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1 Introduction.

Let A be an arbitrary algebra over a �eld F , λ ∈ F . A map R : A→ A is
called a Rota�Baxter operator of weight λ if for all x, y ∈ A

R(x)R(y) = R(R(x)y + xR(y) + λxy). (1)

Rota�Baxter operators for associative algebras �rst appeared in the paper
by G. Baxter as a tool for studying integral operators that appear in the
theory of probability and mathematical statistics [2]. For a long period of
time, Rota�Baxter operators had been intensively studied in combinatorics
and probability theory mainly. For basic results and the main properties of
Rota�Baxter algebras, see [13].

Independently, in 80-th Rota�Baxter operators of weight 0 on Lie algebras
naturally appeared in the papers of A.A. Belavin, V.G. Drinfeld [3] and M.A.
Semenov-Tyan-Shanskii [20] while studying solutions of the classical Yang�
Baxter equation. It was mentioned that for any quadratic Lie algebra (L, ω),
the standard technique of multilinear algebra gives a one-to-one correspondence
between skew-symmetric solutions of the classical Yang�Baxter equation on
L and Rota�Baxter operators R : L → L of weight 0, satisfying R∗ = −R
(R∗ is the adjoint to R operator with respect to the form ω). Recall that
skew-symmetric solutions of the classical Yang�Baxter equation on a Lie
algebra L induce on L the structure of a (triangular) Lie bialgebra.

In the case of Rota�Baxter operators of a nonzero weight, we have a
correspondence (up to multiplication by a nonzero scalar) between structures
of a factorizable Lie bialgebra (L, δr), r ∈ L ⊗ L, on a Lie algebra L and
Rota�Baxter operators of weight 1 satisfying

R+R∗ + id = 0, (2)

where R∗ is the adjoint map with respect to some nondegenerate associative
bilinear form ω (de�ned by r) [4],[17]. In particular, if L is a simple complex
�nite-dimensional Lie algebra, then any Lie bialgebra structure on L is either
triangular or factorizable, that is, de�ned by a Rota�Baxter operator of a
special type (see [5]). If L is a real simple �nite-dimensional Lie algebra,
then there may be a structure of a coboundary Lie bialgebra on L that is
not factorizable, but becomes factorizable in the complexi�cation L ⊗R C
of the algebra L (such bialgebra structures are called almost-factorizable)
[14],[1]. Note that if L is not simple, then the connection between Rota�
Baxter operators of nonzero weight and solutions of the classical Yang�
Baxter equation is not straightforward (see [8]).

It is worth noting that for many varieties of algebras (associative, Jordan,
alternative ect.) all structures of corresponding bialgebras on semisimple
�nite-dimensional algebras are triangular (since they are unital, see, for
example, [23] for Jordan algebras). This means that Rota�Baxter operators
satisfying (2) do not seem to be interesting in these varieties (it is known
that there are no Rota�Baxter operators of weight 1 on Mn(F ) satisfying
(2) ([11])).
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There is a standard method of classi�cation of skew-symmetric solutions
of a classical Yang�Baxter equation on a given algebra A (of an arbitrary
variety): it is known that these solutions are in one-to-one correspondence
with pairs (B,ω), where B is a subalgebra in A and ω is a symplectic form
on B (see [3]). At the same time, in the case of simple Lie algebras, there
is a description of factorizable Lie bialgebra structures that uses so-called
admissible triples (Γ1,Γ2, τ), some additional structure consisting of Γ1 and
Γ2, two subsets of the set of simple roots Γ, and a map τ : Γ1 → Γ2 satisfying
some compatibility conditions (see [4], [21]). The description says that ( up
to the choice of a Cartan subalgebra) there is a correspondence between
structures of factorizable Lie bialgebra on a simple complex Lie algebra g
and admissible triples.

If g = g0 ⊕ Ft is a reductive Lie algebra (g0 is a semisimple Lie algebra,
t ∈ Z(g)), then a di�erent approach to the description of Lie bialgebra
structures on g was suggested in [7]. It was proved that any Lie bialgebra
structure on g is coboundary and has a form

δ(x) = δ0(x) + [H,x] ∧ t,

for all x ∈ g0 and δ(t) = 0. Here δ0 : g → g⊗g is a Lie bialgebra structure on
g0 and H ∈ ker(δ0). Note that the condition H ∈ ker(δ0) implies that adH
is at the same time a derivation and a coderivation of the bialgebra (g, δ0).
Thus, at a starting point, in order to obtain the classi�cation one needs the
classi�cation of Lie bialgebra structures on g0. Using this technique, in [7] it
was found the classi�cation of Lie bialgebra structures on gl2(R)) (up to the
action of Aut(g)).

However, there is no standard method for classi�cation of all structures
of quasitriangular bialgebras that may be used for an arbitrary variety of
algebras. For example, if M is a simple �nite-dimensional complex Malcev
algebra, the classi�cation of quasitriangular Malcev bialgebra structures on
M from [10] was obtained by considering some speci�c information concerning
the classical double (Drinfeld's double) M ⊕M∗.

Note that conjugated tensors induce structures of isomorphic bialgebras
but inverse is not true: isomorphic coboundary (or quasitriangular) bialgebra
structures on an algebra A may be induced by non-conjugated elements of
A⊗A, that is, the problem of classi�cation of non-skew-symmetric solutions
of CYBE is more general.

The main goal of the paper is to suggest a new approach to the problem of
classi�cation of solutions of the classical Yang�Baxter equation with an ad-
invariant symmetric part (skew-symmetric or not-skew-symmetric). In recent
years, Rota�Baxter operators on many important classes of algebras have
been described ([19],[18],[12], etc.). Usually, the description is made up to the
action of the group of automorphisms. The natural question is, if we can use
these results to classify solutions of the classical Yang�Baxter equation on
these classes of Lie (Malcev, ect.) algebras? Unfortunately, if the description
of Rota�Baxter operators was made up to an automorphism, then we can't
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use it directly since conjugate operators do not necessarily give conjugate
tensors. In the current paper, we �rst obtain a correspondence between
Rota�Baxter operators of special type an solutions of the classical Yang�
Baxter equation with nonzero ad-invariant symmetric part on a complex or
real general linear algebra gln(F ) (F = R,C). Then, we use this result, the
classi�cation of the Rota�Baxter operators on gl2(C) obtained in [9], and
the classi�cation of Rota�Baxter operators of weight 0 on sl2(C) obtained in
[16] to classify (up to the action of Aut(gl2(C)) and the multiplication by a
nonzero scalar) solutions of CYBE on gl2(C) with an ad-invariant symmetric
part.

2 Motivation and preliminary results.

Let F be a �eld of characteristic 0. Given a vector space V over F , denote
by V ⊗V its tensor square over F . De�ne the linear mapping τ on V ⊗V by
τ(
∑
i
ai ⊗ bi) =

∑
i
bi ⊗ ai. We will identify the subspace of skew-symmetric

tensors (that is, tensors r ∈ V ⊗ V satisfying τ(r) = −r) with the exterior
product V ∧ V , that is, for all x, y ∈ V put

x ∧ y := x⊗ y − y ⊗ x.

Let L be a Lie algebra with a product [·, ·]. A Lie algebra L acts on L⊗n

by

[x1 ⊗ x2 ⊗ . . .⊗ xn, y] =
∑
i

x1 ⊗ . . .⊗ [xi, y]⊗ . . .⊗ xn

for all xi, y ∈ L. Note then for all x ∈ L

[L ∧ L, x] ⊂ L ∧ L.

De�nition 1. An element r ∈ L⊗n is called L-invariant (or ad-invariant)
if [r, y] = 0 for all y ∈ L.

De�nition 2. A bilinear symmetric form ω on a Lie algebra L is called
invariant if ω([a, b], c) = ω(a, [b, c]) for all a, b, c ∈ L.

De�nition 3. Let L be a Lie algebra and ω be a symmetric invariant non-
degenerate form on L. Then the pair (L, ω) is called a quadratic Lie algebra.

Given a quadratic Lie algebra (L, ω), for every element r =
∑
i
ai ⊗ bi ∈

L⊗ L we may de�ne a linear map R : L→ L as

R(a) =
∑
i

ω(ai, a)bi, (3)

a ∈ L. By R∗ : L→ L denote the dual map with respect to the form ω:

ω(R(a), b) = ω(a,R∗(b))

for all a, b ∈ L.
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De�nition 4. [6] Let L be a Lie algebra with a comultiplication δ : L→ L∧L.
The pair (L, δ) is called a Lie bialgebra if and only if (L, δ) is a Lie coalgebra
and δ is a 1-cocycle, i.e., it satis�es

δ([a, b]) = [δ(a), b] + [a, δ(b)] =

=
∑

([a(1), b]⊗ a(2) + a(1) ⊗ [a(2), b] + [a, b(1)]⊗ b(2) + b(1) ⊗ [a, b(2)]), (4)

for all a, b ∈ L. Here we use the Sweedler notation: for any x ∈ L put
δ(x) =

∑
x(1) ⊗ x(2)

There is an important type of Lie bialgebras. Let L be a Lie algebra and
r =

∑
i
ai ⊗ bi ∈ L⊗ L. De�ne a comultiplication δr on L by

δr(a) = [r, a] =
∑
i

[ai, a]⊗ bi + ai ⊗ [bi, a],

for all a ∈ L. It is easy to see that δr is a 1-cocycle. The dual algebra L∗ of
the coalgebra (L, δr) is anticommutative if and only if r+τ(r) is L-invariant.
Also, L∗ satis�es the Jacobi identity if and only if the element CL(r), de�ned
as

CL(r) =
∑
ij

[ai, aj ]⊗ bi ⊗ bj − ai ⊗ [aj , bi]⊗ bj + ai ⊗ aj ⊗ [bi, bj ],

is L-invariant.

De�nition 5. We say that an element r =
∑

i ai ⊗ bi ∈ L⊗ L is a solution
of the classical Yang�Baxter equation (CYBE) on L if

CL(r) = 0. (5)

A solution r ∈ L⊗L of CYBE is called skew-symmetric, if r ∈ L∧L, i.e.,
r + τ(r) = 0.

Remark 1. Let r =
∑
ai ⊗ bi ∈ L ⊗ L be a solution of CYBE and

φ ∈ Aut(L), then r1 =
∑
φ(ai) ⊗ φ(bi) is also a solution of CYBE on L.

In this case, we will say that tensors r and r1 are conjugate. Moreover, if
the symmetric part of r is L-invariant, then so is the symmetric part of r1.
Therefore, it is possible to �nd solutions of CYBE up to the action of Aut(L).

If r ∈ L ∧ L and r is a solution of CYBE, then (L, δr) is said to be a
triangular Lie bialgebra. If r+ τ(r) ∈ L⊗L is a nonzero L-invariant element
and r is a solution of CYBE, then (L, δr) is called a quasitriangular Lie
bialgebra. Triangular and quasitriangular Lie bialgebras play an important
role since they lead to solutions of the quantum Yang�Baxter equation [22].

It is known that an element r ∈ L ⊗ L is a skew-symmetric solution of
CYBE on a quadratic Lie algebra L if and only if the corresponding map
R : L→ L is a Rota�Baxter operator of weight 0 satisfying R+R∗ = 0 [20].

If L is a semisimple Lie algebra over a �eld of characteristic 0, then any
derivation D : L → M of L into any L-bimodule M is inner, that is, there
is m ∈ M such that D(x) = [x,m] for any x ∈ L. In particular, any Lie
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bialgebra structure δ on L is induced by an element r ∈ L ⊗ L: δ = δr.
Similar result for reductive Lie algebras was proved in [7].

Let (L, ω) be a quadratic Lie algebra over an arbitrary �eld F and r =∑
ai ⊗ bi ∈ L ⊗ L. Let R be a linear map de�ned as in (3) and R∗ be the

adjoint map with respect to the form ω. In what follows, we will need the
following Statement 1 and Theorem 1 from [8]. These results give us the
connection between solutions of CYBE and Rota�Baxter operators on L.
Statement 1. The symmetric part r + τ(r) of r is L-invariant if and only
if for all a, b ∈ L

R([a, b]) +R∗([a, b]) = [R(a) +R∗(a), b]. (6)

Theorem 1. If r is a solution of the classical Yang�Baxter equation on L
then R is a Rota�Baxter operator of weight λ if and only if for all a, b ∈ L:

[R(a), b] + [R∗(a), b] + λ[a, b] ∈ ker(R). (7)

Conversely: let R : L → L be a Rota�Baxter operator of weight λ and
let r ∈ L ⊗ L be the tensor corresponding to the map R, that is, R(a) =∑

i ω(ai, a)bi. Then r is a solution of the classical Yang�Baxter equation if
and only if R satis�es (7).

3 Connection between solutions of the CYBE and

Rota�Baxter operators on gln(R).
In this section, all vector spaces are assumed to be over a �eld F , where

F = R or F = C. Let Mn(F ) be the matrix algebra of order n over F
with the multiplication xy. The multiplication in the general linear algebra
gln(F ) =Mn(F )

(−) we will denote by [·, ·]:

[x, y] = xy − yx,

x, y ∈ gln(F ). Recall, that gl2(F ) contains a nontrivial center spanned by
the identity matrix E and is not a semisimple Lie algebra. We will also
consider sln(F ) = {x ∈ gln(F )|tr(x) = 0} as a Lie subalgebra in gln(F ).
Then gln(F ) = FE⊕sln(F ), where E is the identity matrix. Note that for any
φ ∈ Aut(gln(F )): φ(E) = θE, for some θ ∈ F , θ ̸= 0 and φ(sln(F )) = sln(F ).

We will consider gln(F ) as a quadratic Lie algebra with the trace form ω:

ω(x, y) = tr(xy)

Theorem 2. An element r ∈ gln(F ) ⊗ gln(F ) is a solution of CYBE with
gln(F )-invariant even part r + τ(r) if and only if the corresponding map R
de�ned by (3) is a Rota�Baxter operator of weight λ satisfying

R(x) +R∗(x) + λid = 0, (8)

and for some α ∈ F

R(E) +R∗(E) + λE = αE. (9)
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Proof. If a Rota�Baxter operator R of weight λ satis�es (8) and (9), then by
Statement 1 and Theorem 1, the corresponding tensor r ∈ gln(F ) ⊗ gln(F )
is a solution of the classical Yang�Baxter equation with gln(F )-invariant
symmetric part.

Let r be a solution of the classical Yang�Baxter equation with gln(F )-
invariant symmetric part. For any λ ∈ F , consider a map θλ : gln(F ) →
gln(F ) de�ned as

θλ(x) = R(x) +R∗(x) + λx

for any x ∈ gln(F ).
Consider a set

Iλ = {θλ(x)| x ∈ [gln(F ), gln(F )]}.
Take an arbitrary λ ∈ F . From Statement 1, it follows that the map θλ

satis�es

θλ([x, y]) = [θλ(x), y]

for all x, y ∈ gln(F ). In other words, θλ belongs to the centralizer of gln(F ). In
particular, Iλ is an ideal in gln(F ) for any λ. Moreover, Iλ ⊂ [gln(F ), gln(F )] =
sln(F ) (as consequence, sln(F ) is θλ-invariant). Since sln(F ) is simple, we
have two possibilities: Iλ = 0 or Iλ = sln(F ). We want to prove that there
exists a unique α ∈ F such that Iα = 0. The uniqueness is straightforward:
if Iα1 = Iα2 = 0, then for any x ∈ sln(F ):

R(x) +R∗(x) + α1x = R(x) +R∗(x) + α2x

that is not possible if α1 ̸= α2.
Consider the case when F = R. It is known that the complexi�cation of

sln(R) is equal to sln(C), the simple complex Lie algebra (that is, sln(R) is an
absolutely simple real Lie algebra). From [15] it follows that any centralizer
of sln(R) is a scalar map. If F = C, this result follows from the Schur's
lemma. Therefore, the restriction of θλ to sln(F ) is equal to γid for some
γ ∈ F . It means that Iλ−γ = θλ−γ(sln(F )) = 0.

Choose the scalar λ ∈ F such that Iλ = 0. From (7) it follows that Iλ is R-
invariant. Now we can use Theorem 2 from [8] to get thatR andR∗ are Rota�
Baxter operators of weight λ on the quotient algebra gln(F )/Iλ = gln(F ).

By the de�nition of Iλ, the condition (8) holds. Finally, (9) follows from
(6) and the fact that the center of gl2(F ) is spanned by E. □

Remark 2. In contrast to the case of a simple complex Lie algebra, here
we can't say that

R+R∗ + λid = 0.

In Theorem 2, we proved that for all x ∈ sln(C): θλ(x) = R(x)+R∗(x)+λx =
0. But θλ(E) ̸= 0 in general, as we will see in the next section.

In what follows, we will classify solutions of CYBE on sl2(C) using the
results of Theorem 2. For this, we need to consider two cases: the case of a
nonzero weight (in is enough to consider weight 1) and the case of weight
zero.
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4 Classi�cation of solutions of CYBE with an ad-invariant

symmetric part on gl2(C), the case of weight 1.
In this section, we will classify solutions of the CYBE with an ad-invariant

symmetric part on gl2(C) such that the corresponding map is a Rota�
Baxter operator of weight 1. We will use the classi�cation of all Rota�Baxter
operators of weight 1 on gl2(C) obtained in [9]. The description was made
up to the conjugation with automorphisms from Aut(gl2(C)).

Unfortunately, we can't use the result from [9] directly to describe all
solutions of the classical Yang�Baxter equation on gl2(C). Indeed, let R be
a Rota�Baxter operator on gl2(C), r =

∑
ai⊗bi be the corresponding tensor

and φ be an automorphism from Aut(gl2(C)). Consider R1 = φ−1 ◦ R ◦ φ.
Then the corresponding to R1 tensor is the following:

r1 =
∑

φ∗(ai)⊗ φ−1(bi).

In other words, tensors r and r1 are not necessarily conjugate by an automorphism
from Aut(gl2(C)). There may be a situation when r is a solution of CYBE
while r1 is not a solution.

Moreover, given a Rota�Baxter operator R of weight 1 satisfying (8) and
(9), the conjugate operator φ−1 ◦R ◦ φ not necessarily satis�es (8) and (9).

Nevertheless, we have the following

Proposition 1. If φ is an automorphism ofM2(C) (as an associative algebra),
then the dual map φ∗ satis�es φ∗ = φ−1. Thus, if R : gl2(C) → gl2(C) is
a linear map, φ is an automorphism of M2(C) and R1 = φ−1 ◦ R ◦ φ, then
corresponding tensors r and r1 (to R and R1 respectively) are conjugate:

r1 = (φ−1 ⊗ φ−1)r.

Proof. Indeed, if φ ∈ Aut(M2(C)), then
ω(φ(x), φ(y)) = tr(φ(x)φ(y)) = tr(φ(xy)) = tr(xy) = ω(x, y).

Hence, φ∗ = φ−1. □

De�nition 6. For any θ ∈ C, θ ̸= 0, we can de�ne an automorphism ψθ of
gl2(C) as follows:

ψθ(E) = θE, ψθ(a) = a (10)

for any a satisfying tr(a) = 0.

Remark 3. Since gl2(C) = sl2(C) ⊕ CE is a split null extension of the
algebra sl2(C) = [sl2(C), sl2(C)], the group of automorphisms Aut(gl2(C))
is isomorphisc to the direct product of Aut(sl2(C)) and the multiplicative
group of the �eld C: Aut(gl2(C)) = Aut(sl2(C)) × C∗. This means that for
any φ ∈ Aut(gl2(C)), there are 0 ̸= θ ∈ C and ϕ ∈ Aut(M2(C)) such that

φ = ψθ ◦ ϕ = ϕ ◦ ψθ.

Let eij (i, j = 1, 2) be the usual matrix unit, h = e11−e22. In what follows,
we will take a set {E, h, e12, e21} as a basis of gl2(C).
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Consider the description of Rota�Baxter operators of weight 1 on gl2(C)
modulo the action of the group Aut(M2(C)). For this, we need to take the
representatives R of orbits from [9, Theorem 1], then take 0 ̸= θ ∈ C and
consider the action ψ−1

θ ◦R ◦ ψθ. We get the following

Theorem 3. Every Rota�Baxter operator of weight 1 on gl2(C) is of the
form ψ−1◦R◦ψ, where ψ ∈ Aut(M2(C)) and R is one of the operators below:

1. R(E) = λE + θe12, R(h) = R(e12) = R(e21) = 0;

2. R(E) = λE + θe12, R(h) = −h, R(e12) = −e12, R(e21) = −e21;
3. R(E) = λE + θh, R(h) = 0, R(e12) = R(e21) = 0, λ ∈ C;

4. R(E) = λE + θh, R(h) = −h, R(e12) = −e12, R(e21) = −e21, λ ∈ C;

5. R(E) = λE + θh, R(h) = α1E + α2h,

R(e12) = −e12, R(e21) = 0, λ, αi ∈ C;

6. R(E) = λE, R(h) = 0, R(e12) = −e12 + th; R(e21) = 0, t ∈ {0, 1};
7. R(E) = λE, R(h) = R(e21 = 0, R(e12) = −e12 + th+ θE, t ∈ {0, 1};
8. R(E) = λE, R(h) = θE, R(e12) = −e12 + h+ αE, R(e21) = 0, α ∈ C;

9. R(E) = λE, R(h) = θE, R(e12) = −e12 + θE; R(e21) = 0;

10. R(E) = λE, R(h) = th, R(e21) = 0, R(e12) = −e12, t ∈ C, t ̸= 0;

11. R(E) = λE, R(h) = th+ θE, R(e21) = 0, R(e12) = −e12, 0 ̸= t ∈ C;
12. R(E) = λE, R(h) = −h+ αE, R(e21) = θE, R(e12) = −e12, α ∈ C;
13. R(E) = λE, R(h) = th, R(e12) = te12, R(e21) = te21, t ∈ {0,−1},

where λ, θ ∈ C, θ ̸= 0.

Remark 4. Here, di�erent scalars θ not necessarily give us di�erent orbits
with respect to Aut(M2(C)). For example, if R is a map of type 1, then it
is possible to take θ = 1 since in this particular case, the conjugation of R
by ψθ is equal to the conjugation of R by φA, where φA(x) = AxA−1 for

every x ∈ M2(C) and A =

(
θ 0
0 1

)
. However, for our purposes, it is enough

to consider such a rough description.
Maps that lie in the same orbit (with respect to Aut(M2(C))) from Theorem

3 correspond to isomorphic tensors. Note that a map R satis�es (6) or (7) if
and only if for any φ ∈ Aut(M2(C)), the map φ−1 ◦R ◦ φ satis�es the same
conditions. Thus, it is enough to consider one representative from every orbit
in Theorem 3.

Let R : gl2(C) → gl2(C) be a Rota�Baxter operator of weight 1 and
r =

∑
ai⊗ bi ∈ gl2(C)⊗gl2(C). From Statement 1, it follows that if r+ τ(r)

is gl2(C)-invariant, then
R(E) +R∗(E) = γE (11)
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for some γ ∈ C.

Proposition 2. In Theorem 3, only operators of type 5 (with α1 = −θ), 6,
10 or 13 satisfy (11).

Proof. Consider E, h = e11 − e22, e12 and e21 as a basis of gl2(C). In order
to check the condition (11), we need to compute R∗(E). For this, we need to
�nd v ∈ gl2(C) such that tr(ER(v)) ̸= 0.

Suppose that R lies in an orbit of type 1. Then tr(ER(v)) ̸= 0 if and only
if v = γE (γ ̸= 0). Therefore, R∗(E) = λE and

R(E) +R∗(E) = 2λE + θe12, θ ̸= 0.

Thus, R doesn't satisfy (11). Using similar arguments, we get that operators
of types 2,3,4 do not satisfy (11).

Consider the type 7. In this case, R∗(E) = λE + 2θe21. Thus,

R(E) +R∗(E) = 2λE + 2θe21 ̸= γE.

Similar arguments can be used to show that operators that are conjugate
to operators of types 8, 9, 11, 12 do not satisfy (11).

It remains to consider types 5, 6, 10, 13.
Suppose that R is conjugate to an operator of type 5. Then R∗(E) =

λE + α1h. Thus, R(E) +R∗(E) = γE if and only if α1 = −θ.
In 6, 10 and 13 it is easy to see that R∗(E) = λE. Thus, in this case, R

satis�es (11) for any values of parameters. □

From Proposition 2, it follows that it is enough to consider the following
operators:

(R1). R(E) = λE + θh, R(h) = −θE + α2h,

R(e12) = −e12, R(e21) = 0, λ, α2 ∈ C, θ ̸= 0;

(R2). R(E) = λE, R(h) = R(e21) = 0, R(e12) = th− e12, λ ∈ C, t ∈ {0, 1};
(R3). R(E) = λE, R(h) = th, R(e21) = 0, R(e12) = −e12, t, λ ∈ C, t ̸= 0;

(R4). R(E) = λE, R(x) = tx, x ∈ sl2(C), λ ∈ C, t ∈ {0,−1}.
We will consider operators (R1)-(R4) consequently.

Proposition 3. Let R be the Rota�Baxter operator of type (R1) or (R3).
Then R satis�es (6) if and only if α2 = −1

2 . In this case, for every a ∈ sl2(C)
we have R(a) +R∗(a) + a = 0. Therefore, if α2 = −1

2 , then R also satis�es
(7).

Proof. Direct computations show that R∗(E) = λE− θh, R(h) = θE + α2h,
R∗(e12) = 0 and R∗(e21) = −e21.

Suppose that R satis�es (6). We have

R([h, e12]) +R∗([h, e12]) = 2R(e12) + 2R∗(e12) = −2e12.

On the other hand,

[R(h), e12] + [R∗(h), e12] = 2α2e12 + 2α2e12 = 4α2e12.
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Therefore, α2 = −1
2 .

Conversely, let α2 = −1
2 . It is easy to see that in this case, for all a ∈ sl2(C)

we have

R(a) +R∗(a) + a = 0.

This means that equations (6) and (7) are true for all a, b ∈ sl2(C). Since
R(E)+R∗(E) ∈ Z(gl2(C)), it follows that equations (6) and (7) are true for
all a, b ∈ gl2(C). □

Proposition 4. Let R be the Rota�Baxter operator of type (R2). Then R
does not satisfy (6) for any t and λ.

Proof. For R we have:

R∗(E) = λE, R∗(h) = te21, R
∗(e12) = 0, R∗(e21) = −e21, t ∈ {0, 1}.

Then,

R([h, e12]) +R∗([h, e12]) = −2e12.

On the other hand,

[R(h), e12] + [R∗(h), e12] = −th.

Thus, R does not satisfy (6). □

Proposition 5. Let R be the Rota�Baxter operator of type (R4). Then for
any t ∈ {0,−1}, R satis�es (6). Moreover, R satis�es (7) if and only if
t = 0.

Proof. The �rst statement is obvious since the restriction of R on sl2(C) is
equal to t · id.

If t = 0, then R(sl2(C)) = 0. Since [gl2(C), gl2(C)] = sl2(C), R satis�es
(7).

If t = −1, then direct computations show that

R(R([h, e12] +R∗([h, e12]) + [h, e12]) = −2R(e12) ̸= 0.

Thus, if t = −1, then R does not satisfy (7). □

Now we are ready to prove the main result of the section:

Theorem 4. Let r ∈ gl2(C)⊗gl2(C) be a solution of CYBE such that r+τ(r)
is gl2(C)-invariant and the corresponding map is a Rota�Baxter operator of
weight 1. Then, up to the action of Aut(gl2(C)), r is equal to the one of the
following:

r = λE⊗ E + E⊗ h− h⊗ E− 1

4
h⊗ h− e21 ⊗ e12, λ ∈ C; (12)

r = λE⊗ E− 1

4
h⊗ h− e21 ⊗ e12, λ ∈ {0, 1}, (13)

r = λE⊗ E, λ ∈ {0, 1}. (14)
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Proof. Let r ∈ gl2(C) ⊗ gl2(C) be a solution of CYBE such that r + τ(r)
is gl2(C)-invariant. Suppose that the corresponding map R de�ned as (3)
is a Rota�Baxter operator of weight 1. Thus, R satis�es (6) and (7) (as
a Rota-Baxter operator of weight 1). From Propositions 2-5 it follows that
up to a conjugation with automorphisms from Aut(M2(C)), R is one of the
following:

R(E) = λE + θh, R(h) = −θE− 1

2
h, R(e12) = −e12, R(e21) = 0, λ, θ ∈ C;

R(E) = λE, R(h) = R(e12) = R(e21) = 0 λ ∈ C.

The kernel of the second operator contains sl2(C)) while the dimension of
the kernel of the �rst operator can't exceed 2. This means that they can't be
conjugate. A simple check shows that maps of type 1 with di�erent scalars
λ are not conjugate by elements of Aut(M2(C)).

Therefore, up to the action of Aut(M2(C)) and multiplication by a nonzero
scalar, r is one of the following:

1

2
E⊗ (λE + θh) +

1

2
h⊗ (−θE− 1

2
h)− e21 ⊗ e12, λ, θ ∈ C; (15)

λE⊗ E, λ ∈ C. (16)

By Remark 3, it remains to consider the action of an automorphism ψβ

de�ned in (10) for β ∈ C, β ̸= 0.
If in (15) θ ̸= 0, then the action of ψ2θ−1 gives us tensors of type (12).
Suppose that θ = 0. If λ = 0, then we obtain the solution (13) with λ = 0.

If λ ̸= 0, then after the action of ψβ with β =
√
2√
λ
, we obtain (13) with λ = 1.

Similar arguments show that in the case r = λE⊗ E, λ is equal to 0 or 1
up to the action of automorphisms of type ψβ . □

5 Classi�cation of solutions of CYBE with an ad-invariant

symmetric part on gl2(C), the case of weight 0.
In this case, we �rst need to classify all Rota�Baxter operators R of weight

0 on gl2(C) such that

R(x) +R∗(x) = 0 x ∈ sl2(C), (17)

R(E) +R∗(E) = αE, α ∈ C. (18)

As it was mentioned in the previous section, we need the classi�cation
up to the action of the group of automorphisms of M2(C), that is, by a
conjugation with an invertible matrix.

Let R be a Rota�Baxter operator of weight 0 on gl2(C) satisfying (17) and
(18). De�ne a map R1 : sl2(C) → sl2(C) as follows: R(x) = R1(x) + α(x)E,
where α : sl2(C) → C is a linear functional on sl2(C). Since sl2(C) is a
quadratic Lie algebra with the form given by ω(x, y) = tr(xy), there is
t ∈ sl2(C) such that α(x) = ω(t, x) for all t ∈ sl2(C). Moreover, since R is
a Rota�Baxter operator of weight 0 on gl2(C), E belongs to the center of
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gl2(C) and gl2(C) = sl2(C) ⊕ CE, R1 is a Rota�Baxter operator of weight
0 on sl2(C). In [16], the classi�cation of Rota�Baxter operators of weight
0 on sl2(C), up to the action of the group of automorphisms of sl2(C), was
given.

Theorem 5. [16] Up to conjugation with an automorphism of sl2(C) and
up to a scalar multiple, we have that a Rota�Baxter operator R1 of weight
0 on sl2(C) is one of the following:

1. R1 = 0,

2. R1(e12) = 0, R1(e21) = te12 − h, R1(h) = 2e12,

3. R1(e12) = R1(e21) = 0, R1(h) = h,

4. R1(e12) = 0, R1(e21) = h, R1(h) = 0,

5. R1(e12) = 0, R1(e21) = e12, R1(h) = 0.

Since R is a skew-symmetric map, so is R1. Obviously, R1 = 0 is skew-
symmetric. Consider an operator of type (2) from Theorem 5. Direct computation
shows that R∗

1(e12) = 0, R∗
1(e21) = te12 + h, R∗

1(h) = −2e12. Thus, R1 is
skew-symmetric if and only if t = 0.

Similarly, one can compute that operators 3)-5) from Theorem 5 are not
skew-symmetric.

Thus, we need to consider two cases: R1 = 0 and R1 is of type 2 from
Theorem 5 with t = 0.

Proposition 6. If R1 = 0, then there are x ∈ sl2(C) and θ ∈ C such that

R(s) = ω(x, s)E, R(E) = −2x+ θE. (19)

Proof. Since R1 = 0, we have that R(s) = α(s)E for all s ∈ sl2(C). Suppose
that α(s) = ω(x, s) for all s ∈ sl2(C).

Let R(E) = p+ θE for some p ∈ sl2(C) and θ ∈ C. For all s ∈ sl2(C) we
have

ω(R∗(E), s) = ω(E, R(s)) = ω(E,E)ω(x, s) = ω(2x, s).

Therefore, R∗(E) = 2x+ αE. From (18) we deduce that p+ 2x = 0.
Since the image of R is an abelian subalgebra in gl2(C), R is a Rota�

Baxter operator of weight 0 for any x ∈ sl2(C), θ ∈ C. □

Proposition 7. Suppose that R1(e12) = 0, R1(e21) = −h, R1(h) = 2e12.
Then there are β, θ ∈ C:

R(e12) = 0,

R(e21) = −h+ βE,

R(h) = 2e12

R(E) = −2βe12 + αE.
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Proof. Using similar arguments as above, we have that:

R(e12) = ω(x, e12)E,

R(e21) = −h+ ω(x, e21)E,

R(h) = 2e12 + ω(x, h)E,

R(E) = −2x+ θE, x ∈ sl2(C), θ ∈ C.

Since R is a Rota�Baxter operator, we have that

0 = [R(E), R(e12)] = R([E, R(e12)] + [R(E), e12]) = −2R([x, e12]).

Note that if (α1, α2) ̸= (0, 0), then R(α1e21 + α2h) ̸= 0. Therefore, x =
βe12 + γh for some β, γ ∈ C. Similarly,

− 4βe12 = [−2βe12 − 2γh,−h] = [R(E), R(e21)]

= R([R(E), e21]) = R(−2βh+ 4γe21) = −4βe12 − 4γh.

Thus, γ = 0 and x = βe12. Note that in this case, the last condition

0 = [−2αe12, 2e12] = [R(E), R(h)] = R([R(E), h]) = R(4αe12) = 0

holds automatically. □

Theorem 6. Let r ∈ gl2(C)⊗gl2(C) be a solution of CYBE such that r+τ(r)
is gl2(C)-invariant and the corresponding map is a Rota�Baxter operator
of weight 0. Then, up to the action of Aut(gl2(C)) and multiplication by a
nonzero scalar, r is equal to the one of the following:

r = x⊗ E− E⊗ x+ αE⊗ E, x ∈ {0, e12, h}, α ∈ C. (20)

r = h⊗ e12 − e12 ⊗ h+ αE⊗ E, α ∈ 0, 1 (21)

r = h⊗ e12 − e12 ⊗ h+ e12 ⊗ E− E⊗ e12 + αE⊗ E, α ∈ C. (22)

Proof. If R is a map from Proposition 6, then the corresponding tensor

r = x⊗ E− E⊗ x+
α

2
E⊗ E, x ∈ sl2(C), α ∈ C

obviously satis�es CYBE. Finally, since the Jordan normal form of an element
x ∈ sl2(C) is either 0, e12 or αh for some α ∈ C, we have that up to the action
of Aut(gl2(C)), r is equal to an element of type (20).

If R is a map from Proposition 7, then the corresponding tensor has a
form

r = h⊗ e12 − e12 ⊗ h+ β(e12 ⊗ E− E⊗ e12) + αE⊗ E,

where α, β ∈ C. Now we need to consider two cases: β = 0 and β ̸= 0. In the

�rst case, the conjugation with ψγ , where γ = α− 1
2 , gives us (21). Similarly,

if β ̸= 0, we obtain elements of type (22). □

Remark 5. The tensor (20) form Theorem 6 with x = 0 coincides with
the tensor (14) in Theorem 4 since in this case, the corresponding map is a
Rota�Baxter operator of any weight.
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Theorem 7. Let r ∈ gl2(C)⊗gl2(C) be a solution of CYBE such that r+τ(r)
is gl2(C)-invariant. Then, up to the action of Aut(gl2(C)) and multiplication
by a nonzero scalar, r is equal to the one of the following:

1. r = E⊗ (λE + θh)− h⊗ (θE +
1

4
h)− e21 ⊗ e12, λ ∈ {0, 1}, θ ∈ C;

2. r = x⊗ E− E⊗ x+ αE⊗ E, x ∈ {0, e12, h}, α ∈ C.
3. r = h⊗ e12 − e12 ⊗ h+ αE⊗ E, α ∈ 0, 1

4. r = h⊗ e12 − e12 ⊗ h+ e12 ⊗ E− E⊗ e12 + αE⊗ E, α ∈ C.

As a corollary of Theorem 7, we obtain a well known description of
solutions r of CYBE on sl2(C) such that r + τ(r) is sl2(C)-invariant.

Corollary 1. Up to a multiplication by a nonzero scalar and the action of
Aut(sl2(C)), there are only two solutions:

r1 =
1

4
h⊗ h+ e12 ⊗ e21.

r2 = h⊗ e12 − e12 ⊗ h.

The following result was obtained in [7] using another technique.

Corollary 2. Up to the action of Aut(gl2(C)) and multiplication by a nonzero
scalar, there are two nontrivial quasitriangular Lie bialgebra structures δλ
(λ = 0, 1) on gl2(C) given by

δλ(E) = 0, δλ(h) = 0, δλ(e12) = (λE +
1

2
h) ∧ e12

δλ(e21) = e21 ∧ (λE− 1

2
h) λ ∈ {0, 1}.

Proof. A quasitriangular Lie bialgebra structure is given by a non-skew-
symmetric solution of the CYBE. In Theorem 6, the symmetric part of the
tensors may be omitted since it gives a zero comultiplication. Thus, we need
to consider tensors (12) from Theorem 4.

If r1 and r2 are conjugate by an automorphism φ ∈ Aut(gl2(C)), i.e.
r1 = (φ⊗φ)(r2), then the corresponding comultiplications satisfy δr1 ◦φ−1 =
(φ−1⊗φ−1)◦δr2 (note that the converse is false: if δr1 and δr2 are conjugate,
then r1 and r2 are not necessarily conjugate). Therefore, up to multiplication
by a scalar and the action of Aut(gl2(C)), we have the following class of Lie
bialgebra structures on gl2(C) depending on a parameter θ ∈ C:

δθ(E) = 0, δθ(h) = 0, δθ(e12) = (θE +
1

2
h)⊗ e12 − e12 ⊗ (θE +

1

2
h)

δθ(e21) = e21 ⊗ (θE− 1

2
h)− (θE− 1

2
h)⊗ e21, θ ∈ C.

If θ = 0, we get δ0. If θ ̸= 0, a conjugation with ψθ−1 will give us δ1. □
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Corollary 3. Every nontrivial triangular Lie bialgebra structure on gl2(C)
is of the form α(φ−1 ◦ δ ◦ φ), where α is a nonzero scalar, φ ∈ Aut(gl2(C))
and δ is one of the following

1. δx(y) = [x, y] ∧ E, x ∈ {e12, h}, y ∈ gl2(C),
2. δ(E) = 0, δ(e12) = 0, δ(h) = e12 ∧ h, δ(e21) = e12 ∧ e21,

3. δ(E) = δ(e12) = 0, δ(h) = e12 ∧ h+ E ∧ e12, δ(e21) = e12 ∧ e21 +
1

2
h ∧ E.

Proof. Similar to corollary 2. □
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