СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ
 Siberian Electronic Mathematical Reports
 http://semr.math.nsc.ru
 ISSN 1813-3304

Vol. 21, No. 1, pp. 293-306 (2024)
УДК 514.7
https://doi.org/10.33048/semi.2024.21.022
MSC 53E99, 58C40

FIRST p-STEKLOV EIGENVALUE UNDER GEODESIC CURVATURE FLOW

A. SAHA ${ }^{(D)}$, S. AZAMI ${ }^{(D)}$ AND S. K. HUI ${ }^{(D)}$

Communicated by I.A. Dynnikov

Abstract

We study the first nonzero p-Steklov eigenvalue on a two-dimensional compact Riemannian manifold with a smooth boundary along the geodesic curvature flow. We prove that the first nonzero p-Steklov eigenvalue is nondecreasing if the initial metric has positive geodesic curvature on boundary ∂M and Gaussian curvature is identically equal to zero in M along the un-normalized geodesic curvature flow. An eigenvalue estimation is also obtained along the normalized geodesic curvature flow.

Keywords: p-Steklov eigenvalue, geodesic curvature, geodesic curvature flow.

1 Introduction

Let $\left(M^{n}, g\right)$ be a compact Riemannian manifold of dimension n with smooth boundary ∂M. For $u \in C^{\infty}(M)$, we consider the following p-Steklov

[^0]eigenvalue problem
\[

$$
\begin{align*}
\Delta_{p} u & =0, \quad \text { in } M \\
|\nabla u|^{p-2} \frac{\partial u}{\partial \nu} & =\lambda|u|^{p-2} u, \quad \text { on } \partial M \tag{1}
\end{align*}
$$
\]

where $\Delta_{p} u=\nabla\left(|\nabla u|^{p-2} \nabla u\right), p \in(1, \infty)$, is the p-Laplace operator and $\frac{\partial u}{\partial \nu}$ is the outer normal derivative of u. The above problem reduces to the classical Steklov eigenvalue problem when $p=2$. For the p-Steklov eigenvalue problem [17, 18], there is a sequence of nonnegative eigenvalues

$$
0 \leq \lambda_{1}(p) \leq \lambda_{2}(p) \leq \lambda_{3}(p) \leq \cdots
$$

The operator Δ_{p} is conformally covariant [6], i.e., functions which are p harmonic with respect to g are also p-harmonic with respect to \tilde{g} and vice versa, where $\tilde{g}=e^{u} g$ is a conformal metric. Variational formula for the first nonzero p-Steklov eigenvalue $\lambda_{1}(p)$ is given by

$$
\begin{equation*}
\lambda_{1}(p)=\inf \left\{\frac{\int_{M}\left|\nabla_{g} u(t)\right|^{p} d A_{g}}{\int_{\partial M}|u(t)|^{p} d S_{g}}: 0 \neq u \in C^{\infty}(M), \int_{\partial M}|u(t)|^{p-2} u(t) d S_{g}=0\right\} \tag{2}
\end{equation*}
$$

where $d A_{g}$ and $d S_{g}$ are the measures on M and ∂M respectively with respect to the metric g.

Definition 1. A Riemannian metric on a two-dimensional manifold is called a flat metric if its Gaussian curvature is identically equal to zero.
Definition 2. A two-dimensional Riemannian manifold with flat metric is called a flat Riemannian surface.

Throughout the paper we consider $\left(M, g_{0}\right)$ is a compact flat Riemannian surface with a smooth boundary ∂M.

In determining geometry and topology of a Riemannian manifold, the study of eigenvalue of geometric operators plays a crucial role. Perelman [13] proved that the first eigenvalue of $-4 \Delta+R$, where R is the scalar curvature, is nondecreasing along the Ricci flow. After that eigenvalues of different geometric operators on a Riemannian manifold evolves by geometric flows were studied by many authors, for instance see $[4,5,8,14,15,16]$. Studying geometric flows is also an active area of research in geometry. Osgood, Phillips and Sarnak [12] proved the existence of a conformal metric with Gaussian curvature identically equal to zero in M and constant geodesic curvature on ∂M. In [2, 3], Brendle studied geodesic curvature flow on a surface with boundary. To study more results related to prescribing geodesic curvature, one can see [1, 7, 19]. Recently in [9], Ho and Koo studied the first nonzero Steklov eigenvalue on a compact Riemannian surface with a smooth boundary along the geodesic curvature flow. In [10], the so called canonical deformation is introduced. The canonical deformation applies to any smooth simply connected (probably multi-sheet) planar domain regardless to the geodesic curvature of the boundary. Given such a domain Ω, let $\Omega_{t}(t \in$
$[0, \infty)$) be the canonical deformation of the domain and $\zeta_{\Omega_{t}}(s)$, the Steklov zeta-function of Ω_{t}. The main result of the paper is that $\zeta_{\Omega_{t}}(s)$ does not increase in t for any real s. The domain Ω_{t} converges to the round disk of the same perimeter as Ω when $t \rightarrow \infty$ in the C^{∞} topology.

In section 2 , we study the first nonzero p-Steklov eigenvalue along the un-normalized geodesic curvature flow and proved that the first nonzero p Steklov eigenvalue is nondecreasing along the flow if the initial metric has positive geodesic curvature on ∂M and Gaussian curvature is identically equal to zero in M. In section 3 , we derive an eigenvalue estimation of the first nonzero p-Steklov eigenvalue along the normalized geodesic curvature flow.

$2 \quad p$-Steklov eigenvalue along un-normalized geodesic curvature flow

Let $\left(M, g_{0}\right)$ be a compact flat Riemannian surface with smooth boundary ∂M. The un-normalized geodesic curvature flow [9] is defined by

$$
\begin{align*}
& \frac{\partial}{\partial t} g(t)=-2 k_{g(t)} g(t) \text { on } \partial M \tag{3}\\
& K_{g(t)}=0 \text { in } M, g(0)=g_{0}
\end{align*}
$$

where $k_{g(t)}$ is the geodesic curvature of ∂M and $K_{g(t)}$ is the Gaussian curvature of M.

Following [9], clearly for a general metric $g(t)=e^{2 u(t)} g_{0}$, conformal to g_{0}, the un-normalized geodesic curvature flow (3) reduces to

$$
\begin{equation*}
\frac{\partial}{\partial t} u(t)=-k_{g(t)} \quad \text { on } \quad \partial M \tag{4}
\end{equation*}
$$

Lemma 1. [9] Along the un-normalized geodesic curvature flow, we have

$$
\begin{equation*}
\min _{\partial M} k_{g(t)} \geq \min _{\partial M} k_{g_{0}} . \tag{5}
\end{equation*}
$$

Lemma 2. Let $g(t), t \in[0, T)$ be a solution of the un-normalized geodesic curvature flow (3) and $\lambda(t)$ be the corresponding first nonzero p-Steklov eigenvalue. Then for any $t_{2} \geq t_{1}, t_{1}, t_{2} \in[0, T)$, we have

$$
\begin{equation*}
\lambda\left(t_{2}\right) \geq \lambda\left(t_{1}\right)+p \int_{t_{1}}^{t_{2}} \int_{\partial M}\left|\nabla_{g(t)} f(t)\right|^{p-2} \frac{\partial f(t)}{\partial t} \frac{\partial f(t)}{\partial \nu_{g(t)}} d S_{g(t)} d t \tag{6}
\end{equation*}
$$

where $f(t)$ is a smooth function on $M \times[0, T)$ satisfying
$\Delta_{p, g(t)} f(t)=0$ in $M, \int_{\partial M}|f(t)|^{p-2} f(t) d S_{g(t)}=0$ and $\int_{\partial M}|f(t)|^{p} d S_{g(t)}=1$,
such that $f\left(t_{2}\right)$ is the corresponding eigenfunction of $\lambda\left(t_{2}\right)$.

Proof. At time $t=t_{2}, f\left(t_{2}\right)$ is the corresponding eigenfunction of the first p-Steklov eigenvalue $\lambda\left(t_{2}\right)$. Now, we consider a smooth function on ∂M by

$$
\begin{equation*}
h(t)=\left(\frac{e^{u\left(t_{2}\right)}}{e^{u(t)}}\right)^{\frac{1}{p-1}} f\left(t_{2}\right), \tag{8}
\end{equation*}
$$

where $u(t)$ is the solution of (4). We normalized this function on ∂M by

$$
\begin{equation*}
f(t)=\frac{h(t)}{\left(\int_{\partial M}|h(t)|^{p} d S_{g(t)}\right)^{\frac{1}{p}}} . \tag{9}
\end{equation*}
$$

Extend this function to a p-harmonic function in M with respect to $g(t)$, which we shall continue to denote as $f(t)$ (see [11]). Now, we have

$$
\begin{aligned}
& \int_{\partial M}|f(t)|^{p-2} f(t) d S_{g(t)} \\
& =\frac{1}{\left(\int_{\partial M}|h(t)|^{p} d S_{g(t)}\right)^{1-\frac{1}{p}}} \int_{\partial M}|h(t)|^{p-2} h(t) d S_{g(t)} \\
& =\frac{1}{\left(\int_{\partial M}|h(t)|^{p} d S_{g(t)}\right)^{1-\frac{1}{p}}} \int_{\partial M}\left(\frac{e^{u\left(t_{2}\right)}}{e^{u(t)}}\right)\left|f\left(t_{2}\right)\right|^{p-2} f\left(t_{2}\right) e^{u(t)} d S_{g_{0}} \\
& =\frac{1}{\left(\int_{\partial M}|h(t)|^{p} d S_{g(t)}\right)^{1-\frac{1}{p}}} \int_{\partial M}\left|f\left(t_{2}\right)\right|^{p-2} f\left(t_{2}\right) d S_{g\left(t_{2}\right)}=0,
\end{aligned}
$$

and

$$
\int_{\partial M}|f(t)|^{p} d S_{g(t)}=\frac{1}{\left(\int_{\partial M}|h(t)|^{p} d S_{g(t)}\right)} \int_{\partial M}|h(t)|^{p} d S_{g(t)}=1 .
$$

Set

$$
\begin{equation*}
G(g(t), f(t))=\int_{M}\left|\nabla_{g(t)} f(t)\right|^{p} d A_{g(t)} \tag{10}
\end{equation*}
$$

which is a smooth function on t. Taking derivative with respect to t, we obtain

$$
\begin{aligned}
\mathcal{G}(g(t), f(t)) & :=\frac{d}{d t} G(g(t), f(t))=\int_{M} \frac{\partial}{\partial t}\left|\nabla_{g(t)} f(t)\right|^{p} d A_{g(t)} \\
& =p \int_{M}\left|\nabla_{g(t)} f(t)\right|^{p-2}\left\langle\nabla_{g(t)} f(t), \nabla_{g(t)} f_{t}(t)\right\rangle d A_{g(t)} .
\end{aligned}
$$

Now using the Stokes' theorem, we have

$$
\frac{d}{d t} G(g(t), f(t))=p \int_{\partial M}\left|\nabla_{g(t)} f(t)\right|^{p-2} \frac{\partial f(t)}{\partial t} \frac{\partial f(t)}{\partial \nu_{g(t)}} d S_{g(t)}
$$

Using the definition of $\mathcal{G}(g(t), f(t))$, we get

$$
\begin{equation*}
G\left(g\left(t_{2}\right), f\left(t_{2}\right)\right)-G\left(g\left(t_{1}\right), f\left(t_{1}\right)\right)=\int_{t_{1}}^{t_{2}} \mathcal{G}(g(t), f(t)) d t \tag{11}
\end{equation*}
$$

Since $f\left(t_{2}\right)$ is the corresponding eigenfunction of the p-Steklov eigenvalue $\lambda\left(t_{2}\right)$, we deduce

$$
\begin{equation*}
G\left(g\left(t_{2}\right), f\left(t_{2}\right)\right)=\lambda\left(t_{2}\right) \int_{\partial M}\left|f\left(t_{2}\right)\right|^{p} d S_{g\left(t_{2}\right)}=\lambda\left(t_{2}\right) \tag{12}
\end{equation*}
$$

Again from the variational formula for the first p-Stekolv eigenvalue, we infer

$$
\begin{equation*}
G\left(g\left(t_{1}\right), f\left(t_{1}\right)\right) \geq \lambda\left(t_{1}\right) \int_{\partial M}\left|f\left(t_{1}\right)\right|^{p} d S_{g\left(t_{1}\right)}=\lambda\left(t_{1}\right) \tag{13}
\end{equation*}
$$

Finally using (12) and (13) in (11), we have (6).
Theorem 1. Under the un-normalized geodesic curvature flow on a compact Riemannian manifold M with smooth boundary ∂M, the first p-Steklov eigenvalue is nondecreasing if the initial metric g_{0} has positive geodesic curvature on ∂M and the Gaussian curvature is identically equal to zero in M.

Proof. Since $f\left(t_{2}\right)$ is the corresponding eigenfunction of the p-Steklov eigenvalue $\lambda\left(t_{2}\right)$, we have

$$
\begin{align*}
\int_{\partial M}\left|\nabla_{g\left(t_{2}\right)} f\left(t_{2}\right)\right|^{p-2} \frac{\partial f\left(t_{2}\right)}{\partial t} \frac{\partial f\left(t_{2}\right)}{\partial \nu_{g\left(t_{2}\right)}} & d S_{g\left(t_{2}\right)} \\
& =\lambda\left(t_{2}\right) \int_{\partial M}\left|f\left(t_{2}\right)\right|^{p-2} f\left(t_{2}\right) \frac{\partial f\left(t_{2}\right)}{\partial t} d S_{g\left(t_{2}\right)} \tag{14}
\end{align*}
$$

Differentiating $\int_{\partial M}|f(t)|^{p} d S_{g(t)}=1$, we get

$$
\begin{align*}
p \int_{\partial M}|f(t)|^{p-2} f(t) \frac{\partial f(t)}{\partial t} d S_{g(t)} & =-\int_{\partial M}|f(t)|^{p} \frac{\partial}{\partial t}\left(e^{u(t)} d S_{g(0)}\right) \\
& =-\int_{\partial M}|f(t)|^{p} \frac{\partial u(t)}{\partial t} d S_{g(t)} \\
& =\int_{\partial M}|f(t)|^{p} k_{g(t)} d S_{g(t)} \\
& \geq\left(\min _{\partial M} k_{g(0)}\right) \int_{\partial M}|f(t)|^{p} d S_{g}(t)=\min _{\partial M} k_{g(0)} \tag{15}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\int_{\partial M}\left|\nabla_{g\left(t_{2}\right)} f\left(t_{2}\right)\right|^{p-2} \frac{\partial f\left(t_{2}\right)}{\partial t} \frac{\partial f\left(t_{2}\right)}{\partial \nu_{g\left(t_{2}\right)}} d S_{g\left(t_{2}\right)} \geq \frac{\lambda\left(t_{2}\right)}{p}\left(\min _{\partial M} k_{g(0)}\right) \tag{16}
\end{equation*}
$$

It is clear by assumption that $\min _{\partial M} k_{g(0)}>0$, hence for t sufficiently close to t_{2}, we deduce

$$
\begin{equation*}
\int_{\partial M}\left|\nabla_{g(t)} f(t)\right|^{p-2} \frac{\partial f(t)}{\partial t} \frac{\partial f(t)}{\partial \nu_{g(t)}} d S_{g(t)} \geq 0 \tag{17}
\end{equation*}
$$

Hence using Lemma 2, we can conclude that $\lambda\left(t_{2}\right) \geq \lambda\left(t_{1}\right)$ for any $t_{1}\left(<t_{2}\right)$ sufficiently close to t_{2}. Since t_{2} is arbitrary, hence the proof is complete.

$3 p$-Steklov eigenvalue along normalized geodesic curvature flow

With the initial metric g_{0}, in this section we consider the following normalized geodesic curvature flow [9] defined by

$$
\begin{array}{r}
\frac{\partial}{\partial t} g(t)=-2\left(k_{g(t)}-\bar{k}_{g(t)}\right) g(t) \text { on } \partial M \tag{18}\\
K_{g(t)}=0 \text { in } M, \quad g(0)=g_{0}
\end{array}
$$

where $k_{g(t)}$ and $K_{g(t)}$ are defined as in (3). Here $\bar{k}_{g(t)}$ is the average of geodesic curvature on ∂M given by

$$
\begin{equation*}
\bar{k}_{g(t)}=\frac{\int_{\partial M} k_{g(t)} d S_{g(t)}}{\int_{\partial M} d S_{g(t)}} \tag{19}
\end{equation*}
$$

It is proved in [3], the above initial value problem (18) has a solution on a small time interval. Also it is clear form [9], under the conformal change $g(t)=e^{2 u(t)} g_{0}$, the normalized geodesic curvature flow (18) reduces to

$$
\begin{equation*}
\frac{\partial}{\partial t} u(t)=-\left(k_{g(t)}-\bar{k}_{g(t)}\right) \quad \text { on } \quad \partial M \tag{20}
\end{equation*}
$$

Along the normalized geodesic curvature flow

$$
\begin{equation*}
\frac{d}{d t}\left(\int_{\partial M} d S_{g(t)}\right)=-\int_{\partial M}\left(k_{g(t)}-\bar{k}_{g(t)}\right) d S_{g(t)}=0 \tag{21}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\int_{\partial M} d S_{g(t)}=\int_{\partial M} d S_{g_{0}} \text { for all } t \geq 0 \tag{22}
\end{equation*}
$$

Lemma 3. Let $g(t), t \in[0, T)$ be a solution of the normalized geodesic curvature flow (18) and $\lambda(t)$ be the corresponding first nonzero p-Steklov eigenvalue. Then for any $t_{2} \geq t_{1}, t_{1}, t_{2} \in[0, T)$, we have

$$
\begin{equation*}
\lambda\left(t_{2}\right) \geq \lambda\left(t_{1}\right)+p \int_{t_{1}}^{t_{2}} \int_{\partial M}\left|\nabla_{g(t)} f(t)\right|^{p-2} \frac{\partial f(t)}{\partial t} \frac{\partial f(t)}{\partial \nu_{g(t)}} d S_{g(t)} d t \tag{23}
\end{equation*}
$$

where $f(t)$ is a smooth function on $M \times[0, T)$ satisfying
$\Delta_{p, g(t)} f(t)=0$ in $M, \int_{\partial M}|f(t)|^{p-2} f(t) d S_{g(t)}=0$ and $\int_{\partial M}|f(t)|^{p} d S_{g(t)}=1$,
such that $f\left(t_{2}\right)$ is the corresponding eigenfunction of $\lambda\left(t_{2}\right)$.
Proof. The proof is similar as Lemma 2.
Theorem 2. Under the normalized geodesic curvature flow on a compact Riemannian manifold M with smooth boundary ∂M, the first nonzero p Steklov eigenvalue is nondecreasing if for the initial metric $g_{0},\left(\underset{\partial M}{\min } k_{g(t)}-\right.$ $\left.\bar{k}_{g(t)}\right) \geq 0$ on ∂M and Gaussian curvature is identically equal to zero in M.

Proof. Since $f\left(t_{2}\right)$ is the corresponding eigenfunction of the p-Steklov eigenvalue $\lambda\left(t_{2}\right)$, we have

$$
\begin{align*}
& \int_{\partial M}\left|\nabla_{g\left(t_{2}\right)} f\left(t_{2}\right)\right|^{p-2} \frac{\partial f\left(t_{2}\right)}{\partial t} \frac{\partial f\left(t_{2}\right)}{\partial \nu_{g\left(t_{2}\right)}} d S_{g\left(t_{2}\right)} \\
& =\lambda\left(t_{2}\right) \int_{\partial M}\left|f\left(t_{2}\right)\right|^{p-2} f\left(t_{2}\right) \frac{\partial f\left(t_{2}\right)}{\partial t} d S_{g\left(t_{2}\right)} \\
& =-\frac{\lambda\left(t_{2}\right)}{p} \int_{\partial M}\left|f\left(t_{2}\right)\right|^{p} \frac{\partial u\left(t_{2}\right)}{\partial t} d S_{g\left(t_{2}\right)} \\
& =\frac{\lambda\left(t_{2}\right)}{p} \int_{\partial M}\left|f\left(t_{2}\right)\right|^{p}\left(k_{g\left(t_{2}\right)}-\bar{k}_{g\left(t_{2}\right)}\right) d S_{g\left(t_{2}\right)} \\
& \geq \frac{\lambda\left(t_{2}\right)}{p}\left(\min _{\partial M} k_{g\left(t_{2}\right)}-\bar{k}_{g\left(t_{2}\right)}\right) . \tag{25}
\end{align*}
$$

Rest of the proof is same as the method applied in Theorem 1.
Proposition 1. Along the normalized geodesic curvature flow (18), the first nonzero p-Steklov eigenvalue $\lambda(t)$ satisfies

$$
\begin{equation*}
\frac{d}{d t} \log \lambda(t) \geq\left(\min _{\partial M} k_{g(t)}-\bar{k}_{g(t)}\right) \text { for all } t \tag{26}
\end{equation*}
$$

where on the left side, the derivative is in the sense of the liminf of backward difference quotients.

Proof. Using (24) and the fact that $f\left(t_{2}\right)$ is the corresponding eigenfunction of the first nonzero p-Steklov eigenvalue $\lambda\left(t_{2}\right)$, we have

$$
\begin{align*}
& \int_{\partial M}\left|\nabla_{g\left(t_{2}\right)} f\left(t_{2}\right)\right|^{p-2} \frac{\partial f\left(t_{2}\right)}{\partial t} \frac{\partial f\left(t_{2}\right)}{\partial \nu_{g\left(t_{2}\right)}} d S_{g\left(t_{2}\right)} \\
& =\lambda\left(t_{2}\right) \int_{\partial M}\left|f\left(t_{2}\right)\right|^{p-2} f\left(t_{2}\right) \frac{\partial f\left(t_{2}\right)}{\partial t} d S_{g\left(t_{2}\right)} \\
& =-\frac{\lambda\left(t_{2}\right)}{p} \int_{\partial M}\left|f\left(t_{2}\right)\right|^{p} \frac{\partial u\left(t_{2}\right)}{\partial t} d S_{g\left(t_{2}\right)} \\
& =\frac{\lambda\left(t_{2}\right)}{p} \int_{\partial M}\left|f\left(t_{2}\right)\right|^{p}\left(k_{g\left(t_{2}\right)}-\bar{k}_{g\left(t_{2}\right)}\right) d S_{g\left(t_{2}\right)} \\
& \geq \frac{\lambda\left(t_{2}\right)}{p}\left(\min _{\partial M} k_{g\left(t_{2}\right)}-\bar{k}_{g\left(t_{2}\right)}\right) . \tag{27}
\end{align*}
$$

Hence for any $\epsilon>0$, we have that

$$
\begin{equation*}
\int_{\partial M}\left|\nabla_{g(t)} f(t)\right|^{p-2} \frac{\partial f(t)}{\partial t} \frac{\partial f(t)}{\partial \nu_{g(t)}} d S_{g(t)} \geq \frac{\lambda\left(t_{2}\right)}{p}\left(\min _{\partial M} k_{g(t)}-\bar{k}_{g(t)}-\epsilon\right) \tag{28}
\end{equation*}
$$

for t sufficiently closed to t_{2}. Thus the Lemma 3 gives

$$
\begin{equation*}
\lambda\left(t_{2}\right)-\lambda\left(t_{1}\right) \geq \lambda\left(t_{2}\right) \int_{t_{1}}^{t_{2}}\left(\min _{\partial M} k_{g(t)}-\bar{k}_{g(t)}-\epsilon\right) d t \tag{29}
\end{equation*}
$$

for t_{1} sufficiently closed to t_{2} and $t_{2}>t_{1}$. Now dividing the equation (29) by $t_{2}-t_{1}$ and taking $t_{1} \rightarrow t_{2}$, we obtain

$$
\begin{equation*}
\liminf _{t_{1} \rightarrow t_{2}} \frac{\lambda\left(t_{2}\right)-\lambda\left(t_{1}\right)}{t_{2}-t_{1}} \geq \lambda\left(t_{2}\right)\left(\min _{\partial M} k_{g\left(t_{2}\right)}-\bar{k}_{g\left(t_{2}\right)}-\epsilon\right) \tag{30}
\end{equation*}
$$

Using the same argument used (in (2.21), [8]), we can say that

$$
\begin{equation*}
\liminf _{t_{1} \rightarrow t_{2}} \frac{\log \lambda\left(t_{2}\right)-\log \lambda\left(t_{1}\right)}{t_{2}-t_{1}} \geq \frac{1}{\lambda\left(t_{2}\right)} \liminf _{t_{1} \rightarrow t_{2}} \frac{\lambda\left(t_{2}\right)-\lambda\left(t_{1}\right)}{t_{2}-t_{1}} \tag{31}
\end{equation*}
$$

Now (30) and (31) yields

$$
\begin{equation*}
\liminf _{t_{1} \rightarrow t_{2}} \frac{\log \lambda\left(t_{2}\right)-\log \lambda\left(t_{1}\right)}{t_{2}-t_{1}} \geq \min _{\partial M} k_{g\left(t_{2}\right)}-\bar{k}_{g\left(t_{2}\right)}-\epsilon \tag{32}
\end{equation*}
$$

Since ϵ is arbitrary, we have our result.
Lemma 4. Let $g(t), t \in[0, T)$ be a solution of the normalized geodesic curvature flow (18) and $\lambda(t)$ be the corresponding first nonzero p-Steklov eigenvalue. Then for any $t_{2} \geq t_{1}, t_{1}, t_{2} \in[0, T)$, we have

$$
\begin{equation*}
\lambda\left(t_{2}\right) \leq \lambda\left(t_{1}\right)+p \int_{t_{1}}^{t_{2}} \int_{\partial M}\left|\nabla_{g(t)} f(t)\right|^{p-2} \frac{\partial f(t)}{\partial t} \frac{\partial f(t)}{\partial \nu_{g(t)}} d S_{g(t)} d t \tag{33}
\end{equation*}
$$

where $f(t)$ is a smooth function on $M \times[0, T)$ satisfying
$\Delta_{p, g(t)} f(t)=0$ in $M, \int_{\partial M}|f(t)|^{p-2} f(t) d S_{g(t)}=0$ and $\int_{\partial M}|f(t)|^{p} d S_{g(t)}=1$,
such that $f\left(t_{1}\right)$ is the corresponding eigenfunction of $\lambda\left(t_{1}\right)$.
Proof. We define a function on the boundary ∂M of M by

$$
\begin{equation*}
h(t)=\left(\frac{e^{u\left(t_{1}\right)}}{e^{u(t)}}\right)^{\frac{1}{p-1}} f\left(t_{1}\right) \tag{35}
\end{equation*}
$$

where $u(t)$ is the solution of (20). We normalized the function on ∂M by

$$
\begin{equation*}
f(t)=\frac{h(t)}{\left(\int_{\partial M}|h(t)|^{p} d S_{g(t)}\right)^{\frac{1}{p}}} \tag{36}
\end{equation*}
$$

Extend this function to a p-harmonic function in M with respect to $g(t)$, which we shall continue to denote as $f(t)$. Now we have

$$
\begin{aligned}
\int_{\partial M}|f(t)|^{p-2} f(t) d S_{g(t)} & =\frac{1}{\left(\int_{\partial M}|h(t)|^{p} d S_{g(t)}\right)^{1-\frac{1}{p}}} \int_{\partial M}\left|f\left(t_{1}\right)\right|^{p-2} f\left(t_{1}\right) d S_{g\left(t_{1}\right)} \\
& =0
\end{aligned}
$$

and

$$
\int_{\partial M}|f(t)|^{p} d S_{g(t)}=\frac{1}{\left(\int_{\partial M}|h(t)|^{p} d S_{g(t)}\right)} \int_{\partial M}|h(t)|^{p} d S_{g(t)}=1
$$

Set

$$
\begin{equation*}
G(g(t), f(t))=\int_{M}\left|\nabla_{g(t)} f(t)\right|^{p} d A_{g(t)}, \tag{37}
\end{equation*}
$$

which is a smooth function on t. Taking derivative with respect to t, we get

$$
\begin{aligned}
\mathcal{G}(g(t), f(t)) & :=\frac{d}{d t} G(g(t), f(t))=\int_{M} \frac{\partial}{\partial t}\left|\nabla_{g(t)} f(t)\right|^{p} d A_{g(t)} \\
& =p \int_{M}\left|\nabla_{g(t)} f(t)\right|^{p-2}\left\langle\nabla_{g(t)} f(t), \nabla_{g(t)} f_{t}(t)\right\rangle d A_{g(t)}
\end{aligned}
$$

So by using the Stokes' theorem, we obtain

$$
\frac{d}{d t} G(g(t), f(t))=p \int_{\partial M}\left|\nabla_{g(t)} f(t)\right|^{p-2} \frac{\partial f(t)}{\partial t} \frac{\partial f(t)}{\partial \nu_{g(t)}} d S_{g(t)}
$$

Using the definition of $\mathcal{G}(g(t), f(t))$, we deduce

$$
\begin{equation*}
G\left(g\left(t_{2}\right), f\left(t_{2}\right)\right)-G\left(g\left(t_{1}\right), f\left(t_{1}\right)\right)=\int_{t_{1}}^{t_{2}} \mathcal{G}(g(t), f(t)) d t \tag{38}
\end{equation*}
$$

Since $f\left(t_{1}\right)$ is the corresponding eigenfunction of the p-Steklov eigenvalue $\lambda\left(t_{1}\right)$, we conclude

$$
\begin{equation*}
G\left(g\left(t_{1}\right), f\left(t_{1}\right)\right)=\lambda\left(t_{1}\right) \int_{\partial M}\left|f\left(t_{1}\right)\right|^{p} d S_{g\left(t_{1}\right)}=\lambda\left(t_{1}\right) . \tag{39}
\end{equation*}
$$

Again form the variational formula for the first p-Stekolv eigenvalue, we have

$$
\begin{equation*}
G\left(g\left(t_{2}\right), f\left(t_{2}\right)\right) \geq \lambda\left(t_{2}\right) \int_{\partial M}\left|f\left(t_{2}\right)\right|^{p} d S_{g\left(t_{2}\right)}=\lambda\left(t_{2}\right) \tag{40}
\end{equation*}
$$

Finally using (39) and (40) in (38), we arrive at (33).
Proposition 2. Under the normalized geodesic curvature flow the first nonzero p-Steklov eigenvalue $\lambda(t)$ satisfies

$$
\begin{equation*}
\frac{d}{d t} \log \lambda(t) \leq\left(\max _{\partial M} k_{g(t)}-\bar{k}_{g(t)}\right) \quad \text { for all } t \tag{41}
\end{equation*}
$$

where on the left hand side, the derivative is in the sense of the limsup of backward difference quotients.

Proof. By using (34) and since $f\left(t_{1}\right)$ is the corresponding eigenfunction of the first nonzero p-Steklov eigenvalue $\lambda\left(t_{1}\right)$, we have

$$
\begin{align*}
& \int_{\partial M}\left|\nabla_{g\left(t_{1}\right)} f\left(t_{1}\right)\right|^{p-2} \frac{\partial f\left(t_{1}\right)}{\partial t} \frac{\partial f\left(t_{1}\right)}{\partial \nu_{g\left(t_{1}\right)}} d S_{g\left(t_{1}\right)} \\
& =\lambda\left(t_{1}\right) \int_{\partial M}\left|f\left(t_{1}\right)\right|^{p-2} f\left(t_{1}\right) \frac{\partial f\left(t_{1}\right)}{\partial t} d S_{g\left(t_{1}\right)} \\
& =-\frac{\lambda\left(t_{1}\right)}{p} \int_{\partial M}\left|f\left(t_{1}\right)\right|^{p} \frac{\partial u\left(t_{1}\right)}{\partial t} d S_{g\left(t_{1}\right)} \\
& =\frac{\lambda\left(t_{1}\right)}{p} \int_{\partial M}\left|f\left(t_{1}\right)\right|^{p}\left(k_{g\left(t_{1}\right)}-\bar{k}_{g\left(t_{1}\right)}\right) d S_{g\left(t_{1}\right)} \\
& \leq \frac{\lambda\left(t_{1}\right)}{p}\left(\max _{\partial M} k_{g\left(t_{1}\right)}-\bar{k}_{g\left(t_{1}\right)}\right) . \tag{42}
\end{align*}
$$

Thus, for any $\epsilon>0$ we get

$$
\begin{equation*}
\int_{\partial M}\left|\nabla_{g(t)}\right|^{p-2} \frac{\partial f(t)}{\partial t} \frac{\partial f(t)}{\partial \nu_{g(t)}} d S_{g(t)} \leq \frac{\lambda\left(t_{1}\right)}{p}\left(\max _{\partial M} k_{g(t)}-\bar{k}_{g(t)}+\epsilon\right) \tag{43}
\end{equation*}
$$

for t sufficiently closed to t_{1} and $t_{2}>t_{1}$. Hence by using (33), we find

$$
\begin{equation*}
\lambda\left(t_{2}\right)-\lambda\left(t_{1}\right) \leq \lambda\left(t_{1}\right) \int_{t_{1}}^{t_{2}}\left(\max _{\partial M} k_{g(t)}-\bar{k}_{g(t)}+\epsilon\right), \tag{44}
\end{equation*}
$$

for t_{1} sufficiently closed to t_{2}. Dividing both sides by $t_{2}-t_{1}$ and taking $t_{2} \rightarrow t_{1}$, it follows

$$
\begin{equation*}
\limsup _{t_{2} \rightarrow t_{1}} \frac{\lambda\left(t_{2}\right)-\lambda\left(t_{1}\right)}{t_{2}-t_{1}} \leq \lambda\left(t_{1}\right)\left(\max _{\partial M} k_{g\left(t_{1}\right)}-\bar{k}_{g\left(t_{1}\right)}+\epsilon\right) . \tag{45}
\end{equation*}
$$

By similar argument used (in (2.21), [8]), we get

$$
\begin{equation*}
\limsup _{t_{2} \rightarrow t_{1}} \frac{\log \lambda\left(t_{2}\right)-\log \lambda\left(t_{1}\right)}{t_{2}-t_{1}} \leq \max _{\partial M} k_{g\left(t_{1}\right)}-\bar{k}_{g\left(t_{1}\right)}+\epsilon . \tag{46}
\end{equation*}
$$

Since $\epsilon>0$ is arbitrary, we have (41).
Theorem 3. Assume that for a initial metric g_{0}, Gaussian curvature is identically equal to zero in M and ∂M has negative geodesic curvature. Also g_{c} is the metric conformal to g_{0} with respect to which the Gaussian curvature identically equal to zero in M and constant geodesic curvature on ∂M such that the lengths of ∂M of g_{c} and g_{0} are the same. If $\lambda\left(g_{c}\right)$ and $\lambda\left(g_{0}\right)$ are the first nonzero p-Steklov eigenvalue of g_{c} and g_{0} respectively, then

$$
\begin{equation*}
\left(1-\frac{\min _{\partial M} k_{g_{0}}}{\max _{\partial M} k_{g_{0}}}\right) \leq \log \frac{\lambda\left(g_{c}\right)}{\lambda\left(g_{0}\right)} \leq-\left(1-\frac{\min _{\partial M} k_{g_{0}}}{\max _{\partial M} k_{g_{0}}}\right) . \tag{47}
\end{equation*}
$$

Proof. It was proved in [3] that $g \rightarrow g_{\infty}$ as $t \rightarrow \infty$ along the normalized geodesic curvature flow (18) such that g_{∞} is conformal to g_{0} and has constant
geodesic curvature on ∂M and Gaussian curvature is identically equal to zero in M. Now from (22), we have

$$
\begin{equation*}
\int_{\partial M} d S_{g_{\infty}}=\int_{\partial M} d S_{g_{0}} \tag{48}
\end{equation*}
$$

By assumption it is given that

$$
\begin{equation*}
\int_{\partial M} d S_{g_{c}}=\int_{\partial M} d S_{g_{0}} . \tag{49}
\end{equation*}
$$

From (48) and (49), we get

$$
\begin{equation*}
\int_{\partial M} d S_{g_{\infty}}=\int_{\partial M} d S_{g_{c}} . \tag{50}
\end{equation*}
$$

Now from Gauss-Bonnet theorem, it follows that

$$
\begin{equation*}
k_{g_{\infty}} \int_{\partial M} d S_{g_{\infty}}=\int_{M} K_{g_{\infty}} d A_{g_{\infty}}+\int_{\partial M} k_{g_{\infty}} d S_{g_{\infty}}=2 \pi \chi(M) \tag{51}
\end{equation*}
$$

and

$$
\begin{equation*}
k_{g_{c}} \int_{\partial M} d S_{g_{c}}=\int_{M} K_{g_{c}} d A_{g_{c}}+\int_{\partial M} k_{g_{c}} d S_{g_{c}}=2 \pi \chi(M), \tag{52}
\end{equation*}
$$

where $\chi(M)$ is the Euler characteristic on M. It is given that for the initial metric g_{0}, M has Gaussian curvature which is identically equal to zero and ∂M has negative geodesic curvature, so it is clear that the Euler characteristic function is negative. So using (50), we find

$$
\begin{equation*}
k_{g_{\infty}}=k_{g_{c}}<0 \tag{53}
\end{equation*}
$$

If $g(t)=e^{2 u(t)} g_{0}$ then we obtain

$$
\begin{align*}
-\Delta_{g_{0}} u+k_{g_{0}} & =k_{g} e^{2 u} \quad \text { in } \quad M \tag{54}\\
\frac{\partial u}{\partial \nu_{g_{0}}}+k_{g_{0}} & =k_{g} e^{u} \quad \text { on } \quad \partial M \tag{55}
\end{align*}
$$

where $\frac{\partial}{\partial \nu_{g_{0}}}$ is the normal derivative with respect to g_{0}.
From the Gauss-Bonnet theorem, (18), (5), and (22), we have

$$
\begin{equation*}
\bar{k}_{g(t)}=\frac{\int_{M} K_{g(t)} d A_{g(t)}+\int_{\partial M} k_{g(t)} d S_{g(t)}}{\int_{\partial M} d S_{g(t)}}=\frac{2 \pi \chi(M)}{\int_{\partial M} d S_{g(t)}} \text { for } t \geq 0 . \tag{56}
\end{equation*}
$$

Hence g_{c} and g_{∞} are conformal to g_{0}. With respect to all of them Gaussian curvature is identically equal to zero, if $g_{c}=e^{2 v} g_{0}$ then we infer

$$
\left\{\begin{array} { l }
{ \Delta _ { g _ { 0 } } u = 0 \text { in } M , } \\
{ \frac { \partial u } { \partial \nu _ { g _ { 0 } } } + k _ { g _ { 0 } } = k _ { \infty } e ^ { u } \text { on } \partial M , }
\end{array} \text { and } \left\{\begin{array}{l}
\Delta_{g_{0}} v=0 \text { in } M, \\
\frac{\partial v}{\partial \nu_{g_{0}}}+k_{g_{0}}=k_{g_{c}} e^{v} \text { on } \partial M .
\end{array}\right.\right.
$$

Since $k_{\infty}=k_{g_{0}}$, we obtain

$$
\begin{aligned}
& \Delta_{g_{0}}(u-v)=0 \text { in } M, \\
& \frac{\partial(u-v)}{\partial \nu_{g_{0}}}=k_{g_{c}}\left(e^{u}-e^{v}\right) \text { on } \partial M .
\end{aligned}
$$

Thus

$$
\begin{equation*}
(u-v) \frac{\partial(u-v)}{\partial \nu_{g_{0}}}=k_{g_{c}}\left(e^{u}-e^{v}\right)(u-v) \text { on } \partial M \tag{57}
\end{equation*}
$$

Integrating of above equation over ∂M with respect to g_{0}, we infer

$$
\begin{align*}
0 & \leq \int_{M}\left|\nabla_{g_{0}}(u-v)\right|^{2} d A_{g_{0}} \tag{58}\\
& =\int_{\partial M}(u-v) \frac{\partial(u-v)}{\partial \nu_{g_{0}}} d S_{g_{0}} \\
& =k_{g_{c}} \int_{\partial M}\left(e^{u}-e^{v}\right)(u-v) d S_{g_{0}}
\end{align*}
$$

On the other hand $k_{g_{c}}<0$ and $\left(e^{u}-e^{v}\right)(u-v) \geq 0$, then the left hand side of (58) is non positive. Therefore $\int_{\partial M}\left(e^{u}-e^{v}\right)(u-v) d S_{g_{0}}=0$ which yields $u=v$ on ∂M and since $u-v$ is harmonic in M, we get $u=v$ in M. It implies that $g_{c}=g_{\infty}$.

Again from Lemma 2.9 of [9], we have

$$
\begin{equation*}
k_{g(t)} \leq \bar{k}_{g_{0}}+\left(\max _{\partial M} k_{g_{0}}-\min _{\partial M} k_{g_{0}}\right)+\left(\max _{\partial M} k_{g_{0}}\right) \int_{0}^{t}\left(\max _{\partial M} k_{g_{(\tau)}}-\bar{k}_{g_{(\tau)}}\right) d \tau \tag{59}
\end{equation*}
$$

It follows from (56) and (59) that

$$
\begin{align*}
& \left(\max _{\partial M} k_{g_{t}}-\bar{k}_{g_{t}}\right)-\left(\max _{\partial M} k_{g_{0}}-\min _{\partial M} k_{g_{0}}\right) \tag{60}\\
& \leq\left(\max _{\partial M} k_{g_{0}}\right) \int_{0}^{t}\left(\max _{\partial M} k_{g_{(\tau)}}-\bar{k}_{g_{(\tau)}}\right) d \tau
\end{align*}
$$

If $t \rightarrow \infty$, then

$$
\begin{equation*}
-\left(1-\frac{\min _{\partial M} k_{g_{0}}}{\max _{\partial M} k_{g_{0}}}\right) \geq \int_{0}^{\infty}\left(\max _{\partial M} k_{g_{(\tau)}}-\bar{k}_{g_{(\tau)}}\right) d \tau \tag{61}
\end{equation*}
$$

Integrating (41) with respect to t on interval $[0, \infty)$ and using (61) and $g_{c}=g_{\infty}$, we conclude

$$
\begin{equation*}
\log \frac{\lambda\left(g_{c}\right)}{\lambda\left(g_{0}\right)}=\log \frac{\lambda\left(g_{\infty}\right)}{\lambda\left(g_{0}\right)} \leq \int_{0}^{\infty}\left(\max _{\partial M} k_{g_{(\tau)}}-\bar{k}_{g_{(\tau)}}\right) d \tau \leq-\left(1-\frac{\min _{\partial M} k_{g_{0}}}{\max _{\partial M} k_{g_{0}}}\right) \tag{62}
\end{equation*}
$$

From Lemma 2.10 of [9], we obtain

$$
\begin{equation*}
k_{g(t)} \geq \bar{k}_{g_{0}}-\left(\max _{\partial M} k_{g_{0}}-\min _{\partial M} k_{g_{0}}\right)+\left(\max _{\partial M} k_{g_{0}}\right) \int_{0}^{t}\left(\min _{\partial M} k_{g_{(\tau)}}-\bar{k}_{g_{(\tau)}}\right) d \tau \tag{63}
\end{equation*}
$$

Then we get

$$
\begin{align*}
& \left(\bar{k}_{g_{(t)}}-\min _{\partial M} k_{g_{(t)}}\right)-\left(\max _{\partial M} k_{g_{0}}-\min _{\partial M} k_{g_{0}}\right) \tag{64}\\
& \leq-\left(\max _{\partial M} k_{g_{0}}\right) \int_{0}^{t}\left(\min _{\partial M} k_{g_{(\tau)}}-\bar{k}_{g_{(\tau)}}\right) d \tau .
\end{align*}
$$

As $t \rightarrow \infty$, we conclude

$$
\begin{equation*}
\left(1-\frac{\min _{\partial M} k_{g_{0}}}{\max _{\partial M} k_{g_{0}}}\right) \leq \int_{0}^{\infty}\left(\min _{\partial M} k_{g_{(\tau)}}-\bar{k}_{g_{(\tau)}}\right) d \tau \tag{65}
\end{equation*}
$$

Integrating (41) and using (65) and $g_{c}=g_{\infty}$, we infer

$$
\begin{equation*}
\log \frac{\lambda\left(g_{c}\right)}{\lambda\left(g_{0}\right)}=\log \frac{\lambda\left(g_{\infty}\right)}{\lambda\left(g_{0}\right)} \geq \int_{0}^{\infty}\left(\min _{\partial M} k_{g_{(\tau)}}-\bar{k}_{g_{(\tau)}}\right) d \tau \geq\left(1-\frac{\min _{\partial M} k_{g_{0}}}{\max _{\partial M} k_{g_{0}}}\right) \tag{66}
\end{equation*}
$$

This completes the proof of theorem.

References

[1] S. Azami, Evolution of eigenvalue of the Wentzell-Laplace operator along the geodesic curvature flow, Indian J. Pure Appl. Math., (2023).
[2] S. Brendle, A family of curvature flows on surfaces with boundary, Math. Z., 241:4 (2002), 829-869. Zbl 1036.53044
[3] S. Brendle, Curvature flows on surfaces with boundary, Math. Ann., 324:3 (2002), 491-519. Zbl 1024.53045
[4] X. Cao, Eigenvalues of $\left(-\Delta+\frac{R}{2}\right)$ on manifolds with nonnegative curvature operator, Math. Ann., 337:2 (2007), 435-441. Zbl 1105.53051
[5] X. Cao, First eigenvalues of geometric operators under the Ricci flow, Proc. Am. Math. Soc., 136:11 (2008), 4075-4078. Zbl 1166.58007
[6] J. Chen, Y. Wang, Liouville type theorems for the p-harmonic functions on certain manifolds, Pac. J. Math., 282:2 (2016), 313-327. Zbl 1336.53053
[7] P.T. Ho, Prescribed curvature flow on surfaces, Indiana Univ. Math. J., 60:5 (2011), 1527-1542.
[8] P.T. Ho, First eigenvalues of geometric operators under the Yamabe flow, Ann. Global Anal. Geom., 54:4 (2018), 449-472. Zbl 1412.53092
[9] P.T. Ho, H. Koo, Evolution of the Steklov eigenvalue under geodesic curvature flow, Manuscr. Math., 159:3-4 (2019), 453-473. Zbl 1415.53049
[10] A. Jollivet, V. Sharafutdinov, An estimate for the Steklov zeta function of a planar domain derived from a first variation formula, J. Geom. Anal., 32:5 (2022), Paper No. 161. Zbl 1485.35422
[11] J.J. Manfredi, M. Parviainen, J.D. Rossi, On the definition and properties of pharmonious functions, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), 11:2 (2012), 215-241. Zbl 1252.91014
[12] B. Osgood, R. Phillips, P. Sarnak, Extremals of determinants of Laplacians, J. Funct. Anal., 80:1 (1988), 148-211. Zbl 0653.53022
[13] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv:math.DG/0211159. Zbl 1130.53001
[14] A. Saha, S. Azami, S.K. Hui, First eigenvalue of weighted p-Laplacian under cotton flow, Filomat, 35:9 (2021), 2919-2926.
[15] A. Saha, S. Azami, S.K. Hui, Eigenvalue of (p, q)-Laplace system along the forced mean curvature flow, Iran. J. Sci. Technol. Trans. Sci., 45 (2021), 2041-2047.
[16] A. Saha, S. Azami, S.K. Hui, Eigenvalue of (p, q)-Laplace system along the powers of mean curvature flow, Filomat, 36:18 (2022), 6269-6278.
[17] J. Roth, Extrinsic upper bounds the first eigenvalue of the p-Steklov problem on submanifolds, Commun. Math., 30:1 (2022), 49-61.
[18] J. Roth, A. Upadhyay, Reilly-type upper bounds for the p-Steklov problem on submanifolds, Bull. Aust. Math. Soc., 108:3 (2023), 492-503. Zbl 7764678
[19] H. Zhang, Evolution of curvatures on a surface with boundary to prescribed functions, Manuscr. Math., 149:1-2 (2016), 153-170. Zbl 1344.53047

Apurba Saha
Department of Mathematics, The University of Burdwan, Golapbag, Burdwan 713104,
West Bengal, India
Email address: apurbasahaju@gmail.com
Shahroud Azami
Department of Pure Mathematics, Faculty of Sciences, Imam Khomeini
International University,
Qazvin, Iran
Email address: azami@sci.ikiu.ac.ir
Shyamal Kumar Hui
Department of Mathematics, The University of Burdwan, Golapbag, Burdwan 713104,
West Bengal, India
Email address: skhui@math.buruniv.ac.in

[^0]: Saha, A., Azami, S., Hui, S.K., First p-Steklov eigenvalue under geodesic curvature flow.
 (C) 2024 Saha A., Azami S., Hui S.K.

 Corresponding author: Shahroud Azami, azami@sci.ikiu.ac.ir.
 The first author (A. Saha) gratefully acknowledges to the CSIR (File No.: 09/025(0273)/2019-EMR-I), Government of India for the award of Senior Research Fellowship. This research work is also partially supported by DST FIST programme (No. SR/FST/MSII/2017/10(C)).

 Received February, 4, 2023, Published April, 8, 2024.

