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Abstract: We study the linear stability of a resting state for
flows of incompressible viscoelastic polymeric fluid under the in-
fluence of homogenous magnetic field in an infinite cylindrical
channel in axisymmetric perturbation class. The tension vector
of the magnetic field is parallel to the cylinder axis. We use
structurally-phenomenological Vinogradov-Pokrovski model as our
mathematical model.

We formulate the equation that define the spectrum of the prob-
lem. Our numerical experiments show that with the growth of
perturbations frequency along the channel axis there appear eigen-
values with positive real part for the radial velocity component
of the first spectral equation. That guarantees linear Lyapunov
instability of the resting state. However for large Reynolds and
Weissenberg numbers the exponential growth rate of the ampli-
tude for high frequencies can be suppressed to quite low values by
increasing the magnetic pressure.

Spectrum of a linear problem about the MHD flows of a polymeric fluid
in a cylindrical channel in case of an absolute conductivity (generalized
Vinogradov-Pokrovski model).
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1 Introduction

To study the flows of an incompressible viscoelastic polymeric fluid in
an infinite cylindrical channel under the influence of a homogenous external
field we use structural-phenomenological Vinogradov-Pokrovski model as a
base [1, 2]. This model interprets polymeric medium as a suspension of
polymer macromolecules moving in an anysotropic fluid consisting of, e.g.,
solvent and other macromolecules. The environment effects on a chosen
macromolecule is approximated by the impact on a chain of brownian par-
ticles, each of which is a a sufficiently large part of the macromolecule. It
turns out that the formulated physical model is an effective way of describing
slow relaxation processes in systems with linear polymers.

Using a mechanical analogy we call the brownian particles ”beads” and
the analogue of the elastic powers between the particles ”springs”. In the
simplest case when the macromolecule is modelled as a ”dumbbell” (”dumb-
bell” is two beads connected by a spring), we formulate the system of dif-
ferential correlations (Vinogradov-Pokrovski model):

ρ(
∂

∂t
vi + vk

∂

∂xk
vi) =

∂

∂xk
σik,

∂vi
∂xi

= 0, (1)

σik = −pδik + 3
η0
τ0

aik, (2)

d

dt
aik − vijajk − vkjaji +

1 + (k − β)I

τ0
aik =

2

3
γik −

3β

τ0
aijajk, (3)

I = a11 + a22 + a33, γik =
vik + vki

2
, i, k = 1, 2, 3. (4)

Here ρ is polymer density, vi is i-th velocity component, σik is stress
tensor, p is hydrodynamic pressure; η0, τ0 are initial values of shear vis-
cosity and relaxation time for viscoelastic component correspondenly, vik is
velocity gradient tensor with components calculated as follows: vik = ∂vi

∂xk
,

i, k = 1, 2, 3; γik is symmetrized velocity gradient tensor; aik is symmetric
anisotropy stress tensor; k and β are phenomenological parameters that take
into account the size and the form of a macromolecule ball. Equations (1)
are motion equation and incompressibility condition, and equations (2)-(3)
are rheological correlation, that connects kinematic characteristics of the
flow with its thermodynamic parameters; each component aik is the sum
of the first three terms in the left part of equality (3), the so-called upper
convective derivative or Oldroyd derivative [3], d

dt =
∂
∂t + (v⃗,∇) is material

derivative.
Note that the model (1)-(4) allows the formal passage to the limit. If

k, β → 0 we get the so called contravariant Oldroyd-B model [3]. If in



SPECTRUM OF A LINEAR PROBLEM ABOUT THE FLOW 825

addition τ0 → 0 then we get the model for a viscous Newtonian fluid in a
form of Navier-Stokes equations [28].

Also note that the accepted physical representation of a polymeric medium
allows us to describe its main rheological properties: the decrease of viscosity
and the first difference of normal stresses with the growth of shear veloc-
ity, the growth of stretching viscosity to a certain limit with the growth of
deformation velocity.

Moreover, unlike the known models FENE-R [4], FENE-CR [5] that take
into account additional physical mechanisms reflecting the behaviour fea-
tures of a studied material: boundedness and nonlinearity of a spring elon-
gation, connected to the finite length of a macromolecule and the existence
of weaves and engagements in it, which obstruct its uniform and infinite
elongation (instead of a Hooke law the nonlinear law of a spring elasticity is
used); or RHL-model [6] that take into account potential barriers, that slow
down the transition from one equilibrium configuration to the other (addi-
tional force of an inner resistance is introduced), the Pokrovski-Vinogradov
model allows us to acquire nonzero values of the second difference for normal
stresses [7]. Specifically, it tries to take into account the anysotropy effect
of the chosen molecule environment that is caused by its elongation and
orientation in space during the flow process of its macromolecule chains.

Rheological properties, predicted by the Pokrovski-Vinogradov model with
parameters k = 1, 2β, that guarantee monotone of a flow curve, are quali-
tatively and quantitatively agree with the experimental data for melts and
solutions of polymers [8, 9].

A number of works [10, 11, 12] studied the linear Lyapunov stability of
Poiseuille-type flows in an infinite plane channel (the pressure drop on a
segment doesn’t depend on time) for the model (1)-(4), as well as for its
generalization on the case of nonisometric flow of an incompressible weakly
conducting polymeric fluid with the existence of a negative space charge
[13, 14, 15] and on the case of nonisothermic model with the additional
external interaction of a uniform magnetic field [16, 17, 18, 19].

The question of stability of the resting state for nonisothermic model of
the polymeric fluid flow in an infinite plane channel under the influence of
an external magnetic field was studied in works [20, 21, 22]. The main result
being that the resting state in the case of an absolute conductivity, i.e. when
bm = 0 (its definition is given in the second section), and vanishing of one
of the dissipative coefficients in the righthand part of the equation of the
analogue to the heat equation is linearly unstable by Lyapunov.

The result of the work [23] was refined in the works [24, 25]. It states that
the spectrum of a linearized with respect to the resting state mixed problem
for the system (1)–(4) does not lie in an open right half-plane.

One of the main results of these works is that the mixed problem has peri-

odic solutions which have the more then exponential growth eReλt, Reλ > 0,
t → +∞.
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In the current work we study the linear stability of the resting state for
the generalized Vinogradov-Pokrovski model (1)-(4). We consider the case
when the flow of a polymeric fluid in an infinite cylindrical channel is affected
by an external homogenous magnetic field. We also assume that the tension
vector of the main magnetic field is parallel to the cylinder axis. From the
physical point of view the flow of a polymeric fluid in a cylindrical channel
is more real process than the flow in a plane channel.

In a short form the model is formulated as follows:

divu = 0, (5)

divH = 0, (6)

du

dt
+∇P = divΠ+ σm(H,∇)H, (7)

dH

dt
− (H,∇)u− bm△H = 0, (8)

∇
Π+

1 + (k − β)I

τ0
Π =

2

3
D − 3β

τ0
Π2. (9)

Here in addition to the notation for the base Vinogradov-Pokrovski model
(1)-(4) we also use the new one: Π is the anisotropy tensor, H is the magnetic
field strength vector, σm, bm are some constants that are described further in

§2,
∇
Π = dΠ

dt −
[
(∇u)TΠ+Π(∇u)

]
is the Oldroyd derivative, Π2 is calculated

as a square of a matrix.
The study of the flows of fluids of different nature in domains with cylin-

drical boundaries is fundamentally important not only to study the prop-
erties of said flows such as an emergence and development of instabilities
(see e.g. classic work [26]) which are described by other already accepted
models, but also to test the new models.

Note that the work [29] shows, based on the numerical experiments, that
the resting state for the axisymmetric flows of a polymeric fluid in an infinite
cylindrical channel with circular section (in the case of the base Vinogradov-
Pokrovski model 1)-(4) is linearly unstable by Lyapunov. Moreover we can
state with a reasonable degree of confidence that the linear problem allows
the construction of a Hadamard-type example [30, 31].

So the current work states the question if it is possible to use a magnetic
field to dampen or at least slow down this instability for flows of polymeric
fluid in a cylindrical channel.

The result of this work allows to conclude that for some parameters of
the medium and flows and for some class of perturbations this is indeed
possible.

The work is structured in the following way.
In the second paragraph we transform the system (5)-(9) from a Cartesian
coordinate system into a cylindrical one and also formulate the linearized
problem. We finish the second paragraph by formulating and proving a
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theorem that describes the spectrum of a problem for special cases and
formulating the main theorem 2.

The next paragraph is dedicated to justification of the results of the the-
orem 2.

Finally the last paragraph is about the results of numerical experiments
and their analysis.

2 Quasilinear and linearized models. Formulation of the
main results

Following the monographs [1, 2, 27, 28, 42] and works [43, 44], we formu-
late the mathematical model for describing magnetohydrodynamic flows of
an incompressible polymeric fluid in an infinite cylinder channel with round
section directed along the cylinder axis (see Fig. 1).

p,

r = 1 z

u, v, w, L, M, N,

a   ,..., arr φz

M = 0, N = 1, L∞ ∞

1(H  )0

∞

Figure 1. Cylinder channel and its base values, defining
magnetohydrodynamic flow of a polymeric fluid

We can write the model (5)-(9) in a dimensionless form and in a cylindrical
coordinate system as follows:

divu =
1

r

∂(ru)

∂r
+

1

r

∂v

∂φ
+

∂w

∂z
= 0, (10)

divH =
1

r

∂(rL)

∂r
+

1

r

∂M

∂φ
+

∂N

∂z
= 0, (11)

du

dt
− v2

r
+

∂P

∂r
=

1

Re

(
∂arr
∂r

+
1

r

∂arφ
∂φ

+
∂arz
∂z

+
arr − aφφ

r

)
+

+ σm

(
L
∂L

∂r
+

M

r

∂L

∂φ
+N

∂L

∂z
− M2

r

)
, (12)
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dv

dt
+

uv

r
+

1

r

∂P

∂φ
=

1

Re

(
∂arφ
∂r

+
1

r

∂aφφ
∂φ

+
∂aφz
∂z

+
2arφ
r

)
+

+ σm

(
L
∂M

∂r
+

M

r

∂M

∂φ
+N

∂M

∂z
+

LM

r

)
, (13)

dw

dt
+

∂P

∂z
=

1

Re

(
∂arz
∂r

+
1

r

∂aφz
∂φ

+
∂azz
∂z

+
arz
r

)
+

+ σm

(
L
∂N

∂r
+

M

r

∂N

∂φ
+N

∂N

∂z

)
, (14)

dL

dt
−
(
L
∂u

∂r
+

M

r

∂u

∂φ
+N

∂u

∂z

)
− bm(△r,φ,zL+

2

r2
∂M

∂φ
− L

r2
) = 0, (15)

dM

dt
+
vL

r
−
(
L
∂v

∂r
+

M

r

∂v

∂φ
+N

∂v

∂z

)
−bm(△r,φ,zM+

2

r2
∂L

∂φ
−M

r2
) = 0, (16)

dN

dt
−
(
L
∂w

∂r
+

M

r

∂w

∂φ
+N

∂w

∂z

)
− bm△r,φ,zN = 0, (17)

darr
dt

− 2

(
Ar

∂u

∂r
+

arφ
r

∂u

∂φ
+ arz

∂u

∂z

)
+ Lrr = 0, (18)

daφφ
dt

+ 2

(
v

r
− ∂v

∂r

)
arφ − 2

(
1

r
(u+

∂v

∂φ
)Aφ + aφz

∂v

∂z

)
+ Lφφ = 0, (19)

dazz
dt

− 2

(
arz

∂w

∂r
+

aφz
r

∂w

∂φ
+Az

∂u

∂z

)
+ Lzz = 0, (20)

darφ
dt

+

(
v

r
− ∂v

∂r

)
Ar +

(
arφ

∂w

∂z
− arz

∂v

∂z
− Aφ

r

∂u

∂φ
− aφz

∂u

∂z

)
+ Lrφ = 0,

(21)
darz
dt

−arz

(
∂u

∂r
+

∂w

∂z

)
−
(
Ar

∂w

∂r
+

arφ
r

∂w

∂φ
+

aφz
r

∂u

∂φ
+Az

∂u

∂z

)
+Lrz = 0,

(22)

daφz
dt

+

(
v

r
− ∂v

∂r

)
arz−

(
aφz

∂u

∂r
+Az

∂v

∂z
+ arφ

∂w

∂r
+

Aφ

r

∂w

∂φ

)
+Lφz = 0.

(23)

In equations (10)–(23) t is time, u, v, w, L,M,N are components of a
velocity vector u and of the magnetic field strength vector H = (L,M,N)
in a cylindrical coordinate system, P = p + σm∥H∥2/2, p is hydrodynamic
pressure, ∥H∥2 = (H,H), arr, . . . , aφz are components of a symmetrical
anisotropy tensor Π of a second rank [1, 2];

Lrr = KIarr + β∥ar∥2, Lφφ = KIaφφ + β∥aφ∥2,

Lzz = KIazz + β∥az∥2, Lrφ = KIarφ + β(ar, aφ),

Lrz = KIarz + β(ar, az), Lφz = KIaφz + β(aφ, az),

ar = (arr, arφ, arz), aφ = (arφ, aφφ, aφz), az = (arz, aφz, azz),
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Ar = arr +Wi−1, Aφ = aφφ +Wi−1, Az = azz +Wi−1,

KI = Wi−1 + k̄I/β, I = arr + aφφ + azz, k̄ = k − β,

k, β, 0 < β < 1 are phenomenological parameters of a rheological model
[1, 2],
Re = (ρuH l)/η0 is the Reynolds number, Wi = (τ0uH)/l is the Weisenberg
number,
ρ(= const) is the density of the medium, η0, τ0 are initial values of shear
viscosity and relaxation time [1, 2],
l is the characteristic length, uH is the characteristic velocity,
σm = (µµ0H

2
0 )/(ρu

2
H) is the magnetic pressure coefficient, bm = 1

Rem
,

Rem = σµµ0uH l is the magnetic Reynolds number, µ0 is the magnetic
permeability in a vacuum, µ is the magnetic permeability, σ is the electrical
conductivity of the medium,

△r,φ,z =
∂2

∂r2
+ 1

r2
∂2

∂φ2 + 1
r

∂
∂r +

∂2

∂z2
is the Laplace operator,

d
dt =

∂
∂t + u ∂

∂r +
v
r

∂
∂φ + w ∂

∂z .

The system (10)–(23) is written in a dimensionless form: variables t, r, z, u,
v, w, p, L,M,N , arr, . . . , aφz are divided correspondingly by l/uH , l, uH , ρu2H ,

H0,
Wi
3 .

Remark 1. When deriving the magnetohydrodynamic equations we used
the Maxwell equations system [27, 32]. We assume that the electromagnetic
field is small enough, which allows us to put B = µµ0H = (1 + χ)µ0H
where B is the magnetic induction vector, χ is the magnetic susceptibility.
χ = χ0/Y , χ0 is the magnetic susceptibility under the room temperature
T = T0(= 300K), Y = T/T0, T is the temperature [33, 34].

External with respect to the channel medium (see Fig. 1) is a dielectric
and is under an effect of a homogenous magnetic field H, where M∞ = 0,
N∞ = 1 and L∞ satisfies the following equation:

△r,φ,zL∞ = 0, r > 1, (24)

which guarantees that the normal component of the vector B and the tan-
gent component of the vector H are continuous.

Then the boundary no-slip conditions for the system (10)-(24) (r = 1)
are as follows:

u = 0, (25)

L∞ =
1 + χ

1 + χ∞
L, (26)

N∞ = 1, M∞ = 0. (27)

As a base solution we choose the resting state

u = 0, p = p0 − const, αrr = 0, . . . , αφz = 0, L = M = 0, N = 1

both inside the channel, i.e. r < 1, and outside it, i.e. r > 1, which means
that the vector of the main magnetic field strength is directed along the z
axis.
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Linearizing the boundary problem (10)-(24), (25)-(27) with respect to the
chosen solution results in a following problem (small perturbations of the
components of the solution are written the same as initial variables) leads
us to the following problem:

Ru+
1

r
vφ + wz = 0, (28)

ut +Ωr =
1

r
(αrφ)φ + (αrz)z +

αrr − αφφ

r
+ σmLz, (29)

vt +
1

r
Ωφ = (αrφ)r +

1

r
(αφφ − αrr)φ + (αφz)z +

2αrφ

r
+ σmMz, (30)

wt +Ωz = (αrz)r +
1

r
(αφz)φ + (αzz − αrr)z +

αrz

r
+ σmNz, (31)

Lt − uz − bm

{
D1L− Mφ

r2

}
= 0, (32)

Mt − vz − bm

{
D1M − Lφ

r2

}
= 0, (33)

Nt − wz − bmD0N = 0, (34)

Λαrr = 2κ2ur, (35)

Λαφφ =
2

r
(u+ vφ)κ2, (36)

Λαzz = 2κ2uz, (37)

Λαrφ =
κ2

r
uφ − κ2

(v
r
− vr

)
, (38)

Λαrz = κ2(wr + uz), (39)

Λαφz = κ2(vz +
wφ

r
). (40)

Here αrr =
arr
Re , . . . , αφz =

aφz

Re , κ
2 = 1

WRe , R = ∂
∂r +

1
r ,

D0 = △ = ∂2

∂r2
+ 1

r
∂
∂r +

1
r2

∂2

∂φ2 + ∂2

∂z2
= R2 + 1

r2
∂2

∂φ2 + ∂2

∂z2
,

D1 = D0 − 1
r2
, Λ = ∂

∂t +
1
W , Ω = p− αrr.

Outside the channel the condition (24) still holds

D0L∞ = 0 for r > 1, (41)

and the boundary conditions (25)-(27) transform into
u = 0,

L∞ =
1 + χ

1 + χ∞
L, r = 1,

N = M = 0.

(42)
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Remark 2. For the function Ω, i.e. generalized ”pressure”, the following
holds

D0Ω =

(
1

r2
∂2

∂φ2
− 1

r

∂

∂r

)
(αφφ − αrr)+

+ 2R

(
∂

∂z
αrz +

1

r

∂

∂φ
αrφ +

2

r

∂

∂φ

(
∂

∂z
αφz +

1

r
αrφ

))
, (43)

Remark 3. Due to the (28), (31-33), the function

d = Lr +
1

r
L+

1

r
Mφ +Nz

equals zero for all r, φ, z if

d
∣∣
t=0

= 0, 0 < r < 1, |z| < ∞,

so we can use equation (34) and equation

d = 0

interchangeably.

We will be looking for a solution of the problem (28)–(41) in the special
form:

u(t, r, φ, z) = u(r) exp{λt+ inz + imφ}, . . . ,
L∞(t, r, φ, z) = L∞ exp{λt+ inz + imφ}, . . . ,

αφz(t, r, φ, z) = αφz(r) exp{λt+ inz + imφ}, (44)

where λ = η + iξ, ξ, η ∈ R1, n,m ∈ Z are some parameters.
Taking into the account remark 3 and assuming bm ̸= 0, λ ̸= 1

Wi we
get the equation system for the functions u(r), . . . , L∞(r) with parameters
λ, n,m 

αrr =
u′

λ
, αφφ =

u+ imv

rλ̄
, αzz =

inu

λ̄
,

αrφ =
1

2λ̄

{
imu

r
+ v′ − v

r

}
, αrz =

w′ + inu

2λ̄
,

αφz =
i(nv + 1

rmw)

2λ̄
, λ̄ =

λ+Wi−1

2ae2
.

(45)
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The other for equations of the system (28)–(41) are rewritten as follows:

Ru+ i(
m

r
v + nw) = 0, (46)

Ω′ = −
(
m2 + 2

2r2λ̄
+

n2

2λ̄
+ λ

)
u+

1

rλ̄
u′+

+
im

2λ̄r
(v′ − 3v

r
) +

in

2λ̄
w′ + inσmL, (47)

R2v − (n2 +
1 + 3m2

r2
+ 2λλ̄)v =

2nm

r
w − 4im

r2
u−

− 2inλ̄σmM +
2imλ̄

Ω
, (48)

R2w − (n2 +
m2

r2
+ 2λλ̄)w = 2inλ̄Ω− 2inλ̄σmN+

+ 2mnv + 2n2u− 2inu

r
, (49)

RL+ i
(m
r
M + nN

)
= 0, (50)

d1M +
2imL

r2
− λ

bm
M +

in

bm
v = 0, (51)

d0N − λ

bm
N +

in

bm
w = 0, (52)

d0L∞ = 0. (53)

Here we use the notation

d1 = d0 −
1

r2
, d0 =

d2

dr2
+

1

r

d

dr
− m

r2
− n2 = R2 − m2

r2
− n2

From correlations (29), (43) and (45) it follows that

d0Ω =

(
−m2

r2
− 1

r

d

dr

)(
u+ imv

rλ̄
− u′

λ̄

)
+

+R

(
in

w′ + inu

λ̄
+

im

r

imu
r + v′ − v

r

λ̄

)
+

+
im

r

(
−n

nv + 1
rmw

λ̄
+

1

r

imu
r + v′ − v

r

λ̄

)
− n2

(
inu

λ̄
− u′

λ̄

)
,

(54)

Ω̃′ =
imv′

2λ̄
− inw′

2λ̄
+ σminL for r = 1, (55)

where

Ω̃ = Ω− u

rλ̄
− in

λ̄
w. (56)

In an axisymmetric case, whenm = 0, which is the main interest to us, the
system (46)–(53) is simplified by splitting into two independent subsystems.
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That and the boundary conditions (42) leads us to the following two spectral
boundary problems:


(d1 − 2λλ̄)v + 2inλ̄σmM = 0,

(d1 −
λ

bm
)M +

in

bm
w = 0

v = M = 0 for r = 1.

(57)



Ru+ inw = 0,

(d0 − 2λλ̄)w − 2inλ̄Ω̂ + 2inλ̄σmN − 2n2u+ n2w = 0,

RL+ inN = 0,

(d0 −
λ

bm
)N +

inw

bm
= 0,

Ω̂′ +
2λλ̄+ n2

2λ̄
u− inσmL = 0,

u = w = N = 0 for r = 1,

d0L∞ = 0, for r > 1,

L∞ =
1 + χ

1 + χ∞
L, for r = 1.

(58)

Here

d1 = R2 − n2 − 1

r2
, d0 = R2 − n2, Ω̂ = Ω̃ +

in

2λ̄
w,

function Ω̃ can be represented through Ω due to (56).
The correlation (54) takes the following form:

d0Ω̃ =
in3

λ̄
(w − u). (59)

For the case of absolute conductivity bm = 0 in which we are interested
the most, the problems (57), (58) take a simpler form


(d1 − 2λλ̄)v + 2inλ̄σmM = 0,

λM − inv = 0,

v = M = 0 for r = 1.

(60)
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Ru+ inw = 0,

(d0 − 2λλ̄)w − 2inλ̄Ω̂ + 2inλ̄σmN − 2n2u+ n2w = 0,

RL+ inN = 0,

Ω̂′ +
2λλ̄+ n2

2λ̄
u− inσmL = 0,

u = w = N = 0 for r = 1,

d0L∞ = 0, for r > 1,

L∞ =
1 + χ

1 + χ∞
L, for r = 1.

(61)

Cross differentiating (61) gives us equivalent problem for the radial velocity
component:

u(V ) + u(IV ) 3

r
− u′′′

(
3

r2
+ τ

)
+ u′′

(
6

r2
− 2τ

r
+ 2in3

)
+

+ u′
(
− 9

r4
+

τ

r2
+ n2(τ + n2) + i

2n3

r

)
+ u

(
9

r5
− τ

r3
+

n2τ

r

)
= 0, (62)

|u(0)| = 0,∣∣∣∣(u′ + 1

r
u)
∣∣
r=0

∣∣∣∣ < ∞,∣∣∣∣(u′′′ + 2

r
u′′ − 1

r2
u′ − 1

r3
u)
∣∣
r=0

∣∣∣∣ < ∞,

(63)

u(1) = u′(1) = 0, (64)

where

τ = 2λλ̄+ 2n2σm
λ̄

λ
. (65)

Boundary problem (60), naturally, is equivalent to the boundary problem
for the angle component v:(d1 − 2λλ̄)v − 2n2σm

λ̄

λ
v = 0,

|v(0)| < ∞, v(1) = 0.
(66)

While formulating problem (62)-(64) and (60), we of course assume that n
and λ ̸= 0.

First we study the limit cases: λ = 0, λ = − 1
Wi and n = 0.

If λ = 0, n ̸= 0 (λ ̸= − 1
Wi) then due to the system (28)-(40) and correlations

(45) we get

u = v = w = M = 0, Ω̂ = Ω̃ = Ω = σmN,L =
1

in
N ′
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and the component N satisfies equation

N ′′ +
N ′

r
− n2N = 0 (67)

under the condition
|N(0)| < ∞,

which gives us
N(r) = C1J0(2in

√
r), (68)

where C1 is some arbitrary constant [36].
The boundary condition

N(1) = 0

due to (68) leads to the following correlation

n2 = −
µ2
k

4
, k = 1, 2, . . .

where µk are positive zeroes of the Bessel function J0(r).
So, it turns out that λ = 0 for n ̸= 0 is not a eigenvalue of the cor-

responding spectral problem for the problem (30)-(42) in an axisymmetric
case.

Let λ = − 1
Wi and n ̸= 0. Still assuming the absolute conductivity we get

[45]
u = 0, H = 0, (69)

αrφ = − in

r2

∫ r

0
ξ2αφzdξ (70)

αrz(
√
nr) = C2J1(

√
nr) +

i√
n
J1(

√
nr)×

×
∫ r

0

Y1(
√
nr)

W (
√
nr)

[
(αrr − αzz)η +

αrr − αφφ

η

]
dη−

− i√
n
Y1(

√
nr)

∫ r

0

J1(
√
nr)

W (
√
nr)

[
(αrr − αzz)η +

αrr − αφφ

η

]
dη, (71)

W (η) =
[
Y1(η)J

′
1(η) = Y ′

1(η)J1(η)
] ∣∣

η=1

1

η
is Wronski’s determinate, (72)

p =
1

in
[(αrz)

′ +
αrz

r
] + αzz, (73)

where αφz, αrr, αzz, αφφ are arbitrary functions, J1(ξ), Y1(ξ) are Bessel func-
tions of the first order of the first and second kind, C2 is an arbitrary con-
stant.

If additionally n = 0, then instead of solution (69)-(73) we get

u = 0, H = 0, (74)

αrz = αrφ = 0, (75)

p = αrr +

∫ r

0

αrr − αφφ

ξ
dξ. (76)
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where αφz, αrr, αzz, αφφ are arbitrary functions.
Of course, the anisotropy tensor components in the right-hand side of

equations (70), (71), (75) need to be chosen in a such a way that they are
bounded for r = 0 and the left-hand side is also bounded.

Remark 4. For now we will not be discussing the conditions that guarantee
boundedness of all the anisotropy tensor components for r = 0 in detail
because, firstly, we don’t know if the point λ = − 1

Wi is isolated from the other
points of the spectrum (but below we will show that for n = 0 it is) which
is important for the reverse Laplace transform, and secondly, λ = − 1

Wi lies
strictly in the left half-plane which guarantees vanishing of the corresponding
mode for t → ∞ and we are more interested in cases when the instability
may arise.

Finally let n = 0, but λ ̸= 0.
In this case from the system (28)-(40) and the notation (45) we get

u = L = N = 0, Ω = p = C3, C3 is an arbitrary constant, (77)

and for the velocity component w the following boundary problem
(

d2

dr2
+

1

r

d

dr
− 2λλ̄

)
w = 0,

w(1) = 0, |w(0)| < ∞.

(78)

Introducing a new variable

ξ = i
√
2λλ̄r (79)

and using the boundedness of the solution w for r = 0 we get [36]

w = C4J0(ξ) = C4J0(i
√

2λλ̄r), C4 is an arbitrary constant. (80)

The second boundary condition leads us to equality

2λλ̄ = −µ2
k, k = 1, 2, . . . (81)

where µk are roots of the equation

J0(µ) = 0.

They are symmetric so we assume µk > 0.
Equation (81) gives us

λk,0
1,2 =

− 1
Wi ±

√
1

Wi2
− 4κ2µ2

k

2
, k = 1, 2, . . . (82)

It is obvious that Reλk,0
1,2 ≤ −σ < 0 for some constant σ > 0.

In its turn the unknowns M and v satisfy the following conditions:

M = 0. (83)
(

d2

dr2
+

1

r

d

dr
− 1

r2
− 2λλ̄

)
v = 0,

v(1) = 0, |v(0)| < ∞.

(84)
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The change of variable (79) allows us to find the spectral function

v = C5J1(ξ) = C5J1(i
√

2λλ̄r), C5 is an arbitrary constant. (85)

and the spectrum

λk,1
1,2 =

− 1
Wi ±

√
1

Wi2
− 4κ2νk2

2
, k = 2, 3 . . . (86)

where J1(νk) = 0.
In equality (86) we excluded the case ν1 = 0 due to the fact that for λ = 0

the change of variable (79) becomes degenerate and remembering formulas
(45) gives us a way to find other components of the unknown vector-function
for n = 0.

Remark 5. If in addition to the condition n = 0 we also set λ = 0 then the
components N and M in correlations (77) and (83) are no longer necessarily
equal zero but can be arbitrary functions.

Thus for the case of absolute conductivity bm = 0 the modes acquired for
λ = − 1

Wi and for n = 0 (e.g. formulas (77), (80), (82), (83), (85), (86))
decrease exponentially for t → ∞ with the exception of

(u, v, w, L,M,M, p, arr, arφ, arz, aφφ, aφz, azz)
T =

= C6e
λt(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)T (87)

where λ ̸= 0 is an arbitrary parameter, C6 is an arbitrary constant.

Remark 6. That means that if C6 ̸= 0 then there can occur perturbations
which grow unlimitedly for t → +∞. To get the decreasing pressure for
t → ∞ we need to set this mode for Reλ < 0. This situation is similar to
the flow of polymeric fluid in an infinite plane channel for the base variant
of the Vinogradov-Pokrovski model [24, 25].

We can unify the results above into the following theorem:

Theorem 1. In case of absolute conductivity bm = 0 the spectral function
of the system (28)-(40) (taking into account (45)) for λ = − 1

Wi , n ̸= 0 is

defined by the formulas (69)-(73). For λ = − 1
Wi , n = 0 it is defined by the

formulas (74)-(76). For n = 0, λ ̸= 0 it is defined by the formulas (77),
(80), (82), (83), (85), (86) (if n = 0 and λ = 0 it is necessary to tale into
account remark 5).

Not counting the already studied special cases to get the full picture of
the spectrum of the problems (57), (58) it is necessary to study the spectral
problem (62)-(65) and the spectral problem (66).

The following two theorem hold true.

Theorem 2. Let λ ̸= 1
Wi and n ̸= 0. Then the spectral equation for the

boundary problem (62)-(65) takes the form

u′2(1)u1(1)− u′1(1)u2(1) = 0.
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The functions u1(r) and u2(r) are defined by the formulas (89), (90) and
(91), (92) correspondingly.

The spectrum of the boundary problem (66) is defined by the formulas
(104), (101)-(102) and its eigenfunctions by correlation (104) where the
limit correlations (105), (106) also hold.

3 Proof of theorem 2

Let us start the proof of theorem 2 by studying the fundamental solutions
system of the equation (62). Here the main point is the information about
the basis of the defining Euler equation [37, 38].

ũ(V ) +
3

r
ũ(IV ) − 3

r2
ũ′′′ +

6

r3
ũ′′ − 9

r4
ũ′ +

9

r5
ũ = 0. (88)

The basis of the equation (88) consists of the following functions

ũ1 = r3, ũ2 = r, ũ3 = r3 ln r, ũ4 = r ln r, ũ5 =
1

r
.

Due to the boundary conditions for r = 0 the solutions of the equation (62)
we are looking for are the first two functions ũ1, ũ2. So the first element of
the equation (62) basis has the form [38]

u1 =

∞∑
k=0

akr
k+3 = a0r

3 + a1r
4 + . . . , (89)

where u1 is a whole function, r ∈ R. Coefficients ai can be found in the
following way:

a0 = 1, a1 = 0, a2 =
τ

24
, a3 = − 2

175
in3, a4 =

α2 − n2(n2 + τ)

1152
,

ak =
τ

(k + 2)(k + 4)
ak−2 −

2in3

(k + 2)2(k + 4)
ak−3−

− n2(n2 + τ)

(k + 2)3k(k + 4)
ak−4, k = 5, 6, 7, . . . (90)

where τ = 2λλ̄+ 2n2σm
λ̄
λ due to (65).

In its turn

u2 =
∞∑
k=0

bkr
k+1 = b0r + b1r

2 + . . . , (91)
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where

b0 = 1, b1 = b2 = 0, b3 = −2in3

45
,

bk =
τ

(k − 2)(k + 2)
bk−2 −

2in3

(k + 2)k2
bk−3−

− n2(n2 + τ)

(k − 2)k2(k + 2)
bk−4, k = 4, 5, 6, . . . (92)

Thus the set of solutions of the equation (62) which satisfy the boundary
conditions for r = 0 has the following form:

u(r) = C1u1(r) + C2u2(r), (93)

where C1, C2 are arbitrary constants and u1(r), u2(r) are whole functions of
the form (89) (with the coefficients from (90)) or (91) (with the coefficients
from (92)).

Boundary conditions for r = 1 lead us the needed spectral equation from
which we find eigenvalues λ

u′2(1)u1(1)− u′1(1)u2(1) = 0. (94)

This proves the first statement of theorem 2.
Now moving to the problem (66) and using the variable change analogous

to (79) we get the spectral equation

λ3 +
1

Wi
λ2 + λ(n2(κ2 + σm) + ν2kκ2) + n2σm

1

Wi
= 0, (95)

where νk, k = 1, 2, 3, . . . are positive zeros of the Bessel function J1. It is
obvious that due to the Routh-Hurwitz stability criterion [39]

Reλi < 0, i = 1, 2, 3, . . . (96)

for fixed µk and M .
Now to find roots of the equation (95). As is common for the solutions of

the third order equation we will use the following notation:

p = − 1

3Wi2
+ n2(κ2 + σm) + ν2kκ2,

q =
2

27Wi3
− 1

3Wi

(
n2(κ2 − 2σm) + ν2kκ2

)
.

(97)

Then after the variable change

λ = ξ − 1

3Wi
, (98)

the equation (95) transforms into

ξ3 + pξ + q = 0. (99)
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The form of the roots of the equation (99) depends on the sign of the
parameter Q (−108Q is the determinant of equations (95) and (99))[40]

Q =
(p
3

)3
+
(q
2

)2
= n6 1

27
(κ2 + σm)3+

+ n4

(
3(κ2 + σm)2ν2kκ2 +

1

36Wi2
(κ2 − 2σm)2 − 1

27Wi3
(κ2 + σm)2

)
+

+ n2

(
1

81Wi4
(κ2 + σm)− 2

27Wi2
(κ2 + σm)ν2kκ2+

+
1

9
ν4kκ4(κ2 + σm)− 1

81Wi4
(κ2 − 2σm) +

1

18Wi2
(κ2 − 2σm)ν2kκ2

)
+

+
1

9Wi2
ν4kκ4 +

1

27
ν6kκ6. (100)

If Q < 0 then (trigonometry solution)

ξ1 = 2

√
−p

3
cos

α

3
,

ξ2,3 = −2

√
−p

3
cos(

α

3
± 2π

3
),

(101)

where

cosα = − 9√
−(p3)

3
.

If Q > 0, p > 0 then

ξ1 = −2

√
p

3
cot(2α),

ξ2,3 =

√
p

3
cot(2α)± i

√
3 csc(2α),

(102)

where

tanα =
3

√
tan

β

2
, (|α| ≤ π

4
), tanβ =

2

q

√
(
p

3
)3, (|β| ≤ π

2
).

If Q ≥ 0, p < 0 then

ξ1 = −2

√
−p

3
csc(2α),

ξ2,3 =

√
−p

3
csc(2α)± i

√
3 cot(2α),

(103)

where

tanα =
3

√
tan

β

2
, (|α| ≤ π

4
), sinβ = −2

q

√
(−p

3
)3, (|β| ≤ π

2
).
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This means that due to (98) the roots of the equation are as follows:

λ1,2,3 = ξ1,2,3 −
1

3Wi
, (104)

where ξ1.2.3 are defined by the formulas (101)-(103). Note that if n → ∞
then (for the fixed νk)

λ1 → − 1

Wi

σm
κ2 + σm

,

λ2,3 → − 1

2Wi
(κ2 + σm)± 1√

3Wi

(
κ2 − 2σm
κ2 + σm

)
i. (105)

Remark 7. If n is fixed and νk → +∞ then

λ1 → 0, λ2,3 → − 1

2Wi
± 1

6Wi
i. (106)

For the finite values of n and νk eigenfunctions of the problem (66) are
defined the following way:

Vk,n(r) = CJ1(i

√
2λλ̄+ 2n2σm

λ̄

λ
r), (107)

where C is an arbitrary constant.

4 Numerical study of the spectrum

The study of the spectrum with numerical methods is about solving two
main problems. First is that to construct a discrete analogue of the op-
erator with the spectrum that approximates the spectrum of the original
accurately enough. Lately the most frequent approach for this is the col-
location discretization method in Gauss-Lobato points. We should keep in
mind that the end result of this method can be sensitive to the way we take
into account the boundary conditions. In our case the most complications
and interest arise from the boundary condition in zero. Below we show two
ways to take them into account in the matrix operators.

Another problem is the evaluation of the credibility of our results. The
possible errors have two sources. The first is the accumulation of the round-
ing errors in the process of calculations. Note that since we are talking
about non-symmetric spectral problem the size of the computational error
can be unpredictably large. The second source is the discretization itself.
And we are talking not only about the difference between the original and
discrete operators, which decreases with the increase of the number of collo-
cation points. We can also expect the appearance of the so called ”parasite”
eigenvalues. Similar facts can be found for example in work [41]. These
eigenvalues appear for the discrete operators and don’t converge to the spec-
trum of the original differential operator. Usually they differ from ”true”
eigenvalues by saw-like structure of the eigenfunction. Our work, as was
already said, uses two methods for constructing discrete operators. We use
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them for calculations for different discretization parameters and study the
smoothness of eigenfunctions for questionable eignevalues.

Now we will construct the finitely dimensional approximation of differen-
tial operators by pseudo-spectral method. The collocation nodes are Gauss -
Lobato points ξk, k = 0, 1, . . . , N , ordered by ascension. We note collocation

matrix as D̃1. This matrix approximates the functions derivative in points
ξk on the interval [-1,1]. We will map Gauss-Lobato linearly to the interval
[0,1]: ξk = 2rk − 1. Then according to the rule for differentiating complex

function the approximation of the derivative has the from D1 = 2D̃1. The
discrete representation of the derivatives of higher order is represented as
orders of the matrix of the first derivative. For example D2 = D1 × D1 is

the approximation of the operator d2

dy2
.

Now we will describe how do we take into account the boundary conditions
in the discrete approximation of the differential operator.

First we will consider the Dirichlet condition u(0) = u(1) = 0. To take
into account these conditions we will delete the first and the last row and
column from matrices Dk. We will denote these matrices as D̃k. Also in
further calculations the boundary points r0 = 0, rN = 1 are not considered
and instead we use ”shortened” vectors u = (u1, . . . , uN−1)

T .
Note that the boundary conditions of the form (63) can be often found

in descriptions of viscous fluids. To represent their influence on collocation
derivative matrices we use the common approach described in [46]. For
that the functions u is represented as a product u(r) = w(r)v(r), where
both multipliers equal zero on the boundary and have the necessary number
of bounded derivatives. Then u′ = w′v + wv′ = w′(u/w) + w(u/w)′ and
the matrix of the first derivative which acts of the discrete analogue of the
function u can be transformed to the following form

D̃1 = diag

(
w′(rj)

w(rj)

)
+ diag(w(rj))D̃1diag

(
1

w(rj)

)
. (108)

To construct the second derivative we use equality u′′ = w′′v+2w′v′+wv′′ =
w′′(u/w) + 2w′(u/w)′ + w(u/w)′′. From it we get the following:

D̃2 = diag

(
w′′(rj)

w(rj)

)
+ 2diag(w′(rj))D̃1diag

(
1

w(rj)

)
+

+ diag(w(rj))D̃2diag

(
1

w(rj)

)
. (109)

By continuing to follow this principle we can construct derivatives of any
order. As a function w we choose linear function w(r) = r − 1.

Of special interest are conditions on the left boundary (63). The men-
tioned above work [46] proposed a certain way of constructing matrices that
approximate derivatives that are bounded in zero. For that the author
offers to continue the function into the domain of negative values of the
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independent parameter r in an even way and then use the usual differenti-

ating operator D̃1 on the symmetrical with respect to zero interval. Note
that this approach demonstrates high accuracy for functions with sufficient
smoothness after the even continuation. This approach with little change
can be used for functions with sufficient smoothness after the odd continu-
ation. In our case the asymptotic representation of eigenfunctions in zero
(89)-(92) show that they cannot be continued in either way. Which means
that the described method is not suitable for our purposes. However the
same asymptotic representation allow us to get two variants of derivatives
that take into account boundary conditions (63).

First variant (was first proposed in [29]). According to the acquired
representations (89)-(92) there are following equivalences

1 = lim
r→0

u1(r)

rl
= lim

r→0

u2(r)

rm

or

u1(r) = rl(1 + rφ1(r)), u2(r) = rm(1 + rφ2(r)),

where φi ̸= 0, l = 1, m = 3.
Note that functions rl and rm satisfy the Euler equation of the second

order

Lq = 0, where L = r2
d2

dr2
− (l +m− 1)r

d

dr
+ lm = 0,

and substituting q with u1 and u2 gives us relative error in the form

Lui
ui

= rΦi(r) → 0, for r → 0.

Based on these facts we conclude that satisfying boundary conditions on
the left boundary for the solution u of the problem (62)-(65) is equivalent
to satisfying the following equality:

r2
d2u

dr2
− (l +m− 1)r

du

dr
+ lmu = 0 for r → 0. (110)

This equality is what we will be using as a boundary condition.
Second variant. To construct derivatives by the second variant we will

note that due to the asymptotic representation solutions that satisfy bound-
ary condition in zero differ from others in the way that them and all their
derivatives are bounded in zero. To use this fact we modify the approach
above to also take into account the Neumann right boundary condition.

If the function is bounded |u(0)| < ∞ then it can be represented as a
product u(r) = 1

rw(r) where w(r) = ru(r) and, obviously, it satisfies the
homogeneous Dirichlet condition w(0) = 0. To approximate derivative of

the function w we can use collocation matrix D̃1 that takes into account
this simple condition. So for numerical differentiating of the function u we
use the matrix

D̃1 = diag

(
−1

rk

)
+ diag

(
1

rk

)
D̃1diag(rk),
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since u′ =
(
1
r

)′
(ru) + 1

r (ru)
′.

If the boundedness condition holds for derivatives we use equalities u(j) =(
1
r

)′
(ru(j−1))+ 1

r (ru
(j−1))′ to obtain a sequence of approximations of higher-

order derivatives:

D̃j =

[
diag

(
−1

rk

)
+ diag

(
1

rk

)
D̃1diag(rk)

]
D̃j−1. (111)

Now we move to constructing matrix beams.
Matrix beams that approximate initial spectral problems are formed in

different ways depending on which variant we have chosen for taking into
account boundary conditions.

We consider the first variant first. We assume equation (110) to hold near
zero and equation (62) to hold on the rest of the interval. Discretazing both
differential operators and using matrices Dj (see, e.g. (108), (109)) which
already satisfy homogenous Neumann and Dirichlet conditions gives us[

D̃2 − diag
3

rk
D̃1 + diag

3

r2k

]
u = 0,

[
D̃5 + diag

3

rk
D̃4 − diag

(
3

r2k
+ τ

)
D̃3 + diag

(
6

r3k
− τ

2

rk
+ 2in3

)
D̃2+

+ diag

(
−9

r4k
+ τ

1

r2k
+ n2(τ + n2) +

2in3

rk

)
D̃1+

+ diag

(
9

r5k
− τ

1

r3k
+ τ

n2

rk

)]
u = 0.

Note that in the first equation, that corresponds to the equation (110), there
is no spectral parameter. Also it can be written as

(A0 − τB0)u = 0,

where

A0 = D̃2 − diag
3

rk
D̃1 + diag

3

r2k
, B0 = 0,

B0 is zero matrix of size (N − 1)× (N − 1).
The second matrix equation, that corresponds to equation (62) can be

written as
(A1 − τB1)u = 0,

where

A1 = D̃5 + diag
3

rk
D̃4 − diag

(
3

r2k

)
D̃3 + diag

(
6

r3k
+ 2in3

)
D̃2+

+ diag

(
−9

r4k
+ n4 +

2in3

rk

)
D̃1 + diag

(
9

r5k

)
,

B1 = D̃3 + diag

(
2

rk

)
D̃2 − diag

(
1

r2k
+ n2

)
D̃1 + diag

(
1

r3k
− n2

rk

)
.
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Since the equality (110) has asymptotic character we can combine both
matrix equalities:

A =

(
Ā0

A1

)
, B =

(
B̄0

B1

)
, (112)

where Ā0, B̄0 are first rows of matrices A0, B0 and A1, B1 are rows of
matrices A1, B1 starting form second. Thus we indicate that in the closest
to zero point r1 the correlation (110) holds and the correlation (62) holds in
all others. This gives us the matrix beam A− τB.

If we use the second variant of construrcting derivatives (111) then with
the use of these matrices we form algebraic spectral problem for the matrix
beam Ã− τB̃ where

Ã = D̃5 + diag
3

rk
D̃4 − diag

(
3

r2k

)
D̃3 + diag

(
6

r3k
+ 2in3

)
D̃2+

+ diag

(
−9

r4k
+ n4 +

2in3

rk

)
D̃1 + diag

(
9

r5k

)
, (113)

B̃ = D̃3 + diag

(
2

rk

)
D̃2 − diag

(
1

r2k
+ n2

)
D̃1 + diag

(
1

r3k
− n2

rk

)
.

Now it’s time to describe the technology for obtaining numerical results.
We use the function eig of the freely available packet Octave to the matrix

beam defined in (112), (113) to calculate their eigenvalues τj and then solve
a cubic equation (65) for each τj we found. The set of all such roots is the
spectrum of the operator (62).

First things first, we note that the two proposed discretezations give sim-
ilar results both for large scales and local structures (see fig. 2,3). This is
also confirmed by calculations for different number of points N . This co-
incidence is a further confirmation of the idea that these discrete operators
represent the structure of the spectrum of the initial differential operator
adequately.

Next is the fact that for large values of Re, Wi and σ part of the spectrum
is situated in the left half-plane and another part snuggles the imaginary
axis. On fig. 4 we see the images of functions Nre which is the number of
eigenvalues in the right half-plane and Mre = log10max(Re(λj)) which is
the decimal order of the maximum of the real part among all eigenvalues.
The graphs show that with the growth of σ the number of eigenvalues in
the right half-plane is conserved but the values of their real parts lower
significantly. In this case both discretezations also demonstrate a high level
of consistency.

Figures 5,6 show some eigenfunctions corresponding to eigenvalues with
positive real parts. Among them there are smooth ones and both unimodal
and oscillating ones (see graphs in the left part). Smooth functions corre-
spond to eigenvalues with rather small real part 10−9. Generally speaking
the question about whether or not eigenvalues are in the right half-plane
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Figure 2. Numerical spectrums of beams (112) (black cir-
cles), (113) (light circles)

is still open because of the computational errors. The strict answer to it
requires additional study.

We emphasize that the possible doubts in the accuracy of stated algebraic
spectral problems in this case is valid. Since we deal with matrices of a rather
high sizes and norms we can expect a significant accumulation of numerical
errors. However the similarities between the computations from two different
methods indirectly confirm the sufficient level of accuracy during the solution
of the matrix spectral problem.

Some eigenfunctions are entirely saw-like (see bottom right graphs on fig.
5,6). As was already mentioned, the functions with this property usually
correspond to ”parasitic” eigenvalues that appear due to discretezation. Also
among eigenfunctions there are some of the form that can be seen on the
top right. They can be called quasisaw-like. This form of eigenfunctions
means that the number of points we use for the discrete approximation
of the differential operator is insufficient to describe a smooth but quickly
oscillating function.
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Figure 4. Orders of the maximal real part of eigenvalues
Mre(σ) and number of eigenvalues in the right half-plane
Nre(σ) for beams (112) (black lines), (113) (grey lines). Re =
50000, Wi = 3000, n = 1000

So as a result of numerical computations we have established that, gen-
erally speaking, the considered solutions are stable by Lyapunov. However
for large values of Reynolds and Weisenberg numbers the exponent of the
amplitude growth for the perturbations with high enough frequencies along
the channel length can be suppressed to rather small values by increasing the
magnetic pressure. Note that in the work [29] for the resting state without
the magnetic field we showed that the velocity of the growth of amplitudes
for similar perturbations grows to infinity with the growth of their frequency.
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Figure 5. Some eigenfunctions of the beam (112) corre-
sponding to eigenvalues in the right half-plane. Real part
is smooth line, imaginary part is dashed line. Re = 50000,
Wi = 3000, n = 1000

0 0.2 0.4 0.6 0.8 1

r

-1

-0.5

0

0.5

1
N=300, =7.75253284e-09-31622.7766i

0.2 0.25 0.3 0.35

r

-0.5

0

0.5

N=300, =2.17551133e-09-31622.7766i

0 0.1 0.2 0.3 0.4

r

-0.5

0

0.5

N=300, =2.25554686e-09-31622.7766i

0 0.2 0.4 0.6 0.8

r

-0.05

0

0.05

0.1

N=300, =2.69938027e-09-31622.7753i

Figure 6. Some eigenfunctions of the beam (113) corre-
sponding to eigenvalues in the right half-plane. Real part
is smooth line, imaginary part is dashed line. Re = 50000,
Wi = 3000, n = 1000

These results confirms the hypothesis that the magnetic field can be used
as a stabilizing factor on the flows of polymeric fluid.
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