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Abstract: The paper is concerned with the approximation of
the deterministic mean �eld type control system by a mean �eld
Markov chain. It turns out that the dynamics of the distribution
in the approximating system is described by a system of ordinary
di�erential equations. Given a strategy for the Markov chain,
we explicitly construct a control in the deterministic mean �eld
type control system. Our method is a realization of the model
predictive approach. The converse construction is also presented.
These results lead to an estimate of the Hausdor� distance between
the bundles of motions in the deterministic mean �eld type control
system and the mean �eld Markov chain. Especially, we pay the
attention to the case when one can approximate the bundle of
motions in the mean �eld type system by solutions of a �nite
systems of ODEs. algebra.
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1 Introduction

The paper studies mean �eld type control systems. These systems describe
an evolution of many identical agents who play cooperatively and interact
via some external �eld. The mean �eld type control systems appear within
the modeling of swarm of robots, pedestrian �ows, etc [10,16,18�20].

The concept of mean �eld models comes back to the model of plasma that
was proposed by Vlasov in 1938 [36,37] and was formalized within the theory
of McKean-Vlasov equation [31,35]. We will focus on the deterministic (�rst-
order) mean �eld type systems. This means that the dynamics of each agent
is described by an ordinary di�erential equation on the Euclidean space with
the right-hand side depending on his/her state, control and the distribution
of all agents.

Notice that the settings of the control theory include the study of optimal
control problems as well as the examination of the qualitative properties of
the bundle of trajectories.

The mean �eld type optimal control theory started with paper [1].
Nowadays, for the second order mean �eld type control system, i.e., when the
dynamics of each agent is determined by a stochastic di�erential equation,
the necessary and optimality conditions are derived (see [9, 15, 17, 22, 30, 32,
33]). The case of �rst-order mean �eld type optimal control problems was
studied in papers [6,24,34], where the variants of dynamic programming and
Pontryagin maximum principle were obtained.

The qualitative theory for mean �eld type control systems studies the
general properties of bundle of motions as well as viability theory issues. For
the deterministic mean �eld type control systems, the existence theorem was
proved under the general assumption on the dynamics [8, 11, 24], while the
Filippov and relaxation theorem are derived under additional assumption of
continuity of the vector �eld [12,14]. The viability theorem was obtained in
the terms of tangent cones (see [4,13]) and in the terms of proximal normal
cones [7].

The main object of the paper is an approximation of the bundle of motions
of the �rst order mean �eld type control system. Our approach is based on
so called Markov approximations. They appear when one replace the ODE
determining the dynamics of each agent by a continuous-time mean �eld
Markov chain. The latter can be regarded as a system of in�nitely many
similar agents with the dynamics determined by transition rates depending,
in particular, on a current distribution of agents. In this case, the dynamics
of the whole distribution of agents obeys a nonlinear Kolmogorov equation.
If, additionally, one can assure that the agents in the original system do not
leave a compact space, the phase space for the approximating Markov chain
can be chosen to be �nite. This leads to an approximation of the �rst-order
mean �eld type control system by a �nite system of ODE.

The approximation of the deterministic control system by a Markov chain
was proposed in [3]. In that paper, the approximation of the value function
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of the zero-sum di�erential game was studied based on stochastic control
with guide approach. This concept comes back to research of Krasovskii and
Kotelnikova [26�29]. The Markov approximation technique was extended to
mean �eld type di�erential games in [5]. There, based on a modi�cation of
the extremal shift rule for the Kantorovich space and control of the guide
strategies, the value function of the mean �eld type di�erential game was
approximated by a solution of a �nite dimensional di�erential game.

In the paper, we focus on the approximation of the mean �eld type control
system and implement the model predictive control approach (see [23] and
reference therein). Notice that, for the original deterministic mean �eld type
control system, we assume the open-loop strategies. They are distribution
of pairs consisting of an initial state and a control. Simultaneously, the
approximating mean �eld Markov chain implies the feedback strategies. The
latters can be regarded as a sequence of open loop strategies those work at
the appropriate state.

As it was mentioned above, we use the methodology of the model
predictive approach. For the considered deterministic mean �eld type control
system, this means that, given a feedback strategy in the Markov chain, an
agent uses on a small time interval a control borrowed from a state in the
approximating Markov chain. The weights of the controls are determined by
an optimal plan between the distribution in the original and approximating
system. To solve the converse problem which implies the design of a feedback
strategy in the Markov chain based on a given distribution of controls in the
mean �eld type system, one can on each small time interval integrate the
controls according to the optimal plan between distributions.

The main results of the paper includes also an approximation rates
of the aforementioned constructions. They depend only on the original
system, distance between the original and approximating systems, �neness
of partition and the maximal transition rate in the mean �eld Markov chain.
Notice also that, if the �neness of the partition tends to zero, the limiting
approximation rates are determined only by the original system and the
distance between the original and approximating systems. This, in particular,
provides the distance between the bundles of motions in the deterministic
mean �eld type control system and a �nite dimensional control system. The
earlier results gave only one-side estimate.

The rest of the paper is organized as follows. In Section 2, we introduce
the general notation. The assumption on the deterministic mean �eld type
control system as well as the class of admissible controls are presented in
Section 3. The approximating mean �eld Markov chain is introduced in
Section 4. Here, we de�ne the general system and show the way to construct
an approximating Markov chain for the original deterministic mean �eld
type system. Section 5 deals with the model predictive control for the
deterministic system. In this case, we assume that a feedback strategy for the
mean �eld Markov chain is given and estimate the approximation rate of the
constructed motion in the deterministic mean �eld type system. The model
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predictive control for the mean �eld Markov chain is discussed in Section 6.
Finally, we estimate the Hausdor� distance between the bundle of motions
in the deterministic mean �eld type control system and the Markov chain
(see Section 7).

2 General notation

• If n is a natural number, X1, . . . , Xn are sets, i1, . . . , ik are indices
from {1, . . . , n}, then pi1,...,ik is a projection from X1 × . . . Xn to
Xi1 × . . . Xik , i.e,

pi1,...,ik(x1, . . . , xn) ≜ (xi1 , . . . , xik).

• If (X, ρX), (Y, ρY ) are Polish spaces, then Cb(X,Y ) denotes the space
of bounded continuous functions from X to Y . If Y is a normed
vector space, then Cb(X,Y ) is also a normed vector space with usual

sup-norm. Moreover, Cb(X) ≜ Cb(X,R).
• We always endow a Polish space (X, ρX) with the Borel σ-algebra
denoted by B(X). Moreover, M(X) stands for the set of Borel
nonnegative measures, whereas P(X) denotes the set of all Borel
probabilities:

P(X) ≜ {m ∈ M(X) : m(X) = 1}.

We consider on M(X) the topology of narrow convergence, i.e., a
sequence of measures {mn}∞n=1 converges to a measure m if, for each
Cb(X), ∫

X
ϕ(x)mn(dx) →

∫
X
ϕ(x)m(dx) as n → ∞.

Notice that P(X) is closed w.r.t. the narrow convergence.
• If (Ω,F), (Ω′,F ′) are measurable spaces,m is a measure on F , whilst
h : Ω → Ω′ is F/F ′-measurable, then we denote by h♯m the push-
forward measure on F ′ de�ned by the rule: for each Υ ∈ F ′,

(h♯m)(Υ) ≜ m(h−1(Υ)).

• If (X, ρX) and (Y, ρY ) are two Polish space, m is a measure on X,
then we denote by Λ(X,m;Y ) the set of measures on X × Y with
marginal distribution on X equal to m, i.e.,

Λ(X,m;Y ) ≜
{
α ∈ M(X × Y ) : p1 ♯α = m

}
.

• A function β : X → P(X) is called weakly measurable if, for each
ϕ ∈ Cb(Y ), the function

x 7→
∫
Y
ϕ(y)β(x, dy)

is measurable. Furthermore, each weakly measurable function β
generates a measure m ⋆ β ∈ Λ(X,m;Y ) by the rule: for each
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ϕ ∈ Cb(X × Y ),∫
X×X

ϕ(x, y)(m ⋆ β)(d(x, y)) ≜
∫
X

∫
Y
ϕ(x, y)β(x, dy)m(dx).

• If α ∈ Λ(X,m;Y ), then there exists a weakly measurable function
β such that α = m ⋆ β [21, III-70]. These function is called a
disintegration of the measure α and denoted by x 7→ α(·|x). The
disintegration exists and is unique a.e.

• If (X, ρX) is a Polish space, p ≥ 1, then Pp(X) is the space of
probabilities on X such that, for some (equivalently, every) x∗ ∈ X,∫

X
ρpX(x, x∗)m(dx) < ∞.

If X is a normed vector space, then we will always choose x∗ = 0
and put

ςp(m) ≜

[∫
X
∥x∥pm(dx)

]1/p
.

• The space Pp(X) is endowed with the Kantorovich (also known as a
Wasserstein) metric de�ned by the rule: if m1,m2 ∈ Pp(X), then

Wp(m1,m2) ≜

[
inf

{∫
X×X

ρpX(x1, x2)π(d(x1, x2)) :

π ∈ Π(m1,m2)

}]1/p
.

Hereinafter, Π(m1,m2) stands for the set of probabilities π on X1 ×
X2 such that p

i ♯π = mi, i = 1, 2. The convergence withinWp implies
the narrow convergence, the converse holds true only if X is compact
[2, Proposition 7.1.5]. Primary, we will consider the case p = 2.

• The set of all continuous curves in Rd on [s, r] is denoted by Γs,r ≜
C([s, r],Rd). If t ∈ [s, r], then we denote by et the evaluation operator
de�ned by the rule: for x(·) ∈ Γs,r

et(x(·)) ≜ x(t).

3 First-order mean �eld type control system

In the paper, we consider a mean �eld type control system formally
described by the continuity equation

∂tm(t) + div(f(t, x,m(t), u(t, x))m(t)) = 0. (1)

Here, t ∈ [0, T ], x ∈ Rd is a phase variable, m(t) stands for a current
distribution of agents, u(t, x) is a control implemented by an agent at the
time t and the state x. We will assume that the control is chosen from a
set U . Notice that in (1) we indicate the dependence of the control u on
t and x. However, in fact we will use distributions of open-loop strategies
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(see De�nition 1). The equivalence between the feedback controls and the
distributions of open-loop contols is proved in [24, Theorem 1]. System (1)
describes the behavior of the in�nitely many identical agents such that the
dynamics of each agent is determined by the ODE:

d

dt
x(t) = f(t, x(t),m(t), u(t, x(t))). (2)

Notice also that due to the equivalence of open-loop and feedback control for
control systems, one can replace in (2) the feedback control u(t, x(t)) with
u(t). We impose the following conditions on U and f .

(C1) U is a metric compact;
(C2) f is a continuous function;
(C3) there exists a set K ⊂ Rd such that, if supp(m) ⊂ K, then

f(t, x,m, u) = 0, x /∈ K; (3)

(C4) f is bounded on [0, T ]×K × P2(K)× U by a constant R;
(C5) f is Lipschitz continuous w.r.t. the space and measure variables on

[0, T ]×K × P2(K)× U ; the Lipschitz constant is denoted by Cf .

It is convenient to use the relaxation of the controls. This means that we
replace the set of instantaneous controls U with the set of probabilities on
U . The time-dependent relaxed controls are de�ned as follows.

For s, r ∈ [0, T ], s < r, put

Us,r ≜ Λ([s, r], λ;U),

where λ is the Lebesgue measure on [s, r]. An element of Us,r is a control
measure on [s, r]. Notice that Us,r is a compact subset of M([s, r]×U). For
now, assume that we are given with a �ow of probabilities m(·) : [s, r] →
Pp(Rd). Furthermore, let y ∈ Rd be an initial state, and let ξ ∈ Us,r be a
relaxed control. Then, the corresponding motion of an agent is a solution of
the initial value problem

d

dt
x(t) =

∫
U
f(t, x(t),m(t), u)ξ(du|t), x(s) = y. (4)

We denote this motion by x(·, s, y,m(·), ξ). Let us denote by trajs,rm(·) the

operator assigning to y ∈ Rd and ξ ∈ Us,r the trajectory x(·, s, y,m(·), ξ) ∈
Γs,r.

Further, for m ∈ Pp(Rd), put

As,r[m] ≜ Λ(Rd,m;Us,r).

The set As,r[m] is the set of distributions of pairs consisting of an initial
state and a relaxed control compatible with the initial probability m.

De�nition 1. Let s, r ∈ [0, T ], s < r, m∗ ∈ Pp(Rd), α ∈ A[m∗]. We say
that a function m(·) : [s, r] → Pp(Rd) is a motion of deterministic mean �eld
type system (1) produced by the initial time s and the distribution of controls
α ∈ As,r[m∗] if there exists a measure χ ∈ P2(Γs,r) such that
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• m(s) = m∗;
• χ = trajs,rm(·) ♯α;

• m(t) = et♯χ on [s, r].

Below we denote the motion of the system (1) produced by the initial time
s and the distribution of controls α ∈ As,r[m∗] by m(·, s, α).

Proposition 1. For each s, r ∈ [0, T ], r > s, m∗ ∈ P2(K), As,r[m∗], there
exists a unique motion m(·, s, α). Moreover, m(t, s, α) ∈ P2(K) for all t ∈
[s, r].

This proposition is proved in [8].
Further, we introduce the concatenation of distributions of controls. First,

if s0, s1, s2 ∈ [0, T ], s0 < s1 < s2, ξ0 ∈ Us0,s1 , ξ1 ∈ Us1,s2 , then the

concatenation ξ ≜ ξ0 ⋄s1 ξ1 of these controls is de�ned by its disintegration
w.r.t. the Lebesgue measure:

ξ(·|t) ≜
{

ξ0(·|t), t ∈ [s0, s1),
ξ1(·|t), t ∈ [s1, s2].

De�nition 2. Let

• s0, s1, s2 ∈ [0, T ], s0 < s1 < s2;
• m0,m1 ∈ P2(Rd);
• α0 ∈ As0,s1 [m0], α1 ∈ As1,s2 [m1].

be such that

m1 = m(s1, s0, α0).

A probability α ∈ As0,s2 [m0] de�ned by the rule: for every ϕ ∈ Cb(Rd×Us0,s2),∫
Rd×Us0,s2

ϕ(y, ξ)α(d(y, ξ))

≜
∫
Rd×Us0,s1

∫
Us1,s2

ϕ(y, ξ0 ⋄s1 ξ1)α1(dξ1|x0(y, ξ0))α0(d(y, ξ0))

is called a concatination of distributions α0 and α1. Here we use the
designations

x0(y, ξ0) ≜ x(s1, s0, y,m
0(·), ξ0), m0(·) ≜ m(·, s0, y,m0, α0).

With some abuse of notation, we denote the concatenation of distributions
by α0 ⋄s1 α1.

Proposition 2. Assume that s0 < s1 < s2, m0,m1 ∈ P2(K), α0 ∈
As0,s1 [m0], α1 ∈ As1,s2 [m1] are such that

m1 = m(s1, s0, α0).

Then,

• m(t, s0, α0 ⋄s1 α1) = m(t, s0, α0) when t ∈ [s0, s1];
• m(t, s0, α0 ⋄s1 α1) = m(t, s1, α1) when t ∈ [s1, s2].
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This proposition directly follows from the de�nition of concatenation.
Let us complete this section with the equivalent formalization of the

motion in mean �eld type control system (1). The following result is proved
in [24, Theorem 1].

Proposition 3. Let m(·) : [s, r] → P2(K) be equal to m(·, s, α) for some
distribution of controls α. Then, there exists a velocity �eld v : [s, r]×Rd →
Rd such that

(V1) v(t, x) ∈ co{f(t, x,m(t), u) : u ∈ U} for a.e. t ∈ [s, r], m(t)-a.e.
x ∈ Rd;

(V2) the continuity equation

∂tm(t) + div(v(t, x)m(t)) = 0

holds in the sense of distributions, i.e., for every ϕ ∈ C1
c ([s, r]×Rd),∫ r

s

∫
Rd

[∂tϕ(t, x) + ⟨∇ϕ(t, x), v(t, x)⟩]m(t, dx)dt = 0.

Conversely, if m(·) and v(·, ·) satisfy conditions (V1), (V2), then there exits
a distribution of controls α such that

m(·) = m(·, s, α).

4 Mean �led Markov chains

In this section, we introduce a controlled nonlinear Markov chain. Let S ⊂
K be at most countable set. Distributions on S are described by sequences
µ = (µx̄)x̄∈S such that

µx̄ ≥ 0,
∑
x̄∈S

µx̄ = 1.

The set of such distributions is the simplex on S denoted below by Σ.
Furthermore, let Σ2 be a set of sequences µ = (µx̄)x̄∈S such that∑

x̄∈S
∥x̄∥2µx̄ < ∞.

If S is �nite, the sets Σ and Σ2 coincide. There is a natural isomorphism
between Σ and P(S):

µ = (µx̄)x̄∈S 7→ I(µ) ≜
∑
x̄∈S

δx̄µx̄.

Hereinafter, δz stands for the Dirac measure concentrated at z.
For t ∈ [0, T ], µ ∈ Σ2, u ∈ U , let Q(t, µ, u) = (Qx̄,ȳ(t, µ, u))x̄,ȳ∈S be a

Kolmogorov matrix, i.e., Qx̄,ȳ(t, µ, u) ≥ 0 when x̄ ̸= ȳ and, for each x̄ ∈ S,∑
ȳ∈S

Qx̄,ȳ(t, µ, u) = 0.
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Given µ ∈ Σ2, u ∈ U , the quantity Qx̄,ȳ is a probability rate of the transfer
from the state x̄ to the state ȳ at the time t in the case when the distribution
of all agent is µ, while the implemented control is u.

Now let us introduce a mean �eld Markov chain generated by this
Kolmogorov matrix. To this end, we �rst consider a relaxation of the control
space. As above, a relaxed control on [s, r] is an element of Us,r. We will
use the feedback approach. This means that we are given with a sequence of
relaxed control ζS = (ζx̄)x̄∈S . Notice that the set of feedback controls is US

s,r.
In this case, the instantaneous probability rate for transition from x̄ to ȳ is
equal to

Qx̄,ȳ(t, µ, ζS) ≜
∫
U
Qx̄,ȳ(t, µ, u)ζx̄(du|t).

Moreover, we denote

Q(t, µ, ζS) ≜ (Qx̄,ȳ(t, µ, ζS))x̄,ȳ∈S .

De�nition 3. Given a time interval [s, r], an initial distribution of states
µ∗ ∈ Σ2 and a feedback control ζS = (ζx̄)x̄∈S , we say that µ(·) is a motion in
the mean �eld Markov chain if it satis�es the following initial value problem:

d

dt
µȳ(t) =

∑
x̄∈S

µx̄(t)Qx̄,ȳ(t, µ(t), ζS), µȳ(s) = µ∗,ȳ. (5)

Notice that system (5) can be rewritten in the vector form

d

dt
µ(t) = µ(t)Q(t, µ(t), ζS), µ(s) = µ∗. (6)

To guarantee the existence of the distribution µ(·), it is su�cient to
assume that Q has continuous entries, for each x̄ only �nite number of
entries Qx̄,ȳ(t, µ, u) are non-zero and the dependence of the matrix Q on
µ is Lipschitz continuous.

Let us also give a probabilistic interpretation of De�nition 3. Set

• Ωs,r ≜ D([s, r];S), where D([s, r];S) stands for a Skorokhod space
of c�adl�ag functions;

• Fs,r ≜ B(D([s, r];S));
• Fs,r = {F t

s,r}t∈[s,r], where F t
s,r ⊂ Fs,r is a σ-algebra such that

projections of its elements on [s, t] form the whole σ-algebra
B(D([s, t];S)), while the projection on [t, r] is a trivial σ-algebra;

• X(t, ω) ≜ ω(t).

Further, we de�ne the generator Lt[µ, ζS ] by the rule: for ϕ ∈ Cb(S),

Lt[µ, ζS ]ϕ(x) ≜
∑
ȳ∈S

Qx̄,ȳ(t, µ, ζS)ϕ(ȳ).

De�nition 4. Let [s, r] be a time interval, µ∗ be an initial distribution of
states, ζS ∈ US

s,r and let µ(·) = µ(·, s, µ∗, ζS). We say that a probability Ps,r

on Fs,r realizes µ(·) if
• µx̄(t) = Ps,r{ω(t) = x̄};
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• for each ϕ ∈ Cb(S), the process

ϕ(X(t))−
∫ t

s
Lt[µ(t), ζS ]ϕ(X(t′))dt′

is a Fs,r-martingale.

Below, if Ps,r is a realization of µ(·), Es,r stands for the corresponding
expectation.

Notice that there exists at least one representation of �ow µ(·) [25,
Theorem 5.4.2].

The main result of the paper is proved under the following approximation
assumptions.

(A1)

max
x∈K

min
ȳ∈S

∥x− ȳ∥ ≤ ε;

(A2) entries of the matrix Q are uniformly bounded by a number BQ.
(A3) for each t ∈ [0, T ], x̄ ∈ S, µ ∈ Σ2 and u ∈ U ,∥∥∥f(t, x̄,I(µ), u)−

∑
ȳ∈S

(ȳ − x̄)Qx̄,ȳ(t, µ, u)
∥∥∥≤ ε;

(A4) for each t ∈ [0, T ], x̄ ∈ S, µ ∈ Σ2 and u ∈ U ,∑
ȳ∈S

∥ȳ − x̄∥2Qx̄,ȳ(t, µ, u) ≤ ε2.

Without loss of generality, we assume that ε ≤ 1.
An example of the Markov chain that satis�es assumptions (A1)�(A4) can

be constructed on a regular lattice as follows. First, we represent f in the
coordinate-wise form

f(t, x,m, u) = (fi(t, x,m, u))di=1.

Let h > 0, Kh ≜ K+Bh, where Bh is a ball centered at the origin and radius
h, and let ei denote the i-th coordinate vector. We put

S ≜ Kh ∩ hZ, (7)

Qx̄,ȳ(t, µ, u)

≜


h−1|fi(t, x̄,I(µ), u)|, ȳ = x̄

+h sgn(fi(t, x̄,I(µ), u))ei,

−h−1
∑d

j=1 |fj(t, x̄,I(µ), u)|, ȳ = x̄,

0, otherwise.

(8)

One can directly show that this Markov chain satis�es conditions (A1)�(A4)

with BQ = dRh−1 and ε ≜ max{h,
√
hdR}.

Notice that if K is compact, the phase space for Markov chain introduced
by rules (7), (8) is �nite and equation (6) is a system of the �nite number of
ODEs.
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5 Model predictive control of the �rst-order mean �eld

type system

In this section, we show that a feedback control in the mean �led type
Markov chain can be used directly to construct a motion in the �rst order
mean �led type control system.

Let µ0 ∈ Σ2, ζS ∈ US
0,T . Notice that there exists a unique motion in the

mean �eld Markov chain on the time interval [0, T ] produced by the control
ζS and the initial distribution µ0. For shortness, we denote it by µ(·). Let
m0 ∈ P2(K), ∆ = {si}ni=0 be a partition of [0, T ]. Further, let ζ̂i assign to
x ∈ K and x̄ ∈ S a measure ζx̄ ∈ Usi,si+1 . A model predictive strategy for
the �rst order mean �eld game is constructed as follows.

(D1) Let π0 be an optimal plan between m0 and I(µ0). We de�ne

α0 ≜ (p1, ζ̂0)♯π0.

(D2) Assume now that we already construct controls αi, i = 0, . . . , k − 1,
and a �ow of probabilities m(·) on [0, sk] such that

αi ∈ Asi,si+1 [m(si)], i = 0, . . . , k − 1,

m(t) = m(t, 0, α0 ⋄s1 . . . ⋄sk−1
αk−1), t ∈ [0, sk].

Setmk ≜ m(sk, 0, α0⋄s1 . . .⋄sk−1
αk−1) and choose πk to be an optimal

plan between mk and I(µ(sk)). As above πk(·|x) is a disintegration
of this plan w.r.t. mk. We put

αk ≜ (p1, ζ̂k)♯πk

and, for t ∈ [sk, sk+1],

m(t) ≜ m(sk, 0, α0 ⋄s1 . . . ⋄sk−1
αk−1 ⋄sk αk).

Theorem 1. If ∆ = {si}ni=0 is a partition of [0, T ], with d(∆) ≤ 1, while

α0, . . . , αn−1 are constructed by the rules (D1), (D2) and m(·) ≜ m(·, 0, α0⋄s1
. . . ⋄sn−1 αn−1), then

Wp(m(t),I(µ(t))) ≤ C0W2((µ0),m0) + C1ε+ C2d
1/2(∆)

+ C3d(∆) + C4εBQd(∆) + C5BQd
2(∆).

Here, the constants C0, . . . , C5 depend only on f and T .

Lemma 1. Let µ(·) be a distribution of agents in the mean �eld Markov
chain, Ps,r be its realization. Then,

Es,r(∥X(t)−X(s)∥2|X(s) = z̄) ≤ ε2(t− s) + C ′
1(t− s)3/2,

where

C ′
1 ≜ 4(R+ 1)e2(R+1)T /3.
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Proof. For �xed z̄ ∈ S, let us denote

qz̄(x̄) ≜ ∥x̄− z̄∥2.

We have that

Lt[µ, u]qz̄(x̄) =
∑
ȳ∈S

Qx̄,ȳ(t, µ, u)∥ȳ − z̄∥2

=
∑
ȳ∈S

Qx̄,ȳ(t, µ, u)(∥ȳ − x̄∥2 + ∥x̄− z̄∥2 + 2⟨ȳ − x̄, x̄− z̄⟩)

=
∑
ȳ∈S

Qx̄,ȳ(t, µ, u)∥ȳ − x̄∥2 +
〈∑
ȳ∈S

Qx̄,ȳ(t, µ, u)(ȳ − x̄), x̄− z̄
〉
.

Due to assumption (A4), we have that the �rst term is bounded by ε2.
Moreover, condition (A3) implies that∥∥∥∥∥∑

ȳ∈S
Qx̄,ȳ(t, µ, u)(ȳ − x̄)

∥∥∥∥∥ ≤ R+ ε.

Using these estimates and De�nition 4, we conclude that that

Es,rT (∥X(t)−X(s)∥2|X(s) = z̄)

≤ ε2(t− s) + 2

∫ t

s
(R+ ε)(E0,T ∥X(t′)−X(s)∥|X(s) = z̄)dt′.

(9)

Since we assume that ε ≤ 1, we have that

E0,T (∥X(t)−X(s)∥2|X(s) = z̄) ≤ C ′′
1 (t− s),

where

C ′′
1 ≜ e2(R+1)T .

Plugging this estimate to (9), we obtain the statement of the lemma. □

Lemma 2. Assume that s, r ∈ [0, T ], s < r, ν∗ = (ν∗,x̄)x̄∈S ∈ Σ2, ζS ∈ US
s,r,

µ(·) : [0, T ] → Σ2, while ν(·) satis�es

d

dt
ν(t) = ν(t)Q(t, µ(t), ζS(t)), ν(s) = ν∗. (10)

Then, for each x̄ ∈ S,

|νx̄(t)− ν∗,x̄| ≤ BQ(t− s).

Proof. We have that

|νx̄(t)− ν∗,x̄| ≤
∫ t

s

∫
U

∑
ȳ∈S

νȳ(t
′)
∣∣Qȳ,x̄(t

′, µ(t), u)
∣∣ζȳ(du|t′))dt′ ≤ BQ(t− s).

□
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Proof of Theorem 1. Let us estimate the squared Kantorovich distance
W 2

2 (µ(t),m(t)) for t ∈ [sk, sk+1], k = 0, . . . , n−1. Let xk(·, y, z̄) be a solution
on [sk, sk+1] of the di�erential equation

d

dt
x(t) =

∫
U
f(t, x(t),m(t), u)ζz̄(du|t), x(sk) = y.

Notice that m(t) = xk(t, ·, ·)♯πk, while by construction I(µ(t)) ≜
X(t)♯Psk,sk+1

. Recall that Psk,sk+1
is a probability that realizes a �ow

of distributions µ(·) on [sk, sk+1], whereas Esk,sk+1
is the corresponding

expectation. Thus, we have that

W 2
2 (I(µ(t)),m(t))

=

∫
K×S

Esk,sk+1

(
∥X(t)− xk(t, y, z̄)∥2|X(sk) = z̄

)
πk(d(y, z̄)).

(11)

Now, let us evaluate the quantity Esk,sk+1
(∥X(t)− xk(t, y, z̄)∥2|X(sk) = z̄).

First, notice that

∥X(t)− xk(t, y, z̄)∥2 ≤ ∥X(sk)− xk(sk, y, z̄)∥2

+2∥X(t)−X(sk)∥2 + 2∥xk(t, y, z̄)− xk(sk, y, z̄)∥2

+ 2⟨X(t)−X(sk), X(sk)− xk(sk, y, z̄)⟩
− 2⟨xk(t, y, z̄)− xk(sk, y, z̄), X(sk)− xk(sk, y, z̄)⟩.

Thus,

Esk,sk+1

(
∥X(t)− xk(t, y, z̄)∥2|X(sk) = z̄

)
≤ ∥y − z̄∥2

+2Esk,sk+1

(
∥X(t)− z̄∥2|X(sk) = z̄

)
+ 2∥xk(t, y, z̄)− y∥2

+
〈
Esk,sk+1

(X(t)− z̄|X(sk) = z̄), z̄ − y
〉

−⟨xk(t, y, z̄)− y, z̄ − y⟩.

(12)

Due to Lemma 1, and the boundness of f , we have that

2Esk,sk+1

(
∥X(t)− z̄∥2|X(sk) = z̄

)
+ 2∥xk(t, y, z̄)− y∥2

≤ 2ε2(t− s) + 2C ′
1(t− s)3/2 +R2(t− s)2.

(13)

Further,

Esk,sk+1
(X(t)− z̄|X(sk) = z̄)

= Esk,sk+1

(∫ t

sk

∑
ȳ∈S

QX(t′),y(y −X(t′))|X(s) = z̄

)
dt′.
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This and condition (A3) yield that∥∥∥∥∥Esk,sk+1
(X(t)− z̄|X(sk) = z̄)

−
∫ t

sk

Esk,sk+1

(∫
U
f(t′, X(t′),I(µ(t)), u)ζX(t′)(du|t′)|X(s) = z̄

)
dt′

∥∥∥∥∥
≤ ε(t− sk).

Recall that

Esk,sk+1

(∫
U
f(t′, X(t′),I(µ(t)), u)ζX(t′)(du|t′)|X(s) = z̄

)
dt′

=
∑
x̄∈S

∫
U
f(t′, x̄,I(µ(t)), u)ζX(t′)(du|t′)ν∗,x̄.

Thus, due to Lemma 2, we have that∥∥∥∥∥Esk,sk+1
(X(t)− z̄|X(sk) = z̄)−

∫ t

sk

∫
U
f(t′, z̄,I(µ(t)), u)ζz̄(du|t′)dt′

∥∥∥∥∥
≤ε(t− sk) +RBQ(t− sk)

2.

This and de�nition of the motion x(·, y, z̄) imply that∣∣∣∣∣〈Esk,sk+1
(X(t)− z̄|X(sk) = z̄), z̄ − y

〉
− ⟨xk(t, y, z̄)− y, z̄ − y⟩

∣∣∣∣∣
≤
∫ t

sk

∫
U
∥f(t′, z̄,I(µ(t)), u)

− f(t′, x(t′, y, z̄),m(t), u)∥ζz̄(du|t′)dt′ · ∥y − z̄∥
+ (ε(t− sk) +RBQ(t− sk)

2)∥y − z̄∥.

Using the Lipschitz continuity of the function f , we obtain the following:∣∣∣∣∣〈Esk,sk+1
(X(t)− z̄|X(sk) = z̄),z̄ − y

〉
− ⟨xk(t, y, z̄)− y, z̄ − y⟩

∣∣∣∣∣
≤CfR(t− sk)

2∥y − z̄∥

+ Cf

∫ t

sk

W2(I(µ(t′)),m(t′))∥y − z̄∥

+ (ε(t− sk) +RBQ(t− sk)
2)∥y − z̄∥.



APPROXIMATION OF MEAN FIELD TYPE CONTROL SYSTEMS 119

Plugging this estimate into (12) and taking into account (13), we derive the
estimate:

Esk,sk+1

(
∥X(t)− xk(t, y, z̄)∥2|X(sk) = z̄

)
≤ ∥y − z̄∥2

+ 2ε2(t− sk) + 2C ′
1(t− s)3/2 +R(t− sk)

2

+ CfR(t− sk)
2 + CfR(t− sk)∥y − z̄∥2

+ Cf (t− sk)W
2
2 (I(µ(sk)),m(sk)) + 3Cf (t− sk)∥y − z̄∥2

+ Cfε
2(t− sk)

2 + C ′
1Cf (t− sk)

5/2 +RCf (t− sk)
2

+ (ε+RBQ(t− sk))
2(t− sk) + (t− sk)∥y − z̄∥2

≤ ∥y−z̄∥2 + C ′
2(t− sk)∥y − z̄∥2

+ C ′
3(t− tk)W

2
2 (I(µ(sk)),m(sk))

+ 3ε(t− sk) + 2C ′
1(t− sk)

3/2 + C ′
4(t− sk)

2

+ C ′
5εBQ(t− sk)

2 +R2B2
Q(t− sk)

3.

Due to (11), we arrive at the inequality

W 2
2 (I(µ(t)),m(t)) ≤ (1 + C ′

6(t− sk))W
2
2 (I(µ(sk)),m(sk))

+ 3ε(t− sk) + 2C ′
1(t− sk)

3/2 + C ′
4(t− sk)

2

+ C ′
5εBQ(t− sk)

2 +R2B2
Q(t− sk)

3.

(14)

Applying this inequality sequentially, we deduce the statement of the
theorem. □

6 Model predictive control for Markov chains

In this section, given an initial distribution for the deterministic mean �eld
type control system m0 ∈ P2(K), a distribution of controls α ∈ U0,T such
that α ∈ A0,T [m0], and an initial system for mean �eld Markov chain µ0 ∈
Σ2, we construct a feedback strategy ζS such that the corresponding motion
of the Markov chain starting at µ0 approximates the motion m(·, 0, α).
Within this section, we denote

m(·) ≜ m(·, 0, α).
Further, for (y, ξ) ∈ Rd × U0,T and s ∈ [0, T ], we put

Ts(y, ξ) ≜ x(s, 0, y,m(·), ξ).
Notice that, if (y′, ξ′) = Ts(y, ξ), then

x(·, 0, y,m(·), ξ) = x(·, s, y′,m(·), ξ′).
Informally, the operator Ts transfers the initial condition and the control
from t = 0 to the time s.

Below, if ζS , ζ
′
S are feedback controls for the Markov chain on [s, r] and

[r, θ] respectively, then we denote by ζS ⋄r ζ ′S the feedback control such that
ζS ⋄r ζ ′S = (ζx̄ ⋄r ζ ′x̄)x̄∈S .
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Finally, let ∆ = {si}ni=0 be a partition of [0, T ].
The construction is stepwise.

(M1) Let π0 be an optimal plan between m0 and I(µ0) and let π0(·|x̄)
be its disintegration w.r.t. I(µ0). We de�ne a probability ζS,0 =

(ζx̄,0)x̄ ∈ US
s0,s1 by the rule: for ϕ ∈ Cb([s0, s1]× U)∫

[s0,s1]×U
ϕ(t, u)ζx̄,0(d(t, u))

≜
∫
K

∫
Us0,s1

∫
[s0,s1]×U

ϕ(t, u)ξ(d(t, u))α0(ξ|y)π0(dy|x̄).

Hereinafter, α0 is a restriction of α on [s0, s1].
(M2) Assume now that we already constructed controls ζS,0, . . . , ζS,k−1

and put, for t ∈ [0, sk],

µ(t) ≜ µ(t, 0, µ0, ζS,0 ⋄s1 . . . ⋄sk−1
ζS,k−1).

To extend the control to the next time step, we �rst set αk to be a
restriction of the distribution of controls Tsk♯α to the time interval
[sk, sk+1]. Further, let πk be an optimal plan between I(µ(sk)) and
m(sk). A feedback control ζS,k = (ζx̄,k)x̄∈S ∈ US

[sk,sk+1]
is de�ned by

the rule: if ϕ ∈ C([sk, sk+1]× U), then∫
[s0,s1]×U

ϕ(t, u)ζx̄,k(d(t, u))

≜
∫
K

∫
Usk,sk+1

∫
[sk,sk+1]×U

ϕ(t, u)ξ(d(t, u))αk(dξ|y)πk(dy|x̄).

Theorem 2. Let conditions (A1)�(A4) hold true and let µ(·) ≜
µ(·, 0, µ0, ζS,0 ⋄s1 . . . ⋄sn−1 ζS,n−1), then

Wp(m(t),I(µ(t))) ≤ C0W2(I(µ0),m0) + C1ε+ C2d
1/2(∆)

+ C3d(∆) + C4εBQd(∆) + C5BQd
2(∆).

Here C0, . . . , C5 are the same constant as in Theorem 1.

Proof. The proof mimics the proof of Theorem 1. We consider a time interval
[sk, sk+1] and choose Psk,sk+1

to be a realization of the �ow µ(·) on [sk, sk+1].
If t ∈ [sk−1, sk], then

W 2
2 (m(t),I(µ(t)))

≤
∫
K×S

∫
Usk,sk+1

Esk,sk+1
(∥X(t)− xk(t, y, ξ)∥2|X(sk) = z̄)

πk(d(y, z̄)).

(15)

Here, as above, we denote

xk(t, y, ξ) ≜ x(t, sk, y,m(·), ξ).
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Further, we have that

Esk,sk+1
(∥X(t)− xk(t, y, ξ)∥2|X(sk) = z̄) ≤ ∥z̄ − y∥2

+ 2Esk,sk+1
(∥X(t)−X(sk)∥2|X(sk) = z̄)

+ 2∥xk(t, y, ξ)− y∥2

+ 2Esk,sk+1
(⟨X(t)−X(sk), z̄ − y⟩|X(sk) = z̄)

− 2⟨xk(t, y, ξ)− y, z̄ − y⟩.

Using Lemma 1, we conclude that

2Esk,sk+1

(
∥X(t)−X(sk)∥2|X(tk) = z̄

)
+ 2∥xk(t, y, z̄)− y∥2

≤ 2ε2(t− s) + 2C ′
1(t− s)3/2 +R2(t− s)2.

(16)

Further, as in the proof of Theorem 1, we have that∥∥∥∥∥Esk,sk+1
(X(t)− z̄|X(sk) = z̄)−

∫ t

sk

∫
U
f(t′, z̄,I(µ(t′)), u)ζz̄,k(du|t′)dt′

∥∥∥∥∥
≤ ε(t− sk) +RBQ(t− sk)

2.

Simultaneously,

xk(t, y, ξ)− y =

∫ t

sk

∫
U
f(t′, xk(t

′, y, ξ),m(t′), u)ξ(du|t′)dt′

Plugging this into (15) and taking into account the de�nition of ζS,k, we
conclude that

W 2
2 (m(t),I(µ(t))) ≤ W 2

2 (m(sk),I(µ(sk)))

+ 2ε2(t− s) + 2C ′
1(t− s)3/2 +R(t− s)2 + ε(t− sk) +BQ(t− sk)

2

+

∫
K×S

∫
Usk,sk+1

∥∥∥∥∥
∫
U
f(t′, z̄,I(µ(t′)), u)ξ(du|t′)

−
∫
U
f(t′, xk(t

′, y, ξ),m(t′), u)ξ(du|t′)

∣∣∣∣∣ · ∥z̄ − y∥.

Estimating the last term as in the proof of Theorem 1, we obtain the
inequality:

W 2
2 (I(µ(t)),m(t)) ≤ (1 + C ′

6(t− sk))W
2
2 (I(µ(sk)),m(sk))

+ 3ε(t− sk) + 2C ′
1(t− sk)

3/2 + C ′
4(t− sk)

2

+ C ′
5εBQ(t− sk)

2 +R2B2
Q(t− sk)

3.

(17)

Here the constants are the same as in (14). Applying (17) sequentially, we
arrive at the statement of the theorem. □
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7 Hausdor� distance between bundles of �ows

In this short section, we consider the bundles of �ows of probabilities
generated by the original �rst order mean �eld type control system and the
mean �eld Markov chain. To de�ne them, let

X (m0) ≜
{
m(·, 0, α) : α ∈ A0,T [m0]

}
,

XQ(µ0) ≜
{
µ(·, 0, µ, ζS) : ζS ∈ US

0,T

}
.

Notice that X (m0) ⊂ C([0, T ];P2(Rd)), while XQ ⊂ C([0, T ]; Σ2)

If m(·) ∈ C([0, T ];P2(Rd)), µ ∈ C([0, T ]; Σ2), we denote

d(m(·), µ(·)) ≜ sup
t∈[0,T ]

W2(m(t),I(µ(t))).

If Υ1 ⊂ C([0, T ];P2(Rd)), Υ2 ⊂ C([0, T ],Σ2) are closed sets, then we
introduce the Hausdor� distance in the standard way:

H(Υ1,Υ2)

≜ max

{
sup

m(·)∈Υ1

inf
µ(·)∈Υ2

d(m(·), µ(·)), sup
µ(·)∈Υ2

inf
m(·)∈Υ1

d(m(·), µ(·))

}
.

The main result of this short section is the following.

Proposition 4. Assume that the approximation conditions (A1)�(A4) are
in force. Then,

H(X (m0),XQ(µ0)) ≤ C0W2(I(µ0),m0) + C1ε,

where C0 and C1 are constants dependent only on f and T .

Proof. From Theorem 2, it follows that, given m(·) ∈ X (m0) and arbitrary
δ > 0, one can �nd a partition of [0, T ] ∆ = {si}ni=0 and controls
ζS , . . . , ζS,n−1 such that

d(m(·), µ(·)) ≤ C0W2((µ0),m0) + C1ε+ δ,

where µ(·) = µ(·, 0, µ0, ζS,0 ⋄s1 . . . ⋄sn−1 ζ§,n−1). Passing to the limit while
δ → 0, we conclude that

sup
m(·)∈X (m0)

inf
µ(·)∈XQ(µ0)

d(m(·), µ(·)) ≤ C0W2(I(µ0),m0) + C1ε.

The inequality

sup
µ(·)∈XQ(µ0)

inf
m(·)∈X (m0)

d(m(·), µ(·)) ≤ C0W2(I(µ0),m0) + C1ε

is proved in the similar way using Theorem 1. □
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