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Abstract: Concept controlling model for arresting epidemics (further
on - the model) of emerging, new and re-emerging infections has
been developed. Epidemic force parameters are de�ned: high values
of contact rate of infection in acute (R1) and chronic (R2) forms of
disease, high frequency of chronization γ2 with pathogen excretion,
high rate of loss of natural immunity k1, high in�ow of susceptible
population µ. Control targets have been identi�ed: infected persons
(detection, isolation and treatment δ), transmission mechanism
(regime-restrictive measures, sanitary and hygienic procedures r),
the decrease in susceptibility (vaccination, pre- and post-exposure
prophylaxis λ). Critical interdependencies between epidemic force
parameters and control coe�cients were studied. We obtained threshold
conditions for "zero infection"asymptotic stability. In order to achieve
the target result more quickly, the use of "supercritical"control
levels is proposed, with the model determining the time to achieve
the result. The need to a�ect both acute and chronic forms of
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infection has been proven. The model allows to solve direct and
inverse problems.

Keywords: control of communicable diseases, threshold, intervention
campaign, parameters of the epidemic process, mathematical model.

1 Introduction

1.1. Principles of the mathematical theory of epidemics. The mathematical
theory of the spread of infectious diseases is the progressively developing
branch of knowledge [6, 29]. It allows us to understand the mechanism of
development of the epidemic process [32]. Attention to the mathematical
theory of the spread of infectious diseases has increased in connection with
the COVID-19 pandemic [21, 28, 38].

The e�ectiveness of both the simplest and most complex models has been
proven. A classic example is the Kermack and McKendrick model [48].

Currently, there is no single model of epidemics and there are only few
works to prove the comparability of some models to others. In addition,
the question of the applicability areas of each of the models is not well
understood: for example, which model is relevant to describe dynamics near
the equilibrium, and which model describes outbreaks or drops in incidence
far from the stationary state; how the shapes of epidemic curves di�er in
di�erent models. In most cases, models have a large, in some cases redundant,
number of parameters. The types of outbreak models are presented in Table 1.

Understanding that a general (integrative) model of epidemics in the
future will certainly be created, the authors of the present work turned to a
di�erential model to highlight general (mathematical) principles important
in epidemic (medical) terms. As long as there is no integrative mathematical
theory, agent models remain more imitative. Though in di�erential equations
with delay, analytical study is di�cult, the system of di�erential equations
per se is much closer to mathematical theory.

1.2. De�nitions. The force of epidemia - a set of parameters of the infectious
and epidemic process, that determines a high level of stationary epidemic
state, rapid movement towards it and struggling �uctuations.

The counter force - a set of epidemic management (control) parameters
that are adequate to the force of epidemia that make the stationary epidemic
state unstable and ensure a decrease in incidence until disease is eliminated
("epidemic arrest").

The intervention campaign - application of epidemic management (control)
parameters in practice, characterized by preliminary computational mathematics,
preparation and use of necessary and su�cient powers and means to achieve
the goal of arresting epidemia.
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Table 1. Types of epidemic models.

Model Use and
features of the
model

Use and features of the model

1 Di�erential
Model

This model contains di�erential equations for the classes of susceptible, exposed
(individuals in the latent phase), infected, quarantined, immune, treated, vaccinated,
and deceased. This type also includes structured models that describe epidemics in
each city (territory) using separate systems of di�erential equations and contain a
matrix established of connections between cities (territories) [16, 7, 27]. Parameter
pro�les are exponential in time.

2 Integral Model This is the most accurate model computationally, as the infectiousness pro�le is
documented by days of illness. Special pro�les are used to show the loss of immunity
and timely case detection with subsequent neutralization of infectiousness.
The number of new cases of diseases in the Integral Model is determined by the
formula:

A(t) = R

(∫ T

0
A(t− τ)e−µτρ(τ)dτ

)
X(t)

A(t), disease incidence; ρ(τ), infectiousness pro�le (standardized),
∫ T
0 ρ(τ)dτ = 1; µ,

in�ow/out�ow of susceptible individuals X(t); R, the contact rate.
The Integral Model is sometimes equivalent to the multiclass Di�erential Model or
the Model of Delay Di�erential Equations [97, 9, 5].

3 Territorial
Agent-Based
Model

The Agent-Based Model properly describes the slow changes of transmission activity
and incidence. There is no contact rate (R) in the Territorial Agent-Based Model.
Instead, there is the likelihood of encounters of infected and susceptible individuals
and the likelihood of being infected during a single exposure. It is matched to the
area, infrastructure, and social categories and age groups of the population. Both the
Territorial Agent-Based Model and the Integral Model enable distributed pro�les (by
day). This Model is more precise in describing some types of dynamics, speci�cally
sites of chain-binomial infection transmission [39].

4 Randomized
Model

This is a variant in Models 1-3, where at each step the contact rate R, the in�ow of
susceptible µ, and the number of newly infected are shown as randomly distributed.
This Model provides expected means as well as upper and lower con�dence limits [24,
36].

5 Models based
on the Mean
Field Game
Theory

This Model is based on a coupled pair of partial di�erential equations: the Fokker-
Planck (Kolmogorov) Equation that evolves forward in time and determines the
distribution of interacting subjects over the state space; and the Hamilton-Jacobi-
Bellman Equation that evolves back in time and de�nes if the chosen strategy is
optimal [98, 20, 1].

2 Purpose, requirements and structure of the study.

2.1. Purpose. The purpose of this work is to create the concept controlling
model to assess the force of the epidemia and to determine the counter force
value to arrest the epidemia.

2.2. Requirements. Primary demand: counter force should be adequate
to the applied force [18].

The model should describe at least two-member parasitic systems consisting
of two interacting populations - the parasite and the host (models with
vectors and microbe conservation in the environment are by de�nition more
complex and should be considered separately).

The model represents a Procrustean bed for saturating the system with the
set of parameters, in "simple"cases the model degenerates. This is necessary
to include all the parameters that determine the strength of the epidemic
process and the strength of the response.
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The model should assimilate the occurrence of both acute and chronic,
infectious conditions, taking into account possible fading of immune response.

The model must have the necessary and su�cient complexity to reproduce
the epidemic process of acute and chronic infections, as well as the combination
of acute infection and carriage in one infection. Since some dangerous infections
(for example, HIV-infection) have high mortality rates (in certain groups),
the model must work with a changing population size. Variables must be
speci�ed in absolute numbers.

The model should have the complete set of the control targets. Management
should be implemented in relation to the sources of the causative agent of the
infection, the mechanism of its transmission and the susceptible organism.
The model should provide an assessment of combined infectious disease
control measures.

2.3. Structure. - Solving the direct problem of building the concept controlling
model ("epidemic arrest").

- Study of stationary solutions of the model and their stability (instability)
in the aspect of control.

- Solving the inverse problem to determine the parameters of the epidemic
process based on comparison of model data with real ones.

- Pre calculation and implementation of intervention campaigns.

3 Model construction

3.1. Selection and characterization of infection and epidemic process

parameters. Contact rate of infection R is the main parameter of the
epidemic process [30]. It shows how many susceptible are infected from a
single infected subject in case of complete susceptibility of the population.
The more R is, the greater the rate of increase in incidence and the overall
diseased number in the epidemic. Despite the pronounced selection pressure,
which contributes to the reproduction of more virulent parasites, the R
parameter does not grow inde�nitely. To explain this pattern, the concept
of compromise was drawn out [12], however causation of this phenomenon is
not yet well understood.

The contact rate of infection is a complex (multi-faceted) parameter that
re�ects biological (virulence of the pathogen), environmental (crowding of the
population, wastewater level, sewerage defects) and social factors (regime-
restrictive measures, including lockdown).

There are estimates of the contact rateR depending on nosology, signi�cant
variability of R within nosology is shown [6, 10].

The contact rate R should be considered variate depending on territories,
population groups, time periods (depending on sanitary conditions).

The infection intensity parameter α characterizes the duration of the
infectious process and is expressed as the inverse time of its duration (1/day,
week, month, etc.) [42]. It is during this time the number of successful events,
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designated by parameter R, will take place. Next, the patient can recover, die
or become chronically infected. Recovery intensity β represents the intensity
of transition to the class of resistant R(t). In infections without mortality
and chronization, α = β. In general, α = β+ϵ+γ2, where β � is the recovery
rate, ϵ � is the disease dependent death rate, γ2 � is the chronization rate.
This approach is very important, for example, in chronic viral hepatitis C,
where there is a recovery, chronization and signi�cant mortality associated
with the e�ect on humans of the virus [87].

The natural movement of the population (in�ow and out�ow) is indicated
by the parameter µ. It characterizes the born and arrived µ1, as well as
the dead and departed µ2. For most problems of mathematical modeling
of epidemics µ1 = µ2 = µ, however, the model provides for the ability to
analyze growing, decreasing populations and populations with substitution
of removed. The absolute number of births and arrivals is µ1N , where N is
the total population in which the epidemic process develops.

Important parameters are the coe�cient of loss of natural immunity k1
and arti�cial (vaccine) immunity k2. In some infections, the loss of natural
immunity is absent k1 = 0, in others (COVID-19) there may be a signi�cant
loss of immunity [23]. A high value loss of natural immunity coe�cient causes
a greater value of incidence and prevalence.

Estimation of parameters, taken from scienti�c papers, are given in Appendix
A.

3.2. Selection and characterization of control parameters. In physical
and technical systems, there is a clear understanding of control, and e�ective
control always implies achieving a target and right trajectory, obtaining a
result. In epidemiological systems, di�culties arise. Globally, the management
of the epidemic process is a system of directed impacts, the result of which
is a systematic reduction in the incidence of the population, up to the
interruption of the epidemic process and its elimination. The main control
parameter is the intensity of vaccination (and pre-exposure prophylaxis) of
susceptible λ1 and those who have been ill λ2. The λ2 parameter is used for
infections with loss of immunity. Control through isolation, detection and
treatment is divided into two parts: δ1 - for persons with acute infection,
δ2 - for carriers. The identi�cation and treatment of carriers is of great
importance, since without this the elimination of epidemics is impossible.
The parameter δ3 characterizes the time of stay of infectious patients in a
state of isolation (quarantine). The e�ect on the transmission mechanism is
determined by the control factor r, which reduces the probability of e�ective
contact r .R. Measures of in�uence on the transmission mechanism include
all ways to reduce e�ective contacts, that is, lockdown, intergroup isolation,
safe behavior, sanitary measures. Thanks to them, it is possible to achieve
containment in the range of r ∈ [0.2; 0.6].

The epidemic process is managed through an intervention campaign mechanism.
At the preliminary stage, it includes a calculation of the necessary levels of
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control, time to start, duration, time to result, monitoring application and
reaching goal.

Note 1. Identi�cation of infected is carried out using clinical, epidemiological
and laboratory methods. Clinical methods involve the identi�cation of vivid
symptoms of the disease (fever, intoxication, loss of smell and taste). Epidemiological
methods - narrowing the scope of search among individuals in direct contact
or potential contact (risk group). Laboratory methods include testing for
DNA/RNA and/or antigen of the causative agent of the infection. In order
to more identify the sources of pathogens of infection, including in the early
stages of the disease, tracing and testing of contacts is strongly recommended
as well as repeated (screening, saturation) testing, including using non-invasive
tests.

Note 2. Treatment of identi�ed cases leads to a decrease in the concentration
of the pathogen in the human body, a decrease in infectious activity and a
decrease in the spread of the disease. In some infections, isolation of the
identi�ed patient at home or in a hospital is possible. In this case, the person
goes to the Q (t) class - quarantined.

Note 3. Prevention of infection of susceptible individuals includes vaccination
and preventive treatment (before and after contact). Vaccination involves
revaccination, which ensures the preservation of immunity.

Note 4. The impact on the mechanism of transmission of infection includes
sanitary measures in relation to the human habitat, as well as regime-restrictive
measures (for example, the introduction of a self-isolation regime). Susceptible
people are not allowed into the infected area.

3.3. Di�erential equations. The system of di�erential equations � concept
controlling model of arresting epidemics - comprises 7 independent
di�erential equations, depicting 7 major variables:

S(t)′ = − rS(t)(R1α1A(t) +R2α2C(t))

S(t) + E(t) +A(t) + C(t) +R(t) + V (t)
+

+ µ1N − µ2S(t) + k1R(t) + k2V (t)− λ1S(t)

E(t)′ =
rS(t)(R1α1A(t) +R2α2C(t))

S(t) + E(t) +A(t) + C(t) +R(t) + V (t)
− (γ1 + µ2)E(t)

A(t)′ = γ1E(t)− (β1 + γ2 + ϵ1 + δ1 + µ2)A(t)

C(t)′ = γ2A(t)− (β2 + ϵ2 + δ2 + µ2)C(t)

R(t)′ = β1A(t) + β2C(t) + δ3Q(t)− (λ2 + k1 + µ2)R(t)

V (t)′ = λ1S(t) + λ2R(t)− (k2 + µ2)V (t)

Q(t)′ = δ1A(t) + δ2C(t)− (δ3 + µ2)Q(t)

(1)

The �ow chart of the model is given on Figure 1. One class is hidden
and includes people who left the population and died due to infection and
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natural causes (class DW - Dead and Withdrawn). Before treatment patients
are identi�ed and isolated, forming class Q (t) - quarantined. The Q (t) class
and the DW class are not presented for interaction as contacts. To calculate
the proportion of susceptible, the absolute number of susceptible S (t) is
divided by the sum of

S (t) + E (t) + A (t) + C (t) + R (t) + V (t)
to show the probability of contacts of infected and susceptible. Thus, the

model represents mass action well in case that the total population changes,
either grows, remains stable, or decreases.

Thus, although the model is based on the equations of Kermack and
McKendrick, it di�ers in the set of classes acutely and chronically infected,
in the set of control parameters and classes created by this control, in the
selection of interacting components in calculating the action of masses, in
accounting for vaccination of susceptible, ill and time of loss of natural and
arti�cial immunity, the possibility of application in populations of changing
numbers. According to the combination and set of properties, the model is
independent, adapted for medical (epidemiological) purposes of describing
the main human infections and various ways to control them, including
integrated management, being at the intersection of mathematics and medicine.

Model is closest to SEIR-HCD model [47].
Variables: S(t) - number of susceptible, E(t) - number of exposed but not

yet infected, A(t) - number of acutely infected, C(t) - number of chronically
infected, R(t) - number of resistant, V (t) - number of those who have post-
vaccination immunity, Q(t) - number of isolated for treatment (quarantined).

Parameters of the infectious process: α(α1, α2) - intensity of infection,
β(β1, β2) - intensity of recovery, k1 - intensity of natural immunity loss,
ϵ(ϵ1, ϵ2) - infectious disease-related mortality rate.

Parameters of the epidemic process: R - contact rate of infection, µ2 -
intensity of population out�ow, µ1N - intensity of population in�ow.

Control coe�cients (control intensity coe�cients): λ1 - intensity of vaccination
of susceptible and pre-exposure prophylaxis, λ2 - intensity of vaccination of
recovered (they may be prone to immunity loss and therefore need vaccination),
δ1 - intensity of detection, isolation and treatment of acutely infected, δ2
- intensity of detection, isolation and treatment of chronically infected, r
- impact on the contact rate of infection with the addition of a control
component through the implementation of safety measures and sanitary and
hygienic measures.

Parameter k2 - intensity of vaccination immunity loss - holds an intermediate
position between the parameters of the epidemic force and the parameters
of counteraction.

Variables, parameters of infection and epidemic process, control parameters
are given in Tables 2 and 3.

To model seasonality to contact rates R1 and R2 the seasonal forcing
(1+ +ι sin

(
2πt+θ
INT

)
), where ι � the intensity of seasonal �uctuations, θ �
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Table 2. Variables and parameters of concept controlling
model of the epidemic process (beginning)

Name Description
Variables
S(t) susceptible
E(t) exposed - persons in the latent period
A(t) acute infection
C(t) chronic infection (carriers)
R(t) immune - resistant
V (t) immune - vaccinated
Q(t) isolated (quarantined)
Parameters of epidemic force
α1 intensity of infection of acutely infected
α2 intensity of infection of chronically infected
β1 intensity of recovery of acutely infected
β2 intensity of recovery of chronically infected
γ1 intensity of transition from latent period to acute

infection
γ2 intensity of transition from acute to chronic infection
k1 intensity of natural immunity loss
k2 intensity of vaccine immunity loss
ϵ1 mortality from acute infection
ϵ2 mortality from chronic infection
R1 contact rate for acutely infected
R2 contact rate for chronically infected
µ2 general population mortality rate, population out�ow
µ1N birth rate, population in�ow

the duration of the phase shift indicating the seasonal maximum, INT �
dimension (observation interval: 365.25 days, 12 months, 52.18 weeks).

The comparison of model data with real data is carried out according to
the number of new cases given by the formula{

rS(t)(R1α1A(t) +R2α2C(t))

S(t) + E(t) +A(t) + C(t) +R(t) + V (t)
(2)

The main control parameter is vaccination of susceptible S(t) with intensity
λ1. Both vaccination and revaccination are necessary for the formation of
lifelong immunity. The model for k1 ̸= 0 assumes the need to vaccinate
recovered patients, for them tot to loose immunity. The vaccination intensity
of recovered patients is indicated as λ2. In some cases, people are vaccinated
without clinical and serological data on the past disease. In this case, λ1 =
λ2 = λ.

The model introduced the assumption that isolated (quarantined) persons
recover from the disease and return with immunity. If the general intensity
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Table 3. Variables and parameters of concept controlling
model of the epidemic process (continuation)

Name Description
Parameters of counter force
λ1 intensity of vaccination of susceptible and pre-

exposure prophylaxis
λ2 intensity of vaccination of recovered
δ1 intensity of detection, isolation and treatment of

acutely infected
δ2 intensity of detection, isolation and treatment of

chronically infected
δ3 rate of return from isolation with immunity
r added component of contact rate control through

implementation of safe behavior measures and sanitary
measures

Fig. 1. Flow chart of the model. Variables in blocks,
parameters of epidemic and infection are highlighted in black,
control parameters are highlighted in red.

of detection and isolation of sources of the causative agent of infection is
applied (without di�erentiation into acute and chronically infected), then
δ1 = δ2 = δ.
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Model degradation procedures are discussed in paragraph 3.4 and Appendix
B.

The model operates in absolutes.

3.4. The system properties. Next, we will assume that µ1 = µ2 =
µ. Trivial solution of di�erential equation system (1) - the state of "zero
incidence":



S =
(k2 + µ)N

k2 + λ1 + µ

E = 0

A = 0

C = 0

R = 0

V =
Nλ1

k2 + λ1 + µ

Q = 0

(3)

The following theorem gives the criterion of the trivial solution (3) stability.

Theorem. Trivial solution (3) of the system (1) is asymptotically stable
in the �rst approximation if and only if

r <
(µ+ γ1)(µ+ β1 + ϵ1 + δ1 + γ2)(µ+ β2 + ϵ2 + δ2)(µ+ k2 + λ1)

(R1α1(µ+ β2 + ϵ2 + δ2) +R2α2γ2)(µ+ k2)γ1
(4)

Proof. Rearrange the equations in the system (1) as follows



S(t)′ = − rS(t)(R1α1A(t) +R2α2C(t))

S(t) + E(t) +A(t) + C(t) +R(t) + V (t)
+

+ µ1N − µ2S(t) + k1R(t) + k2V (t)− λ1S(t)

V (t)′ = λ1S(t) + λ2R(t)− (k2 + µ2)V (t)

R(t)′ = β1A(t) + β2C(t) + δ3Q(t)− (λ2 + k1 + µ2)R(t)

A(t)′ = γ1E(t)− (β1 + γ2 + ϵ1 + δ1 + µ2)A(t)

E(t)′ =
rS(t)(R1α1A(t) +R2α2C(t))

S(t) + E(t) +A(t) + C(t) +R(t) + V (t)
− (γ1 + µ2)E(t)

C(t)′ = γ2A(t)− (β2 + ϵ2 + δ2 + µ2)C(t)

Q(t)′ = δ1A(t) + δ2C(t)− (δ3 + µ2)Q(t)

(5)
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The Jacobian of the trivial solution (3) of the system (5) is

Jactriv =


−µ−λ1 k2 k1 −R1α1(k2+µ)r

k2+λ1+µ
0 −R2α2(k2+µ)r

k2+λ1+µ
0

λ1 −k2−µ λ2 0 0 0 0
0 0 −k1−µ−λ2 β1 0 β2 δ3
0 0 0 β1−γ2−ϵ1−δ1−µ γ1 0 0

0 0 0 −R1α1(k2+µ)r
k2+λ1+µ

−γ1−µ
R2α2(k2+µ)r

k2+λ1+µ
0

0 0 0 γ2 0 −β2−ϵ2−δ2−µ 0
0 0 0 δ1 0 δ2 −δ3−µ


(6)

The characteristic polynomial p(t) of the matrix Jactriv can be represented
as

p(t) = (t+ µ)(t+ µ+ λ1 + k2)(t+ µ+ λ2 + k1)(t+ µ+ δ3)q(t) (7)

where q(t) - characteristic polynomial of the matrix

M =

−µ− β1 − ϵ1 − δ1 − γ2 γ1 0

R1α1r
µ+k2

µ+k2+λ1
−µ− γ1 R2α2r

µ+k2
µ+k2+λ1

γ2 0 −µ− β2 − ϵ2 − δ2

 (8)

Since all the roots of the multiplier

(t+ µ)(t+ µ+ λ1 + k2)(t+ µ+ λ2 + k1)(t+ µ+ δ3) (9)

are negative, then the stability of the polynomial p(t) is determined by the
stability of the polynomial q(t).
Let's enter the designations:

p1 = β1 + ϵ1 + δ1

p2 = β2 + ϵ2 + δ2

q1 = R1α1
µ+ k2

µ+ k2 + λ1

q2 = R2α2
µ+ k2

µ+ k2 + λ1

(10)

Calculating the coe�cients of the polynomial q(t) = t3 + a1t
2 + a2t+ a3, we

get

a1 = γ1 + γ2 + p1 + p2 + 3µ

a2 = (2µ+ p1 + p2 + γ2 − rq1)γ1 + 3µ2 + 2(p1 + p2 + γ2)µ+ p2(p1 + γ2)

a3 = µ3 + (p1 + p2 + γ1 + γ2)µ
2 + ((p1 + p2 − rq1 + γ2)γ1 + p2(p1 + γ2))µ+

+ ((p1 − rq1 + γ2)p2 − γ2rq2)γ1
(11)
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From the Routh-Hurwitz criterion, we obtain that the trivial stationary
solution is asymptotically stable in the �rst approximation if and only if

a1 > 0

a2 > 0

a3 > 0

a1a2 − a3 > 0

(12)

where a1, a2, a3 are de�ned in formulas (10, 11). Note that the inequality
a1 > 0 is always valid. Let's consider the inequality a2 > 0. Solving this with
regard to the parameter r we get that

r < r2 =
(γ2 + 2µ+ p1 + p2)γ1 + 3µ2 + 2(p1 + p2 + γ2)µ+ p2(p1 + γ2)

q1γ1
(13)

Next, consider the inequality a3 > 0. Solving it with regard to the parameter
r we get that

r < r3 =
(µ+ γ1)(µ+ p2)(µ+ p1 + γ2)

γ1(q2γ2 + µq1 + q1p2)
(14)

We calculate the di�erence r2 − r3. We get that

r2 − r3 = (q1γ1(q2γ2 + µq1 + q1p2))
−1(2q1µ

3 + ((p1 + 4p2γ1 + γ2)q1 + 3q2γ2)µ
2+

+ 2(q2γ2 + q1p2)(p1 + p2 + γ1 + γ2)µ+ p22(p1 + γ1 + γ2)q1+

γ2((p2 + γ1)γ2 + p2(p1 + γ1) + γ1p1)q2) > 0
(15)

From (15) we get that r3 < r2. Therefore, if inequality (14) is valid, then the
inequality (13) is also valid.

Next, consider the function ϕ(r) = a1a2 − a3. Note, that function ϕ(r) is
linear and can be given by formula

ϕ(r) = a1a2 − a3 = −((2µ+ p1 + γ1 + γ2)q1 − q2γ2)γ1r+

+ (2µ+ p2 + γ1)(2µ+ p1 + γ1 + γ2)(2µ+ γ2 + p1 + p2)
(16)

Note that

ϕ(0) = (2µ+ p2 + γ1)(2µ+ p1 + γ1 + γ2)(2µ+ γ2 + p1 + p2) > 0 (17)

and

ϕ(r3) =
γ1 + γ2 + 3µ+ p1 + p2
(µ+ p2+)q1 + γ1q2

(
2q1µ

3+

+ ((q1 + 3q2)γ2 + q1(p1 + 4p2 + γ1))µ
2+

+ 2(q2γ2 + p2q1)(p1 + p2 + γ1 + γ2)µ+

+ q2(p2 + γ1)γ
2
2 + (p22q1 + q2(p1 + γ1)p2 + p1q2γ1)γ2 + p22q1(p1 + γ1)

)
> 0

(18)
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As ϕ(r) - linear function and ϕ(0) > 0 and ϕ(r3) > 0, then ϕ(r) > 0 at
r ∈ [0, r3]. Thus,

a1a2 − a3 > 0, r ∈ [0, r3] (19)

From (13), (14), (19) and inequality r3 < r2 we get that system of inequalities
(12) is equal to inequality (14). Substituting values (10) into the inequality
(14) we obtain (4). Theorem is proved.

Now let's look at the following examples.

Example 1.

Current parameters of the new coronavirus infection COVID-19 are given:
µ = 0.000157;R1 = 4;R2 = 4; γ1 = 0.25; γ2 = 0.001;α1 = 0.074;α2 =
0.050;β1 = 0.074;β2 = 0.050; k1 = 0.0055; ϵ1 = 0; ϵ2 = 0, N = 100, 000.
Let's set control parameters by vaccination: δ1 = 0; δ2 = 0; δ3 = 0;λ1 =
0.003; k2 = 0.001;λ2 = 0. Determine by formula (4) the required critical level
of limitation of the transmission mechanism. It turns out to be r =0.90.

Let us apply this control option. For the trivial solution (the solution
of ¾zero infection¿), we have the following coe�cients of the characteristic
polynomial:

Coeffi = [4.32.10−19, 1.53.10−14, 1.47.10−10, 4.52.10−7, 1.79.10−4, 2.04.10−2,
3.86.10−1, 1]

The following Routh-Hurwitz coe�cients are obtained:
CoeffHur = [3.86.10−1, 7.69.1010−3, 1.31.10−6, 5.68.10−13, 7.96.10−23,

1.11.10−36, 4.78.10−55]
The following coe�cients are obtained a2, a3, a1a2−a3 : a2 = 1.66.10−2, a3 =

7.45.10−7, a1a2 − a3 = 6.23.10−3.
Now let's loose the restrictions of the transmission mechanism r = 0.91.
For trivial solution ("zero infection"state solution) we have the following

coe�cients of the characteristic polynomial:
Coeffi = [−5.63.10−18,−6.47.10−14,−1.34.10−10, 3.40.10−7, 1.66.10−4,

2.02.10−2, 3.86.10−1, 1]
The following Routh-Hurwitz coe�cients are obtained:
CoeffHur = [3.86.10−1, 7.62.10−3, 1.21.10−6, 4.34.10−12,−4.51.10−23,

3.76.10−36,−2.12.10−53]
Negative coe�cients appeared.
The following coe�cients are obtained a2, a3, a1a2−a3 : a2 = 1.64.10−2, a3 =

−9.72.10−6, a1a2 − a3 = 6.16.10−3.
Coe�cient a3 < 0.
The trivial stationary solution ("zero infection"state solution) has become

unstable. The epidemic is resuming. The following number of infected people
is registered: in the latent phase of the disease E0 - 21 people, in the acute
phase of the disease A0 - 70 people, in the chronic (prolonged) phase of the
disease C0 - 1 person.

Example 2.
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Let's solve the problem in the space of all three control coe�cients. The
current parameters of the new coronavirus infection COVID-19 are given
as in example 1. It is required to build a diagram of the countermeasures,
namely the dependence of the impact on the contact rate r on the intensity
of detection, isolation and quarantine of sources of infection δ1 = δ2 and
the volume of vaccination λ1. The result is shown in Figure 2. With a high
intensity of δ and λ1, a signi�cant decrease in the contact rate of infection
(for example, lockdown) is not required (r = 0.7, yellow). At low intensity δ
and λ1, a sharp decrease in the contact rate of infection is required (r = 0.3,
blue color). Also, if there are opportunities for e�ective vaccination λ1, then
the intensity of detection and quarantine of infection sources δ can be less.
The most e�ective impacts are in all basic areas of control.

Fig. 2. Diagram counter forces. Parameters as in example 1.
δ3 = 0.048 Observation interval - days.

Rule 1. The greater the impact of vaccination and pre-exposure prophylaxis
and the more intensive the detection and limitation of infectious agent sources,
the less isolation is necessary. The higher the level of vaccination and pre-
exposure prophylaxis, the lower the level of detection of sources of the causative
agent of infection may be.

Example 3.

Given are parameters of the strength of the epidemic process of viral
hepatitis C. Viral hepatitis C has an acute and chronic phase of the disease.
Let's answer the question: is it possible to identify and treat only the chronic
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phase of the disease? In this very case can we reach a critical level of
control ("epidemic arrest")? Let's build the dependence δ2 on the contact
rate of the acute phase of the disease R1. It can be seen that the epidemic
process control by identifying and treating the exclusively chronic phase
of the disease is possible if and only if less than one susceptible person
is infected from one patient during the acute phase Figure 3. After this
level, "system collapse"occurs and management due to the impact on chronic
patients becomes ine�ective. In a drug (narcotic induced) epidemic, patients
in the acute phase infect more than 1 person, therefore, measures should be
carried out in relation to both acute and chronic patients.

Rule 2. Measures to identify, isolate and treat the sources of the causative
agent of infection should be aimed at both acute and chronic patients.

Fig. 3. Possibility to achieve critical level of control due to
detection and treatment of chronic patients δ2 depending on
contact rate of acute phase of disease R1: µ = 0.0022;R2 =
4; γ1 = 0.095; γ2 = 0.0913;α1 = 0.164;α2 = 0.028;β1 =
0.064;β2 = 0; k1 = 0.2667; ϵ1 = 0.006; ϵ2 = 0.028; δ1 =
0; δ3 = 0.167; r = 1;λ1 = 0;λ2 = 0. Follow-up interval month.

Example 4.

The result of changing the stability of the epidemic process in formula (4)
does not depend on the population size N , the intensity of loss of natural
immunity k1, the transition of the quarantined to general population δ3.
However, the time to reach "zero infection"("epidemic arrest") may depend
on these parameters.

If the control conditions are close to the threshold, the extinction time of
the infection is signi�cant. This is especially manifested in chronic infections,
carriage, temporary natural immunity, high contact rate R, high in�ux of
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susceptible population µ (high epidemic strength), which makes it di�cult
to move towards trivial equilibrium. A particular time to reach a critically low
concentration can be obtained by numerically solving di�erential equations.
The target outcome is a condition with less than 1 infected person (quantum)
over the period of maximum duration of infection. The corresponding diagram
is shown in Figure 4. It means that when natural immunity fades, the time
of ¾epidemic arrest¿ signi�cantly lengthens.

Fig. 4. The diagram of the dependence of the time of
'epidemic arrest' versus the rate of detection and treatment of
sources of infection in two strains of hepatitis C virus: lifelong
immunity k1 = 0 - green line, immunity lasting 1 month
k1 = 1 - red line: δ1 = δ2 = δ, µ = 0.0022;R1 = 2.5;R2 =
4; γ1 = 0.095; γ2 = 0.0913;α1 = 0.164;α2 = 0.028;β1 =
0.064;β2 = 0; ϵ1 = 0.006; ϵ2 = 0.028; δ1 = 0; δ3 = 0.167; r =
1;λ1 = 0;λ2 = 0. Follow-up interval month. Vertical brown
line represents critical level δ of stability loss

Rule 3. The threshold condition of "epidemic arrest"determines the critical
level of impact, the time of "epidemic arrest"at this very threshold level can
be signi�cant. Therefore, the mathematical model (1) makes it possible to
calculate fare above the threshold (supercritical) levels of impact, which make
it possible to achieve a result in a closer predictable time.

Thus, management is active and aggressive. If all three control factors
remain at a higher level, the interruption time of the epidemic process is
reduced and the cessation of the epidemic process is achieved.

Analytical approximation of time to arrest the epidemia is given in Appendix
B.
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4 Using a model to solve the inverse problem to determine

epidemic strength and strength of counter-action.

4.1. Epidemic data and parameter estimation. The materials used
were data from medical organizations on the number of registered cases of
13 infections. 11 acute infections: measles, rubella, mumps, viral hepatitis A,
in�uenza A, COVID-19, whooping cough, chicken pox, scarlet fever, Sonnei
dysentery, gonorrhea; 2 chronic infections: viral hepatitis C, HIV infection.
Transmission mechanism: aerosol - 8 infections, fecal-oral - 2 infections,
hemo-contact and sexual - 2 infections, sexual - 1 infection. Etiological factor:
viruses - 8 infections, bacteria - 5 infections.

The observation period covered: measles - 60 years (1961-2021), rubella -
46 years (1975-2021), mumps - 60 years (1961-2021), viral hepatitis A - 51
years (1970-2021), in�uenza A - 29 years (1992-2021), COVID-19 - 665 days
(01.03.2020-25.12.2021), whooping cough - 30 years (1991-2021), chicken pox
- 30 years (1991-2021), scarlet fever - 33 years (1961-1994), Sonnei dysentery
- 30 years (1991-2021), gonorrhea - 30 years (1991-2021), viral hepatitis C -
30 years (1991-2021), HIV infection - 30 years (1991-2021).

In total, 413,887 cases were analyzed: measles - 17,485, rubella - 18,049,
mumps - 19,350, viral hepatitis A - 4,826, in�uenza A - 196,890, COVID-19 -
85,997, whooping cough - 1,558, chicken pox - 26,633, scarlet fever - 15,838,
Sonnei dysentery - 3 332, gonorrhea - 8,694, viral hepatitis C - 1,468, HIV
infection - 13,767.

Data on measles, rubella, mumps, viral hepatitis A, chicken pox and
scarlet fever were collected in the city of Novomoskovsk, Tula region; data
on in�uenza A, whooping cough, Sonnei dysentery, gonorrhea collected in
the city of Tula; viral hepatitis C and HIV infection - in the Tula region;
COVID-19 - in the city of Khasavyurt of the Republic of Dagestan.

The follow-up interval for infections varied. For in�uenza A and COVID-
19, daily data are collected; for measles, rubella, mumps, viral hepatitis A,
pertussis, chicken pox, scarlet fever, Sonnei dysentery and gonorrhea - weekly
data; viral hepatitis C and HIV infection - monthly data.

The inverse problem was solved by performing minimization of the convex
functional. Euclidean distance D and normalized Euclidean distance Dnorm

between model and real data determined by the following formulas was used:

D =

√
ΣP
0 (It −Mt)2

P
(20)

Dnorm =

√
ΣP
0

(It−Mt)2

(It−Mt)

P
(21)

where It is the actual value of the number of new cases per observation
interval t, Mt is the model value of the number of new cases per observation
interval t, P is duration of observation.
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The detection (optimization) of parameters was carried out by universal
gradient descent method; individual, pairwise and group selection of parameters
within the speci�ed limits was conducted using 3-5 iterations [91].

The criterion for stopping iterations was the absence of further change in
the Euclidean distance.

Major parameters of the epidemic process, chosen for detection (optimization)
was the contact rate R and the intensity of seasonal �uctuations ι of the
contact rate R.

For the functional estimation we used the following number of measurement
dots (according to time interval and dimension): measles - 1,588, rubella -
1,812, mumps - 2,024, viral hepatitis A - 2,476, in�uenza A - 10,200, COVID-
19 - 665, whooping cough - 1,428, chicken pox - 1,425, scarlet fever - 1,605,
Sonnei dysentery - 1,412, gonorrhea - 1,473, viral hepatitis C - 369, HIV
infection - 369

The duration of the phase shift θ was determined by the day of maximum
incidence on the seasonality curve.

Information about the parameters of the infectious process α (α1, α2), k
and others are taken from [99, 73, 100] and literary sources (A).

Epidemic control parameters (counter measure) were calculated by numerically
solving the system of di�erential equations (1), while comparing the family
set of control parameters for various possible time intervals to achieve ¾epidemic
arrest¿.

The criterion of ¾epidemic arrest¿ was taken as such a number of acute
A(t) and chronic C(t) forms of infection, in which the probability of interruption
p = 0.5. The probability of interruption was calculated by the formula

p = (1− S(t)

S(t) + E(t) +A(t) + C(t) +R(t) + V (t)
)R1A(t)+R2C(t) (22)

where

1− S(t)
S(t)+E(t)+A(t)+C(t)+R(t)+V (t)

- probability of interruption per 1 contact, R1A(t) + R2C(t) - the total
number of independent potential contacts from existing sources of the causative
agent of infection. On average, zero infection corresponded to a level of 0.5
people per population.

Intervention campaigns were carried out on the basis of countermeasures
parameters established in computational experiments. E�cacy was assessed
by achieving "zero infection"as no incidence during the maximum duration
of infection.

4.2. Mathematical modeling of the epidemic process without control.

The greatest contagiousness was observed in COVID-19 (R = 5.7) and
measles (R = 5.1), the smallest - in scarlet fever (R = 1.6) and gonorrhea
(R = 1.2). All the other diseases had R ∈ [2.4; 4.4]. The contact rate range
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(a) Measles. (b) Mumps.

(c) Chicken pox. (d) Whooping cough.

(e) Rubella. (f) Scarlet fever.

(g) In�uenza A. (h) COVID-19.

Fig. 5. Real and model data of new infectious disease cases, beginning

shows that the causative agents of these diseases (with the exception of
COVID-19) are in a state of compromise with the human population [86]. We
did not receive the contact rates in the range of 6-11, as it is given in [14, 85]
reviews, possibly due to more robust conditions of our study, concerning
materials (long period of survey) and methods (optimization algorithms).

The value of the contact rate R appeared to depend on the route of
transmission, as an excellent example provided HIV infection. We estimated
at narcotic route of transmission the contact rate R = 4.5 and at sexual
route R = 1.5, that is 3 times higher. In viral hepatitis C, only the narcotic
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(a) Hepatitis A. (b) Sonnei dysentery.

(c) Gonorhhea. (d) Hepatitis C.

(e) HIV-infection.

Fig. 6. Real and model data of new cases of infectious
diseases, continuation

transmission route was considered due to the low intensity of the sexual
transmission [87].

Most acute infections are characterized by seasonality. Seasonal intensity
ι ranged from 0.10 for scarlet fever and 0.13 for measles to 0.40 for viral
hepatitis A and 0.45 for chicken pox.

The maximum activity of the seasonal factor for measles, mumps, chicken
pox, rubella occurred in January, whooping cough, in�uenza A, COVID-
19 - in September, scarlet fever - in October (aerosol infections). Maximum
activity of seasonal factor of Sonnei dysentery, viral hepatitis A - September-
October (fecal-oral infections). This suggests the possibility of using a model
for infections with di�erent transmission mechanisms.

Cyclic �uctuations in incidence are due to the superimposition of sinusoidal
perturbations on the system's natural frequency of oscillation. In measles,
there are rises every 2 years (biennial peaks), which was described in the
classic works on epidemiology [88]. The mumps incidence model reproduced
a 3-4 year periodicity, the varicella model - a 4-year periodicity. Over 31
years of observation, 7 rises in the incidence of rubella were recorded, the
cycle duration was 4 years. The model reproduced the 4-year periodicity of
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viral hepatitis A. The periodicity in Sonnei dysentery and gonorrhea was not
detected, since in these infections the rate of loss of immunity is high, which
dampens the �uctuations.

Our study showed that for all infections except COVID-19, the starting
point was close to equilibrium. With COVID-19, �uctuations were carried
out away from equilibrium, the epidemic began against the background of
the susceptibility of the population.

Considering the reproducibility of the model (relatively small �uctuations
of Dnorm from infection to infection), we can talk about the possibility of
measuring the epidemic strength. With �uctuations around the stationary
state, the model allows you to determine the proportion of susceptible without
taking additional measurements.

Infection disease modelling is shown in Figure 5,6.
Parameters of the infectious and epidemic process and initial conditions

for its development are given in Table 4.

5 Mathematical modelling of the epidemic process with

control.

13 intervention campaigns, 11 on acute infections and 2 on chronic infections
(HIV infection and viral hepatitis C), are calculated. 10 intervention campaigns
are realized. On 3 campaigns calculations of force of in�uence (counter-
force) are prepared. In 2 cases (whooping cough and scarlet fever) it wasn't
succeeded to reach the rated level of in�uence, and the result of the termination
of incidence ("arrest of epidemic") wasn't achieved.

The intervention campaign against measles began since 1968. Due to high
e�ciency of vaccine at the �rst step the implementation only of a vaccination
campaign, without special events for identi�cation of sources of the causative
agent of an infection and reduction of the mechanism of activity of transfer,
was supposed. Calculation showed the critical level of vaccination λ1 not
less than 0.0082, time of the termination of epidemic process of measles
T had to be 249 weeks. Vaccination started with smaller intensity, namely
λ1 = 0.0079, time of achievement of decrease in incidence was 310 weeks,
however in 360 weeks from the beginning of a vaccination campaign incidence
of measles renewed. In April, 1976 about 85 cases of diseases per week, May,
1982 � up to 48 cases, March, 1984, October, 1984, April, 1985, June, 1987,
April, 1988 � till 10-14 cases were registered.

In 1994 the campaign was reconsidered: the intensity of vaccination increased
to critical (λ1 = 0.0082). Special attention was paid to immunization of the
persons coming to kindergartens and schools. After 1994, only singular cases
were registered: 4 in July 2003, 1 in August 2003, 1 in September 2003, 1
in October 2018, 7 in March, 2019. Now the priority attention is paid to a
re-vaccination of senior citizens. The general period of observation was 60
years B� from 1961 to 2021.
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Table 4. Epidemic force parameters for the infectious
disease spectrum.
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The intervention campaign against mumps began since 1982. Calculations
showed the following parameters of the intervention campaign: λ = 0.0086; δ =
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0.03; r = 0.2;T = 155 weeks (dimension � week). At these parameters the
campaign was e�ective. The real term of achievement of result was 262 weeks.
From January to April, 1999 the outbreak of mumps connected with an
infection drift on the territory was noted.

The vaccine against chicken pox in the Russian Federation isn't included
into the national vaccine schedule. In this regard calculation of the intervention
company of chicken pox on the future is carried out. Taking into account the
measured force of epidemic process of chicken pox the following intervention
campaign is developed: λ = 0.0036; δ1 = 0.02; r = 0.3;T = 165 weeks. The
realization is expected.

The intervention campaign concerning whooping cough began in 1995. By
calculations the intensity of intervention λ1 = 0.0057, r = 0.2; δ1 = 0.03; δ3 =
0.33;T = 210 weeks. However it wasn't succeeded to reach the speci�ed
intensity of parameters of management. The vaccine had not expecting full
e�ciency. The actual intensity of vaccination λ1 taking into account the
activity of vaccine was 0.0035, and this intensity of vaccination was lower
than critical. The number of cases of diseases of whooping cough decreased
by 5 times: from 6-10 cases up to 0-2 cases a week, the chains of infection
proceeding. Though the incidence decreased, from arresting point of view it
was the failure. The failure reason - counter-force insu�ciency.

Due to gaining of availability of rubella vaccines, since 2007 (beginning
of a campaign), the intervention campaign for prevention of incidence of a
rubella was planned. According to the plan, the intensity of vaccination was
λ1 = 0.0017; intensity of identi�cation, isolation of sources of infection was
δ1 = 0.05. Sanitary and hygienic actions in organized collectives (increases
in requirements to intragroup isolation and airing of rooms) were carried out
with intensity of r = 0.4. Time of the termination of epidemic process had
to be T = 80 weeks. The key planned targets when holding a campaign were
reached. Time to achieve the result was 92 weeks.

Management of epidemic process of scarlet fever was carried out along with
management of epidemic process of streptococcal pharyngitis. In�uence force
is determined: λ1 = 0.0008; δ1 = 0.07; δ2 = 0.07; r = 0.15;T = 90. To reduce
susceptibility it was supposed to use pre - and post-contact prophylaxis
by antibiotics. However these actions had restrictions due to toxicities and
refusals of treatment. The intervention campaign began in 1984. Parameters
of the carried-out company λ = 0.0006; δ1 = 0; r = 0. The timeliness of
identi�cation of cases su�ered as before detected patients managed to infect
healthy, also signi�cant contribution is made by chronic forms. The incidence
of scarlet fever decreased by 4 times, but remains at the level of 10 cases
a week during seasonal rise in October, a month later after formation of
organized groups at schools and kindergartens.

To carry out an intervention campaign in relation to in�uenza A, the
parameters for controlling the epidemic process of in�uenza are determined:
λ1 = 0.0015;λ2 = 0.0015; δ1 = 0.03; r = 0 (dimension - day). The planned
time to achieve the result was 400 days. Vaccination was carried out with
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seasonal vaccines made on the basis of the last strain of the previous seasonal
period. The campaign started in 2004. It was possible to almost completely
follow the parameters laid down in the calculations. The actual time to
achieve the result was 600 days. The company should be recognized as
e�ective, vaccination and revaccination against in�uenza continue annually.

The intervention campaign against COVID-19 is based on the example
of the city of Moscow. The COVID-19 epidemic began with the following
initial conditions: X0 = 0.89;A0 = 200 (absolute number of patients). The
contact rate R of the Wuhan variant in Moscow at the start appeared to be
2.7. Lockdown was announced on day 68 of the epidemic, the intensity of the
lockdown was r = 0.4. On the 195 day of the epidemic, there was a partial
lockout, which lasted up to 380 days (r = 0.65). From day 380, the lockout
became full (r = 1). The intensity of detection, isolation and treatment of
sources of infection was δ = 0.09.

Lockdown saved time for the deployment of beds, including intensive care
beds, which ensured a reduction in mortality associated with COVID-19.

Viral hepatitis A was a serious problem for the territory � the city of
Novomoskovsk, Tula region in 1970 - ties � that was due to the unsatisfactory
sanitary and hygienic state of the water supply in certain areas of the city,
which launched a seasonal epidemic. Further, the epidemic was actively
supported by contact and household transmission of the virus (person to
person transmission) among younger schoolchildren and preschoolers (schools
and pre-schools). An intervention campaign was planned with a focus on the
mechanism of transmission, r = 0.65. Other parameters of the intervention
campaign λ1 = 0.0011; δ1 = 0.05;T =105 (dimension - week).

The campaign began in 1997. Reconstruction of the water supply system
was carried out and measures were introduced for group isolation and disinfection
in facilities of elementary schoolchildren and preschoolers (schools and pre-
schools), as well as vaccination of children and adults. Actual parameters
of the campaign: λ1 = 0.0005; δ1 = 0.26; r = 0.1, that is, the emphasis was
shifted to sanitary and hygienic measures and the identi�cation and isolation
of sources of the causative agent of infection. The time to achieve the result
was 450 weeks. The campaign should be considered e�ective.

The epidemiological signi�cance of Sonnei dysentery (causative agent -
Shigella sonnei) was due to the intensive contact and household transmission
in schools and preschool institutions in the period 1991-1999. An intervention
campaign was planned with an emphasis on the reconstruction of preschool
institutions with the introduction of intra-group isolation, as well as increasing
the provision of kindergartens to the population. Regulations have been
introduced for the work of medical personnel of schools and preschool institutions
to identify symptoms and laboratory research. The campaign began in 1999.
The targets were λ1 = 0; δ1 = 0.12; r = 0.6; T = 28 (dimension - week).
Identi�ed and sick people are isolated, treated and returned to the population.
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Actual campaign parameters were λ1 = 0; δ1 = 0.4; r = 0.6. The result is
achieved 40 weeks after the start of the intervention campaign. The campaign
should be considered e�ective.

The intervention campaign against gonorrhea was performed in 2 stages:
from 1996 to 2004, from 2004 to 2022. In 1996-2004, there was a decrease
in transmission rate due to the use of condoms r = 0.95, detection and
treatment with training in safe behavior with an intensity of δ = 0.1. In
2004-2022, the intensity of these measures was r = 0.90; δ1 = 0.118.

To calculate the intervention campaign for viral hepatitis C, a population
of injecting drug users was considered. The parameters of the intervention
campaign are planned: λ1 = 0.02; δ1 = 0.06; δ2 = 0.06; r = 0.7;T = 99
months. Indicator λ1 - pre-exposure prophylaxis, δ - detection and treatment
of acute and chronic forms, r - compliance with safe behavior measures.
The campaign is planned after the availability of direct acting agents for
treatment and prophylaxis [45].

A general population was considered to calculate the HIV intervention
campaign. Critical levels of control in HIV infection were de�ned as λ1 =
0.015; δ1 = 0.06; δ2 = 0.06; r = 0.65;T = 150 months. Parameter r -
impact on the mechanism of transmission of infection (safe behavior), δ -
identi�cation of the sources of the causative agent of infection with taking for
treatment. Parameter λ - pre-exposure prophylaxis with antiretroviral drugs
(tenofovir and emtricitabine). COVID-19 has postponed the start of the
program. To start an intervention campaign, it is necessary to accumulate the
necessary resources and funds, namely non-invasive tests for HIV infection,
outreach workers for testing, and low-threshold access points for the issuance
of therapy and pre-exposure prophylaxis.

Infection disease modelling is shown in Figure 7,8.
Parameters of the infectious and epidemic process and initial conditions

for its development are given in Table 5.

6 Conclusions and perspectives of the study.

Mathematical modeling of the epidemic process is an e�ective mean to
diminish and eliminate the infectious disease incidence.

Determining the parameters of the epidemic process based on incidence
data is an inverse problem, formulating concept controlling model is an ill-
posed problem [46].

Traditional approach in quantitative epidemiology is to form the model
according to unique qualities of infection disease [101]. In this paper we
adhered to another paradigm of the general mechanisms of development of
epidemic process, each infection serving as the special case. On the basis
of this we formed the Procrustean bed of 7 di�erential equations, including
epidemic force and counter force.

We discovered that success � epidemic arrest � is achievable only if
counter force is equal or stronger to the applied force, and proved the threshold
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(a) Measles (b) Mumps

(c) Chicken pox (d) Whooping cough

(e) Rubella (f) Scarlet fever

(g) In�uenza A (h) COVID-19

(i) Viral hepatitis A (j) Sonnei dysentery

Fig. 7. New cases of infection diseases 1968 - 2021 during
intervention campaigns: 1968 - 2021: model and real data (the
beginning).
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(a) Gonorrhea (b) Viral hepatitis C

(c) HIV-infection

Fig. 8. New cases of infection diseases 1968 - 2021 during
intervention campaigns: model and real data (the
continuation).

control conditions for obtaining by the trivial ("zero incidence") solution
asymptotic stability.

We used methodology of inverse problems to measure the main epidemic
force parameters. Additional to estimations of the contact rate R we obtained
the solutions for it's seasonal variation amplitude ι. Estimations of R showed
evolutionary limitation on uncontrolled parameter elevation.

The main perspective is the study of the stability and uniqueness of
the solution of the inverse problem to establish the parameters of epidemic
process. Another perspective is the optimization of the algorithm for solving
the inverse problem, id.est. �nding the most optimal solutions in the event
of several local minima of the Euclidean distance.

In general, the correctness of solving the inverse problem of restoring
(calculation, identi�cation) force parameters seems very responsible, because
the planning of the countermeasure depends on it.

From fundamental recursion it is important to �nd general and interrelated
stability criteria for both trivial and nontrivial stationary state solution in
the �rst approximation.

The study made it possible to draw the following conclusions:
1. For the spectrum of infectious diseases, the concept controlling model

allows to di�erentiate epidemic process parameters (epidemic force) and
epidemic arrest parameters (the counter force).
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Table 5. Control parameters for contagious diseases spectrum
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2. Epidemic force parameters make di�cult the movement of the system to
"zero infection". They are: high values of contact rate of infection in acute
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(R1) and chronic (R2) forms of disease, high frequency of chronization γ2
(with intensive pathogen excretion), high rate of loss of natural immunity
k1, high in�ow of susceptible population and huge population size µ1N .

3. In the course of solving the inverse problem the "strength"of 13 major
infections, including contact rate R and its seasonal variation component ι,
was determined. The value of the contact rate R appeared to depend on the
route of transmission. Modelling of HIV-infection showed that at narcotic
route the contact rate found to be 3 times higher then at sexual route.

4. Three control targets were identi�ed: infected persons (detection, isolation
and treatment δ), transmission mechanism (regime-restrictive measures (lockdown),
sanitary and hygienic measures r), as well as a decrease in susceptibility
(vaccination, pre- and post-exposure prophylaxis λ).

5. We have drawn out the condition of the system movement to "zero
infection". This is phase transition of a trivial stationary solution from
unstable to stable state, when the reaction force (counter force) is applied
above the threshold level. Intervention measures below the threshold are
ine�ective.

6. Based on this condition, mutual potentiation of anti-epidemic measures
of di�erent directions is established. With successful detection, isolation and
treatment of patients, as well as vaccination, the size of the lockdown (which
is economically destructive) can be reduced.

7. The signi�cance of in�uence on both acute and chronic forms of infection
has been proved.

8. Time to "arrest of the epidemic"is determined. Freedom of choice suggests
that the work may be less intense and the result will be obtained after a
longer period of time, or the work may be more intense and the result will
come faster. As in the case of bank loans, quick repayment is cheaper, but
not always possible due to the limited annual budget. Concept controlling
model for arresting epidemics serving as the powerful computational tool to
achieve result and solve choice problems.
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A Parameters of the infection process of acute and chronic

infections

Chronic infections
N Disease Infection rate α Recovery rate β (1/days) Source Immunity loss rate k

(1/days)
Source

1 HIV infection 0.00046019 0 [77] 0 [76]
2 Viral hepatitis

C
0.00055533 0.000055 [75] 0.00027767 [50]

Acute infections
N Disease Infection rate α and

recovery rate β (1/days)
Source Immunity loss

rate k (1/days)
Source

3 Chicken pox 0.04714286 [74] 0 [51]
4 Viral hepatitis A 0.03571429 [73] 0 [72]
5 In�uenza 0.2 [71] 0.00005 [70]
6 Gonorrhea 0.071429 [69] 0.01111 [68]
7 Sonne dysentery 0.1 [67] 0.00285714 [66]
11 Whooping cough 0.05262857 [65] 0 [64]
12 Measles 0.09 [63] 0 [62]
13 Rubella 0.05257 [61] 0.00003586 [60]
20 Respiratory

streptococcal
infection, scarlet
fever

0.142857 [59] 0.00005476 [58]

24 Mumps 0.04542857 [57] 0 [56]
26 New coronavirus

infection COVID-19
0.074 [55, 52] 0.0055 [54, 53]

For acute infections α = β

B Time to arrest the epidemia in the degradation content

To examine analytically the timing of the arrest of epidemics, we perform
two types of degradation procedures.

Type one, is summarizing of classes: assume E(t)+A(t) = Y (t). So we do
not form exposure class E(t) - the infected patients go directly to the class
of Y (t), R(t) +Q(t) = Z(t). So we do not form a quarantine class Q(t) - the
identi�ed patients are treated and go directly to the class Z(t).

Type two we make several parameters equal to zero. We 1) neglect the
mortality rate (ϵ1 = ϵ2 = 0), 2) we assume that in�ow µ1 is equal to out�ow
µ2 and designated as µ, 3) vaccination is carried out without taking into
account the history of the disease, both susceptible and recovered with equal
intensity are vaccinated (λ1 = λ2 = λ), 4) vaccinated people are regularly
re-vaccinated and maintain their vaccine immunity (k2 = 0), 5) chronization
intensity γ2 = 0, which empties the chronic C(t) class.

As a result the sum of all classes is 1 (S(t)+Y (t)+Z(t)+V (t) =1). Each
variable is maintained in proportions.

So the system contains 4 di�erential equations for 4 classes (S(t), Y (t), Z(t), V (t)),
3 equations are independent, one dependent:
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S(t)′ = −RrαS(t)Y (t) + µ− µS(t) + kR(t)− λS(t)

Y (t)′ = RrαS(t)Y (t)− (β + µ+ δ)Y (t)

R(t)′ = (β + δ)Y (t)− (k + µ+ λ)R(t)

V (t)′ = λS(t) + λR(t)− µV (t)

(23)

The system (23) has 3 control parameters, where λ is the intensity of
vaccination, δ is the intesity of contact tracing and isolation/treatment, r -
the limitation of mechanism of transmission. In most cases Y (t) << S(t) +
R(t) + V (t), that is why

S(t) +R(t) + V (t) ≈ 1 (24)

From this we draw that vaccination intensity V (t) is proportionate to
unvaccinated 1− V (t):

d

dt
V (t) = λ (1− V (t))− µV (t) (25)

Solving this di�erential equation we get:

V (t) = −
λ
(
e−(λ+µ)t − 1

)
λ+ µ

(26)

Taking into account expression (24) we substitute R(t) by 1−S(t)−V (t)
and insert it into the di�erential equation for S(t), neglecting the component
of reducing S(t) by the new cases:

d

dt
S (t) = µ− µS (t) + k

(
1− S (t) +

λ
(
e−(λ+µ)t − 1

)
λ+ µ

)
− λS (t) (27)

We solve this di�erential equation with initial condition for susceptible
S0:

S (t) =
(λ+ µ) (−1 + S0 ) e

−(µ+k+λ)t + λ e−(λ+µ)t + µ

λ+ µ
(28)

We insert the equation for S(t) into the di�erential equation for Y (t):

d

dt
Y (t) =

(
rRα

(
(λ+ µ) (−1 + S0 ) e

−(µ+k+λ)t + λ e−(λ+µ)t + µ
)

λ+ µ
− β − δ − µ

)
Y (t)

(29)
We solve this di�erential equation with initial conditions Y0, designating

expression for F (t):
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F (t) = −Rrα (λ+ µ)2 (−1 + S0 ) e
−(µ+k+λ)t −Rλrα (µ+ k + λ) e−(λ+µ)t−

− t (µ+ β + δ)λ3 + (Rr (µ t+ S0 )α− t (µ+ β + δ) (3µ+ k))λ2+

+ (R (µ (k + 2µ) t+ k + (2S0 − 1)µ) rα− 2 t (µ+ β + δ) (3µ · 1/2 + k)µ)λ+

+ (Rr ((µ+ k) t+ S0 − 1)α− t (µ+ β + δ) (µ+ k))µ2

(30)

Y (t) = Y0 e
F (t)

(λ+µ)2(µ+k+λ) (31)

Let us necessitate that after time T the prevalence of the disease should
be Y (T ) = n. We solve the equation for velocity of tracing cases and cases
isolation and treatment δ:

δ =
1

T (λ+ µ)2(µ+ k + λ)

(
−Rrα (λ+ µ)2(−1 + S0 ) e

−(µ+k+λ)T −

− (λ+ µ)2(µ+ k + λ) ln

(
n

Y0

)
−Rλrα (µ+ k + λ)e−(λ+µ)T − µ4T +

+ T (Rαr − β − k − 3λ)µ3 + (−3λ2T + 2 (Rαr − k − 3/2β)Tλ+Rr(Tk+

+ S0 − 1)α − kTβ)µ2 +
(
−λ2T + T (Rαr − 3β − k)λ+Rr(Tk + 2S0 − 1)α−

− 2 kTβ)λµ +
(
−Tβ λ2 + (RS0 α r − kTβ)λ+Rαkr

)
λ
)

(32)
This formula comprises major control parameters r, δ, λ, as well as critical

level of case incidence n, time to achieving critical level of case incidence
(time to arrest the epidemia) T , force parameters of the epidemic process.

Assuming parameters R = 4;µ = 0.000157; k = 0.0055;α = 0.074;β =
0.074;S0 = 0.25;Y0 = 0.05; r = 1;n = 6.01.10−7;λ := 0.001; δ = 0.119, with
the formula (32) we get T = 488.7 days.

Let us study the impact of the epidemic force parameters on elongation
of time to result T (enhance 1 %): R− 9.9%; k − 2.8%;µ− 0.1%.

Let us study the impact of the counter-force parameters on the shortening
of time to result T (enhance 1 %): r− 11.3%; δ − 7.8%;λ− 2.6%. If we look
at intervention campaigns, those where prioritizing diminishing mechanism
of transmission was involved � were successful.
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