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Abstract: The weight w(e) of an edge e in a normal plane map
(NPM) is the degree-sum of its end-vertices. An edge e = uv is
an (i, j)-edge if d(u) ≤ i and d(v) ≤ j. In 1940, Lebesgue proved
that every NPM has a (3, 11)-edge, or (4, 7)-edge, or (5, 6)-edge,
where 7 and 6 are best possible. In 1955, Kotzig proved that
every 3-polytope has an edge e with w(e) ≤ 13, which bound
is sharp. Borodin (1987), answering Erd�os' question, proved that
every NPM has such an edge. Moreover, Borodin (1991) re�ned
this by proving that there is either a (3, 10)-edge, or (4, 7)-edge, or
(5, 6)-edge.

Given an NPM, we observe some upper bounds on the minimum
weight of all its edges, denoted by w, of those incident with a 3-
face, w∗, and those incident with two 3-faces, w∗∗. In particular,
Borodin (1996) proved that if w∗∗ = ∞, that is if an NPM has
no edges incident with two 3-faces, then either w∗ ≤ 9 or w ≤ 8,
where both bounds are sharp.
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The purpose of our note is to re�ne this result by proving that
in fact w∗∗ = ∞ implies either a (3, 6)- or (4, 4)-edge incident with
a 3-face, or a (3, 5)-edge, which description is tight.

Keywords: planar graph, plane map, structure properties, 3-poly-
tope, weight.

1 Introduction

A normal plane map (NPM) is a plane pseudograph in which loops and
multiple edges are allowed, but the degree of each vertex and face is at least
three. 3-polytopes are in 1�1 correspondence with 3-connected plane graphs,
as proved by Wernicke [23] back in 1904.

The degree of a vertex or a face x, that is the number of edges incident
with x (loops and cut-edges are counted twice in the degree of vertex and
face, respectively) is denoted by d(x). A k-vertex is a vertex v with d(v) = k.
A k-face f satis�es d(f) = k. By k+ or k− we denote any integer not smaller
or not greater than k, respectively. Hence, a k+-vertex v satis�es d(v) ≥ k,
etc.

An edge uv is an (i, j)-edge if d(u) ≤ i and d(v) ≤ j. The weight w(e) of an
edge e in an NPM is the degree-sum of its end-vertices. By δ(G) and w(G)
we denote the minimum vertex degree and the minimum weight of edges of
a graph G, respectively. We will drop the argument when it is clear from
context.

Already in 1904, Wernicke [23] proved that every NPM with δ = 5 satis�es
w ≤ 11. In 1940, Lebesgue [22] proved that every NPM has a (3, 11)-edge, or
(4, 7)-edge, or (5, 6)-edge, where 7 and 6 are best possible. In 1955, Kotzig [21]
proved that every 3-polytope satis�es w ≤ 13, which bound is sharp.

In 1972, Erd�os (see [18]) conjectured that Kotzig's bound w ≤ 13 holds for
all planar graphs with δ ≥ 3. The �rst proof of Erd�os' conjecture is due to
Borodin [3], and is, moreover, given for all NPMs. Borodin [6,7] re�ned this
result by proving that every NPM contains a (3, 10)-, or (4, 7)-, or (5, 6)-edge
(as easy corollaries of some stronger structural facts having applications to
coloring of plane graphs).

In some coloring applications, it is important to �nd a light edge incident
with one or two 3-faces. Given an NPM, the minimum weight of all its edges
is denoted by w, of those incident with a 3-face, by w∗, and those incident
with two 3-faces, by w∗∗.

Borodin [5] proved that any NPM has either w∗∗ ≤ 13, or w∗ ≤ 10 or else
w ≤ 8, where all bounds are best possible. Some other related results, as well
as conjectures and references can be found in surveys Borodin, Ivanova [10],
Jendrol', Voss [20]) and papers [1�23]).

In particular, in results on the entire coloring we often deal with NPMs
having w∗∗ = ∞. In Borodin [8], it is proved that such NPMs satisfy the
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sharp bound w ≤ 9, which was strengthened in Borodin [9] to either w∗ ≤ 9
or w ≤ 8, where both bounds are sharp.

The purpose of this note is to re�ne the latter result as follows.

Theorem 1. Every normal plane map without adjacent 3-faces has either a
(3, 6)- or (4, 4)-edge incident with a 3-face, or a (3, 5)-edge, which description
is tight.

2 Proving Theorem 1

In Borodin [9], there is obtained a plane graph (with w∗∗ = ∞, as also
assumed throughout the proof below) with vertices of degree 3 and 6 only,
in which every edge is semi-weak, that is incident with a 3-face, and joins a
3+-vertex to a 6-vertex. This con�rms that the �rst option in Theorem 1 is
necessary and best possible.

The second option is due to by the well-known (3,4,3,4)-Archimedean
solid, in which every edge joins two 4-vertices and is incident with a 3-face
and 4-face. A simple way to obtain this construction is to join the middles
of all edges of the cube inside the corresponding faces, followed by deleting
the edges and vertices of the initial cube.

The third option is con�rmed by the dual of the (3, 5, 3, 5)-Archimedean
solid, in which every edge joins a 3-vertex with a 5-vertex and is incident
with two 4-faces.

2.1. Discharging and its consequences. ByM denote a counterexamp-
le to Theorem 1. Let V , E, and F be the sets of vertices, edges and faces of
M , respectively. Euler's formula |V | − |E|+ |F | = 2 for M may be rewritten
as ∑

x∈V ∪F
(d(x)− 4) = −8. (1)

Every vertex and face x contributes the charge µ(x) = d(x)− 4 to (1), so
only the charges of 3-vertices and 3-faces are negative. Using the properties
of M as a counterexample, we de�ne a local redistribution of µ's, preserving
their sum, such that the new charge µ′(x) is non-negative for all x ∈ V ∪ F .
This will contradict the fact that the sum of the new charges is, by (1), equal
to −8.

In what follows, we denote the vertices adjacent to a vertex v in a cyclic
order by v1, . . . , vd(v). An edge is strong if it is not incident with a 3-face.

We apply the following rules of discharging.

R1. Every 3-face receives 1
3 from each incident vertex.

R2. Every 3-vertex receives 1
2 along each semi-weak edge from a 7+-vertex.

R3. Every 3-vertex receives 1
3 along each strong edge from a 6+-vertex.

R4. Every 4-vertex receives 1
6 along each semi-weak edge from a 5+-vertex.
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2.2. Checking that µ′(x) ≥ 0 whenever x ∈ V ∪ F .

CASE 1. f ∈ F . If d(f) = 3 then µ′(f) = 3−4+3× 1
3 = 0 by R1. If d(f) ≥ 4

then f does not participate in R1�R4, so µ′(f) = µ(f) = d(f)− 4 ≥ 0.

CASE 2. v ∈ V .

Subcase 2.1. d(v) = 3. If v is incident with a 3-face f = v1vv2 (precisely
one, since w∗∗ = ∞), then v receives 2× 1

2 from the two incident 7+-vertices

v1, v2 by R2 and 1
3 from the 6+-vertex v3 by R3 due to the absence of

(3, 5)-edge and semi-weak (3, 6)-edge in M . Also, v gives 1
3 to f by R1, so

µ′(v) = 3− 4 + 2× 1
2 + 1

3 − 1
3 = 0.

If v is not incident with 3-faces, then µ′(v) = 3− 4+ 3× 1
3 = 0 by R3 due

to the absence of (3, 5)-edge in M .

Subcase 2.2. d(v) = 4. Note that each 3-face f = v1vv2 at v results in
giving 1

3 to f by R1 and receiving 2× 1
6 from the incident 5+-vertices v1, v2

by R4 due to the absence of semi-weak (4, 4)-edge in M , so in fact f costs
nothing to v. Therefore, µ′(v) = 0, no matter whether v is incident with two,
one or no 3-faces.

Subcase 2.3. d(v) = 5. Now v is incident with at most two 3-faces, and
each 3-face f = v1vv2 receives 1

3 from v by R1, while at most one of v1, v2
is a 4-vertex due to the absence of semi-weak (4, 4)-edges in M , receiving 1

6

from v by R4. So the total expenditure of v caused by f is at most 1
2 , which

means that µ′(v) ≥ 5− 4− 2× 1
2 = 0.

Subcase 2.4. d(v) = 6. Due to the argument in Subcase 2.3 combined with
the absence of semi-weak (3, 6)-edges in M , each 3-face at v costs v at most
1
3 +

1
6 by R1 and R4. Let T be the number of 3-faces at v; clearly 0 ≤ T ≤ 3.

Now it follows from R1, R3 and R4 that µ′(v) ≥ 6−4−T× 1
2−(6−2T )× 1

3 =
T
6 ≥ 0.

Subcase 2.5. d(v) ≥ 7. Now a 3-face f = v1vv2 at v collects at most
1
3 +

1
2 = 5

6 from v by R1, R2 and R4. Since v is incident with at most ⌊d(v)2 ⌋
3-faces, we have µ′(v) ≥ d(v)−4−T× 5

6−(d(v)−2T )× 1
3 = 2d(v)

3 −4−T× 1
6 ≥

2d(v)
3 − 4− d(v)

2 × 1
6 = 7d(v)−48

12 > 0, as desired.

Thus we have proved that µ′(x) ≥ 0 for all x ∈ V ∪ F , which contradicts
(1) and thus completes the proof of Theorem 1.
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