СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ
 Siberian Electronic Mathematical Reports
 http://semr.math.nsc.ru ISSN 1813-3304

ON CONNECTION BETWEEN ROTA-BAXTER OPERATORS AND SOLUTIONS OF THE CLASSICAL YANG-BAXTER EQUATION WITH AN AD-INVARIANT SYMMETRIC PART ON GENERAL LINEAR ALGEBRA.

M.E. GONCHAROV ${ }^{\text {(D }}$

Communicated by A.V. VASIL'EV

Abstract

In the paper, we find the connection between solutions of the classical Yang-Baxter equation with an ad-invariant symmetric part and Rota-Baxter operators of special type on a real general linear algebra $g l_{n}(\mathbb{R})$. Using this connection, we classify solutions of the classical Yang-Baxter equation with an ad-invariant symmetric part on $g l_{2}(\mathbb{C})$ using the classification of Rota-Baxter operators of nonzero weight on $g l_{2}(\mathbb{C})$ and a classification of Rota-Baxter operators of weight 0 on $s l_{2}(\mathbb{C})$.

Keywords: Lie bialgebra, Rota-Baxter operator, classical YangBaxter equation, general linear Lie algebra.

[^0]
1 Introduction.

Let A be an arbitrary algebra over a field $F, \lambda \in F$. A map $R: A \rightarrow A$ is called a Rota-Baxter operator of weight λ if for all $x, y \in A$

$$
\begin{equation*}
R(x) R(y)=R(R(x) y+x R(y)+\lambda x y) . \tag{1}
\end{equation*}
$$

Rota-Baxter operators for associative algebras first appeared in the paper by G. Baxter as a tool for studying integral operators that appear in the theory of probability and mathematical statistics [2]. For a long period of time, Rota-Baxter operators had been intensively studied in combinatorics and probability theory mainly. For basic results and the main properties of Rota-Baxter algebras, see [13].

Independently, in 80-th Rota-Baxter operators of weight 0 on Lie algebras naturally appeared in the papers of A.A. Belavin, V.G. Drinfeld [3] and M.A. Semenov-Tyan-Shanskii [20] while studying solutions of the classical YangBaxter equation. It was mentioned that for any quadratic Lie algebra (L, ω), the standard technique of multilinear algebra gives a one-to-one correspondence between skew-symmetric solutions of the classical Yang-Baxter equation on L and Rota-Baxter operators $R: L \rightarrow L$ of weight 0 , satisfying $R^{*}=-R$ (R^{*} is the adjoint to R operator with respect to the form ω). Recall that skew-symmetric solutions of the classical Yang-Baxter equation on a Lie algebra L induce on L the structure of a (triangular) Lie bialgebra.

In the case of Rota-Baxter operators of a nonzero weight, we have a correspondence (up to multiplication by a nonzero scalar) between structures of a factorizable Lie bialgebra $\left(L, \delta_{r}\right), r \in L \otimes L$, on a Lie algebra L and Rota-Baxter operators of weight 1 satisfying

$$
\begin{equation*}
R+R^{*}+i d=0, \tag{2}
\end{equation*}
$$

where R^{*} is the adjoint map with respect to some nondegenerate associative bilinear form ω (defined by r) [4],[17]. In particular, if L is a simple complex finite-dimensional Lie algebra, then any Lie bialgebra structure on L is either triangular or factorizable, that is, defined by a Rota-Baxter operator of a special type (see [5]). If L is a real simple finite-dimensional Lie algebra, then there may be a structure of a coboundary Lie bialgebra on L that is not factorizable, but becomes factorizable in the complexification $L \otimes_{\mathbb{R}} \mathbb{C}$ of the algebra L (such bialgebra structures are called almost-factorizable) [14],[1]. Note that if L is not simple, then the connection between RotaBaxter operators of nonzero weight and solutions of the classical YangBaxter equation is not straightforward (see [8]).

It is worth noting that for many varieties of algebras (associative, Jordan, alternative ect.) all structures of corresponding bialgebras on semisimple finite-dimensional algebras are triangular (since they are unital, see, for example, [23] for Jordan algebras). This means that Rota-Baxter operators satisfying (2) do not seem to be interesting in these varieties (it is known that there are no Rota-Baxter operators of weight 1 on $M_{n}(F)$ satisfying (2) ([11])).

There is a standard method of classification of skew-symmetric solutions of a classical Yang-Baxter equation on a given algebra A (of an arbitrary variety): it is known that these solutions are in one-to-one correspondence with pairs (B, ω), where B is a subalgebra in A and ω is a symplectic form on B (see [3]). At the same time, in the case of simple Lie algebras, there is a description of factorizable Lie bialgebra structures that uses so-called admissible triples ($\Gamma_{1}, \Gamma_{2}, \tau$), some additional structure consisting of Γ_{1} and Γ_{2}, two subsets of the set of simple roots Γ, and a map $\tau: \Gamma_{1} \rightarrow \Gamma_{2}$ satisfying some compatibility conditions (see [4], [21]). The description says that (up to the choice of a Cartan subalgebra) there is a correspondence between structures of factorizable Lie bialgebra on a simple complex Lie algebra \mathfrak{g} and admissible triples.

If $\mathfrak{g}=\mathfrak{g}_{0} \oplus F t$ is a reductive Lie algebra (\mathfrak{g}_{0} is a semisimple Lie algebra, $t \in Z(\mathfrak{g}))$, then a different approach to the description of Lie bialgebra structures on \mathfrak{g} was suggested in [7]. It was proved that any Lie bialgebra structure on \mathfrak{g} is coboundary and has a form

$$
\delta(x)=\delta_{0}(x)+[H, x] \wedge t
$$

for all $x \in \mathfrak{g}_{0}$ and $\delta(t)=0$. Here $\delta_{0}: \mathfrak{g} \rightarrow \mathfrak{g} \otimes \mathfrak{g}$ is a Lie bialgebra structure on \mathfrak{g}_{0} and $H \in \operatorname{ker}\left(\delta_{0}\right)$. Note that the condition $H \in \operatorname{ker}\left(\delta_{0}\right)$ implies that $a d_{H}$ is at the same time a derivation and a coderivation of the bialgebra (\mathfrak{g}, δ_{0}). Thus, at a starting point, in order to obtain the classification one needs the classification of Lie bialgebra structures on \mathfrak{g}_{0}. Using this technique, in [7] it was found the classification of Lie bialgebra structures on $g l_{2}(\mathbb{R})$) (up to the action of $\operatorname{Aut}(\mathfrak{g}))$.

However, there is no standard method for classification of all structures of quasitriangular bialgebras that may be used for an arbitrary variety of algebras. For example, if M is a simple finite-dimensional complex Malcev algebra, the classification of quasitriangular Malcev bialgebra structures on M from [10] was obtained by considering some specific information concerning the classical double (Drinfeld's double) $M \oplus M^{*}$.

Note that conjugated tensors induce structures of isomorphic bialgebras but inverse is not true: isomorphic coboundary (or quasitriangular) bialgebra structures on an algebra A may be induced by non-conjugated elements of $A \otimes A$, that is, the problem of classification of non-skew-symmetric solutions of CYBE is more general.

The main goal of the paper is to suggest a new approach to the problem of classification of solutions of the classical Yang-Baxter equation with an adinvariant symmetric part (skew-symmetric or not-skew-symmetric). In recent years, Rota-Baxter operators on many important classes of algebras have been described ([19],[18],,[12], etc.). Usually, the description is made up to the action of the group of automorphisms. The natural question is, if we can use these results to classify solutions of the classical Yang-Baxter equation on these classes of Lie (Malcev, ect.) algebras? Unfortunately, if the description of Rota-Baxter operators was made up to an automorphism, then we can't
use it directly since conjugate operators do not necessarily give conjugate tensors. In the current paper, we first obtain a correspondence between Rota-Baxter operators of special type an solutions of the classical YangBaxter equation with nonzero ad-invariant symmetric part on a complex or real general linear algebra $g l_{n}(F)(F=\mathbb{R}, \mathbb{C})$. Then, we use this result, the classification of the Rota-Baxter operators on $g l_{2}(\mathbb{C})$ obtained in [9], and the classification of Rota-Baxter operators of weight 0 on $s l_{2}(\mathbb{C})$ obtained in [16] to classify (up to the action of $\operatorname{Aut}\left(g l_{2}(\mathbb{C})\right.$) and the multiplication by a nonzero scalar) solutions of CYBE on $g l_{2}(\mathbb{C})$ with an ad-invariant symmetric part.

2 Motivation and preliminary results.

Let F be a field of characteristic 0 . Given a vector space V over F, denote by $V \otimes V$ its tensor square over F. Define the linear mapping τ on $V \otimes V$ by $\tau\left(\sum_{i} a_{i} \otimes b_{i}\right)=\sum_{i} b_{i} \otimes a_{i}$. We will identify the subspace of skew-symmetric tensors (that is, tensors $r \in V \otimes V$ satisfying $\tau(r)=-r$) with the exterior product $V \wedge V$, that is, for all $x, y \in V$ put

$$
x \wedge y:=x \otimes y-y \otimes x
$$

Let L be a Lie algebra with a product $[\cdot, \cdot]$. A Lie algebra L acts on $L^{\otimes n}$ by

$$
\left[x_{1} \otimes x_{2} \otimes \ldots \otimes x_{n}, y\right]=\sum_{i} x_{1} \otimes \ldots \otimes\left[x_{i}, y\right] \otimes \ldots \otimes x_{n}
$$

for all $x_{i}, y \in L$. Note then for all $x \in L$

$$
[L \wedge L, x] \subset L \wedge L
$$

Definition 1. An element $r \in L^{\otimes n}$ is called L-invariant (or ad-invariant) if $[r, y]=0$ for all $y \in L$.

Definition 2. A bilinear symmetric form ω on a Lie algebra L is called invariant if $\omega([a, b], c)=\omega(a,[b, c])$ for all $a, b, c \in L$.

Definition 3. Let L be a Lie algebra and ω be a symmetric invariant nondegenerate form on L. Then the pair (L, ω) is called a quadratic Lie algebra.

Given a quadratic Lie algebra (L, ω), for every element $r=\sum_{i} a_{i} \otimes b_{i} \in$ $L \otimes L$ we may define a linear map $R: L \rightarrow L$ as

$$
\begin{equation*}
R(a)=\sum_{i} \omega\left(a_{i}, a\right) b_{i} \tag{3}
\end{equation*}
$$

$a \in L$. By $R^{*}: L \rightarrow L$ denote the dual map with respect to the form ω :

$$
\omega(R(a), b)=\omega\left(a, R^{*}(b)\right)
$$

for all $a, b \in L$.

Definition 4. [6] Let L be a Lie algebra with a comultiplication $\delta: L \rightarrow L \wedge L$. The pair (L, δ) is called a Lie bialgebra if and only if (L, δ) is a Lie coalgebra and δ is a 1-cocycle, i.e., it satisfies

$$
\begin{align*}
& \delta([a, b])=[\delta(a), b]+[a, \delta(b)]= \\
& =\sum\left(\left[a_{(1)}, b\right] \otimes a_{(2)}+a_{(1)} \otimes\left[a_{(2)}, b\right]+\left[a, b_{(1)}\right] \otimes b_{(2)}+b_{(1)} \otimes\left[a, b_{(2)}\right]\right), \tag{4}
\end{align*}
$$

for all $a, b \in L$. Here we use the Sweedler notation: for any $x \in L$ put $\delta(x)=\sum x_{(1)} \otimes x_{(2)}$

There is an important type of Lie bialgebras. Let L be a Lie algebra and $r=\sum_{i} a_{i} \otimes b_{i} \in L \otimes L$. Define a comultiplication δ_{r} on L by

$$
\delta_{r}(a)=[r, a]=\sum_{i}\left[a_{i}, a\right] \otimes b_{i}+a_{i} \otimes\left[b_{i}, a\right],
$$

for all $a \in L$. It is easy to see that δ_{r} is a 1 -cocycle. The dual algebra L^{*} of the coalgebra $\left(L, \delta_{r}\right)$ is anticommutative if and only if $r+\tau(r)$ is L-invariant. Also, L^{*} satisfies the Jacobi identity if and only if the element $C_{L}(r)$, defined as

$$
C_{L}(r)=\sum_{i j}\left[a_{i}, a_{j}\right] \otimes b_{i} \otimes b_{j}-a_{i} \otimes\left[a_{j}, b_{i}\right] \otimes b_{j}+a_{i} \otimes a_{j} \otimes\left[b_{i}, b_{j}\right],
$$

is L-invariant.
Definition 5. We say that an element $r=\sum_{i} a_{i} \otimes b_{i} \in L \otimes L$ is a solution of the classical Yang-Baxter equation (CYBE) on L if

$$
\begin{equation*}
C_{L}(r)=0 . \tag{5}
\end{equation*}
$$

A solution $r \in L \otimes L$ of $C Y B E$ is called skew-symmetric, if $r \in L \wedge L$, i.e., $r+\tau(r)=0$.

Remark 1. Let $r=\sum a_{i} \otimes b_{i} \in L \otimes L$ be a solution of CYBE and $\varphi \in \operatorname{Aut}(L)$, then $r_{1}=\sum \varphi\left(a_{i}\right) \otimes \varphi\left(b_{i}\right)$ is also a solution of CYBE on L. In this case, we will say that tensors r and r_{1} are conjugate. Moreover, if the symmetric part of r is L-invariant, then so is the symmetric part of r_{1}. Therefore, it is possible to find solutions of CYBE up to the action of $\operatorname{Aut}(L)$.

If $r \in L \wedge L$ and r is a solution of CYBE, then $\left(L, \delta_{r}\right)$ is said to be a triangular Lie bialgebra. If $r+\tau(r) \in L \otimes L$ is a nonzero L-invariant element and r is a solution of CYBE, then $\left(L, \delta_{r}\right)$ is called a quasitriangular Lie bialgebra. Triangular and quasitriangular Lie bialgebras play an important role since they lead to solutions of the quantum Yang-Baxter equation [22].

It is known that an element $r \in L \otimes L$ is a skew-symmetric solution of CYBE on a quadratic Lie algebra L if and only if the corresponding map $R: L \rightarrow L$ is a Rota-Baxter operator of weight 0 satisfying $R+R^{*}=0$ [20].

If L is a semisimple Lie algebra over a field of characteristic 0 , then any derivation $D: L \rightarrow M$ of L into any L-bimodule M is inner, that is, there is $m \in M$ such that $D(x)=[x, m]$ for any $x \in L$. In particular, any Lie
bialgebra structure δ on L is induced by an element $r \in L \otimes L: \delta=\delta_{r}$. Similar result for reductive Lie algebras was proved in [7].

Let (L, ω) be a quadratic Lie algebra over an arbitrary field F and $r=$ $\sum a_{i} \otimes b_{i} \in L \otimes L$. Let R be a linear map defined as in (3) and R^{*} be the adjoint map with respect to the form ω. In what follows, we will need the following Statement 1 and Theorem 1 from [8]. These results give us the connection between solutions of CYBE and Rota-Baxter operators on L. Statement 1. The symmetric part $r+\tau(r)$ of r is L-invariant if and only if for all $a, b \in L$

$$
\begin{equation*}
R([a, b])+R^{*}([a, b])=\left[R(a)+R^{*}(a), b\right] . \tag{6}
\end{equation*}
$$

Theorem 1. If r is a solution of the classical Yang-Baxter equation on L then R is a Rota-Baxter operator of weight λ if and only if for all $a, b \in L$:

$$
\begin{equation*}
[R(a), b]+\left[R^{*}(a), b\right]+\lambda[a, b] \in \operatorname{ker}(R) . \tag{7}
\end{equation*}
$$

Conversely: let $R: L \rightarrow L$ be a Rota-Baxter operator of weight λ and let $r \in L \otimes L$ be the tensor corresponding to the map R, that is, $R(a)=$ $\sum_{i} \omega\left(a_{i}, a\right) b_{i}$. Then r is a solution of the classical Yang-Baxter equation if and only if R satisfies (7).

3 Connection between solutions of the CYBE and Rota-Baxter operators on $g l_{n}(\mathbb{R})$.

In this section, all vector spaces are assumed to be over a field F, where $F=\mathbb{R}$ or $F=\mathbb{C}$. Let $M_{n}(F)$ be the matrix algebra of order n over F with the multiplication $x y$. The multiplication in the general linear algebra $g l_{n}(F)=M_{n}(F)^{(-)}$we will denote by $[\cdot, \cdot]$:

$$
[x, y]=x y-y x,
$$

$x, y \in g l_{n}(F)$. Recall, that $g l_{2}(F)$ contains a nontrivial center spanned by the identity matrix E and is not a semisimple Lie algebra. We will also consider $s l_{n}(F)=\left\{x \in g l_{n}(F) \mid \operatorname{tr}(x)=0\right\}$ as a Lie subalgebra in $g l_{n}(F)$. Then $g l_{n}(F)=F \mathrm{E} \oplus s l_{n}(F)$, where E is the identity matrix. Note that for any $\varphi \in \operatorname{Aut}\left(g l_{n}(F)\right): \varphi(\mathrm{E})=\theta \mathrm{E}$, for some $\theta \in F, \theta \neq 0$ and $\varphi\left(s l_{n}(F)\right)=s l_{n}(F)$.

We will consider $g l_{n}(F)$ as a quadratic Lie algebra with the trace form ω :

$$
\omega(x, y)=\operatorname{tr}(x y)
$$

Theorem 2. An element $r \in g l_{n}(F) \otimes g l_{n}(F)$ is a solution of CYBE with $g l_{n}(F)$-invariant even part $r+\tau(r)$ if and only if the corresponding map R defined by (3) is a Rota-Baxter operator of weight λ satisfying

$$
\begin{equation*}
R(x)+R^{*}(x)+\lambda i d=0, \tag{8}
\end{equation*}
$$

and for some $\alpha \in F$

$$
\begin{equation*}
R(\mathrm{E})+R^{*}(\mathrm{E})+\lambda \mathrm{E}=\alpha \mathrm{E} . \tag{9}
\end{equation*}
$$

Proof. If a Rota-Baxter operator R of weight λ satisfies (8) and (9), then by Statement 1 and Theorem 1, the corresponding tensor $r \in g l_{n}(F) \otimes g l_{n}(F)$ is a solution of the classical Yang-Baxter equation with $g l_{n}(F)$-invariant symmetric part.

Let r be a solution of the classical Yang-Baxter equation with $g l_{n}(F)$ invariant symmetric part. For any $\lambda \in F$, consider a map $\theta_{\lambda}: g l_{n}(F) \rightarrow$ $g l_{n}(F)$ defined as

$$
\theta_{\lambda}(x)=R(x)+R^{*}(x)+\lambda x
$$

for any $x \in g l_{n}(F)$.
Consider a set

$$
I_{\lambda}=\left\{\theta_{\lambda}(x) \mid x \in\left[g l_{n}(F), g l_{n}(F)\right]\right\} .
$$

Take an arbitrary $\lambda \in F$. From Statement 1 , it follows that the map θ_{λ} satisfies

$$
\theta_{\lambda}([x, y])=\left[\theta_{\lambda}(x), y\right]
$$

for all $x, y \in g l_{n}(F)$. In other words, θ_{λ} belongs to the centralizer of $g l_{n}(F)$. In particular, I_{λ} is an ideal in $g l_{n}(F)$ for any λ. Moreover, $I_{\lambda} \subset\left[g l_{n}(F), g l_{n}(F)\right]=$ $s l_{n}(F)$ (as consequence, $s l_{n}(F)$ is θ_{λ}-invariant). Since $s l_{n}(F)$ is simple, we have two possibilities: $I_{\lambda}=0$ or $I_{\lambda}=s l_{n}(F)$. We want to prove that there exists a unique $\alpha \in F$ such that $I_{\alpha}=0$. The uniqueness is straightforward: if $I_{\alpha_{1}}=I_{\alpha_{2}}=0$, then for any $x \in \operatorname{sl}_{n}(F)$:

$$
R(x)+R^{*}(x)+\alpha_{1} x=R(x)+R^{*}(x)+\alpha_{2} x
$$

that is not possible if $\alpha_{1} \neq \alpha_{2}$.
Consider the case when $F=\mathbb{R}$. It is known that the complexification of $s l_{n}(\mathbb{R})$ is equal to $s l_{n}(\mathbb{C})$, the simple complex Lie algebra (that is, $s l_{n}(\mathbb{R})$ is an absolutely simple real Lie algebra). From [15] it follows that any centralizer of $s l_{n}(\mathbb{R})$ is a scalar map. If $F=\mathbb{C}$, this result follows from the Schur's lemma. Therefore, the restriction of θ_{λ} to $s l_{n}(F)$ is equal to $\gamma i d$ for some $\gamma \in F$. It means that $I_{\lambda-\gamma}=\theta_{\lambda-\gamma}\left(s l_{n}(F)\right)=0$.

Choose the scalar $\lambda \in F$ such that $I_{\lambda}=0$. From (7) it follows that I_{λ} is R invariant. Now we can use Theorem 2 from [8] to get that R and R^{*} are RotaBaxter operators of weight λ on the quotient algebra $g l_{n}(F) / I_{\lambda}=g l_{n}(F)$.

By the definition of I_{λ}, the condition (8) holds. Finally, (9) follows from (6) and the fact that the center of $g l_{2}(F)$ is spanned by E.

Remark 2. In contrast to the case of a simple complex Lie algebra, here we can't say that

$$
R+R^{*}+\lambda i d=0 .
$$

In Theorem 2, we proved that for all $x \in \operatorname{sl}_{n}(\mathbb{C}): \theta_{\lambda}(x)=R(x)+R^{*}(x)+\lambda x=$ 0 . But $\theta_{\lambda}(\mathrm{E}) \neq 0$ in general, as we will see in the next section.

In what follows, we will classify solutions of CYBE on $s l_{2}(\mathbb{C})$ using the results of Theorem 2. For this, we need to consider two cases: the case of a nonzero weight (in is enough to consider weight 1) and the case of weight zero.

4 Classification of solutions of CYBE with an ad-invariant symmetric part on $g l_{2}(\mathbb{C})$, the case of weight 1.

In this section, we will classify solutions of the CYBE with an ad-invariant symmetric part on $g l_{2}(\mathbb{C})$ such that the corresponding map is a RotaBaxter operator of weight 1 . We will use the classification of all Rota-Baxter operators of weight 1 on $g l_{2}(\mathbb{C})$ obtained in [9]. The description was made up to the conjugation with automorphisms from $\operatorname{Aut}\left(g l_{2}(\mathbb{C})\right)$.

Unfortunately, we can't use the result from [9] directly to describe all solutions of the classical Yang-Baxter equation on $g l_{2}(\mathbb{C})$. Indeed, let R be a Rota-Baxter operator on $g l_{2}(\mathbb{C}), r=\sum a_{i} \otimes b_{i}$ be the corresponding tensor and φ be an automorphism from $\operatorname{Aut}\left(g l_{2}(\mathbb{C})\right)$. Consider $R_{1}=\varphi^{-1} \circ R \circ \varphi$. Then the corresponding to R_{1} tensor is the following:

$$
r_{1}=\sum \varphi^{*}\left(a_{i}\right) \otimes \varphi^{-1}\left(b_{i}\right)
$$

In other words, tensors r and r_{1} are not necessarily conjugate by an automorphism from $\operatorname{Aut}\left(g l_{2}(\mathbb{C})\right)$. There may be a situation when r is a solution of CYBE while r_{1} is not a solution.

Moreover, given a Rota-Baxter operator R of weight 1 satisfying (8) and (9), the conjugate operator $\varphi^{-1} \circ R \circ \varphi$ not necessarily satisfies (8) and (9).

Nevertheless, we have the following
Proposition 1. If φ is an automorphism of $M_{2}(\mathbb{C})$ (as an associative algebra), then the dual map φ^{*} satisfies $\varphi^{*}=\varphi^{-1}$. Thus, if $R: g l_{2}(\mathbb{C}) \rightarrow g l_{2}(\mathbb{C})$ is a linear map, φ is an automorphism of $M_{2}(\mathbb{C})$ and $R_{1}=\varphi^{-1} \circ R \circ \varphi$, then corresponding tensors r and r_{1} (to R and R_{1} respectively) are conjugate:

$$
r_{1}=\left(\varphi^{-1} \otimes \varphi^{-1}\right) r
$$

Proof. Indeed, if $\varphi \in \operatorname{Aut}\left(M_{2}(\mathbb{C})\right)$, then

$$
\omega(\varphi(x), \varphi(y))=\operatorname{tr}(\varphi(x) \varphi(y))=\operatorname{tr}(\varphi(x y))=\operatorname{tr}(x y)=\omega(x, y)
$$

Hence, $\varphi^{*}=\varphi^{-1}$.
Definition 6. For any $\theta \in \mathbb{C}, \theta \neq 0$, we can define an automorphism ψ_{θ} of $g_{2}(\mathbb{C})$ as follows:

$$
\begin{equation*}
\psi_{\theta}(\mathrm{E})=\theta \mathrm{E}, \psi_{\theta}(a)=a \tag{10}
\end{equation*}
$$

for any a satisfying $\operatorname{tr}(a)=0$.
Remark 3. Since $g l_{2}(\mathbb{C})=s l_{2}(\mathbb{C}) \oplus \mathbb{C} E$ is a split null extension of the algebra $s l_{2}(\mathbb{C})=\left[s l_{2}(\mathbb{C}), s l_{2}(\mathbb{C})\right]$, the group of automorphisms $A u t\left(g l_{2}(\mathbb{C})\right)$ is isomorphisc to the direct product of $\operatorname{Aut}\left(s l_{2}(\mathbb{C})\right)$ and the multiplicative group of the field $\mathbb{C}: \operatorname{Aut}\left(g l_{2}(\mathbb{C})\right)=\operatorname{Aut}\left(s l_{2}(\mathbb{C})\right) \times \mathbb{C}^{*}$. This means that for any $\varphi \in \operatorname{Aut}\left(g l_{2}(\mathbb{C})\right)$, there are $0 \neq \theta \in \mathbb{C}$ and $\phi \in \operatorname{Aut}\left(M_{2}(\mathbb{C})\right)$ such that

$$
\varphi=\psi_{\theta} \circ \phi=\phi \circ \psi_{\theta}
$$

Let $e_{i j}(i, j=1,2)$ be the usual matrix unit, $h=e_{11}-e_{22}$. In what follows, we will take a set $\left\{\mathrm{E}, h, e_{12}, e_{21}\right\}$ as a basis of $g l_{2}(\mathbb{C})$.

Consider the description of Rota-Baxter operators of weight 1 on $g l_{2}(\mathbb{C})$ modulo the action of the group $\operatorname{Aut}\left(M_{2}(\mathbb{C})\right)$. For this, we need to take the representatives R of orbits from [9, Theorem 1], then take $0 \neq \theta \in \mathbb{C}$ and consider the action $\psi_{\theta}^{-1} \circ R \circ \psi_{\theta}$. We get the following
Theorem 3. Every Rota-Baxter operator of weight 1 on $\mathrm{gl}_{2}(\mathbb{C})$ is of the form $\psi^{-1} \circ R \circ \psi$, where $\psi \in \operatorname{Aut}\left(M_{2}(\mathbb{C})\right)$ and R is one of the operators below:

$$
\text { 1. } R(\mathrm{E})=\lambda \mathrm{E}+\theta e_{12}, \quad R(h)=R\left(e_{12}\right)=R\left(e_{21}\right)=0 ;
$$

2. $R(\mathrm{E})=\lambda \mathrm{E}+\theta e_{12}, \quad R(h)=-h, R\left(e_{12}\right)=-e_{12}, R\left(e_{21}\right)=-e_{21}$;
3. $R(\mathrm{E})=\lambda \mathrm{E}+\theta h, R(h)=0, R\left(e_{12}\right)=R\left(e_{21}\right)=0, \lambda \in \mathbb{C}$;
4. $R(\mathrm{E})=\lambda \mathrm{E}+\theta h, R(h)=-h, R\left(e_{12}\right)=-e_{12}, R\left(e_{21}\right)=-e_{21}, \lambda \in \mathbb{C}$;
5. $R(\mathrm{E})=\lambda \mathrm{E}+\theta h, R(h)=\alpha_{1} \mathrm{E}+\alpha_{2} h$,

$$
R\left(e_{12}\right)=-e_{12}, R\left(e_{21}\right)=0, \lambda, \alpha_{i} \in \mathbb{C}
$$

6. $R(\mathrm{E})=\lambda \mathrm{E}, R(h)=0, R\left(e_{12}\right)=-e_{12}+t h ; R\left(e_{21}\right)=0, t \in\{0,1\}$;
7. $R(\mathrm{E})=\lambda \mathrm{E}, R(h)=R\left(e_{21}=0, R\left(e_{12}\right)=-e_{12}+t h+\theta E, t \in\{0,1\}\right.$;
8. $R(\mathrm{E})=\lambda \mathrm{E}, R(h)=\theta E, R\left(e_{12}\right)=-e_{12}+h+\alpha \mathrm{E}, R\left(e_{21}\right)=0, \alpha \in \mathbb{C}$;
9. $R(\mathrm{E})=\lambda \mathrm{E}, R(h)=\theta E, R\left(e_{12}\right)=-e_{12}+\theta \mathrm{E} ; R\left(e_{21}\right)=0$;
10. $R(\mathrm{E})=\lambda \mathrm{E}, R(h)=t h, R\left(e_{21}\right)=0, R\left(e_{12}\right)=-e_{12}, t \in \mathbb{C}, t \neq 0$;
11. $R(\mathrm{E})=\lambda \mathrm{E}, R(h)=t h+\theta \mathrm{E}, R\left(e_{21}\right)=0, R\left(e_{12}\right)=-e_{12}, 0 \neq t \in \mathbb{C}$;
12. $R(\mathrm{E})=\lambda \mathrm{E}, R(h)=-h+\alpha \mathrm{E}, R\left(e_{21}\right)=\theta \mathrm{E}, R\left(e_{12}\right)=-e_{12}, \alpha \in \mathbb{C}$;
13. $R(\mathrm{E})=\lambda \mathrm{E}, R(h)=t h, R\left(e_{12}\right)=t e_{12}, R\left(e_{21}\right)=t e_{21}, t \in\{0,-1\}$,
where $\lambda, \theta \in \mathbb{C}, \theta \neq 0$.
Remark 4. Here, different scalars θ not necessarily give us different orbits with respect to $\operatorname{Aut}\left(M_{2}(\mathbb{C})\right)$. For example, if R is a map of type 1 , then it is possible to take $\theta=1$ since in this particular case, the conjugation of R by ψ_{θ} is equal to the conjugation of R by φ_{A}, where $\varphi_{A}(x)=A x A^{-1}$ for every $x \in M_{2}(\mathbb{C})$ and $A=\left(\begin{array}{ll}\theta & 0 \\ 0 & 1\end{array}\right)$. However, for our purposes, it is enough to consider such a rough description.

Maps that lie in the same orbit (with respect to $\operatorname{Aut}\left(M_{2}(\mathbb{C})\right)$) from Theorem 3 correspond to isomorphic tensors. Note that a map R satisfies (6) or (7) if and only if for any $\varphi \in \operatorname{Aut}\left(M_{2}(\mathbb{C})\right)$, the map $\varphi^{-1} \circ R \circ \varphi$ satisfies the same conditions. Thus, it is enough to consider one representative from every orbit in Theorem 3.

Let $R: g l_{2}(\mathbb{C}) \rightarrow g l_{2}(\mathbb{C})$ be a Rota-Baxter operator of weight 1 and $r=\sum a_{i} \otimes b_{i} \in g l_{2}(\mathbb{C}) \otimes g l_{2}(\mathbb{C})$. From Statement 1, it follows that if $r+\tau(r)$ is $g l_{2}(\mathbb{C})$-invariant, then

$$
\begin{equation*}
R(\mathrm{E})+R^{*}(\mathrm{E})=\gamma \mathrm{E} \tag{11}
\end{equation*}
$$

for some $\gamma \in \mathbb{C}$.
Proposition 2. In Theorem 3, only operators of type 5 (with $\alpha_{1}=-\theta$), 6 , 10 or 13 satisfy (11).

Proof. Consider E, $h=e_{11}-e_{22}, e_{12}$ and e_{21} as a basis of $g l_{2}(\mathbb{C})$. In order to check the condition (11), we need to compute $R^{*}(\mathrm{E})$. For this, we need to find $v \in g l_{2}(\mathbb{C})$ such that $\operatorname{tr}(\mathrm{E} R(v)) \neq 0$.

Suppose that R lies in an orbit of type 1 . Then $\operatorname{tr}(\mathrm{E} R(v)) \neq 0$ if and only if $v=\gamma \mathrm{E}(\gamma \neq 0)$. Therefore, $R^{*}(\mathrm{E})=\lambda \mathrm{E}$ and

$$
R(\mathrm{E})+R^{*}(\mathrm{E})=2 \lambda \mathrm{E}+\theta e_{12}, \theta \neq 0
$$

Thus, R doesn't satisfy (11). Using similar arguments, we get that operators of types $2,3,4$ do not satisfy (11).

Consider the type 7. In this case, $R^{*}(\mathrm{E})=\lambda \mathrm{E}+2 \theta e_{21}$. Thus,

$$
R(\mathrm{E})+R^{*}(\mathrm{E})=2 \lambda \mathrm{E}+2 \theta e_{21} \neq \gamma \mathrm{E}
$$

Similar arguments can be used to show that operators that are conjugate to operators of types $8,9,11,12$ do not satisfy (11).

It remains to consider types $5,6,10,13$.
Suppose that R is conjugate to an operator of type 5 . Then $R^{*}(\mathrm{E})=$ $\lambda \mathrm{E}+\alpha_{1} h$. Thus, $R(\mathrm{E})+R^{*}(\mathrm{E})=\gamma \mathrm{E}$ if and only if $\alpha_{1}=-\theta$.

In 6,10 and 13 it is easy to see that $R^{*}(\mathrm{E})=\lambda \mathrm{E}$. Thus, in this case, R satisfies (11) for any values of parameters.

From Proposition 2, it follows that it is enough to consider the following operators:

$$
\begin{gathered}
(\mathrm{R} 1) . R(\mathrm{E})=\lambda \mathrm{E}+\theta h, R(h)=-\theta \mathrm{E}+\alpha_{2} h \\
R\left(e_{12}\right)=-e_{12}, R\left(e_{21}\right)=0, \lambda, \alpha_{2} \in \mathbb{C}, \theta \neq 0
\end{gathered}
$$

(R2). $R(\mathrm{E})=\lambda \mathrm{E}, R(h)=R\left(e_{21}\right)=0, R\left(e_{12}\right)=t h-e_{12}, \lambda \in \mathbb{C}, t \in\{0,1\} ;$ (R3). $R(\mathrm{E})=\lambda \mathrm{E}, R(h)=t h, R\left(e_{21}\right)=0, R\left(e_{12}\right)=-e_{12}, t, \lambda \in \mathbb{C}, t \neq 0$;
(R4). $R(\mathrm{E})=\lambda \mathrm{E}, R(x)=t x, x \in s l_{2}(\mathbb{C}), \lambda \in \mathbb{C}, t \in\{0,-1\}$.
We will consider operators (R1)-(R4) consequently.
Proposition 3. Let R be the Rota-Baxter operator of type (R1) or (R3). Then R satisfies (6) if and only if $\alpha_{2}=-\frac{1}{2}$. In this case, for every $a \in \operatorname{sl}_{2}(\mathbb{C})$ we have $R(a)+R^{*}(a)+a=0$. Therefore, if $\alpha_{2}=-\frac{1}{2}$, then R also satisfies (7).

Proof. Direct computations show that $R^{*}(\mathrm{E})=\lambda \mathrm{E}-\theta h, R(h)=\theta \mathrm{E}+\alpha_{2} h$, $R^{*}\left(e_{12}\right)=0$ and $R^{*}\left(e_{21}\right)=-e_{21}$.

Suppose that R satisfies (6). We have

$$
R\left(\left[h, e_{12}\right]\right)+R^{*}\left(\left[h, e_{12}\right]\right)=2 R\left(e_{12}\right)+2 R^{*}\left(e_{12}\right)=-2 e_{12} .
$$

On the other hand,

$$
\left[R(h), e_{12}\right]+\left[R^{*}(h), e_{12}\right]=2 \alpha_{2} e_{12}+2 \alpha_{2} e_{12}=4 \alpha_{2} e_{12}
$$

Therefore, $\alpha_{2}=-\frac{1}{2}$.
Conversely, let $\alpha_{2}=-\frac{1}{2}$. It is easy to see that in this case, for all $a \in s l_{2}(\mathbb{C})$ we have

$$
R(a)+R^{*}(a)+a=0
$$

This means that equations (6) and (7) are true for all $a, b \in s l_{2}(\mathbb{C})$. Since $R(\mathrm{E})+R^{*}(\mathrm{E}) \in Z\left(g l_{2}(\mathbb{C})\right)$, it follows that equations (6) and (7) are true for all $a, b \in g l_{2}(\mathbb{C})$.

Proposition 4. Let R be the Rota-Baxter operator of type (R2). Then R does not satisfy (6) for any t and λ.

Proof. For R we have:

$$
R^{*}(\mathrm{E})=\lambda \mathrm{E}, R^{*}(h)=t e_{21}, R^{*}\left(e_{12}\right)=0, R^{*}\left(e_{21}\right)=-e_{21}, t \in\{0,1\}
$$

Then,

$$
R\left(\left[h, e_{12}\right]\right)+R^{*}\left(\left[h, e_{12}\right]\right)=-2 e_{12} .
$$

On the other hand,

$$
\left[R(h), e_{12}\right]+\left[R^{*}(h), e_{12}\right]=-t h .
$$

Thus, R does not satisfy (6).
Proposition 5. Let R be the Rota-Baxter operator of type ($R 4$). Then for any $t \in\{0,-1\}, R$ satisfies (6). Moreover, R satisfies (7) if and only if $t=0$.

Proof. The first statement is obvious since the restriction of R on $s l_{2}(\mathbb{C})$ is equal to $t \cdot \mathrm{id}$.

If $t=0$, then $R\left(s l_{2}(\mathbb{C})\right)=0$. Since $\left[g l_{2}(\mathbb{C}), g l_{2}(\mathbb{C})\right]=s l_{2}(\mathbb{C}), R$ satisfies (7).

If $t=-1$, then direct computations show that

$$
R\left(R\left(\left[h, e_{12}\right]+R^{*}\left(\left[h, e_{12}\right]\right)+\left[h, e_{12}\right]\right)=-2 R\left(e_{12}\right) \neq 0\right.
$$

Thus, if $t=-1$, then R does not satisfy (7).
Now we are ready to prove the main result of the section:
Theorem 4. Let $r \in g l_{2}(\mathbb{C}) \otimes g l_{2}(\mathbb{C})$ be a solution of CYBE such that $r+\tau(r)$ is $g_{2}(\mathbb{C})$-invariant and the corresponding map is a Rota-Baxter operator of weight 1. Then, up to the action of $\operatorname{Aut}\left(g l_{2}(\mathbb{C})\right), r$ is equal to the one of the following:

$$
\begin{gather*}
r=\lambda \mathrm{E} \otimes \mathrm{E}+\mathrm{E} \otimes h-h \otimes \mathrm{E}-\frac{1}{4} h \otimes h-e_{21} \otimes e_{12}, \lambda \in \mathbb{C} ; \tag{12}\\
r=\lambda \mathrm{E} \otimes \mathrm{E}-\frac{1}{4} h \otimes h-e_{21} \otimes e_{12}, \lambda \in\{0,1\} \tag{13}\\
r=\lambda \mathrm{E} \otimes \mathrm{E}, \lambda \in\{0,1\} \tag{14}
\end{gather*}
$$

Proof. Let $r \in g l_{2}(\mathbb{C}) \otimes g l_{2}(\mathbb{C})$ be a solution of CYBE such that $r+\tau(r)$ is $g l_{2}(\mathbb{C})$-invariant. Suppose that the corresponding map R defined as (3) is a Rota-Baxter operator of weight 1. Thus, R satisfies (6) and (7) (as a Rota-Baxter operator of weight 1). From Propositions 2-5 it follows that up to a conjugation with automorphisms from $\operatorname{Aut}\left(M_{2}(\mathbb{C})\right), R$ is one of the following:

$$
\begin{gathered}
R(\mathrm{E})=\lambda \mathrm{E}+\theta h, R(h)=-\theta \mathrm{E}-\frac{1}{2} h, R\left(e_{12}\right)=-e_{12}, R\left(e_{21}\right)=0, \lambda, \theta \in \mathbb{C} ; \\
R(\mathrm{E})=\lambda \mathrm{E}, R(h)=R\left(e_{12}\right)=R\left(e_{21}\right)=0 \lambda \in \mathbb{C}
\end{gathered}
$$

The kernel of the second operator contains $\left.s l_{2}(\mathbb{C})\right)$ while the dimension of the kernel of the first operator can't exceed 2 . This means that they can't be conjugate. A simple check shows that maps of type 1 with different scalars λ are not conjugate by elements of $\operatorname{Aut}\left(M_{2}(\mathbb{C})\right)$.

Therefore, up to the action of $\operatorname{Aut}\left(M_{2}(\mathbb{C})\right)$ and multiplication by a nonzero scalar, r is one of the following:

$$
\begin{gather*}
\frac{1}{2} \mathrm{E} \otimes(\lambda \mathrm{E}+\theta h)+\frac{1}{2} h \otimes\left(-\theta \mathrm{E}-\frac{1}{2} h\right)-e_{21} \otimes e_{12}, \lambda, \theta \in \mathbb{C} \tag{15}\\
\lambda \mathrm{E} \otimes \mathrm{E}, \lambda \in \mathbb{C} . \tag{16}
\end{gather*}
$$

By Remark 3, it remains to consider the action of an automorphism ψ_{β} defined in (10) for $\beta \in \mathbb{C}, \beta \neq 0$.

If in (15) $\theta \neq 0$, then the action of $\psi_{2 \theta^{-1}}$ gives us tensors of type (12).
Suppose that $\theta=0$. If $\lambda=0$, then we obtain the solution (13) with $\lambda=0$. If $\lambda \neq 0$, then after the action of ψ_{β} with $\beta=\frac{\sqrt{2}}{\sqrt{\lambda}}$, we obtain (13) with $\lambda=1$.

Similar arguments show that in the case $r=\lambda \mathrm{E} \otimes \mathrm{E}, \lambda$ is equal to 0 or 1 up to the action of automorphisms of type ψ_{β}.

5 Classification of solutions of CYBE with an ad-invariant symmetric part on $g l_{2}(\mathbb{C})$, the case of weight 0 .

In this case, we first need to classify all Rota-Baxter operators R of weight 0 on $g l_{2}(\mathbb{C})$ such that

$$
\begin{gather*}
R(x)+R^{*}(x)=0 \quad x \in s l_{2}(\mathbb{C}) \tag{17}\\
R(\mathrm{E})+R^{*}(\mathrm{E})=\alpha \mathrm{E}, \quad \alpha \in \mathbb{C} . \tag{18}
\end{gather*}
$$

As it was mentioned in the previous section, we need the classification up to the action of the group of automorphisms of $M_{2}(\mathbb{C})$, that is, by a conjugation with an invertible matrix.

Let R be a Rota-Baxter operator of weight 0 on $g l_{2}(\mathbb{C})$ satisfying (17) and (18). Define a map $R_{1}: s l_{2}(\mathbb{C}) \rightarrow s l_{2}(\mathbb{C})$ as follows: $R(x)=R_{1}(x)+\alpha(x) \mathrm{E}$, where $\alpha: s l_{2}(\mathbb{C}) \rightarrow \mathbb{C}$ is a linear functional on $s l_{2}(\mathbb{C})$. Since $s l_{2}(\mathbb{C})$ is a quadratic Lie algebra with the form given by $\omega(x, y)=\operatorname{tr}(x y)$, there is $t \in s l_{2}(\mathbb{C})$ such that $\alpha(x)=\omega(t, x)$ for all $t \in s l_{2}(\mathbb{C})$. Moreover, since R is a Rota-Baxter operator of weight 0 on $g l_{2}(\mathbb{C}), \mathrm{E}$ belongs to the center of
$g l_{2}(\mathbb{C})$ and $g l_{2}(\mathbb{C})=s l_{2}(\mathbb{C}) \oplus \mathbb{C E}, R_{1}$ is a Rota-Baxter operator of weight 0 on $s l_{2}(\mathbb{C})$. In [16], the classification of Rota-Baxter operators of weight 0 on $s l_{2}(\mathbb{C})$, up to the action of the group of automorphisms of $s l_{2}(\mathbb{C})$, was given.

Theorem 5. [16] Up to conjugation with an automorphism of $\operatorname{sl}_{2}(\mathbb{C})$ and up to a scalar multiple, we have that a Rota-Baxter operator R_{1} of weight 0 on $\mathrm{sl}_{2}(\mathbb{C})$ is one of the following:

$$
\text { 1. } R_{1}=0 \text {, }
$$

2. $R_{1}\left(e_{12}\right)=0, R_{1}\left(e_{21}\right)=t e_{12}-h, R_{1}(h)=2 e_{12}$,
3. $R_{1}\left(e_{12}\right)=R_{1}\left(e_{21}\right)=0, R_{1}(h)=h$,
4. $R_{1}\left(e_{12}\right)=0, R_{1}\left(e_{21}\right)=h, R_{1}(h)=0$,
5. $R_{1}\left(e_{12}\right)=0, R_{1}\left(e_{21}\right)=e_{12}, R_{1}(h)=0$.

Since R is a skew-symmetric map, so is R_{1}. Obviously, $R_{1}=0$ is skewsymmetric. Consider an operator of type (2) from Theorem 5. Direct computation shows that $R_{1}^{*}\left(e_{12}\right)=0, R_{1}^{*}\left(e_{21}\right)=t e_{12}+h, R_{1}^{*}(h)=-2 e_{12}$. Thus, R_{1} is skew-symmetric if and only if $t=0$.

Similarly, one can compute that operators 3)-5) from Theorem 5 are not skew-symmetric.

Thus, we need to consider two cases: $R_{1}=0$ and R_{1} is of type 2 from Theorem 5 with $t=0$.

Proposition 6. If $R_{1}=0$, then there are $x \in \operatorname{sl}_{2}(\mathbb{C})$ and $\theta \in \mathbb{C}$ such that

$$
\begin{equation*}
R(s)=\omega(x, s) \mathrm{E}, \quad R(\mathrm{E})=-2 x+\theta \mathrm{E} . \tag{19}
\end{equation*}
$$

Proof. Since $R_{1}=0$, we have that $R(s)=\alpha(s) \mathrm{E}$ for all $s \in s l_{2}(\mathbb{C})$. Suppose that $\alpha(s)=\omega(x, s)$ for all $s \in s l_{2}(\mathbb{C})$.

Let $R(E)=p+\theta \mathrm{E}$ for some $p \in s l_{2}(\mathbb{C})$ and $\theta \in \mathbb{C}$. For all $s \in s l_{2}(\mathbb{C})$ we have

$$
\omega\left(R^{*}(\mathrm{E}), s\right)=\omega(\mathrm{E}, R(s))=\omega(\mathrm{E}, \mathrm{E}) \omega(x, s)=\omega(2 x, s)
$$

Therefore, $R^{*}(\mathrm{E})=2 x+\alpha \mathrm{E}$. From (18) we deduce that $p+2 x=0$.
Since the image of R is an abelian subalgebra in $g l_{2}(\mathbb{C}), R$ is a RotaBaxter operator of weight 0 for any $x \in s l_{2}(\mathbb{C}), \theta \in \mathbb{C}$.

Proposition 7. Suppose that $R_{1}\left(e_{12}\right)=0, R_{1}\left(e_{21}\right)=-h, R_{1}(h)=2 e_{12}$. Then there are $\beta, \theta \in \mathbb{C}$:

$$
\begin{gathered}
R\left(e_{12}\right)=0 \\
R\left(e_{21}\right)=-h+\beta \mathrm{E} \\
R(h)=2 e_{12} \\
R(E)=-2 \beta e_{12}+\alpha \mathrm{E}
\end{gathered}
$$

Proof. Using similar arguments as above, we have that:

$$
\begin{gathered}
R\left(e_{12}\right)=\omega\left(x, e_{12}\right) \mathrm{E}, \\
R\left(e_{21}\right)=-h+\omega\left(x, e_{21}\right) \mathrm{E}, \\
R(h)=2 e_{12}+\omega(x, h) \mathrm{E}, \\
R(E)=-2 x+\theta \mathrm{E}, x \in s l_{2}(\mathbb{C}), \theta \in \mathbb{C} .
\end{gathered}
$$

Since R is a Rota-Baxter operator, we have that

$$
0=\left[R(\mathrm{E}), R\left(e_{12}\right)\right]=R\left(\left[\mathrm{E}, R\left(e_{12}\right)\right]+\left[R(\mathrm{E}), e_{12}\right]\right)=-2 R\left(\left[x, e_{12}\right]\right) .
$$

Note that if $\left(\alpha_{1}, \alpha_{2}\right) \neq(0,0)$, then $R\left(\alpha_{1} e_{21}+\alpha_{2} h\right) \neq 0$. Therefore, $x=$ $\beta e_{12}+\gamma h$ for some $\beta, \gamma \in \mathbb{C}$. Similarly,

$$
\begin{aligned}
&-4 \beta e_{12}=\left[-2 \beta e_{12}-2 \gamma h,-h\right]=\left[R(\mathrm{E}), R\left(e_{21}\right)\right] \\
&=R\left(\left[R(\mathrm{E}), e_{21}\right]\right)=R\left(-2 \beta h+4 \gamma e_{21}\right)=-4 \beta e_{12}-4 \gamma h .
\end{aligned}
$$

Thus, $\gamma=0$ and $x=\beta e_{12}$. Note that in this case, the last condition

$$
0=\left[-2 \alpha e_{12}, 2 e_{12}\right]=[R(\mathrm{E}), R(h)]=R([R(\mathrm{E}), h])=R\left(4 \alpha e_{12}\right)=0
$$

holds automatically.
Theorem 6. Let $r \in g l_{2}(\mathbb{C}) \otimes g l_{2}(\mathbb{C})$ be a solution of CYBE such that $r+\tau(r)$ is $g l_{2}(\mathbb{C})$-invariant and the corresponding map is a Rota-Baxter operator of weight 0 . Then, up to the action of $\operatorname{Aut}\left(g l_{2}(\mathbb{C})\right)$ and multiplication by a nonzero scalar, r is equal to the one of the following:

$$
\begin{gather*}
r=x \otimes \mathrm{E}-\mathrm{E} \otimes x+\alpha \mathrm{E} \otimes \mathrm{E}, \quad x \in\left\{0, e_{12}, h\right\}, \alpha \in \mathbb{C} . \tag{20}\\
r=h \otimes e_{12}-e_{12} \otimes h+\alpha \mathrm{E} \otimes \mathrm{E}, \alpha \in 0,1 \tag{21}\\
r=h \otimes e_{12}-e_{12} \otimes h+e_{12} \otimes \mathrm{E}-\mathrm{E} \otimes e_{12}+\alpha \mathrm{E} \otimes \mathrm{E}, \alpha \in \mathbb{C} . \tag{22}
\end{gather*}
$$

Proof. If R is a map from Proposition 6, then the corresponding tensor

$$
r=x \otimes \mathrm{E}-\mathrm{E} \otimes x+\frac{\alpha}{2} \mathrm{E} \otimes \mathrm{E}, x \in s l_{2}(\mathbb{C}), \alpha \in \mathbb{C}
$$

obviously satisfies CYBE. Finally, since the Jordan normal form of an element $x \in s l_{2}(\mathbb{C})$ is either $0, e_{12}$ or αh for some $\alpha \in \mathbb{C}$, we have that up to the action of $\operatorname{Aut}\left(g l_{2}(\mathbb{C})\right), r$ is equal to an element of type (20).

If R is a map from Proposition 7, then the corresponding tensor has a form

$$
r=h \otimes e_{12}-e_{12} \otimes h+\beta\left(e_{12} \otimes \mathrm{E}-\mathrm{E} \otimes e_{12}\right)+\alpha \mathrm{E} \otimes \mathrm{E},
$$

where $\alpha, \beta \in \mathbb{C}$. Now we need to consider two cases: $\beta=0$ and $\beta \neq 0$. In the first case, the conjugation with ψ_{γ}, where $\gamma=\alpha^{-\frac{1}{2}}$, gives us (21). Similarly, if $\beta \neq 0$, we obtain elements of type (22).

Remark 5. The tensor (20) form Theorem 6 with $x=0$ coincides with the tensor (14) in Theorem 4 since in this case, the corresponding map is a Rota-Baxter operator of any weight.

Theorem 7. Let $r \in g l_{2}(\mathbb{C}) \otimes g l_{2}(\mathbb{C})$ be a solution of $C Y B E$ such that $r+\tau(r)$ is $\operatorname{gl}_{2}(\mathbb{C})$-invariant. Then, up to the action of $\operatorname{Aut}\left(g l_{2}(\mathbb{C})\right)$ and multiplication by a nonzero scalar, r is equal to the one of the following:

1. $r=\mathrm{E} \otimes(\lambda \mathrm{E}+\theta h)-h \otimes\left(\theta \mathrm{E}+\frac{1}{4} h\right)-e_{21} \otimes e_{12}, \lambda \in\{0,1\}, \theta \in \mathbb{C}$;
2. $r=x \otimes \mathrm{E}-\mathrm{E} \otimes x+\alpha \mathrm{E} \otimes \mathrm{E}, \quad x \in\left\{0, e_{12}, h\right\}, \alpha \in \mathbb{C}$.
3. $r=h \otimes e_{12}-e_{12} \otimes h+\alpha \mathrm{E} \otimes \mathrm{E}, \alpha \in 0,1$
4. $r=h \otimes e_{12}-e_{12} \otimes h+e_{12} \otimes \mathrm{E}-\mathrm{E} \otimes e_{12}+\alpha \mathrm{E} \otimes \mathrm{E}, \alpha \in \mathbb{C}$.

As a corollary of Theorem 7, we obtain a well known description of solutions r of CYBE on $s l_{2}(\mathbb{C})$ such that $r+\tau(r)$ is $s l_{2}(\mathbb{C})$-invariant.

Corollary 1. Up to a multiplication by a nonzero scalar and the action of Aut $\left(\operatorname{sl}_{2}(\mathbb{C})\right)$, there are only two solutions:

$$
\begin{aligned}
r_{1} & =\frac{1}{4} h \otimes h+e_{12} \otimes e_{21} \\
r_{2} & =h \otimes e_{12}-e_{12} \otimes h
\end{aligned}
$$

The following result was obtained in [7] using another technique.
Corollary 2. Up to the action of $A u t\left(g l_{2}(\mathbb{C})\right)$ and multiplication by a nonzero scalar, there are two nontrivial quasitriangular Lie bialgebra structures δ_{λ} $(\lambda=0,1)$ on $g l_{2}(\mathbb{C})$ given by

$$
\begin{gathered}
\delta_{\lambda}(\mathrm{E})=0, \quad \delta_{\lambda}(h)=0, \quad \delta_{\lambda}\left(e_{12}\right)=\left(\lambda \mathrm{E}+\frac{1}{2} h\right) \wedge e_{12} \\
\delta_{\lambda}\left(e_{21}\right)=e_{21} \wedge\left(\lambda \mathrm{E}-\frac{1}{2} h\right) \quad \lambda \in\{0,1\}
\end{gathered}
$$

Proof. A quasitriangular Lie bialgebra structure is given by a non-skewsymmetric solution of the CYBE. In Theorem 6, the symmetric part of the tensors may be omitted since it gives a zero comultiplication. Thus, we need to consider tensors (12) from Theorem 4.

If r_{1} and r_{2} are conjugate by an automorphism $\varphi \in \operatorname{Aut}\left(g l_{2}(\mathbb{C})\right)$, i.e. $r_{1}=(\varphi \otimes \varphi)\left(r_{2}\right)$, then the corresponding comultiplications satisfy $\delta_{r_{1}} \circ \varphi^{-1}=$ $\left(\varphi^{-1} \otimes \varphi^{-1}\right) \circ \delta_{r_{2}}$ (note that the converse is false: if $\delta_{r_{1}}$ and $\delta_{r_{2}}$ are conjugate, then r_{1} and r_{2} are not necessarily conjugate). Therefore, up to multiplication by a scalar and the action of $\operatorname{Aut}\left(g l_{2}(\mathbb{C})\right)$, we have the following class of Lie bialgebra structures on $g l_{2}(\mathbb{C})$ depending on a parameter $\theta \in \mathbb{C}$:

$$
\begin{gathered}
\delta_{\theta}(\mathrm{E})=0, \quad \delta_{\theta}(h)=0, \quad \delta_{\theta}\left(e_{12}\right)=\left(\theta \mathrm{E}+\frac{1}{2} h\right) \otimes e_{12}-e_{12} \otimes\left(\theta \mathrm{E}+\frac{1}{2} h\right) \\
\delta_{\theta}\left(e_{21}\right)=e_{21} \otimes\left(\theta \mathrm{E}-\frac{1}{2} h\right)-\left(\theta \mathrm{E}-\frac{1}{2} h\right) \otimes e_{21}, \quad \theta \in \mathbb{C} .
\end{gathered}
$$

If $\theta=0$, we get δ_{0}. If $\theta \neq 0$, a conjugation with $\psi_{\theta^{-1}}$ will give us δ_{1}.

Corollary 3. Every nontrivial triangular Lie bialgebra structure on $g l_{2}(\mathbb{C})$ is of the form $\alpha\left(\varphi^{-1} \circ \delta \circ \varphi\right)$, where α is a nonzero scalar, $\varphi \in \operatorname{Aut}\left(g l_{2}(\mathbb{C})\right)$ and δ is one of the following

$$
\begin{gathered}
\text { 1. } \delta_{x}(y)=[x, y] \wedge \mathrm{E}, \quad x \in\left\{e_{12}, h\right\}, y \in g l_{2}(\mathbb{C}) \\
\text { 2. } \delta(\mathrm{E})=0, \delta\left(e_{12}\right)=0, \delta(h)=e_{12} \wedge h, \delta\left(e_{21}\right)=e_{12} \wedge e_{21} \\
\text { 3. } \delta(\mathrm{E})=\delta\left(e_{12}\right)=0, \delta(h)=e_{12} \wedge h+\mathrm{E} \wedge e_{12}, \delta\left(e_{21}\right)=e_{12} \wedge e_{21}+\frac{1}{2} h \wedge \mathrm{E} .
\end{gathered}
$$

Proof. Similar to corollary 2.

References

[1] N. Andruskiewitch, A.P. Jancsa, On simple real Lie bialgebras, Int. Math. Res. Not., 2004:3 (2004), 139-158. MR2038773
[2] G. Baxter, An analytic problem whose solution follows from a simple algebraic identity, Pac. J. Math., 10 (1960), 731-742. Zbl 0095.12705
[3] A.A. Belavin, V.G. Drinfel'd, Solutions of the classical Yang-Baxter equation for simple Lie algebras, Funct. Anal. Appl., 16, (1982), 159-180. Zbl 0511.22011
[4] A.A. Belavin, V.G. Drinfel'd, Triangle equations and simple Lie algebras, Sov. Sci. Rev., Sect. C, Math. Phys. Rev., 4 (1984), 93-165. Zbl 0553.58040
[5] M. Cahen, S. Gutt, J. Rawnsley, Some remarks on the classification of Poisson Lie groups, in Maeda, Yoshiaki (ed.) et al., Symplectic geometry and quantization, Cont. Math., 179, AMS, Providence, 1994, 1-16. Zbl 0820.58018
[6] V.G. Drinfeld, Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equation, Sov. Math. Dokl., 27 (1983), 68-71. Zbl 0526.58017
[7] M.A. Farinati, A.P. Jancsa, Trivial central extensions of Lie bialgebras, J. Algebra, 390 (2013), 56-76. Zbl 1286.17019
[8] M. Goncharov, Rota-Baxter operators and non-skew-symmetric solutions of the classical Yang-Baxter equation on quadratic Lie algebras, Sib. Èlectron. Mat. Izv., 16 (2019), 2098-2109. Zbl 1439.17020
[9] M. Goncharov, The description of Rota-Baxter operators of nonzero weight on complex general linear Lie algebra of order 2, Sib. Èlectron. Mat. Izv., 19:2 (2022), 870-879. MR4518794
[10] M.E. Goncharov, Structures of Malcev bialgebras on a simple non-Lie Malcev algebra, Commun. Algebra, 40:8 (2012), 3071-3094. Zbl 1326.17020
[11] M. Goncharov, V. Gubarev, Double Lie algebras of a nonzero weight, Adv. Math., 409, Part B (2022), Article ID 108680. Zbl 1522.16037
[12] M. Goncharov, V. Gubarev, Rota-Baxter operators of nonzero weight on the matrix algebra of order three, Linear Multilinear Algebra, 70:6 (2022), 1055-1080. Zbl 1509.16045
[13] L. Guo, An Introduction to Rota-Baxter Algebra, Surveys of Modern Mathematics, 4, International Press, Somerville, 2012. Zbl 1271.16001
[14] T.J. Hodges, On the Cremmer-Gervais quantization of $S L(n)$, Int. Math. Res. Not., 1995:10 (1995), 465-481. Zbl 0967.17015
[15] N. Jacobson, A note on non-associative algebras, Duke Math. J., 3:3 (1937), 544-548. Zbl 0018.05005
[16] P.S. Kolesnikov, Homogeneous averaging operators on simple finite conformal Lie algebras, J. Math. Phys., 56:7 (2015), Article ID 071702. Zbl 1330.17034
[17] H. Lang, Y. Sheng, Factorizable Lie bialgebras, quadratic Rota-Baxter Lie algebras and Rota-Baxter Lie bialgebras, Commun. Math. Phys., 397:2 (2023), 763-791. Zbl 7678019
[18] Yu Pan, Q. Liu, C. Bai, L. Guo, PostLie algebra structures on the Lie algebra sl(2, $\mathbb{C})$, Electron. J. Linear Algebra, 23 (2012), 180-197. Zbl 1295.17020
[19] J. Pei, C. Bai, L. Guo, Rota-Baxter operators on $\mathrm{sl}(2, \mathbb{C})$ and solutions of the classical Yang-Baxter equation, J. Math. Phys., 55:2 (2014), Article ID 021701. Zbl 1287.82011
[20] M.A. Semenov-Tyan-Shanskii, What is a classical r-matrix?, Funct. Anal. Appl., 17:4 (1983), 259-272. Zbl 0535.58031
[21] A. Stolin, Some remarks on Lie bialgebra structures on simple complex Lie algebras, Commun. Algebra, 27:9 (1999), 4289-4302. Zbl 0957.17026
[22] L.A. Takhtajan, Lectures on quantum groups, in Introduction to Quantum Group and Integrable Massive Models of Quantum Field Theory, Nankai Institute of Mathematics, China, 1990, 69-197.
[23] V.N. Zhelyabin, On a class of Jordan D-bialgebras, St. Petersbrg. Math. J., 11:4 (2000), 589-609. Zbl 0981.17024

Maxim Goncharov
Sobolev Institute of Mathematics, Academician Koptyug avenue, 4, 630090, Novosibirsk, Russia
Email address: goncharov.gme@gmail.com

[^0]: Goncharov M.E., On connection between Rota-Baxter operators and solutions of the classical Yang-Baxter equation with an ad-invariant symmetric part on general linear algebra.
 (C) 2023 Goncharov M.E.

 The research was carried out within the framework of the Sobolev Institute of Mathematics state contract (project FWNF-2022-0002).

 Received August, 14, 2023, published February, 14, 2024.

