;{/,5)
S = i) R/ e 5((e ) 5 dy
4 i2m)! / YV S (€ y)) Dy, €) dy.
R3
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The second integral is symmetric in (j, k), it will disappear after the alternation in
these indices. The result can be written as

o o2 : 0 9
<a:cjagk - Ma&j)w(x,g) :1'(27r)—1|€|—1/61 >(y]85 yk%) @y, &) dy
£L

Repeating this procedure, we obtain

o 92 \2 . o 9Nz
(ax.agk - axkag.) w(z,€) = —(QF)’llfl’l/el (i AT ) @y, €) dy
J J J

£L
Therefore
(76) (T +J5 + J)w(w, €) = —(2m) ¢! / T Liv(y, €) dy,
L
where L is the second order differential operator on R? x (R?\ {0}) defined by

0 0 \2 0 0 \2 0 0 \2
) L= (ngg —vgg) +(eag —vgg) +(wag —ngg)
One easily derives from (75) with the help of (53)

(78)
v 2 o o 1yt [ it
(@u)e.6) = (53 + 5oz + ez )0l =~ e [ Iyl €) dy
gL
Substituting (76) and (78) into (71), we obtain
i(x, ‘y|2 —
(79) £[e< y>(L+4|§|2) @(y, &) dy = 0.

Being valid for every (z,£) € R™ x (R™\ {0}), equation (79) implies

ly[? 1
(80) (L+4 2) By, &) =0 for ye L.
iy
One easily derives from the definition (77) the following property of the operator L:
(81) L(I€*) = |E[* Lo + 4ly1*(€, 0w — 4(y, ) (y, 0e)p + Aly*¢

for any function ¢ € C*(R3 x (R3\ {O})), where

<§>51§+§2£ 9

4), the function w(y, £) is positively homogeneous of zero degree in &, hence
= 0. The formula (81) is simplified for ¢ = w = 0 as follows:

85 § <y735>=y1a€ g 5 s g
By (7
(€, O¢)w
L(|eP*w) = [€* L — 4(y, ) (y, O¢) @ + 4|y[*@
Together with (80), this gives
L(EP*@) = ~4(y, ){y, O¢)w

In particular,

(82) (LUEPD)) | pee = 0.
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Lemma 1. Let a function ¢ € C>(R® x (R*\ {0})) satisfy

(83) Py, t€) = t*0(y.€) (0#t ER).

Assume that o|rse € S(TS?) and (Ly)|rs: = 0. Then there exists a symmetric
tensor field a € S(R3; C3 ® C3) satisfying the equation (72) and such that

(84) @y, &) =ay(y)E'E  for (y,€) € R® x (R*\ {0}) satisfying (y,&) = 0.

We finish the proof of Theorem 3 with the help of the lemma. The proof of
Lemma 1 is presented at the end of the section.

By (74) and (82), the function ¢ = |{|>@ satisfies hypotheses of Lemma 1.
Applying the lemma, we obtain

W(y, &) = I€]7%a;(y)6'e" for (y,€) € R? x (R \ {0}) satisfying (y,€) =0

with a symmetric tensor field @ € S(R3;C3 ® C3) satisfying the equation (72).
Substituting this expression into (75), we arrive to (73). This proves the first
statement of Theorem 3.

We prove now the second statement of Theorem 3. Given a symmetric tensor field
@ € S(R3; C* ® C?) satisfying (72), we define the function w € C*°(R3 x (R*\ {0}))
by (73). The following properties of the function follow obviously from (73):
(85)  w(y,t8) =t w(y, ) (0#LER), wly+1§8) =w(y,€) (t€R).
We rewrite (73) in the form

(36) (e, €) = ﬁ (2. €)'¢,

where

(87) ais(,€) = (2m) ! / o055 (y) dy.
gi

It is clear now from (86)—(87) that wy = w|s: € S(T'S?). It remains to prove that
the function w solves the equation (71).
First of all we compute A’w. By (52),

A = AI - |§|_2<€781E>7

where

0? 02 0? 0
Az = 3 9 ) a9 yUg) = a. a.. a.. "
0r? * 0x3 * z3 (6:92) = & Oz T Oz T Ox3
As easily follows from (85), (£,0,)w = 0. Therefore A’w = Ajw. Together with
(86), this gives

0 0

1

‘§|3 (Amaij)(x7 g)gzgg

(88) (A% w(z,§) =
From (87)

(Apayy)(2,6) = —(21) " / 0y 23,5 () dy.
gL
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Substitute this expression into (88) to obtain

1

(59) (&, &) = 5o

[y ) dy.
§J_
Next, we compute (J?+ J3 + J2)w. The computation is similar to the arguments

presented after (75). We will compute J2w and then write down the corresponding
formulas for J2w and J3w by analogy. First of all we rewrite (73) in the form

preq .
W@, = gy [ 1) )

R3

where ¢ is the Dirac function. Differentiate this equation to obtain

02 , gpga . ) ~
azl(ggf) - QiZz / e y1y28' (6, 4) dpa () dy

R3
. & i(z,y) ~
1 2W§|2¥6 Y y16(<£7y>) a’pk‘(y) dy
_ g e

2 &)
R3

+2

Y y15((€,y)) Apa(y) dy.

The first integral on the right-hand side disappears after alternating with respect
to the indices 1 and 2. Hence

p .
Tyl €) =2 iy [ 609 (u0(0) = i () d
gL
pPeq .
—2 2€T|§|5 /€1<w’y> (Yj&k — Yr&j)apg(y) dy.
gJ_

Repeating this procedure, we obtain

1 i a -~ ~
Jiw(z, ) = —QW/ewz,y) (y3a11(y) — 2y1y2a12(y) + y3ass(y)(y)) dy
fj‘
& (2.9 _ R
+ 8271_|€|5/€1 z,y (y1§2 - y2§1)(y1a2p(y) — y2a1p(y)) dy
gL
pga o ~
B 8%/ eV (1162 = 9261) Apa (y) dy
§J_
fpgq i{x ~
i 227T|f|5 eltey) (y% + y%)apq(y) dy.

é'L
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The corresponding formulas for J2w and for J2w are obtained by the cyclic per-
mutation of indices

2“’(% §) = /€i<w’y> (y§622(y) — 2yysa23(y) + 3/3633(21)@)) dy

1
—9_ -
2ml€f?
EL

+ 8671) / Y (ya€s — ys&a) (y2sp(y) — Yslzp(y)) dy
2leP ' p

825127 / ) (yols — ys€a) *pg(y) dy
+22€Tp|§5£/ OV (Y3 4 y3)ang (y) dy,
Tyw(e,€) = 2 |£|3 / {0 (y3an (y) — 2nysais(y) + yidas(y)(v) dy
85 / D (56— y165) (ysiing(y) — 1175y (9)) dy
8257277/ OV (y361 = y163) apg (y) dy
PP / PN (Y3 + 43 )apg (y) dy.

2ml¢)°
g

Take the sum of three last equalities

(JP+J3 + J3w(x,€) =

1 i(x ~ < a
= 25 /6 @ (9 + 3)an + (v} + y)aze + (uF + 03)iss
gL
— 2y1y20G12 — 2y1Y3013 — 2y2y3623} dy
& i) (02 12 ~
(90) +827r|€|5 e {((?/2 +Y3)& —y1Y2€2 —Y193Es ) anp
L

+ (47 +y3) &2 — y1y261 —y2y3€s) dap
+ (Wi +3)& — yaysés — y2y3§2)63p} dy

ee
e [ R )
é’L

_8 fpgq / 1<Iy|y><§|2a ( )dy+4
2mlg|” r
&+

Recall that the tensor field @;; is assumed to satisfy (72). The first integrand on
the right-hand side of (90) is equal to zero in virtue of the latter equation. Indeed,

(y3 + y3)an + (Y5 +y3)a22 + (Y5 + y3)ass — 2y1y2012 — 21313 — 2Y2Y3da3
= |y|*tra — a;;y'y’ = 0.
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The fourth integrand on the right-hand side of (90) can be simplified since |y x £]? =
ly|2|€]? for y € £€+. We write the result in the preliminary form

i /ef“’y)IyIQapq(y) dy + (Ka)(,£),

(91) (Jl2 + J22 + Jg)w(x,é) = _4271.|§|5
EJ_

where

(Ka)w.&) =857 [ 006~ it mméa)n,
gl

+ (7 +93) & —y1y2€1 —yoysés)azp + (YT + ¥3)&s — y1yséa — y2y3§2)53p] dy.

L
2ml¢f

The last integrand can be also simplified with the help of the relation (¢,y) = 0:
&P {((ngry%)fl —y1y2&2—y1y3&3)a1p + (Y1 +Y3)ea —y1y261 —y2y3&s ) dap
+ ((yf + v3)é3 — yyséa — y2y3€2)53p]
=& {((y§+y§)§1 —y1(y2&o+ys&s))a, + (U5 +43) & —yo (y1&1 +ys&s) )2y
+ (7 +v3)& — ys(yi&a + y2§2))a3p]
=¢ [((y§+y§)§1 +yi€a)an, + (i +y3)€+y362)az + (1 +3)& + y§£3)63p]
= [y[?EPETap,.
Substituting this value into (91), we obtain the final formula

Pea _
(92) (J§ + J3 + J)w(z, &) = 42§T|§|5 /61<z’y>‘y|25pq(y) dy.

{L

By (89) and (92), (Jf—i—J%—i—J%—&—ﬁA”)w = 0. This proves the second statement,
of Theorem 3.

The last statement of Theorem 3 (dependence of a general solution on two
arbitrary functions) will be explained after the proof of Lemma 1.

Proof of Lemma 1. For 0 # y € R?, set y~ = {¢€ € R? | (£,y) = 0}. Let Ay
C>=(yt) — C>=(y*) be the Euclidean Laplacian on the plane y*. Given a function
¢ € C*(R? x (R®\ {0})) and vector 0 # y € R3, define the function ¢, €

C>=(y* \ {0}) by ¢, (€) = (y,£). Then the equality
(93) (Le)(y) = [yl* Ay oy

holds for every function ¢ € C>°(R? x (R*\ {0})) and every vector 0 # y € R3.
Indeed, for 0 # y = (0,0, |y|), the equality obviously follows from the definition
(77) of the operator L. It remains to observe that both sides of (93) are invariant
under the action of the orthogonal group O(3).

Let a function ¢ € C>(R? x (R®\ {0})) satisfy hypotheses of Lemma 1. By
(83), p(x,&) is positively homogeneous of second degree in £. Therefore ¢ can be
extended to a continuous function on R x R3 by setting ¢(y,0) = 0. We denote
the extension by ¢ again.
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Let us introduce the 5-dimensional submanifold M C R? x R? by

M ={(y,€) |y #0,(y, &) = 0}.
Then

(94) M = R*\{0}, (4,€) =y

is the two-dimensional vector bundle with the fiber y* over a point, 0 # y € R3. Let
1 € C(M) be the restriction of ¢ to M. We will see soon that actually ¢ € C*°(M).

In virtue of (93), the hypothesis (Lg)|rsz = 0 of Lemma 1 means that, for every
0 # y € R?, the restriction v, of the function ¢ to the fiber y of the bundle (94)
satisfies

(Ayryy)(§) =0 for £ #0.

This equality must hold at £ = 0 as well since 9, is a continuous function on yt.
Thus,

(95) Ayiipy, =0,

i.e. ¢y is a harmonic function on yT. Besides this, 1y (€) is a positively homogeneous
function of second degree by (83). As well known (and can be easily proved) a
harmonic second degree positively homogeneous function is a homogeneous polyno-
mial of second degree. Thus, given an orthonormal basis (f*, f2) of y*, the function
1, can be represented in the form

(96) Yy (& ft+&f?) = CA’nff +28A’12§1§2 +CA’22§§

with uniquely determined coefficients gij = g/ji € C (1 <i,j <2). The equation
(95) is equivalent to the equality

(97) &711 +g/22=0.

We can now prove smoothness of the function . For a fixed 0 # yo € R3, we
can choose an orthonormal basis ( yl, f;) of the space y smoothly depending on a
point y belonging to some neighborhood U C R?\ {0} of the point 3. By (96),
(98)

Oy, & fy+82f)) = ey &1fy +&f)) = (W& +2 12(Y)6 &+ 02 (y)E; (e U

)

with uniquely determined coefficients E/Z‘j € C(U). The right hand side of (98)
smoothly depends on (y;&1,&) € U x R2, at least for £ + €2 # 0, since ¢ €
C>°(R? x (R®\ {0})). This implies that gij € C*(U) and hence ¢ € C>*(M).

We cannot write (98) for all points y € R?\ {0} simultaneously. Instead of that,
we will write some coordinate-free formula equivalent to (98). To this end we have
to use so called tangential tensor fields introduced in [4, Section 4].

We think on R?\ {0} as the disjoint union (= foliation) of spheres centered at
the origin

RE\{0}=JS2, S2={yeR’|[yl=p}
p>0

The manifold M is also presented as the disjoint union

M=JTS,,  TS;={(y.¢) R’ xR*||y|=p,6 €y™}.
p>0
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Introduce the operator
iy : C(R*\ {0}; C°) » C=(R*\ {0};C* @ C?)
of symmetric multiplication by y and operator
Jy : C(RP\ {0};,C° @ C°) — C=(R® \ {0};C°)
of contraction with the vector y by the formulas
(iyv)ke = %(ykvé +yevr)s (e =y fre-

We emphasize that ¢, and j, are invariant operators (independent of coordinate
choice) although last formulas are written in Cartesian coordinates. The same is
true for the operator tr : C°(R3\ {0}; C? @ C3) — C®(R3), tr f = f11 + foo + f33-

We say that v € C°(R3\ {0}; C3) is a tangential vector field if (y,v(y)) = 0 for
all 0 # y € R3. In other words, the vector v(y) is tangent to the sphere S‘Zyl. Quite
similarly, a symmetric f € C>(R?\ {0}; C3 @ C?) is called a tangential tensor field
if j,f(y) =0 for all 0 # y € R3.

We can now present an invariant version of (97)—(98). Under hypotheses of
Lemma 1, there exists a symmetric tangential tensor field ¢ € C>°(R3\ {0}; C3®C3)
satisfying

(99) tre=0
and such that
(100) oy, &) =C;(y)€'e (0#£yeR* Eecyh).

Indeed, choosing an orthonormal basis (f}, f2) of y* smoothly depending on a
point y belonging to some neighborhood U of a fixed point 0 # yo € R3, one easily
checks that formulas (99)—(100) are equivalent to (97)—(98) for y € U.

Recall [8, Lemma 2.6.1] that every symmetric tensor field a € C*°(R?;C3 @ C3)
can be uniquely represented in the form

1

5 Wibi (W) +y;bi(y)) (v #0)

with a vector field b € C°(R3 \ {0}; C?) and symmetric tensor field la € C>°(R3 \
{0}; C3 ® C3) satisfying

(101) v a;;(y) =0 (i=1,2,3).

aij(y) = ‘ai;(y) +

In terminology of [8], ‘a is the tangential component and %(y;b; + y;b;) is the
radial component of the tensor field a. In our terminology, (101) means that ‘a
is a tangential tensor field.

Recall also the important theorem on the tangential component [8, Theorem
2.7.1]. It states that a symmetric tangential tensor field ¢ € C°°(R3\ {0}; C? ® C3)
serves as the tangential component of some symmetric tensor field a € C*°(R3; C*®
C3) if and only if the restriction of the function c;;(y)¢'¢? to TS? belongs to
C>°(TS?). The most important (and difficult to prove) part of this statement is
the smoothness of a(y) at y = 0.

Returning to the proof of Lemma 1, we apply the theorem on the tangential
component to the symmetric tangential tensor field ¢ € C°(R3 \ {0};C® @ C3)
satisfying (99)—(100). The hypothesis ¢|7s2 € S(TS?) of Lemma 1 means that the
restriction of the function ¢;;(y)£'¢/ to T'S? belongs to S(T'S?). The theorem on the
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tangential component gives us a smooth symmetric tensor field @ € C>°(R?; C3@C3)
such that

(102) aii(y) = () + 5 (s () T uibiy) (w £ 0)

with some vector field b. Moreover, we can state that a € S(R3; C* ® C?) since the
restriction of the function @;;(y)£'¢? to T'S? belongs to S(T'S?).

Comparing (100) and (102), we obtain the statement (84) of Lemma 1.

Since ¢ is a symmetric tangential tensor field, it satisfies

(103) yei(y) =0 (i=1,2,3).
Together with (102), this gives

vy (y) = ly* (. b(y)).
On the other hand, (99) and (101) give

tra(y) = (y,b(y)).-
From two last formulas
lyl*tray) — y'y’ai; (y) = 0,
i.e., a solves the equation (72). O

We still have to justify the last statement of Theorem 3. We emphasize that
the tensor field @ in Theorem 3 and Lemma 1 is not unique. Only its tangential
component ¢ = '@ is unique. In principle, Theorem 3 can be formulated in terms
of a tensor field ¢ with the equation (72) replaced by (99). Nevertheless, we prefer
to formulate Theorem 3 in terms of the field @ because the tangential component
of a smooth symmetric tensor field has a specific singularity at the origin. Six
components of the tensor field ¢ are subordinated to four linear equations (99)
and (103). Therefore ¢(y) is determined by two arbitrary functions belonging to
C=(R3\ {0}).

5. SOME OPEN QUESTION

For a tensor field f € S(R?; C? ® C?) belonging to the kernel of the operator A,
we defined the Nadirasvili — Valaduts potential w, see Proposition 2. Let us write
w]f] instead of w to emphasize the dependence on f. As is seen from the proof of
Proposition 2, w[f] depends linearly on f. The following question is still open:

Problem 1. Does the equality w[f] = 0 imply f = 0 for a tensor field f €
S(R3; C3®C?) belonging to the kernel of N'? More generally, is it possible to describe
explicitly the subspace of S(R3;C3 ® C?) consisting of tensor fields f satisfying
Nf =0 and w[f] =07

Then after (57), we discussed the Nadirasvili — Valaduts potential w[v ® v] for
a vector field v € S(R?; C3) satisfying the Euler equations (1)-(2). Since w[v ® v]
depends quadratically on v, the corresponding question takes the form:

Problem 2. Does the equality w[v ®@v] = w[0 ® 0] imply v = for two vector fields
v,0 € S(R3;C3) satisfying the Euler equations? More generally, given a solution
(v,p) € S(R3;C3) x S(R?) to the Euler equations, is it possible to describe all
solution (0,p) € S(R3;C3) x S(R®) to the Euler equations satisfying w[v ® 0] =
wlv @ v]?
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Nadirasvili and Valaduts [5] proved that w[v ® v] = 0 implies v = 0 in the case

of a real v. But this does not answer Problem 2. If the first question of Problem
2 was answered “yes”, Theorem 3 would imply that a general solution (v,p) €
S(R3;C3) x S(R?) to the Euler equations is determined by two arbitrary functions

of

y € R3\ {0}. In this way we hope to answer the following question:

Problem 3. Is it possible to classify all solutions (v, p) to the Euler equations such
that vy, v2,v3,p € S(R?)?

(1

2]
(3]
(4]
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