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Abstract: The work has begun to study the structure of pseudo-
finite acts over a monoid. A theorem on the finiteness of an arbitrary
cyclic subacts of S-act is proved under the condition that this S-act
is pseudofinite and the number of types of isomorphisms of finite
cyclic S-acts is finite. It is shown that a coproduct of finite S-acts
is pseudofinite. As a consequence, it is shown that any S-act, where
S is a finite group, is pseudofinite.
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Introduction

Recently, the model theory of pseudofinite structures is an actively deve-
loping area of mathematics. The concept of pseudofiniteness was first intro-
duced by J. Ax to show the solvability of the theory of all finite fields [1].
Subsequently, the theory of pseudofinite fields received great development
(see, for example, [2], [3]). A large review of the theory of models of finite
and pseudofinite groups is presented in [4]. In [5] the characterization of
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pseudofinite groups is given in terms of Szmielew’s invariants. The results
related to the model theory of finite and pseudofinite rings can be found in
[6]. In |7] the structure of pseudofinite acyclic graphs is studied. In [8] the
authors of this work considered the issues of pseudofiniteness of connected
unars without cycles.

An acts over monoids are a generalization of unars. In this work we study
pseudofinite S-acts. A theorem on the finiteness of an arbitrary cyclic subacts
of S-act is proved under the condition that this S-act is pseudofinite and the
number of types of isomorphisms of finite cyclic S-acts is finite. It is shown
that a coproduct of finite S-acts is pseudofinite. As a consequence, it is shown
that any S-act, where S is a finite group, is pseudofinite.

1 Preliminaries

Let us recall some definitions and facts from act theory and model theory
(see |9, 10, 11]). Throughout this paper S will denote a monoid with identity
1. An algebraic system (A; s)seg of the language Lg = {s | s € S} consisting
of unary operation symbols is a (left) S-act if s1(s2a) = (s152)a and la = a
for all s1,s2 € S and a € A. An S-act (A; s)scg is denoted by gA. An S-act
sAis called cyclic if there exists a € A such that A = {sa | s € S}. The cyclic
act that generated by a is denoted by gSa. Elements z,y of an S-act gA are
called connected (denoted by x ~ y) if there exist n € w, ag,...,a, € A,
$1,...,8, € S such that x = ag, y = a,, and a; = s;a;—1 or a;—1 = s;a;.
An S-act gA is called connected if we have © ~ y for any x,y € gA. It is
easy to check that ~ is a congruence relation on the S-act gA. The classes of
this relation are called connected components of the S-act gA. A coproduct
of S-acts gA; is a disjunctive union of this S-acts. The coproduct of S-acts
sA; is denoted by [] s4;. It is known (see [9]) that every S-act gA can be

i€l
uniquely represented as a coproduct of connected components.

A structure 9 of the language L is pseudofinite if any sentence of language
L true in 90 is true in some finite of language L.

If gA is an S-act, then writing @ € A means that ay,...,a, € A, where
a={ai,...,an). If @ = (uq,...,uy,), then I(a) will denote the length of the
tuple @ and the notation v € @ means that v is an element of the tuple .

2 Pseudofiniteness of a coproduct of finite S-acts

Lemma 1. Let sA = [],..
connected components of gA,

sAq, K be an infinite ordinal, gAy be the

sDg =[] s4a (B <5),

a<f

sD = H sDg/F),

B<k
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where F is an ultrafilter on k containing a Fréchet filter, i.e. filter {a € K |
|k \ al < rK}. For any a € A, by a’ we denote an element of [[4c, Dg such
that o' (o) = a if a > ag, and a'(a) is an arbitrary element of Dy, if @ < g,
for some ao < K; by A we denote a set {a'/F | a € A}. Then sA = gA and
sA <

Proof The map 6 : A — A such that 6(a) = d’/F is an isomorphism from gA
to gA, so gA = gA. We show that 5[145 Let n € w, & = (x1,...,%y),
a = {ay,...,an) € A, @ = (a}/F,...,ad,/F > € A, ®(Z) be a formula of
language Lg, Lg be a language of formu d(z), sA }* ®(a’). It is necessary
to prove that ¢D | ®(a@').

For an arbitrary formula ¥(Z) of a language L we will use standard
notation: (¥(z))! = \I'(:i'), (¥(z))° = —W(z). For m € w, let E™ denote
theset {e | e: (S")?x{1,...,m}% = {0,1}}; for e € B let U (z1,...,2m)
denote the formula A(; jeq1, . my2 A, He(sy? 2 (s = ta;)=((50,0)),

Since §~! is an isomorphism from gA to gA, then g4 = ®(a). In addition,
®(z) = ¢'(Z), where

'(z) = Vi3 .. VyeTz ) Te(2,9, 2),
eek
7=, ur), 2= (21,...,2), E C E™t2%) We can assume that ®(7) =
®'(z). Since sA = ®(a), then there are functions f; : A - A (1 < i < k)
such that

SAEYY . ue \ We@un, -y i), fr(yns o )
eck

For an arbitrary b = (b1,...,by) € A there is unique e € E(+2k) gych
that gA |= U, (a@,b1,..., by, fi(b1),..., fr(bi,. .., bk)). Since the set E(+2)
is finite, then there is a finite number of different & , ..., & such that for any
¢ € A there is b; € {by,...,by}, satisfying the equality e; = gp,- We denote
the set {b1,...by} by M. For |l|-element set J = {j1,...,51} € {1,...,k},
j€{l,...,k} and arbitrary ¢ = (c1,...,cx) € A, we introduce some more
notations:

d ={c,...c5),
Kg] = {(aj,,..., ;) € k! |dce AVje J (f;(@ ) € Ao, €5 = c2)}-

Consider an S-act gD,,, where ag € &, such that a1, ...,a, € D,, and for
any b€ M, J = {j1,...,51} € {1,...,k} (I = |J|) the following conditions
are satisfied:

(1) if |Kl§]| > p, where p = [ - (n+ 2k — 1), then (SAO‘al'l"”’SA“JI‘z)’ ce

(sA, r yeoey SALP ) are [-tuples of the connected components of S-act sDq,
for some dliferent (ot ]1,.:]., aj), .. ,(a?l,l...,ai) € K/;
(2) if |K;| <pand K} = {(« ]1,...,ajl),...,(afl,..., Jz)} then

(SAal 7"‘7SA051. )"")(SAQP "")SAQP)
J1 Ji J1 J1
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are [-tuples of the connected components of S-act gDq,-
Let a > ap. Then Dy, € Do. We show that sD, = ®(a). For this we
construct functions g¢; : D!, — D, (1 < i < k) such that

SDa |: \v/yl - Yk \/ \Ile(aaylw"?ykagl(yl)a"'7gk(yla'-->yk))'
eelk

Let ¢ = (c1,...,ci) € Dy. By the definition of ez, we have

sAE VY. (a,c1,... ¢k, fi(cr), ..o frlcr, ..o ck))-
By the definition of the set M, there exists b € M such that g = ez Let
J={je{1,....k} | f;(¢) € Dy}. If J =@, then
sDa Ve (@ e, ens filen), .. fu(en, o)
and we set g;(¢') = fi(¢") for all i, 1 <i < k.
Suppose that J = {j1,..., 5} and J # @. Then in the formula V., (z, 7, Z)
there is no subformulas of the form (sz; = tu)!, where s,t € 5, j € J, and

wefx;lie{l,...,n}}U{yi |ie{1,...;k}}U{z|ie{l,....,k}\ J}.
It |Kl—;]] < p and Kg] = {(a}l,...,a}l),...,(a?l,... o)}, then by (2),

»
(sAgt 55401 )5, (8Aue ..., 5A,p ) are [-tuples of the connected com-
J1 1 J1 Ji ) )
ponents of S-act gDq,, hence there is (o, ...,aj) € Kt';] such that f;(¢) €

A,i € D, for all j € J, contradiction.
J
Therefore \Kg]\ > p, wherep=1-(n+2k—1). By (1), (s441 ,.--,5 4,1 ),
i 7l
oy (sAgp 5. .., 5A,r ) are I-tuples of the connected components of S-act
J1 N
5D,, where (04]1-1, o ozjl-l), o (a?l, . ,ai) are the different elements of Kg].
Then there is (aj,,..., ;) € {(a],...,aj),..., (o ,...,af)} such that
sAq. U...U SA% does not contain elements from the set
{a;|ie{1,....,n}YU{c; |ie{1,....k}}U{fi(&)|ic{1,...,k}\ J}.
By definition of Kli)], I-tuple (ay,...,q; ) corresponds to d € A such that
eg=¢pand f;(d) € Ag, for all j € J. Since in the formula V., (Z, 7, Z) there
is no subformulas of the form (sz; = tu)!, where s,t € S', j € J,
we{r;lie{l,...,n}}U{yi|ie{l,....k}}U{z |ie{l,....k}\ J}

and

(1]'1

sAE Y (a,dy, ... dg,g1(d1), ..., gk(d1, ... dL)),
then
sDao | Ve, (a,c1,. . cp,91(c1)5 -5 gr(ers - cr)),
where ¢;(¢") = f;(¢") if i € J, and gl(é") = f;(dV) ifie€ J.
Thus, we construct functions g¢; : D!, — D, (1 <1i < k) such that

sDo =y ye \ el@yn, -y 0101, (W1, Uk))-
eek
So sD, = ®(a) for any a > «agp. Since the ultrafilter F' contains Fréchet
filter, then by Log’s Theorem gD = ®(a’). O
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Corollary 1. Let A = [],., sAq, K be an infinite ordinal, A, be the
connected components of sA, ® be a sentence of language Lg, and sA =
®. Then there is a finite set {sB,...,sBm} C {sda | @ < K} such that
sBiU...UgBn, ):(I),

Proof. Let the conditions of Corollary be satisfied. We will use the notation
introduced in the proof of Lemma 1. As in Lemma 1, we can assume that

O =V 3a .. Vs \/ (5, 2),
eek

where § = (y1,...,ur), 2 = (21,...,2k), E C E®®_ As the desired S-act
sB1U...UgB,, we take an S-act gDj,, constructed in the proof of Lemma
1 for n =0. [l

Theorem 1 follows directly from Corollary 1.
Theorem 1. Any coproduct of finite S-acts is a pseudofinite S-act.
Since any S-act over a group is a cyclic S-act, we get
Corollary 2. Any S-act, where S is a finite group, is a pseudofinite S-act.

In [12], there are the examples of connected infinite pseudofinite and non-
pseudofinite S-acts over a finite monoid S.
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