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Abstract: We study the first nonzero p-Steklov eigenvalue on
a two-dimensional compact Riemannian manifold with a smooth
boundary along the geodesic curvature flow. We prove that the first
nonzero p-Steklov eigenvalue is nondecreasing if the initial metric
has positive geodesic curvature on boundary M and Gaussian
curvature is identically equal to zero in M along the un-normalized
geodesic curvature flow. An eigenvalue estimation is also obtained
along the normalized geodesic curvature flow.

Keywords: p-Steklov eigenvalue, geodesic curvature, geodesic cur-
vature flow.

1 Introduction

Let (M™, g) be a compact Riemannian manifold of dimension n with
smooth boundary OM. For u € C*°(M), we consider the following p-Steklov
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eigenvalue problem

Apu =0, in M,

|Vu|p_2@ = MuP~2u, on OM, (1)
ov
where Apu = V(|VulP~2Vu), p € (1,00), is the p-Laplace operator and g—:ﬁ is
the outer normal derivative of u. The above problem reduces to the classical
Steklov eigenvalue problem when p = 2. For the p-Steklov eigenvalue problem
[17, 18], there is a sequence of nonnegative eigenvalues

0 < Ai(p) < A2(p) < As(p) <o

The operator A, is conformally covariant |6], i.e., functions which are p-
harmonic with respect to g are also p-harmonic with respect to g and vice
versa, where g = e“g is a conformal metric. Variational formula for the first
nonzero p-Steklov eigenvalue Ai(p) is given by

Ju [Vgut)PdA, ) L
I Ju@pas, 07 vECTOD, /W [u(t)P~2u(t)dS, _((2))},

where dA, and dSj are the measures on M and OM respectively with respect
to the metric g.

M(p) = inf{

Definition 1. A Riemannian metric on a two-dimensional manifold is called
a flat metric if its Gaussian curvature is identically equal to zero.

Definition 2. A two-dimensional Riemannian manifold with flat metric is
colled a flat Riemannian surface.

Throughout the paper we consider (M, go) is a compact flat Riemannian
surface with a smooth boundary OM.

In determining geometry and topology of a Riemannian manifold, the
study of eigenvalue of geometric operators plays a crucial role. Perelman
[13] proved that the first eigenvalue of —4A + R, where R is the scalar
curvature, is nondecreasing along the Ricci flow. After that eigenvalues of
different geometric operators on a Riemannian manifold evolves by geometric
flows were studied by many authors, for instance see [4, 5, 8, 14, 15, 16].
Studying geometric flows is also an active area of research in geometry.
Osgood, Phillips and Sarnak [12] proved the existence of a conformal metric
with Gaussian curvature identically equal to zero in M and constant geodesic
curvature on OM. In [2, 3], Brendle studied geodesic curvature flow on a
surface with boundary. To study more results related to prescribing geodesic
curvature, one can see [1, 7, 19]. Recently in [9], Ho and Koo studied the first
nonzero Steklov eigenvalue on a compact Riemannian surface with a smooth
boundary along the geodesic curvature flow. In [10], the so called canonical
deformation is introduced. The canonical deformation applies to any smooth
simply connected (probably multi-sheet) planar domain regardless to the
geodesic curvature of the boundary. Given such a domain Q, let € (¢t €
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[0,00)) be the canonical deformation of the domain and (g, (s), the Steklov
zeta-function of ;. The main result of the paper is that (q,(s) does not
increase in t for any real s. The domain €); converges to the round disk of
the same perimeter as {2 when t — oo in the C'*° topology.

In section 2, we study the first nonzero p-Steklov eigenvalue along the
un-normalized geodesic curvature flow and proved that the first nonzero p-
Steklov eigenvalue is nondecreasing along the flow if the initial metric has
positive geodesic curvature on M and Gaussian curvature is identically
equal to zero in M. In section 3, we derive an eigenvalue estimation of the
first nonzero p-Steklov eigenvalue along the normalized geodesic curvature
flow.

2 p-Steklov eigenvalue along un-normalized geodesic
curvature flow

Let (M, go) be a compact flat Riemannian surface with smooth boundary
OM. The un-normalized geodesic curvature flow [9] is defined by

&9(75) = _2kg(t)g(t) on OM,

Ky =0 in M, g(0) = go,

(3)

where k() is the geodesic curvature of M and K is the Gaussian curva-
ture of M.

Following [9], clearly for a general metric g(t) = e2*() gy, conformal to go,
the un-normalized geodesic curvature flow (3) reduces to

0

au(t) = —kgy on OM. (4)

Lemma 1. [9] Along the un-normalized geodesic curvature flow, we have

> mi .
min kg = 1min kg (5)

Lemma 2. Let g(t), t € [0,T) be a solution of the un-normalized geodesic
curvature flow (3) and A(t) be the corresponding first nonzero p-Steklov
eigenvalue. Then for any to > t1, t1,t2 € [0,T), we have

A(t2) > A(t1) +P/t 2 /8M Wg(t)f(t)‘p_zagi ) 85((1615 (tdt, (6)

where f(t) is a smooth function on M x [0,T) satisfying

A, f(®) —OmM/ (®)P-2f(t)dS —Oand/aM]f(t)\png(t):l,
(7)

such that f(te) is the corresponding eigenfunction of A(t2).
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Proof. At time t = t9, f(t2) is the corresponding eigenfunction of the first
p-Steklov eigenvalue A(t2). Now, we consider a smooth function on M by

6u(t2) Piil
ht) = | —a f(t2), (8)
@U(t)
where wu(t) is the solution of (4). We normalized this function on OM by
h(t)
ft) = (9)

(Jyus |A(E)PASy)7

Extend this function to a p-harmonic function in M with respect to g(t),
which we shall continue to denote as f(t) (see [11]). Now, we have

/ FOP2£(£)dS,
oM

_ 1 -
(Joar 1) [PASy) ) /8M| B "h()dSy)

1 eult2)
) (Joar 1) [PASy) ) /8M (e“(t ) |f(t2) P2 f(t2)edS,,

1
) [ 1f ()P f(t2)dSy ) =0,
(Jous |R@)PAS )7 /8M| (t2) [P~ f(t2)dSy(1,) =

and

1
/aM FOFdSy0 = T hPdS,e) /aM (@) S =

/ IV g0y F(8)[Pd A, (10)

which is a smooth function on t. Taking derivative with respect to t, we
obtain

G(9(0).S(8) = 500 10) = [ 21750 S0Py

Set

—p / V40 F O 2V 40 £ (8), V0 Fo(6)) dA e

Now using the Stokes’ theorem, we have

d

0
5060500 =p [ 19y r0p2 0 s,

Using the definition of G(g(t), f(t)), we get

t2

Glg(ta), f(t2)) — G(g(tr), f(t2)) = [ G(g(t), f(2))dL. (11)

t1
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Since f(t2) is the corresponding eigenfunction of the p-Steklov eigenvalue
A(t2), we deduce

Glo(ta)-J(12) = Mt2) [ 17(E)PaSy0 =M. (12
Again from the variational formula for the first p-Stekolv eigenvalue, we infer
Glatt). ) = Me) [ IS,y =Me). (13
Finally using (12) and (13) in (11), we have (6). O

Theorem 1. Under the un-normalized geodesic curvature flow on a compact
Riemannian manifold M with smooth boundary OM , the first p-Steklov eigen-
value is nondecreasing if the initial metric go has positive geodesic curvature
on OM and the Gaussian curvature is identically equal to zero in M.

Proof. Since f(t2) is the corresponding eigenfunction of the p-Steklov eigen-
value A(t2), we have

_90f(t2) Of(t2)
/6M|vg(t2)f(t2)’p : ot 8yg(t2)d59(t2)

= Mea) /aM |f(t2) P2 £ (22)

of(t
a(t2) dsg(t2) :
(14)

Differentiating [,),, |f(£)[PdSy«) = 1, we get

p [ Uor2so L as, = [ 150P 5 0s,0)

0
—— [ 1 Zas,,

- /8 Oy dSy

> (min o)) [ FOPAS,(0) = min o,
(15)

Thus,

_20f(t2) 0f(t2) Alt2)
p—2
|, ot f e G2 SRS ) 2 X B i ko). (16)

It is clear by assumption that rgﬁl kg0) > 0, hence for ¢ sufficiently close to

to, we deduce

o1 07(1)
|, oot 02252 5 as, g 2 0 a7)

Hence using Lemma 2, we can conclude that A(t2) > A(t1) for any ¢1(< t2)
sufficiently close to t3. Since to is arbitrary, hence the proof is complete. [
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3 p-Steklov eigenvalue along normalized geodesic curvature
flow

With the initial metric go, in this section we consider the following normali-
zed geodesic curvature flow [9] defined by

Ky =0 in M,  g(0) = go,

(18)

where k() and Ky are defined as in (3). Here ];:g(t) is the average of geodesic
curvature on dM given by

gy — Jona Koo BSace, 19)

t
9t faM ng(t)

It is proved in [3|, the above initial value problem (18) has a solution on
a small time interval. Also it is clear form [9], under the conformal change
g(t) = €2 gy, the normalized geodesic curvature flow (18) reduces to

) _
Sru(t) = —(ky) = ky) on OM. (20)

Along the normalized geodesic curvature flow

d —
dt </<9M ng(t)) - /6M<kg(t> = kg())dSy(e) = 0, (21)

which implies that
dSy) = / dSy, for all t > 0. (22)
oM oM

Lemma 3. Let g(t), t € [0,T) be a solution of the normalized geodesic
curvature flow (18) and A(t) be the corresponding first nonzero p-Steklov
eigenvalue. Then for any te > t1, t1,to € [0,T), we have

& Of(t) of(t
A(tQ > )‘ tl +p/ / |v f 2!];5)85((3 ng(t)dtv (23)
g

where f(t) is a smooth function on M x [0,T) satisfying

o f(£) = 0in M, / (OP2 £(£)dS, ) = 0 and /d U PdSye = 1.

(24)
such that f(t2) is the corresponding eigenfunction of A(t2).

Proof. The proof is similar as Lemma 2. ([

Theorem 2. Under the normalized geodesic curvature flow on a compact
Riemannian manifold M with smooth boundary OM, the first nonzero p-
Steklov eigenvalue is nondecreasing if for the initial metric go, (Tgﬂl kg —

l;:g(t)) >0 on OM and Gaussian curvature is identically equal to zero in M.
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Proof. Since f(t2) is the corresponding eigenfunction of the p-Steklov eigen-
value A(t2), we have

_oOf(t
[ Vot 2B Mg,
—at) [ 1sp e 2 ds

) ,0u(ts)
=22 | as,.,

Alt2)
T /M [ ()" (kg(12) = Fo(12))@Sg(r2)
A(t2) )
» <ﬂgﬁ% Ky(t2) kg(t2)> (25)
Rest of the proof is same as the method applied in Theorem 1. O

Proposition 1. Along the normalized geodesic curvature flow (18), the first
nonzero p-Steklov eigenvalue \(t) satisfies

d _
7 log A(t) > <rér)1ﬁ1 kgty — k:g(t)> for all t, (26)

where on the left side, the derivative is in the sense of the liminf of backward
difference quotients.

Proof. Using (24) and the fact that f(¢2) is the corresponding eigenfunction
of the first nonzero p-Steklov eigenvalue A(t2), we have

0 0
| W22 85 “:)dsg<t2>

)
)

— A(t) /8 I ) 22 g

=20 e )ds ”m

D
Mt
_ (p?) /8 P ()~ Fyn)) S
Mt . -
> (p?) (rg]&l kg(tg) — kg(t2)> . (27)

Hence for any € > 0, we have that
of(t) 9f(t) A(tz) -
2
/8M Vo O =573, ” )dS o = = min ko) — ko) —¢ ) (28)
for ¢ sufficiently closed to to. Thus the Lemma 3 gives

At2) — A(t1) > )\(tg)/ : (%l]{}l kg(t) — ];g(t) — €> dt. (29)

t1
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for t; sufficiently closed to ty and t2 > ¢1. Now dividing the equation (29)
by t2 —t; and taking t; — t2, we obtain

. A(t2) = A(t) . -
li?l_ftgfﬁ > A(t2) Igﬁl Kgts) = Kgta) —€) - (30)
Using the same argument used (in (2.21), [8]), we can say that
lim inf 08 AU2) 1o At o L cA(t) = Al) (31)
t1—to to — t1 A(t2) t1i—t2 to — 11

Now (30) and (31) yields

log A(t2) — log A(t1) : -
Z 10 Ky (i) = Kgaa) — €. (32)

lim inf
t1—t2 to — 11

Since € is arbitrary, we have our result. ([
Lemma 4. Let g(t), t € [0,T) be a solution of the normalized geodesic

curvature flow (18) and A(t) be the corresponding first nonzero p-Steklov
eigenvalue. Then for any to > t1, t1,to € [0,T), we have

2 20f(t) O (1)
A(t2) < A(t1) +p/ /3M|v‘qtf )P BN ay()dS()dt, (33)

where f(t) is a smooth function on M x [0,T) satisfying

A gt )f =01n M / |p 2 )ng(t) =0 and / |f(t)\png(t) = 1,

oM
(34)
such that f(t1) is the corresponding eigenfunction of A(t1).

Proof. We define a function on the boundary OM of M by

eu(tl) Til
ht) =\ —a | (), (35)
eu(t)
where u(t) is the solution of (20). We normalized the function on OM by
h(t
(1) = o (36)

fyns [(0)PAS )7

Extend this function to a p-harmonic function in M with respect to g(t),
which we shall continue to denote asf(t). Now we have

1
P22 f(t)dSyq) = p=2 dS,,
| 1ror s, T | e sy,

=0,

and
1

PdS iy = h(t)|PdS, ) =
Jo O 550 = Ty MO0
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Set
/ Vo f()PdAy (37)
which is a smooth function on t. Taking derivative with respect to ¢, we get
d )P
G(g(t), f(t) == ) at (t)[PdA,
= P/ Vo) F OV gy F (1), Vo) 1) dAgqey.-

So by using the Stokes’ theorem, we obtain

d 0 0
G660, 10) =p [ 1v,050p 2200 fi 08,0

Using the definition of G(g(t), f(t)), we deduce

Glo(ta), () — Gla(tr), F(t) = [ Gla(®), F(e)dt.  (38)

t1

Since f(t1) is the corresponding eigenfunction of the p-Steklov eigenvalue
A(t1), we conclude

Gloltr), F(h)) = Alh) / F(E)PdS, ) = Alty). (39)

oM

Again form the variational formula for the first p-Stekolv eigenvalue, we have

Glo(t). f02) 2 M) [ | dSyey =Nt (40
Finally using (39) and (40) in (38), we arrive at (33). O

Proposition 2. Under the normalized geodesic curvature flow the first non-
zero p-Steklov eigenvalue A(t) satisfies

%bg At) < (Halzz\x/lx Kg(t) — l;:g(t)) for all t, (41)

where on the left hand side, the derivative is in the sense of the limsup of
backward difference quotients.
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Proof. By using (34) and since f(t1) is the corresponding eigenfunction of
the first nonzero p-Steklov eigenvalue A(t1), we have

LOF(t) OF(t
| Waarp-2 22 8V((1§d5'g(t1)

( 1)

=A<t1>/8M| (t) P2 £ (1)
A oul(t
=2 ey )ds o

dSg(ty)

D ot
Alt1) z
=20 P )~ RS0
At1) -
<=, <fg]%;< ’fg(m—kg(tl))- (42)

Thus, for any € > 0 we get

2 0f(t) 0f(t) Alt1) -
/8M |vg(t) ’p 2 8t 8Vg(t) ng(t) S P rral]f\ij( kg(t) — kg(t) +e€ I (43)

for ¢ sufficiently closed to ¢; and t3 > t1. Hence by using (33), we find

ta -
At2) — A(t1) < )\(tl)/ <I§?4X Koty — Kg(e) + E) , (44)

t1
for t; sufficiently closed to t. Dividing both sides by t2 — t; and taking
to — tq, it follows

lim supi/\(ta) — )\(h)

< A(t ko) — k : 45
ta—ty to —t1 <At <%1]an g9(t1) g(t) T 6> (45)

By similar argument used (in (2.21), [8]), we get
log A(t2) —log A(t1) z

I < max k k . 46
lfjf}ip ty — 1y = 1paX Fg(th) = Fg(t) te (46)
Since € > 0 is arbitrary, we have (41). n

Theorem 3. Assume that for a initial metric gy, Gaussian curvature is
identically equal to zero in M and OM has negative geodesic curvature. Also
ge 18 the metric conformal to gy with respect to which the Gaussian curvature
identically equal to zero in M and constant geodesic curvature on OM such
that the lengths of OM of g. and gy are the same. If A(g.) and A(go) are the
first nonzero p-Steklov eigenvalue of g. and gy respectively, then

min kg, A\ min kg,
1 _ oM - <log)\(g) <—|1- oM - (47)
max kg (90) max kgy

Proof. 1t was proved in [3] that ¢ — goo as t — oo along the normalized
geodesic curvature flow (18) such that g is conformal to gy and has constant
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geodesic curvature on M and Gaussian curvature is identically equal to zero
in M. Now from (22), we have

| as,.= [ s, (48)
oM oM

By assumption it is given that

ds,, = / dS,,. (49)
oM oM

From (48) and (49), we get
/ ds,. - / as, .. (50)
oM oM

Now from Gauss-Bonnet theorem, it follows that

kgoo/ dSy.. :/ KgoodAgoo—i—/ kg..dSg.. =2mx(M) (51)
oM M oM
and

kgc/ ngc = / Kgchgc +/ kgcdsgc = QWX(M)’ (52)
oM M oM

where x(M) is the Euler characteristic on M. It is given that for the initial
metric gg, M has Gaussian curvature which is identically equal to zero and
OM has negative geodesic curvature, so it is clear that the Euler characteristic
function is negative. So using (50), we find

kg, = kg, < 0. (53)
If g(t) = e*( gy then we obtain
—Agou + kgy = kge® in M, (54)
ou u
vy, + kgy = kge" on OM, (55)

where % is the normal derivative with respect to go.
0

From the Gauss-Bonnet theorem, (18), (5), and (22), we have
i uEawdAew + Joar kg @So) _ 2mx(M)

9 Jonr @Sg(0)  Jonr 4y

Hence g. and go, are conformal to gg. With respect to all of them Gaussian
curvature is identically equal to zero, if g. = e?“gg then we infer

for t>0. (56)

Agu=0 in M, p Agv =0 in M,
. an :
aigo + kgy = ko€ on OM, Bldlso + kgy = kg.e” on OM.

Since koo = kg,, we obtain
Agy(u—v)=0 in M,
O(u —v)

v, = kg, (e" —€") on OM.
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Thus
I(u —v)

(u—v) v,

= kg, (e" —e”)(u—v) on OM. (57)

Integrating of above equation over M with respect to gg, we infer

0< [ Va0, (58)
M
O(u —v)
= U —v)——=dS
| =) T

k[ (e ) Sy,
oM

On the other hand k;, < 0 and (e* —e")(u —v) > 0, then the left hand side
of (58) is non positive. Therefore [, (e" — €”)(u — v)dSg, = 0 which yields
u = v on M and since u — v is harmonic in M, we get v = v in M. It
implies that g. = geo-

Again from Lemma 2.9 of [9], we have

t
kg(t) < kgo + (IBJ%IX kgo - Igﬁl kgo) + (rralf\*/lx kgo) /0 (ng]%[X kg(r) B kgm) dr.

(59)
It follows from (56) and (59) that
(%X b ’f) - (mN O k) (60)
t
< <na1]%[x kgo) /0 (Igﬂx k‘g(f) — k:g(ﬂ) dr.
If t — oo, then
%1]%}[1 kgo o0 _
—l1- o o > /0 <Ig1ja/lx kg, — k‘g<7>> dr. (61)

Integrating (41) with respect to ¢ on interval [0,00) and using (61) and
Je = Joo, We conclude

0 - min ky,
log Age) = log Ago) < / <max kg — k’g(r)> dr<—|1-2M
A(go) A(g0) 0 oM max kg,

(62)

From Lemma 2.10 of 9], we obtain

t
kgty > kgo — (rgj%jx kgo — rgﬁl kgo) + (Hal]f\i/lx kgo) /0 (rgﬁl ko) — kg(ﬂ) dr.
(63)
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Then we get

< HllIl kg(t)) — <I{91]2\x4x kgy — Iélﬁl kg0> (64)

t
< - <max k:g0> /0 <%1ﬁ1 ki) — kg(ﬂ) dr.

As t — oo, we conclude

min kg, o0 _
" macky, < [ (i b ) - (65)

Integrating (41) and using (65) and g. = goo, We infer

A\ A\ 0o - min kg,
log (9c) = log (90) > / (min kg(ﬂ — kg(f)) dr>|1- oM
A(g0) Ago) — Jo \om max kg,

(66)

This completes the proof of theorem. O
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