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Abstract: In mathematical models of population dynamics, the
appearance of a continuum of solutions is a rare situation. We
analyze a multistability in the system of di�erential equations
describing the prey-predator-superpredator dynamics. The cosym-
metric approach is applied to derive a continuous family of equilib-
ria for Beddington-DeAngelis functional response. The case of mul-
tistability was detected analytically and the destruction of the
family of equilibria was studied. Our results exhibit memory of
the disappeared family of equilibria and its impact on dynamic
scenarios. Two-parameter bifurcation diagrams were built numeri-
cally for cosymmetric and general cases.

Keywords: mathematical ecology, prey�predator�superpredator,
di�erential equations, cosymmetry, multistability.

1 Introduction

Actual ecological problems require the development of models describing
the interaction of many populations. Among them, three-species systems are
the basis of food chain analysis [1], including the models where superpredator
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eats prey and predator. Such models are known by several names: �intraguild
predation�, �prey-predator-top-predator�, �trophic level omnivory�, and �three-
species food web� [2, 3, 4]. Recent studies explore di�erent approaches:
stochastic modeling [5], delay e�ects [6], etc. Several models with a superpre-
dator were developed to investigate the disease processes [2]. There exist
approaches by which the superpredator population may be divided into
several ages; see, for example, [7] with two stages. Dynamic scenarios and
chaotic behavior were found in a cyclic three-species system of prey, predator,
and superpredator [8, 9, 10] and four-species cyclic ecosystem [11]. Recently,
works have appeared that develop an approach based on Beddington-DeAn-
gelis functional response [12, 13].

Vital problems require a study of the coexistence of species and the possi-
bility of multiple scenarios for population system evolution. Research in
physics and biology has yielded important results about multistability and
its in�uence on dynamics and processes [14, 15]. Multistability in predator-
prey systems was examined in [16, 17] by using the cosymmetry theory [18].
Particularly, an appearance of a family of oscillatory regimes was found in
[16]. When the cosymmetry breaks, the destruction of a family of equilibria
may be analyzed with the selective function approach [19].

We consider a trophic chain consisting of prey x(t), predator y(t), and
superpredator z(t), with Beddington-DeAngelis functional response. If the
predator and superpredator hunt the prey independently, the corresponding
system of autonomous di�erential equations may be written as follows:

dx

dt
=

x(1− x)

f1
− xy + xz

f2

dy

dt
=

−µ1y − λ1y
2

f1
+

η1xy

f2
− d1yz

f3
(1)

dz

dt
=

−µ2z − λ2z
2

f1
+

η2xz

f2
+

d2yz

f3

where logistic law is taken for the prey, µ1, µ2 are the natural mortality rates
of predator and superpredator. The negative feedback because of intraspeci�c
competition among predator and superpredator is represented by λ1 and
λ2, respectively. The parameters η1, η2 characterize the consumption of prey
by the predator and superpredator, and d1, d2 de�ne the consumption of a
predator by the superpredator. To realize the Beddington-DeAngelis type
functional response [20, 21] for di�erent species in (1), we use the following
functions

fj = 1 + ajx+ bjy + cjz, (j = 1, 2, 3) (2)

System (1) with f1 = 1 was considered in [13] to study competitive
exclusion and coexistence in an intraguild predation model. The scenario
of multistability was found in [17] for fj = 1 (j = 1, 2, 3). In these works,
the case λ1 = λ2 = 0 was analyzed.
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The paper is organized as follows. In Section 2, we consider the equilibrium
points of the system (1) and discuss their stability properties. In Section 3, we
get the conditions for a nontrivial cosymmetry and �nd the parameters that
provide a continuous family of equilibria. The various forms of Beddington-
DeAngelis function response were used to analyze the possibilities of the
family of equilibria disintegration in Section 4. In Section 5, we perform
numerical simulation to illustrate our results on the family of equilibria and
its destruction. Since there are many parameters in the problem, a complete
analysis is not possible and we focus primarily on a number of characteristic
cases. Finally, in Section 6, a summary discussion is given to conclude our
research.

2 Equilibrium points and local stability analysis

System (1) has one trivial equilibrium E0 = (0, 0, 0) and one axial equilib-
rium E1 = (1, 0, 0), irrespective of any parametric restriction. There are
some boundary equilibria: the superpredator-absent equilibrium E2 and the
predator-absent equilibrium E3. Additionally, equilibrium with all species E4

and other limit cycles might exist.
Firstly, we consider the case f1 = f2 = f3. The superpredator�absent

equilibrium exists when η1 > µ1:

E2 =

(
λ1 + µ1

λ1 + η1
,
η1 − µ1

λ1 + η1
, 0

)
= (x2, y2, 0) (3)

When η2 > µ2 the predator-absent equilibrium exists

E3 =

(
λ2 + µ2

λ2 + η2
, 0,

η2 − µ2

λ2 + η2

)
= (x3, 0, z3) (4)

The interior equilibrium E4 = (x4, y4, z4) corresponds to the scenario when
all three interacting species will survive:

x4 =
1

a
(d1d2 + λ1λ2 − d1µ2 + λ2µ1 + d2µ1 + λ1µ2)

y4 =
1

a
(−µ1 + η1x3 − d1z3) (5)

z4 =
1

a
(−µ2 + η2x2 + d2y2)

a = (d1d2 + λ1λ2 − d1η2 + d2η1 + η1λ2 + η2λ1)

Here we use the values of x2, y2, x3 and z3, given by (3) and (4).
We consider the local stability of equilibria on the boundaries. The Jacobi-

an matrix evaluated at E1 is

JE1 =
1

a1 + 1

 −1 −1 −1
0 η1 − µ1 0
0 0 η2 − µ2

 (6)

Thus, the equilibrium E1 is asymptotically stable if η1 < µ1 and η2 < µ2.
Otherwise, it is a saddle if η1 > µ1 or η2 > µ2.
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Proposition 1. The equilibrium E2 is asymptotically stable if and only if:

A1 = d2(η1 − µ1) + η2(λ1 + µ1)− µ2(λ1 + η1) < 0 (7)

Proof. The Jacobian matrix at E2 is given by:

JE2 =
1

a1x2 + b1y2 + 1

 −x2 −x2 −x2
η1y2 −λ1y2 −d1y2
0 0 d2y2 + η2x2 − µ2

 (8)

One eigenvalue of JE2 is de�ned explicitly

σ3(E2) =
d2y2 + η2x2 − µ2

a1x2 + b1y2 + 1
=

A1

(λ1 + η1)(a1x2 + b1y2 + 1)
(9)

and the other two eigenvalues are the roots of the characteristic polynomial
for the top left sub-matrix JE2

P2(σ) = σ2 +
λ1y2 + x2

a1x2 + b1y2 + 1
σ +

x2y2(η1 + λ1)

(a1x2 + b1y2 + 1)2
(10)

Since x2, y2, and all parameters in P2(σ) are positive, the stability of E2 is
a�ected by the numerator of σ3(E2). So, the solution E2 is asymptotically
stable when A1 < 0. □

Proposition 2. The equilibrium E3 is asymptotically stuble if and only if:

A2 = η2(d1 + µ1)− µ2(d1 + η1) + λ2(µ1 − η1) > 0 (11)

Proof. The Jacobian matrix at E3 is given by:

JE3 =
1

a1x3 + c1z3 + 1

 −x3 −x3 −x3
0 −d1z3 + η1x3 − µ1 0

η2z3 d2z3 −λ2z3

 (12)

One eigenvalue of JE3 is de�ned explicitly

σ2(E3) = −d1z3 − η1x3 + µ1

a1x3 + c1z3 + 1
= − A2

(λ2 + η2)(a1x3 + c1z3 + 1)
(13)

and the other two eigenvalues are the roots of the characteristic polynomial
for the 2x2 sub-matrix JE3

P3(σ) = σ2 +
λ2z3 + x3

a1x3 + c1z3 + 1
σ +

x3z3(η2 + λ2)

(a1x3 + c1z3 + 1)2
(14)

Since x3, z3, and all parameters in P3(σ) are positive, the solution E3 is
asymptotically stable when A2 > 0. □

Conditions (7) and (11) determine the stability of equilibria E2 and E3

in parameter space. For de�ning the intersection of domains of stability, we
transform (7) and (11) to equations:

d2(η1 − µ1) + η2(λ1 + µ1)− µ2(λ1 + η1) = 0 (15)

η2(d1 + µ1)− µ2(d1 + η1) + λ2(µ1 − η1) = 0 (16)
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and determine the values of µ2 and η2:

µ2 =
d2(d1 + µ1) + λ2(λ1 + µ1)

d1 − λ1
, η2 =

d2(d1 + η1) + λ2(η1 + λ1)

d1 − λ1
(17)

One can see that µ2 and η2 are de�ned in terms of all the parameters of
the system (1). This point corresponds to the intersection of the stability
boundaries E2 and E3. After �xing d1, d2, η1, µ1, λ1, and λ2, we can draw
these stability domains on the parameter plane µ2 and η2. We will focus our
analysis mainly on these parameters.

3 Family of equilibria

In [18], the notion of cosymmetry was introduced to explain the appearance
of a continuous family of steady states (extreme multistability) in the system
of autonomous �rst-order di�erential equations. Cosymmetry is also a non-
trivial vector �eld orthogonal to the right-hand side of the system F . If the
system of di�erential equations has an equilibrium E and L(E) ̸= 0 (without
additional degeneracy), then the equilibrium E belongs to the family of
equilibria. The nontrivial cosymmetry of the system produces a continuous
family of equilibria with a stability spectrum that varies along the family.

The theory of the cosymmetric defect and the selective equation were
introduced for the analysis of nearly cosymmetric situations [19]. We apply
this technique to study the destruction of the family of equilibria.

Proposition 3. The vector

L = [yz, c1xz, c2xy]
T , c1 = − 1

d1
− c2

λ2

d1
, c2 =

−λ1 + d1
λ1λ2 + d1d2

(18)

will be the cosymmetry of the system (1) when f1 = f2 = f3 and conditions
on the parameters (17) are held.

Proof. Multiplying the right side of system (1) on cosymmetry (18) and using
condition on functions fj , we get:

< F,L >=
xyz

f1

[
1− x− y − z + c1(−µ1 − λ1y + η1x− d1z)

+ c2(−µ2 − λ2z + η2x+ d2y)
] (19)

After substitution (18) to (19) and simpli�cation, we obtain < F,L >= 0.
This means that the vector function L is orthogonal to the right-hand side
of the system (1), i.e., L is a cosymmetry of the system. □

Proposition 4. System (1) under conditions f1 = f2 = f3 and (17) has a
continuous family of stable equilibria.

Q =

{
x ∈

[
λ1 + µ1

λ1 + η1
,

d1 + µ1

d1 + η1

]
, y = yQ(x), z = zQ(x)

}
(20)
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where:

yQ(x) =
d1 + µ1 − x(d1 + η1)

d1 − λ1
, zQ(x) =

(η1 + λ1)x− λ1 − µ1

d1 − λ1
(21)

Proof. By direct substitution of Q to (1) and using the conditions of Proposi-
tion, we check that Q are equilibria. The Jacobian matrix at the family of
equilibria (20) is given by:

JQ =
1

f1

 −x x −x
yη1 −yλ1 −yd1
zη2 zd2 −zλ2

 (22)

The characteristic equation for JQ is written as:

σ3 +Aσ2 +Bσ = 0

where

A =
λ1y + λ2z + x

f1

B =
1

f2
1

[xy(η1 + λ1) + xz(η2 + λ2) + yz(d1d2 + λ1λ2)] (23)

The zero root σ1 = 0 corresponds to neutral stability along the family Q.
Since A,B > 0, the equilibria of the family Q are stable. □

One can see that the stability spectrum varies throughout the family. This
is a characteristic property of cosymmetric systems.

4 Destruction of the family of equilibria

To analyze the destruction of the family of equilibria via violation of
Proposition 2 conditions, we use the de�nitions of a cosymmetric defect and
a selective function [19]. For the di�erential equation

Ẇ = F (W ) +G(W, ε) (24)

in a Hilbert space H, the cosymmetric defect is de�ned as

D(W, ε) =< G(W, ε), L(W ) >, (25)

where L is the cosymmetry of the vector �eld F and the perturbation is
given by the operator G(W, ε) such that G(W, 0) = 0. It was proven in [19]
that the non-degenerate solution of a selective equation means the existence
of a branch of solutions with the parameter ε.

Now we consider some cases of family Q destruction. We test violation of
conditions (17) and nonequal functions fj .

Proposition 5. Let f1 = f2 = f3 and µ2 = µ̂2+ε1, η2 = η̂2+ε2 where µ̂2 and
η̂2 satisfy (17) and ε21+ε22 > 0, then the family of equilibria (20) is destroyed
and there exist three solutions: the predator-absent, the superpredator-absent,
or all three species coexistence.
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Proof. Firstly, we calculate the cosymmetric defect for (1) taking in account
that f2 = f1 and f3 = f1:

D = xyz
(ε2x− ε1)(d1 − λ1)

f1(d1d2 + λ1λ2)
(26)

The selective function is obtained by the substitution (20) to (26)

S(x) = xyQ(x)zQ(x)
(d1 − λ1)

2(ε2x− ε1)

g1
(27)

where yQ(x) and zQ(x) are taken according to (21)

g1 =λ1x(c1 − a1) + d1x(a1 − b1)− η1x(b1 − c1) + λ1(−1− c1)

+ d1(1 + b1) + µ1(b1 − c1)(d1d2 + λ1λ2)
(28)

The selective equation S(x) = 0 has four solutions: x = 0, zQ(x) = 0,
yQ(x) = 0, and x = ε1

ε2
. The root x = 0 has no biological sense. The solution

zQ(x) = 0 gives a member of the family Q corresponding to the equilibrium
without superpredator (E2).

x =
λ1 + µ1

λ1 + η1
, y =

η1 − µ1

η1 + λ1
, z = 0 (29)

Similarly, for yQ(x) = 0, we come to equilibrium without a predator

x =
d1 + µ1 + ε1R

d1 + η1 + ε2R
, y = 0, z =

η1 − µ1 − (ε1 − ε2)R

d1 + η1 + ε2R
(30)

R =
d1 − λ1

d2 + λ2

which tends to E3 when ε1, ε2 → 0. The solution

x =
ε1
ε2

, y =
ε2(d1 + µ1)− ε1(d1 + η1)

ε2(d1 − λ1)
, z =

ε1(η1 + λ1)− ε2(µ1 + λ1)

ε2(d1 − λ1)
(31)

corresponds to the survival of three species. □

Proposition 6. Let f2 = f3 = 1 + a(x + y + z), f1 = f2
1+ε(x+y+z) and

parameters µ2, η2 satisfy (17), then the family of equilibria (20) is destroyed,
and there exist two nontrivial solutions: the predator-absent and the super-
predator-absent.

Proof. The cosymmetric defect for (1) may be written as:

D = −xyz
(x+ y + z)xε

1 + a(x+ y + z)
(32)

The selective function is obtained by the substitution (20) to (32)

S(x) = −xyQ(x)zQ(x)
εx

1 + a
(33)

The solution x = 0 has no biological sense. The other solutions zQ(x) = 0
and yQ(x) = 0 correspond to (3) and (4), respectively. Thus, we obtain only
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two equilibria: E2 (without superpredtor z = 0) or E3 (without predtor
y = 0). □

A more di�cult situation occurs when f1 = 1, f2 ̸= f3, and µ2, η2 satisfy
(17). The cosymmetric defect is given by:

D1 = xyz

[
x+ 3− x− y − z

f2
+

d1d2(y + z)

f3(d1d2 + λ1λ2)
+

−λ1d2y + λ2d1z

f2
2 f3(d1d2 + λ1λ2)

]
(34)

The selective function is obtained by the substitution (20) to (34):

S1(x) = xyz

[
(η1x− µ1)(d1λ2 − d2λ1) + λ1(x− 1)(d1d2 + d1λ2)

f2
2 f3

+
1− 2x

f2
+

d1d2(1− x)

f3(d1d2 + λ1λ2)
+ x+ 3

] (35)

Because full analysis of the selective equation is di�cult, we assume that
f1 = 1, f2 = f3. The cosymmetric defect is rewritten as:

D2 = −xyz

[
f2 − 1

f2
(x− z + c1(λ1y − d1z))

]
(36)

and we come to the selective function

S2(x) =
−xyz(f2 − 1)(h0 + h1x)

(d1d2 + λ1λ2)(d1 − λ1)f2
(37)

where
h0 = −µ1(d1λ2 + d2λ1)− 2λ1λ2d1 − d1d2λ1 (38)

h1 = x
[
η1(d1λ2 + d2λ1) + λ1λ2(3d1 − 2λ1) + d21d2

]
(39)

The zeros of the selective function (37) correspond to (3), (4), and three
species solutions:

x =
1

r
(d1d2λ1 + λ1λ2(2d1 − λ1) + µ1(d1λ2 + d2λ1)) (40)

y =
1

r
(d1d2(d1 + µ1) + d1λ2(η1 − µ1) + λ1λ2(d1 − η1 + 2µ1)) (41)

z =
1

r
(d1d2(λ1 + µ1) + d2λ1(µ1 − η1) + λ1λ2(λ1 − η1 + 2µ1)) (42)

r = d21d2 + λ1λ2(3d1 − 2λ1) + η1(d1λ2 + d2λ1) (43)

It is clear that the solution f2 = 1 for (37) leads to f1 = f2 = f3 = 1. So,
this case corresponds to the existence of the family of equilibria

Remark 1. When f1 = 1, f3 = f2, and λ1 = λ2 = 0, we come to the system
studied in [13]. In this case, we have

S3(x) = −x2yQ(x)zQ(x)
f2 − 1

f2
(44)

The zeros of the selective function zQ(x) = 0 and yQ(x) = 0 correspond to
equilibria (3) and(4), respectively. The solution f2 = 1 leads to cosymmetry
and a family of equilibria [17].
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5 Numerical simulation
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Fig. 1. Two-parameter bifurcation diagram with respect to
η2 and µ2, Ej (j = 2, 3, 4) regions of monostability, E2,3 �
the region of bistability, C � the region of limit cycles, point
F corresponds to the family of equilibria; µ1 = 1, η1 = 10,
d1 = 1, d2 = 1, λ1 = 0.01, λ2 = 0.01 and aj = bj = cj = 0.1
(j = 1, 2, 3).

Let us illustrate the theoretical considerations in the previous sections
with numerical results. We �x some parameters: µ1 = 1, η1 = 10, d1 =
1, d2 = 1, λ1 = 0.01, λ2 = 0.01, aj = bj = cj = 0.1, and take µ2, η2
satisfying (17). Fig. 1 shows the regime map on the parameter plane η2
and µ2. Symbol Ej marks the stability domain for the equilibrium Ej , j =
2, 3, 4, see Propositions 1 and 2. Stable equilibria E2 or E3 coexist for the
parameter values within the bistability region E2,3. The domains E2, E3,
E4, and E23 share a point F , which corresponds to the family of equilibria.
The symbol C denotes the region of values for which limit cycles exist. This
region was obtained through a computational experiment. A map similar to
Fig. 1 was presented in [22], but without mentioning a family of equilibria
and bistability.

In Fig. 1, we see that the competitive exclusion of the predator occurs
when crossing the stability boundary for the equilibrium with the coexistence
of all three species (E4) and the region where bistability is realized (region
E23). Thus, region E2 (E3) corresponds to the parameter values at which
the superpredator (predator) dies out, regardless of the initial conditions.



780 AHMAD ALMASRI AND V.G. TSYBULIN

However, there are parameter values (region of bistability E23) for which the
extinction of the superpredator and predator depends on its initial amount.

The family Q (4) (point F in Fig. 1) contains only stable equilibria; see
Proposition 4. Fig. 2 demonstrates that trajectories converge oscillatorily
towards the family of equilibria from di�erent initial conditions. The family
of equilibria is drawn by the black line AE2.

0.08
0.12

x0.16
0.2

1.2

0.8y
0.4

0.9

0.3

0

0.6

0

z

A

E
2

Fig. 2. Convergence to equilibria of the family Q (black line)
from di�erent initial points (circles); µ1 = 1, η1 = 10, d1 = 1,
d2 = 1, λ1 = 0.01, λ2 = 0.01 and aj = bj = cj = 0.1 (j = 1, 2, 3).

We draw the basin of attraction of the system (1) for family Q. In order
to �nd on the plane z =const, we divide the family of equilibria Q into six
colors [red, green, cyan, blue, yellow, and black]; see Fig. 3. One can see
variance in basins sizes depending on the initial condition. It can be seen
that the corresponding to di�erent parts of the family sectors assemble to
the straight line x = y = 0. We stress that the order of colors is kept both for
the family and for sectors on planes z = const. For a plane with minimal z,
the largest sector corresponds to the section of the family near equilibrium
E2 (red color), and for the level z3, this sector is minimal.

When cosymmetry conditions are broken, destruction of the family occurs.
We examine di�erent scenarios of it, i.e., µ2 and η2 are not satis�ed (17) or
under di�erent functions fj (2), see Table 1 and Figs. 4 � 9.

Now we illustrate the result of Proposition 5 and take f1 = f2 = f3 =
1 + 0.1(x + y + z). As shown in Fig. 4, the superpredator extincts when
µ2 increasing (ε1 > 0, ε2 = 0). It leads to the establishment of a stable
equilibrium E2. Trajectories initiated near the family Q converge towards
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Fig. 3. Family of equilibria AE2 and several planar basins
of attraction of the system (1) in z1 = 0.63, z2 = 0.37, and
z3 = 0.1; µ1 = 1, η1 = 10, d1 = 1, d2 = 1, λ1 = 0.01,
λ2 = 0.01, and aj = bj = cj = 0.1 (j = 1, 2, 3).

E2 (depicted by the red). Conversely, a decreasing in µ2 (ε1 < 0, ε2 = 0)
results in the elimination of the predator: blue trajectories tend to a stable
equilibrium E3. Stability of E4 demonstrates Fig. 5a, where parameters µ2 =
1.65, η2 = 8.5 respond the point A3 in Fig. 1. The node-node bistability is
shown in Fig. 5b when two stable equilibria coexist. This case corresponds to
the point A4 (µ2 = 2.27, η2 = 12.9) in Fig. 1. The dependence on the initial
point takes place. One can observe di�erent regime realizations: equilibrium
E2 (death of the superpredator) or equilibrium E3 (death of the predator).
The green line corresponds to unstable equilibrium E4.

The destruction of the family under di�erent fj was partially analyzed by
Propositions 5 and 6. Here we present the results of the numerical simulation.
Fig. 6 shows bifurcation diagrams for several cases when a family of equilibria
is destroyed, namely cases 4, 5, and 6 from Table 1.

When f1 = 1, f2 = f3, we �nd that the family of stable equilibria
annihilates and only the equilibrium E2 is stable (case 1 in Table 1). The
same was obtained for the case 4, see Fig. 6a. Then we �x f1, f3, and change
the function f2. Increasing the parameter a2 to 0.5 gives stable equilibrium
E3. For c2 = 0 the equilibrium E4 becomes steady (case 3 in Table 1). So,
one can see multiple scenarios in the vicinity of the disappeared family of
equilibria.

The bistability occurs with an increasing a2 (case 5 in Table 1, see Figs. 6b,
7a). As seen in Fig. 7a, boundary equilibria E2 and E3 (the death of a super-
predator or a predator) are both stable, while interior equilibrium E4 (three
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Fig. 4. Phase portraits after destruction of the family of
equilibria (black line AE2), µ2 = µ̂2+0.1 (red), µ2 = µ̂2−0.1
(blue), parameters µ̂2, η2 satisfy (17); µ1 = 1, η1 = 10, d1 = 1,
d2 = 1, λ1 = 0.01, λ2 = 0.01, aj = bj = cj = 0.1 (j = 1, 2, 3).
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Fig. 5. Graph of superpredator after the destruction of
the family of equilibria: a) Convergence to the isolated
equilibrium E4, parameters µ2 and η2 do not satisfy relations
(17) µ2 = 1.65, η2 = 8.5, b) Node-node bistability µ2 =
2.27, η2 = 12.9 (point A4 in Fig.1a); µ1 = 1, η1 = 10, d1 = 1,
d2 = 1, λ1 = 0.01, λ2 = 0.01, aj = bj = cj = 0.1 (j = 1, 2, 3).

species coexist) is unstable. This takes place close to the family of equilibria
that has disappeared. One can see funnel trajectories tending to equilibria
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E2 and E3 from di�erent initial points taken on the line corresponding to
the family Q.

For �xed f1 = 1, f2 = 1+ 0.9x, and a3 = 0, depending on the parameters
b3 and c3, there exist scenarios with stable equilibria Ej (j = 2, 3, 4) and
bistability. As an example, when b3 = 0.05 and c3 = 0.2 (case 6 in Table 1
and Fig. 6c), the equilibrium E4 (three non-zero species) is stable; see Fig. 7b.
Note that equilibria E2 and E3 are stable on the planes z = 0 and y = 0,
respectively.

No f1 f2 f3 Attractors

1 1 1 + 0.1(x+ y + z) 1 + 0.1(x+ y + z) E2

2 1 1 + 0.5x+ 0.1(y + z) 1 + 0.1(x+ y + z) E3

3 1 1 + 0.5x+ 0.1y 1 + 0.1(x+ y + z) E4

4 1 1 + 0.1x 1 + 0.1(x+ y + z) E2

5 1 1 + 0.9x 1 + 0.1(x+ y + z) E2, E3

6 1 1 + 0.9x 1 + 0.05y + 0.2z E4

7 1 + x+y+z
10 1 + 0.5x+ y+z

100 1 + x+y
10 + 0.06z cycle, cycle

8 1 + x+z
10 + 0.01y 1 + 0.5x+ y+z

100 1 + x+y
10 + 0.06z E2, cycle

Table 1. Di�erent Beddington-DeAngelis functional
responses break a family of equilibria, parameters η2, µ2

satisfy (17); µ1 = 1, η1 = 10, d1 = 1, d2 = 1, λ1 = 0.01,
λ2 = 0.01.

For case 7 in Table 1, we have obtained cycle-cycle bistability around
unstable equilibria E2 (red) and E3 (blue), see Fig. 8 and Fig. 9a. The phase
portrait in Fig. 9a demonstrates the convergence of trajectories (red and
blue) to limit cycles (black). Fig. 9b shows the node-cycle bistability: the
limit cycle (black) on the plane y = 0 and the stable equilibrium E2. So, the
destruction of the family of equilibria exhibits several types of bistability:
node-node, node-cycle, and cycle-cycle.
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Fig. 6. Comparison of bifurcation diagrams for cosymmetric
(dot lines) and cases from the table (color lines): Ej (j =
2, 3, 4) � the regions of equilibrium stability, E2,3 � the region
of bistability, point F corresponds to the family of equilibria
fj = 1+0.1x+0.1y+0.1z (j = 1, 2, 3). a), b) and c) are cases
4, 5, and 6 in Table 1 respectively.
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Fig. 7. Dynamics after destruction of the family of equilibria
(black line AE2) for di�erent fj : a) case 5 in Table 1, b) case
6 in Table 1.
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Fig. 8. Cycle-cycle bistability after the destruction of the
family of equilibria. Graph of superpredator (a) and predator
(b), case 7 in Table 1.

6 Conclusions

The cosymmetry in a three-species model with a classical Lotka-Volterra
functional response was studied in [17]. Here, we analyze a prey, predator,
and superpredator model with Beddington-DeAngelis functional response
[20, 21] for all three involving species. Multistability in the form of a conti-
nuous family of equilibria was found for the case of identical functional
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Fig. 9. Phase portraits after the destruction of the family
of equilibria: a) cycle-cycle bistability, case 7 in Table 1. b)
node-cycle bistability, case 8 in Table 1.

responses and additional conditions on parameters η2 and µ2. We analyzed
di�erent scenarios of family destruction, used numerical analysis, and plotted
two-parameter bifurcation diagrams for two parameters characterizing the
dynamics of the superpredator: the death rate of the superpredator µ2 and
the consumption of prey by the superpredator η2. Then we analyze scenarios
with di�erent functional responses.

Given model can describe the interaction of species in aquatic communities
[23, 24], namely systems of phytoplankton, zooplankton, and �sh. Another
�eld concerns terrestrial communities with small vertebrates (birds and li-
zards), which are consumers of both spiders and herbivorous insects [25].

The future steps of the dynamics study in a prey, predator, and superpreda-
tor model may concern various environmental conditions, including spatial
heterogeneity [26] and seasonality of factors. Examples of cosymmetry and
multistability in inhomogeneous predator-prey model were given in [27].
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