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Abstract: A steady solution to the Euler equations is called a
Gavrilov �ow if the velocity vector is orthogonal to the pressure
gradient at any point. Such �ows can be localized that yields
compactly supported solutions to the Euler equations. Gavrilov
�ows exist in dimentions 2 and 3. We present a complete description
of two-dimensional Gavrilov �ows.

Keywords: Euler equations, Gavrilov �ow.

1 Introduction

In dimensions 2 and 3, the Euler equations

u · ∇u+∇p = 0, (1)

∇ · u = 0 (2)

describe steady �ows of ideal incompressible �uid. The equations are also of
some mathematical interest in an arbitrary dimension. Here

u =
(
u1(x), . . . , un(x)

)
is a vector �eld on an open set U ⊂ Rn (the �uid velocity) and p is a scalar
function on U (the pressure). We use also the term ��uid speed� for |u|
and ��uid accelaration� for u · ∇u, integral curves of the vector �eld u are
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also called particle trajectories. We consider only smooth real solutions to
the Euler equations, i.e., ui ∈ C∞(U) (i = 1, . . . , n) and p ∈ C∞(U) are
assumed to be real functions (the term �smooth� is used as the synonym of
�C∞-smooth�).

We say that a solution (u, p) to (1)�(2) is a Gavrilov �ow if it satis�es

u · ∇p = 0, (3)

i.e., the velocity is orthogonal to the pressure gradient at all points of U .
We use also the abbriviation GF for �Gavrilov �ow�.

Equations (1)�(3) constitute the overdetermined system of �rst order
di�erential equations: n+2 equations in n+1 unknown function. Therefore
every GF is an exception in a certain sense. Nevertheless, such �ows exist
and deserve study.

Let a solution (u, p) to the Euler equations (1)�(2) be de�ned on an open
set U ⊂ Rn. We say that x ∈ U is a regular point if ∇p(x) ̸= 0. The
vector �eld u does not vanish at regular points as is seen from (1). The sets
Mp0 = {x ∈ U | p(x) = p0 = const} will be called isobaric hypersurfaces
(isobaric surfaces in the 3D case and isobaric curves in the 2D case). In the
general case, an arbitrary closed subset of U can be an isobaric hypersurface
Mp. But Mp is indeed a smooth hypersurface of Rn in a neighborhood of a
regular point x ∈Mp. We say that Mp is a regular isobaric hypersurface if it
consists of regular points.

Gavrilov �ows obey the following important property: Given a GF (u, p),
a pair of functions (ũ, p̃) de�ned by

ũ = φ(p)u, ∇p̃ = φ2(p)∇p, (4)

where φ(p) is an arbitrary smooth function, is again a GF. This property
underlies the following construction that will be called the Gavrilov locali-
zation. Given a GF (u, p) on a domain U ⊂ Rn, let Mp0 = {x ∈ U | p(x) =
p0} be a compact regular isobaric hypersurface. Then we can construct a
compactly supported smooth solution to the Euler equations on the whole of
Rn by choosing φ(p) as a cuto� function supported in a small neighborhood of
p0. Indeed, the new velocity vector �eld ũ and the gradient ∇p̃ are supported
in some compact neighborhood Ũ ⊂ U of the surface Mp0 , as is seen from
(4), and we de�ne ũ as zero in Rn\U . Thus, the new pressure p̃ is constant on

every connected component of U \Ũ . Since only the gradient ∇p participates
in (1)�(3), we can assume without lost of generality that p̃ = 0 on the

�exterior component� of U \ Ũ . It is now clear that p̃ can be extended to a
compactly supported function p̃ ∈ C∞(Rn).

For some neighborhood O(C) of the circle C = {(x1, x2, 0) ∈ R3 | x21+x22 =
1}, Gavrilov [2] proved the existence of an axisymmetric solution

u ∈ C∞(
O(C) \ C;R3

)
, p ∈ C∞(

O(C) \ C
)

to the equations (1)�(3) such that the isobaric surface Mp0 ⊂ O(C) \ C is
di�eomorphic to the 2-torus for some p0. Using the localization procedure
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described above, Gavrilov proved the existence of a solution ũ ∈ C∞(R3;R3),
p̃ ∈ C∞(R3) to the Euler equations supported in a small neighborhood of
Mp0 . Thus, Gavrilov gave the positive answer to the long standing question:
Is there a smooth compactly supported solution to the Euler equations on
the whole of R3 which is not identically equal to zero? Gavrilov's example
is discussed in the subsequent articles [1] and [4]. In particular, a geometric
illustration of Gavrilov's example is presented in [4, Section 8].

We say that two GFs (u, p) and (ũ, p̃), de�ned on the same open set
U ⊂ Rn, are equivalent if (4) holds with a smooth non-vanishing function
φ(p). For example, (u, p) and (−u, p) are equivalent GFs. Equivalent GFs
have coincident isobaric hypersurfaces.

The following example of a two-dimensional GF is well known and is called
a vortex. Let (x1, x2) be Cartesian coordinates on R2. Set

u1(x1, x2) = −x2, u2(x1, x2) = x1, p(x1, x2) =
1

2
(x21 + x22). (5)

One easily checks that these functions satisfy equations (1)�(3). All 0 ̸= x ∈
R2 are regular points of the GF (5), isobaric curves are circles centered at the
origin, and the �uid speed |u| is constant on an isobaric curve. This example
can be generalized to any even dimension [4].

In order to apply the Gavrilov localization to the �ow (5), choose a
compactly supported smooth function α : [0,∞) → R such that α(r) = 0
for r ≤ ε with some ε > 0 and de�ne the function β : [0,∞) → R by
β(r) = −

∫∞
r sα2(s) ds. Then

ũ(x) = α(|x|)u(x), p̃(x) = β(|x|)
is a smooth compactly supported GF on the whole of R2 satisfying |ũ|2 =
ψ(p̃) with a function ψ uniquely determined by α. In particular, if α is
supported in (r0 − δ, r0 + δ) for some r0 > δ > 0, then the velocity ũ is
supported in the annulus {x ∈ R2 : r0− δ < |x| < r0+ δ}, and the pressure
p̃ is supported in the disk {|x| < r0 + δ} with p̃ = const in the smaller
disk {|x| ≤ r0 − δ}. Then we can take a linear combination of several such
localized �ows with disjoints supports. In particular, a periodic GF can be
constructed in this way.

An axisymmetric GF on R3 can be obtained as a direct product of the
�ow (5) with a constant velocity �ow. Namely,

u1(x) = −x2, u2(x) = x1, u3(x) = a = const,

p(x) =
1

2
(x21 + x22) (x = (x1, x2, x3)).

Isobaric surfaces are cylinders {x21 + x22 = const}, and particle trajectories
are either circles (if a = 0) or helices (if a ̸= 0).

The following theorem is the main result of the present article.

Theorem 1. Let a Gavrilov �ow (u, p) be de�ned on an open set U ⊂ R2.
For every regular point x ∈ U , after shifting the coordinate origin to some
point c ̸= x, the following statement is valid.
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If U ′ ⊂ U ∩ (R2 \ {0}) is an arbitrary connected neighborhood of the point
x consisting of regular points, then the restriction of the �ow (u, p) to U ′ is
equivalent to the restriction of the �ow (5) to U ′.

Roughly speaking, Theorem 1 means that the vortex (5) is the unique
two-dimensional GF up to natural ambiguities: shifting the origin, replacing
a GF with an equivalent GF, and restricting to a subdomain.

The author considers Theorem 1 as a preliminary step in solving the
di�cult problem of classi�cation of three-dimensional Gavrilov �ows. Even
the simplest question remains open: are there GFs on R3 which are not
axisymmetric? A compact regular isobaric surfaceMp0 of a three-dimensional
GF (u, p) is di�eomorhic to the 2-torus T2 since it is furnished with the non-
vanishing tangent vector �eld u|Mp0

. Therefore the problem is closely related

to classi�cation of geodesic foliations of T2 ⊂ R3. See details in [4, Section
9].

A similar result (particle trajectories are circles) was recently obtained for
a general steady solution (that do not need to be a GF) of the 2D Euler
equations [5]. For general solutions, the proof is much more complicated and
very di�erent of our elementary geometrical approach.

2 Proof of Theorem 1

In the two-dimensional case, equations (1)�(3) are written in Cartesian
coordinates as follows:

u1
∂u1
∂x1

+ u2
∂u1
∂x2

+
∂p

∂x1
= 0,

u1
∂u2
∂x1

+ u2
∂u2
∂x2

+
∂p

∂x2
= 0;

(6)

∂u1
∂x1

+
∂u2
∂x2

= 0; (7)

u1
∂p

∂x1
+ u2

∂p

∂x2
= 0. (8)

The vector �eld u can be treated as the �rst order di�erential operator

u = u1
∂

∂x1
+ u2

∂

∂x2
.

With the help of the operator, equations (6) and (8) are written in the shorter
form:

uu1 +
∂p

∂x1
= 0, uu2 +

∂p

∂x2
= 0; (9)

up = 0. (10)

In all propositions below, a Gavrilov �ow (u, p) = (u1, u2; p) is assumed
to be de�ned on an open set U ⊂ R2.
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Proposition 1. The equality

u|u|2 = 0 (11)

holds in the domain U . In other words, the �uid speed |u| is constant along
integral curves of the vector �eld u.

Proof. Indeed, we obtain on using (9)�(10)

1

2
u|u|2 = 1

2
u(u21 + u22) = u1(uu1) + u2(uu2) = −u1

∂p

∂x
− u2

∂p

∂y
= −up = 0.

□

Proposition 2. The modulus |∇p| is constant along integral curves of the
vector �eld u, i.å.,

u|∇p|2 = 0. (12)

Proof. We will demonstrate that the equation (12) is equivalent to the incom-
pressibility equation (7). To this end we will write down the equation (12)
in local coordinates adapted to the foliation of the domain U into isobaric
curves. The equation (12) trivially holds at non-regular points. It su�ces to
prove the validity of (12) at a regular point.

Fix a regular point (x01, x
0
2) ∈ U and set p0 = p(x01, x

0
2). For p ∈ R

su�ciently close to p0, the isobaric curveMp is a regular curve near (x
0
1, x

0
2).

We parameterize Mp0 by the arc length

x1 = r1(s), x2 = r2(s) (−ε < s < ε); r′1
2 + r′2

2 = 1,

r1(0) = x01, r2(0) = x02.
(13)

We introduce curvilinear coordinates (s, t) in some neighborhood of the point
(x01, x

0
2) as follows. De�ne the vector �eld

ξ = (ξ1, ξ2) =
∇p
|∇p|2

. (14)

For a su�ciently small |s|, let
R(s, t) = (R1(s, t), R2(s, t)) (p0 − δ < t < p0 + δ) (15)

be the integral curve of the vector �eld ξ starting from the point (r1(s), r2(s))
at the initial time t = p0. Thus, (R1(s, t), R2(s, t)) is the solution to the
Cauchy problem

∂R1

∂t
(s, t) = ξ1

(
R1(s, t), R2(s, t)

)
,

∂R2

∂t
(s, t) = ξ2

(
R1(s, t), R2(s, t)

)
;

R1(s, p0) = r1(s), R2(s, p0) = r2(s).
(16)

Obviously R is a di�eomorphism between some neighborhoods of points
(0, p0) è (x01, x

0
2); therefore the variables (s, t) constitute a local coordinate

system on the plane in some neighborhood of the point (x01, x
0
2). By our

construction, R satis�es the identity

p
(
R(s, t)

)
= t, (17)



252 V.A. SHARAFUTDINOV

which means that the coordinate t coincides with the pressure p. Nevertheless,
we use the di�erent notation for the coordinate since t is considered as an
independent variable while p is a function on U . By (17), the isobaric curve
Mp coincides with the coordinate line {t = p} in some neighborhood of
(x01, x

0
2) for every p su�ciently close to p0.

Let

dx21 + dx22 = E ds2 + 2F ds dt+Gdt2 (18)

be the expression for the Euclidean metric in coordinates (s, t). Then

E =
(∂R1

∂s

)2
+
(∂R2

∂s

)2
, F =

∂R1

∂s

∂R1

∂t
+
∂R2

∂s

∂R2

∂t
,

G =
(∂R1

∂t

)2
+
(∂R2

∂t

)2
.

(19)

On using (14) and (16), we �nd

F =
∂R1

∂s
ξ1 +

∂R2

∂s
ξ2 =

∂R

∂s
· ∇p
|∇p|2

= 0.

The last equality here holds since the vector ∂R
∂s (s, t) is tangent to the isobaric

curve Mt at the point R(s, t), while the vector ∇p(s, t) is orthogonal to Mt

at the same point. In the same way we �nd

G =

∣∣∣∣∂R∂t
∣∣∣∣2 = |∇p|−2.

The formula (18) is thus simpli�ed to the following one:

dx21 + dx22 = E ds2 + |∇p|−2 dt2. (20)

Besides this, initial conditions in (16) imply with the help of the equality
r′1

2 + r′2
2 = 1 that

E(s, p0) = 1. (21)

We compute Christo�el symbols of the Euclidean metric (20) by standard
formulas of di�erential geometry

Γs
ss =

E′
s

2E
, Γs

st =
E′

t

2E
, Γs

tt =
1

|∇p|
∂|∇p|
∂s

,

Γt
ss = −1

2
|∇p|E′

t, Γt
st = − 1

|∇p|
∂|∇p|
∂s

, Γt
tt = − 1

|∇p|
∂|∇p|
∂t

.

(22)

The vector �eld u can be written in coordinates (s, t) as

u(s, t) = us(s, t)
∂

∂s
+ ut(s, t)

∂

∂t
(23)

and its divergence is expressed by the formula

∇ · u = ∇su
s +∇tu

t =
∂us

∂s
+ Γs

ssu
s + Γs

stu
t +

∂ut

∂t
+ Γt

stu
s + Γt

ttu
t. (24)
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Actually ut(s, t) ≡ 0 since the vector �eld u is tangent to isobaric curves
{t = const}. Formulas (23)�(24) are simpli�ed to the following ones:

u(s, t) = us(s, t)
∂

∂s
, (25)

∇ · u =
∂us

∂s
+ (Γs

ss + Γt
st)u

s. (26)

By (26), the incompressibility equation (7) looks as follows in coordinates
(s, t):

∂us

∂s
+ (Γs

ss + Γt
st)u

s = 0. (27)

Substituting values (22) for Christo�el symbols, we arrive to the equation

∂us

∂s
+
E′

s

2E
us − us

|∇p|
∂|∇p|
∂s

= 0. (28)

Let us now use the equation (11). We �rst observe that, by (20) and (25),

|u|2 = E(us)2

and

u|u|2 = us
∂(E(us)2)

∂s
= 2E(us)2

∂us

∂s
+ E′

s(u
s)3.

Therefore the equation (11) gives 2E(us)2 ∂us

∂s + E′
s(u

s)3 = 0. Since us does
not vanish,

∂us

∂s
+
E′

s

2E
us = 0. (29)

With the help of the latter equality, (28) implies

us
∂|∇p|
∂s

= 0.

By (25), this can be written in the form u|∇p| = 0. □

Proposition 3. Every connected interval of a regular isobaric curve is either
a circle arc or whole circle.

Proof. Let
γ(s) = (γ1(s), γ2(s)) (s0 < s < s1)

be a connected interval of a regular isobaric curve parameterized by the arc
length. Let (τ(s), ν(s)) be the Fresnet frame of the curve γ and k(s), the
curvature of γ. Recall Fresnet formulas for a planar curve:

τ ′ = kν, ν ′ = −kτ.
Observe that the curvature k(s) is not equal to zero for any s. Indeed, by
Proposition 1, the �uid speed |u| is constant along γ. The �uid acceleration
at the point γ(s) is equal to |u(γ(s))|2k(s)ν(s). By the Euler equation

u · ∇u+∇p = 0,

the acceleration is equal to −∇p(γ(s)). Thus,
|u|2k(s)ν(s) = −∇p(γ(s)).
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Hence k(s) ̸= 0 at regular points.
We have to demonstrate that k(s) is a constant function, i.e., dk

ds = 0. By

the Fresnet formulas, k = ν · dτds and dk
ds = ν · d2τ

ds2
. Thus, we have to prove the

equality

ν(s) · d
2τ(s)

ds2
= 0. (30)

By (11),

τ(s) = au(γ(s)) (31)

with some positive constant a. And by Proposition 2,

ν(s) = b(∇p)(γ(s))

with some positive constant b. Therefore the equation (30) is equivalent to
the following one:

(∇p)(γ(s)) · d
2u(γ(s))

ds2
= 0,

or in coordinates

∂p

∂x1
(γ(s))

d2
(
u1(γ(s))

)
ds2

+
∂p

∂x2
(γ(s))

d2
(
u2(γ(s))

)
ds2

= 0. (32)

The equalities

d
(
f(γ(s))

)
ds

= a(uf)(γ(s)),
d2
(
f(γ(s))

)
ds2

= a2(u2f)(γ(s))

hold for any function f(x1, x2), where a > 0 is the same constant as in (31).
Therefore to prove (32) it su�ces to demonstrate that

∂p

∂x1
(u2u1) +

∂p

∂x2
(u2u2) = 0. (33)

By (9),

u2u1 = u(uu1) = −u
( ∂p

∂x1

)
, u2u2 = u(uu2) = −u

( ∂p

∂x2

)
.

With the help of these equalities, the equation (33) takes the form

∂p

∂x1
u
( ∂p

∂x1

)
+

∂p

∂x2
u
( ∂p

∂x2

)
= 0

or

u|∇p|2 = 0.

This is true by Proposition 2. □

Proposition 4. Let U ′ ⊂ U be a convex open set consisting of regular points.
Integral curves of the vector �eld ∇p living in U ′ are straight-line intervals,
i.e., every such integral curve coincides with the intersection U ′∩L for some
straight line L. The length of a segment of such integral curve between isolines
{p = p0} and {p = p1} depends on p0 and p1 only.
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Proof. First of all we observe that both statements are of a local character,
i.e., it su�ces to prove the statements for a su�ciently small convex neigh-
borhood U ′ ⊂ U of an arbitrary regular point.

Fix a regular point (x01, x
0
2) ∈ U and set p0 = p(x01, x

0
2). Introduce curvi-

linear coordinates (s, t) in some neighborhood of (x01, x
0
2) in the same way

as at the beginning of the proof of Proposition 2. The Euclidean metric is
expresses in these coordinates by the formula (20). By (17), coordinate lines
t = const are isolines of the function p. By Proposition 3, the modulus |∇p|
is constant on coordinate lines t = const, i.e., |∇p| = |∇p|(t). Now formulas
(22) imply that

Γs
tt = 0, Γt

tt = Γt
tt(t). (34)

For a point (s0, t0) belonging to the domain of the chosen coordinate
system, let us consider the geodesic (s(τ), t(τ)) starting at the point (s0, t0)
orthogonally to the coordinate line {s = s0}. The functions s(τ) and t(τ)
solve the Cauchy problem

s′′ + Γs
sss

′2 + 2Γs
sts

′t′ + Γs
ttt

′2 = 0, t′′ + Γt
sss

′2 + 2Γt
sts

′t′ + Γt
ttt

′2 = 0;

s(0) = s0, t(0) = t0, s′(0) = 0, t′(0) = 1.

By (34), the problem is speci�ed as follows:

s′′ + Γs
sss

′2 + 2Γs
sts

′t′ = 0, t′′ + Γt
sss

′2 + 2Γt
sts

′t′ + Γt
tt(t)t

′2 = 0;

s(0) = s0, t(0) = t0, s′(0) = 0, t′(0) = 1.
(35)

The solution of the problem is of the form s = s0, t = t(τ), where t = t(τ) is
the solution of the Cauchy problem

t′′ + Γt
tt(t)t

′2 = 0; t(0) = t0, t′(0) = 1.

Thus, our geodesic coincides with the coordinate line {s = s0} up to para-
metrization. In other words, coordinate lines {s = s0} are geodesics of the
Euclidean metric, i.e., straight lines.

By (14)�(16), coordinate lines {s = const} coincide with integral curves of
the vector �eld ∇p up to parametrization. We have thus proved that integral
curves of the vector �eld ∇p are straight-line. Moreover, these straight-line
integral curves are orthogonal to isolines {t = const} of the function p. Now,
applying the �rst variation formula for the length of a geodesic [3, Section
4.1], we obtain the second statement: The length of a segment of such integral
curve between isolines {p = p0} and {p = p1} depends on p0 and p1 only. □

Proposition 5. Let U ′ ⊂ U be a connected open set consisting of regular
points. Every isoline of the function p living in U ′ coincides with the inter-
section U ′∩C, where C is a circle centered at a point c ∈ R2\U ′ independent
of the choice of the isoline.

Proof. For a point (x1, x2) ∈ U ′, let

γ(s) (−ε < s < ε); γ(0) = (x1, x2)
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be the isoline of the function p through the point (x1, x2) parameterized by
the arc length, where ε > 0 is su�ciently small. By Proposition 3, γ is a circle
arc centered at some point c(x1, x2). The map U ′ → R2, (x1, x2) 7→ c(x1, x2)
is continuous. It su�ces to prove that it is a locally constant map.

We �x a point (x01, x
0
2) ∈ U ′, set p0 = p(x01, x

0
2) and denote by

γ0(s) (−ε < s < ε); γ0(0) = (x01, x
0
2)

the isoline of the function p passing through (x01, x
0
2) and parameterized by

the arc length. Proposition 4 implies that, for every p1 su�ciently close to
p0, the intersection of the isoline {p = p1} with some neighborhood of the
point (x01, x

0
2) can be obtained by the following construction. Let N(s) be

the normal line of γ0 through the point γ0(s). Choose the orientation of
the normal N(s) accordingly to the vector ∇p(γ0(s)). On each normal N(s)
we plot a segment of constant length (depending on (p0, p1)) from the point
γ0(s). Ends of these segments constitute the isoline {p = p1}. In other words,
the isoline {p = p1} is an equidistant curve of the curve γ0 near (x01, x

0
2) for

any p1 su�ciently close to p0. Therefore circle arcs {p = p0} and {p = p1}
coincide, i.e., c(x1, x2) = c(x01, x

0
2) for all points (x1, x2) ∈ U ′ su�ciently

close to (x01, x
0
2).

Thus, all isolines of the function p living in U ′ are circle arcs with a
common center c ∈ R2. It can happen that c ∈ U . But in such a case c
cannot be a regular point since di�erent isolines of p pass through c. Therefore
c /∈ U ′. □

Proposition 6. Let U ′ ⊂ U be a connected open set consisting of regular
points. Assume that every isoline of the function p living in U ′ coincides with
the intersection U ′ ∩C, where C is a circle centered at the origin (0, 0). Set

r = r(x1, x2) =
√
x21 + x22. Then, in the domain U ′, the functions |u| and

|∇p| depend on r only and satisfy

|u|2 = r|∇p|. (36)

Proof. The statement is of a local character. It su�ces to prove the statement
for some neighborhood of an arbitrary regular point.

Fix a regular point (x01, x
0
2) ∈ U . For every regular point (x1, x2) ∈ U

su�ciently close to (x01, x
0
2), let γ(s) (−ε < s < ε) be an interval of the isoline

of the function p through the point (x1, x2) parameterized by the arc length
and lying near (x01, x

0
2). By the assumption, γ is a circle arc centered at the

origin. The radius of the circle arc is equal to r = r(x1, x2). By Proposition
1, the �uid speed |u| is constant on the circle arc γ. Hence |u(x1, x2)| = |u|(r)
at least for all (x1, x2) belonging to some neighborhood of (x01, x

0
2). The �uid

acceleration at the point γ(s) is equal to |u(r)|2
r ν(s), where ν(s) is the unit

normal vector of the curve γ. On the other hand, by the Euler equation, the
acceleration is equal to −∇p(γ(s)). Hence |∇p| = |∇p|(r) and the equality
(36) holds. □
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Proof of Theorem 1. Let a Gavrilov �ow (u, p) be de�ned on an open set
U ⊂ R2. Fix a regular point x ∈ U . Let γ be a connected interval of the
isobaric curve through the point x. By Proposition 3, γ is a circle arc centered
at some point c ̸= x. We shift the origin to the point c. Now γ is a circle arc
centered at the origin.

Let U ′ ⊂ U ∩(R2 \{0}) be an arbitrary connected neiborhood of the point
x consisting of regular points. By Proposition 5, every isoline of the function
p living in U ′ coincides with the intersection U ′ ∩ C, where C is a circle
centered at the origin. By Proposition 6, restrictions of the functions |u| and
|∇p| to the domain U ′ depend on r only and the equality (36) holds.

Living in U ′ isolines of the functions r(x1, x2) and p(x1, x2) coincide (both
are circle arcs centered at the origin). Hence gradients of the functions r and
p are collinear to each other at any point of the domain U ′. The gradient
of r does not vanish in U ′ since (0, 0) /∈ U ′. The gradient of p does not
vanish in U ′ since U ′ consists of regular points. Therefore the representation
r = r(p) is possible with a smooth right-hand side. With the help of the
representation, we make sure that |u| and |∇p| can be also represented in U ′

as smooth functions of the pressure p, i.e., |u| = |u|(p) and |∇p| = |∇p|(p).
We introduce the positive function φ(p) by

φ(p) =
r(p)

|u|(p)
(37)

and de�ne a new GF (ũ, p̃) on the domain U ′ by the formulas

ũ = ±φu, ∇p̃ = φ2∇p. (38)

The GF (ũ, p̃) is equivalent to (u|U ′ , p|U ′). The sign in (38) is chosen so
that integral curves (x1(t), x2(t)) of the vector �eld ũ (which are circle arcs
centered at the origin) go around origin in the counter clockwise direction
when t is increasing. Formulas (36)�(37) imply that

|ũ| = |∇p̃| = r. (39)

The vector �eld ũ is tangent to circle arcs centered at the origin. The same
circle arcs are isolines of the function p̃. Together with (39) and the above
remark on the sign choice, this gives

ũ1(x1, x2) = −x2, ũ2(x1, x2) = x1,

p(x1, x2) =
1

2
(x21 + x22) + const

(
(x1, x2) ∈ U ′).

The constant can be equated to zero since only ∇p̃ participates in the Euler
equations but not the function p̃ itself. We see that the �ow (ũ, p̃) coincides
with the restriction of the �ow (5) to the domain U ′. □

In particular, if a GF (u, p) is de�ned on R2 \{0} and all points of R2 \{0}
are regular ones, then this �ow is equivalent to the restriction of the �ow (5)
to R2 \ {0}. But unlike (5), the vector �eld u and function p can be singular
at the origin.
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